xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision e1f7c9ee)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_log_format.h"
38 #include "xfs_trans_resv.h"
39 #include "xfs_sb.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44 
45 static kmem_zone_t *xfs_buf_zone;
46 
47 static struct workqueue_struct *xfslogd_workqueue;
48 
49 #ifdef XFS_BUF_LOCK_TRACKING
50 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
51 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
52 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
53 #else
54 # define XB_SET_OWNER(bp)	do { } while (0)
55 # define XB_CLEAR_OWNER(bp)	do { } while (0)
56 # define XB_GET_OWNER(bp)	do { } while (0)
57 #endif
58 
59 #define xb_to_gfp(flags) \
60 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
61 
62 
63 static inline int
64 xfs_buf_is_vmapped(
65 	struct xfs_buf	*bp)
66 {
67 	/*
68 	 * Return true if the buffer is vmapped.
69 	 *
70 	 * b_addr is null if the buffer is not mapped, but the code is clever
71 	 * enough to know it doesn't have to map a single page, so the check has
72 	 * to be both for b_addr and bp->b_page_count > 1.
73 	 */
74 	return bp->b_addr && bp->b_page_count > 1;
75 }
76 
77 static inline int
78 xfs_buf_vmap_len(
79 	struct xfs_buf	*bp)
80 {
81 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
82 }
83 
84 /*
85  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86  * b_lru_ref count so that the buffer is freed immediately when the buffer
87  * reference count falls to zero. If the buffer is already on the LRU, we need
88  * to remove the reference that LRU holds on the buffer.
89  *
90  * This prevents build-up of stale buffers on the LRU.
91  */
92 void
93 xfs_buf_stale(
94 	struct xfs_buf	*bp)
95 {
96 	ASSERT(xfs_buf_islocked(bp));
97 
98 	bp->b_flags |= XBF_STALE;
99 
100 	/*
101 	 * Clear the delwri status so that a delwri queue walker will not
102 	 * flush this buffer to disk now that it is stale. The delwri queue has
103 	 * a reference to the buffer, so this is safe to do.
104 	 */
105 	bp->b_flags &= ~_XBF_DELWRI_Q;
106 
107 	spin_lock(&bp->b_lock);
108 	atomic_set(&bp->b_lru_ref, 0);
109 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
110 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
111 		atomic_dec(&bp->b_hold);
112 
113 	ASSERT(atomic_read(&bp->b_hold) >= 1);
114 	spin_unlock(&bp->b_lock);
115 }
116 
117 static int
118 xfs_buf_get_maps(
119 	struct xfs_buf		*bp,
120 	int			map_count)
121 {
122 	ASSERT(bp->b_maps == NULL);
123 	bp->b_map_count = map_count;
124 
125 	if (map_count == 1) {
126 		bp->b_maps = &bp->__b_map;
127 		return 0;
128 	}
129 
130 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
131 				KM_NOFS);
132 	if (!bp->b_maps)
133 		return -ENOMEM;
134 	return 0;
135 }
136 
137 /*
138  *	Frees b_pages if it was allocated.
139  */
140 static void
141 xfs_buf_free_maps(
142 	struct xfs_buf	*bp)
143 {
144 	if (bp->b_maps != &bp->__b_map) {
145 		kmem_free(bp->b_maps);
146 		bp->b_maps = NULL;
147 	}
148 }
149 
150 struct xfs_buf *
151 _xfs_buf_alloc(
152 	struct xfs_buftarg	*target,
153 	struct xfs_buf_map	*map,
154 	int			nmaps,
155 	xfs_buf_flags_t		flags)
156 {
157 	struct xfs_buf		*bp;
158 	int			error;
159 	int			i;
160 
161 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
162 	if (unlikely(!bp))
163 		return NULL;
164 
165 	/*
166 	 * We don't want certain flags to appear in b_flags unless they are
167 	 * specifically set by later operations on the buffer.
168 	 */
169 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
170 
171 	atomic_set(&bp->b_hold, 1);
172 	atomic_set(&bp->b_lru_ref, 1);
173 	init_completion(&bp->b_iowait);
174 	INIT_LIST_HEAD(&bp->b_lru);
175 	INIT_LIST_HEAD(&bp->b_list);
176 	RB_CLEAR_NODE(&bp->b_rbnode);
177 	sema_init(&bp->b_sema, 0); /* held, no waiters */
178 	spin_lock_init(&bp->b_lock);
179 	XB_SET_OWNER(bp);
180 	bp->b_target = target;
181 	bp->b_flags = flags;
182 
183 	/*
184 	 * Set length and io_length to the same value initially.
185 	 * I/O routines should use io_length, which will be the same in
186 	 * most cases but may be reset (e.g. XFS recovery).
187 	 */
188 	error = xfs_buf_get_maps(bp, nmaps);
189 	if (error)  {
190 		kmem_zone_free(xfs_buf_zone, bp);
191 		return NULL;
192 	}
193 
194 	bp->b_bn = map[0].bm_bn;
195 	bp->b_length = 0;
196 	for (i = 0; i < nmaps; i++) {
197 		bp->b_maps[i].bm_bn = map[i].bm_bn;
198 		bp->b_maps[i].bm_len = map[i].bm_len;
199 		bp->b_length += map[i].bm_len;
200 	}
201 	bp->b_io_length = bp->b_length;
202 
203 	atomic_set(&bp->b_pin_count, 0);
204 	init_waitqueue_head(&bp->b_waiters);
205 
206 	XFS_STATS_INC(xb_create);
207 	trace_xfs_buf_init(bp, _RET_IP_);
208 
209 	return bp;
210 }
211 
212 /*
213  *	Allocate a page array capable of holding a specified number
214  *	of pages, and point the page buf at it.
215  */
216 STATIC int
217 _xfs_buf_get_pages(
218 	xfs_buf_t		*bp,
219 	int			page_count)
220 {
221 	/* Make sure that we have a page list */
222 	if (bp->b_pages == NULL) {
223 		bp->b_page_count = page_count;
224 		if (page_count <= XB_PAGES) {
225 			bp->b_pages = bp->b_page_array;
226 		} else {
227 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 						 page_count, KM_NOFS);
229 			if (bp->b_pages == NULL)
230 				return -ENOMEM;
231 		}
232 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
233 	}
234 	return 0;
235 }
236 
237 /*
238  *	Frees b_pages if it was allocated.
239  */
240 STATIC void
241 _xfs_buf_free_pages(
242 	xfs_buf_t	*bp)
243 {
244 	if (bp->b_pages != bp->b_page_array) {
245 		kmem_free(bp->b_pages);
246 		bp->b_pages = NULL;
247 	}
248 }
249 
250 /*
251  *	Releases the specified buffer.
252  *
253  * 	The modification state of any associated pages is left unchanged.
254  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
255  * 	hashed and refcounted buffers
256  */
257 void
258 xfs_buf_free(
259 	xfs_buf_t		*bp)
260 {
261 	trace_xfs_buf_free(bp, _RET_IP_);
262 
263 	ASSERT(list_empty(&bp->b_lru));
264 
265 	if (bp->b_flags & _XBF_PAGES) {
266 		uint		i;
267 
268 		if (xfs_buf_is_vmapped(bp))
269 			vm_unmap_ram(bp->b_addr - bp->b_offset,
270 					bp->b_page_count);
271 
272 		for (i = 0; i < bp->b_page_count; i++) {
273 			struct page	*page = bp->b_pages[i];
274 
275 			__free_page(page);
276 		}
277 	} else if (bp->b_flags & _XBF_KMEM)
278 		kmem_free(bp->b_addr);
279 	_xfs_buf_free_pages(bp);
280 	xfs_buf_free_maps(bp);
281 	kmem_zone_free(xfs_buf_zone, bp);
282 }
283 
284 /*
285  * Allocates all the pages for buffer in question and builds it's page list.
286  */
287 STATIC int
288 xfs_buf_allocate_memory(
289 	xfs_buf_t		*bp,
290 	uint			flags)
291 {
292 	size_t			size;
293 	size_t			nbytes, offset;
294 	gfp_t			gfp_mask = xb_to_gfp(flags);
295 	unsigned short		page_count, i;
296 	xfs_off_t		start, end;
297 	int			error;
298 
299 	/*
300 	 * for buffers that are contained within a single page, just allocate
301 	 * the memory from the heap - there's no need for the complexity of
302 	 * page arrays to keep allocation down to order 0.
303 	 */
304 	size = BBTOB(bp->b_length);
305 	if (size < PAGE_SIZE) {
306 		bp->b_addr = kmem_alloc(size, KM_NOFS);
307 		if (!bp->b_addr) {
308 			/* low memory - use alloc_page loop instead */
309 			goto use_alloc_page;
310 		}
311 
312 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
313 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
314 			/* b_addr spans two pages - use alloc_page instead */
315 			kmem_free(bp->b_addr);
316 			bp->b_addr = NULL;
317 			goto use_alloc_page;
318 		}
319 		bp->b_offset = offset_in_page(bp->b_addr);
320 		bp->b_pages = bp->b_page_array;
321 		bp->b_pages[0] = virt_to_page(bp->b_addr);
322 		bp->b_page_count = 1;
323 		bp->b_flags |= _XBF_KMEM;
324 		return 0;
325 	}
326 
327 use_alloc_page:
328 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
329 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
330 								>> PAGE_SHIFT;
331 	page_count = end - start;
332 	error = _xfs_buf_get_pages(bp, page_count);
333 	if (unlikely(error))
334 		return error;
335 
336 	offset = bp->b_offset;
337 	bp->b_flags |= _XBF_PAGES;
338 
339 	for (i = 0; i < bp->b_page_count; i++) {
340 		struct page	*page;
341 		uint		retries = 0;
342 retry:
343 		page = alloc_page(gfp_mask);
344 		if (unlikely(page == NULL)) {
345 			if (flags & XBF_READ_AHEAD) {
346 				bp->b_page_count = i;
347 				error = -ENOMEM;
348 				goto out_free_pages;
349 			}
350 
351 			/*
352 			 * This could deadlock.
353 			 *
354 			 * But until all the XFS lowlevel code is revamped to
355 			 * handle buffer allocation failures we can't do much.
356 			 */
357 			if (!(++retries % 100))
358 				xfs_err(NULL,
359 		"possible memory allocation deadlock in %s (mode:0x%x)",
360 					__func__, gfp_mask);
361 
362 			XFS_STATS_INC(xb_page_retries);
363 			congestion_wait(BLK_RW_ASYNC, HZ/50);
364 			goto retry;
365 		}
366 
367 		XFS_STATS_INC(xb_page_found);
368 
369 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
370 		size -= nbytes;
371 		bp->b_pages[i] = page;
372 		offset = 0;
373 	}
374 	return 0;
375 
376 out_free_pages:
377 	for (i = 0; i < bp->b_page_count; i++)
378 		__free_page(bp->b_pages[i]);
379 	return error;
380 }
381 
382 /*
383  *	Map buffer into kernel address-space if necessary.
384  */
385 STATIC int
386 _xfs_buf_map_pages(
387 	xfs_buf_t		*bp,
388 	uint			flags)
389 {
390 	ASSERT(bp->b_flags & _XBF_PAGES);
391 	if (bp->b_page_count == 1) {
392 		/* A single page buffer is always mappable */
393 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
394 	} else if (flags & XBF_UNMAPPED) {
395 		bp->b_addr = NULL;
396 	} else {
397 		int retried = 0;
398 		unsigned noio_flag;
399 
400 		/*
401 		 * vm_map_ram() will allocate auxillary structures (e.g.
402 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
403 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
404 		 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
405 		 * memory reclaim re-entering the filesystem here and
406 		 * potentially deadlocking.
407 		 */
408 		noio_flag = memalloc_noio_save();
409 		do {
410 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
411 						-1, PAGE_KERNEL);
412 			if (bp->b_addr)
413 				break;
414 			vm_unmap_aliases();
415 		} while (retried++ <= 1);
416 		memalloc_noio_restore(noio_flag);
417 
418 		if (!bp->b_addr)
419 			return -ENOMEM;
420 		bp->b_addr += bp->b_offset;
421 	}
422 
423 	return 0;
424 }
425 
426 /*
427  *	Finding and Reading Buffers
428  */
429 
430 /*
431  *	Look up, and creates if absent, a lockable buffer for
432  *	a given range of an inode.  The buffer is returned
433  *	locked.	No I/O is implied by this call.
434  */
435 xfs_buf_t *
436 _xfs_buf_find(
437 	struct xfs_buftarg	*btp,
438 	struct xfs_buf_map	*map,
439 	int			nmaps,
440 	xfs_buf_flags_t		flags,
441 	xfs_buf_t		*new_bp)
442 {
443 	size_t			numbytes;
444 	struct xfs_perag	*pag;
445 	struct rb_node		**rbp;
446 	struct rb_node		*parent;
447 	xfs_buf_t		*bp;
448 	xfs_daddr_t		blkno = map[0].bm_bn;
449 	xfs_daddr_t		eofs;
450 	int			numblks = 0;
451 	int			i;
452 
453 	for (i = 0; i < nmaps; i++)
454 		numblks += map[i].bm_len;
455 	numbytes = BBTOB(numblks);
456 
457 	/* Check for IOs smaller than the sector size / not sector aligned */
458 	ASSERT(!(numbytes < btp->bt_meta_sectorsize));
459 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
460 
461 	/*
462 	 * Corrupted block numbers can get through to here, unfortunately, so we
463 	 * have to check that the buffer falls within the filesystem bounds.
464 	 */
465 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
466 	if (blkno >= eofs) {
467 		/*
468 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
469 		 * but none of the higher level infrastructure supports
470 		 * returning a specific error on buffer lookup failures.
471 		 */
472 		xfs_alert(btp->bt_mount,
473 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
474 			  __func__, blkno, eofs);
475 		WARN_ON(1);
476 		return NULL;
477 	}
478 
479 	/* get tree root */
480 	pag = xfs_perag_get(btp->bt_mount,
481 				xfs_daddr_to_agno(btp->bt_mount, blkno));
482 
483 	/* walk tree */
484 	spin_lock(&pag->pag_buf_lock);
485 	rbp = &pag->pag_buf_tree.rb_node;
486 	parent = NULL;
487 	bp = NULL;
488 	while (*rbp) {
489 		parent = *rbp;
490 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
491 
492 		if (blkno < bp->b_bn)
493 			rbp = &(*rbp)->rb_left;
494 		else if (blkno > bp->b_bn)
495 			rbp = &(*rbp)->rb_right;
496 		else {
497 			/*
498 			 * found a block number match. If the range doesn't
499 			 * match, the only way this is allowed is if the buffer
500 			 * in the cache is stale and the transaction that made
501 			 * it stale has not yet committed. i.e. we are
502 			 * reallocating a busy extent. Skip this buffer and
503 			 * continue searching to the right for an exact match.
504 			 */
505 			if (bp->b_length != numblks) {
506 				ASSERT(bp->b_flags & XBF_STALE);
507 				rbp = &(*rbp)->rb_right;
508 				continue;
509 			}
510 			atomic_inc(&bp->b_hold);
511 			goto found;
512 		}
513 	}
514 
515 	/* No match found */
516 	if (new_bp) {
517 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
518 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
519 		/* the buffer keeps the perag reference until it is freed */
520 		new_bp->b_pag = pag;
521 		spin_unlock(&pag->pag_buf_lock);
522 	} else {
523 		XFS_STATS_INC(xb_miss_locked);
524 		spin_unlock(&pag->pag_buf_lock);
525 		xfs_perag_put(pag);
526 	}
527 	return new_bp;
528 
529 found:
530 	spin_unlock(&pag->pag_buf_lock);
531 	xfs_perag_put(pag);
532 
533 	if (!xfs_buf_trylock(bp)) {
534 		if (flags & XBF_TRYLOCK) {
535 			xfs_buf_rele(bp);
536 			XFS_STATS_INC(xb_busy_locked);
537 			return NULL;
538 		}
539 		xfs_buf_lock(bp);
540 		XFS_STATS_INC(xb_get_locked_waited);
541 	}
542 
543 	/*
544 	 * if the buffer is stale, clear all the external state associated with
545 	 * it. We need to keep flags such as how we allocated the buffer memory
546 	 * intact here.
547 	 */
548 	if (bp->b_flags & XBF_STALE) {
549 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
550 		ASSERT(bp->b_iodone == NULL);
551 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
552 		bp->b_ops = NULL;
553 	}
554 
555 	trace_xfs_buf_find(bp, flags, _RET_IP_);
556 	XFS_STATS_INC(xb_get_locked);
557 	return bp;
558 }
559 
560 /*
561  * Assembles a buffer covering the specified range. The code is optimised for
562  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
563  * more hits than misses.
564  */
565 struct xfs_buf *
566 xfs_buf_get_map(
567 	struct xfs_buftarg	*target,
568 	struct xfs_buf_map	*map,
569 	int			nmaps,
570 	xfs_buf_flags_t		flags)
571 {
572 	struct xfs_buf		*bp;
573 	struct xfs_buf		*new_bp;
574 	int			error = 0;
575 
576 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
577 	if (likely(bp))
578 		goto found;
579 
580 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
581 	if (unlikely(!new_bp))
582 		return NULL;
583 
584 	error = xfs_buf_allocate_memory(new_bp, flags);
585 	if (error) {
586 		xfs_buf_free(new_bp);
587 		return NULL;
588 	}
589 
590 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
591 	if (!bp) {
592 		xfs_buf_free(new_bp);
593 		return NULL;
594 	}
595 
596 	if (bp != new_bp)
597 		xfs_buf_free(new_bp);
598 
599 found:
600 	if (!bp->b_addr) {
601 		error = _xfs_buf_map_pages(bp, flags);
602 		if (unlikely(error)) {
603 			xfs_warn(target->bt_mount,
604 				"%s: failed to map pagesn", __func__);
605 			xfs_buf_relse(bp);
606 			return NULL;
607 		}
608 	}
609 
610 	XFS_STATS_INC(xb_get);
611 	trace_xfs_buf_get(bp, flags, _RET_IP_);
612 	return bp;
613 }
614 
615 STATIC int
616 _xfs_buf_read(
617 	xfs_buf_t		*bp,
618 	xfs_buf_flags_t		flags)
619 {
620 	ASSERT(!(flags & XBF_WRITE));
621 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
622 
623 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
624 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
625 
626 	if (flags & XBF_ASYNC) {
627 		xfs_buf_submit(bp);
628 		return 0;
629 	}
630 	return xfs_buf_submit_wait(bp);
631 }
632 
633 xfs_buf_t *
634 xfs_buf_read_map(
635 	struct xfs_buftarg	*target,
636 	struct xfs_buf_map	*map,
637 	int			nmaps,
638 	xfs_buf_flags_t		flags,
639 	const struct xfs_buf_ops *ops)
640 {
641 	struct xfs_buf		*bp;
642 
643 	flags |= XBF_READ;
644 
645 	bp = xfs_buf_get_map(target, map, nmaps, flags);
646 	if (bp) {
647 		trace_xfs_buf_read(bp, flags, _RET_IP_);
648 
649 		if (!XFS_BUF_ISDONE(bp)) {
650 			XFS_STATS_INC(xb_get_read);
651 			bp->b_ops = ops;
652 			_xfs_buf_read(bp, flags);
653 		} else if (flags & XBF_ASYNC) {
654 			/*
655 			 * Read ahead call which is already satisfied,
656 			 * drop the buffer
657 			 */
658 			xfs_buf_relse(bp);
659 			return NULL;
660 		} else {
661 			/* We do not want read in the flags */
662 			bp->b_flags &= ~XBF_READ;
663 		}
664 	}
665 
666 	return bp;
667 }
668 
669 /*
670  *	If we are not low on memory then do the readahead in a deadlock
671  *	safe manner.
672  */
673 void
674 xfs_buf_readahead_map(
675 	struct xfs_buftarg	*target,
676 	struct xfs_buf_map	*map,
677 	int			nmaps,
678 	const struct xfs_buf_ops *ops)
679 {
680 	if (bdi_read_congested(target->bt_bdi))
681 		return;
682 
683 	xfs_buf_read_map(target, map, nmaps,
684 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
685 }
686 
687 /*
688  * Read an uncached buffer from disk. Allocates and returns a locked
689  * buffer containing the disk contents or nothing.
690  */
691 int
692 xfs_buf_read_uncached(
693 	struct xfs_buftarg	*target,
694 	xfs_daddr_t		daddr,
695 	size_t			numblks,
696 	int			flags,
697 	struct xfs_buf		**bpp,
698 	const struct xfs_buf_ops *ops)
699 {
700 	struct xfs_buf		*bp;
701 
702 	*bpp = NULL;
703 
704 	bp = xfs_buf_get_uncached(target, numblks, flags);
705 	if (!bp)
706 		return -ENOMEM;
707 
708 	/* set up the buffer for a read IO */
709 	ASSERT(bp->b_map_count == 1);
710 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
711 	bp->b_maps[0].bm_bn = daddr;
712 	bp->b_flags |= XBF_READ;
713 	bp->b_ops = ops;
714 
715 	xfs_buf_submit_wait(bp);
716 	if (bp->b_error) {
717 		int	error = bp->b_error;
718 		xfs_buf_relse(bp);
719 		return error;
720 	}
721 
722 	*bpp = bp;
723 	return 0;
724 }
725 
726 /*
727  * Return a buffer allocated as an empty buffer and associated to external
728  * memory via xfs_buf_associate_memory() back to it's empty state.
729  */
730 void
731 xfs_buf_set_empty(
732 	struct xfs_buf		*bp,
733 	size_t			numblks)
734 {
735 	if (bp->b_pages)
736 		_xfs_buf_free_pages(bp);
737 
738 	bp->b_pages = NULL;
739 	bp->b_page_count = 0;
740 	bp->b_addr = NULL;
741 	bp->b_length = numblks;
742 	bp->b_io_length = numblks;
743 
744 	ASSERT(bp->b_map_count == 1);
745 	bp->b_bn = XFS_BUF_DADDR_NULL;
746 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
747 	bp->b_maps[0].bm_len = bp->b_length;
748 }
749 
750 static inline struct page *
751 mem_to_page(
752 	void			*addr)
753 {
754 	if ((!is_vmalloc_addr(addr))) {
755 		return virt_to_page(addr);
756 	} else {
757 		return vmalloc_to_page(addr);
758 	}
759 }
760 
761 int
762 xfs_buf_associate_memory(
763 	xfs_buf_t		*bp,
764 	void			*mem,
765 	size_t			len)
766 {
767 	int			rval;
768 	int			i = 0;
769 	unsigned long		pageaddr;
770 	unsigned long		offset;
771 	size_t			buflen;
772 	int			page_count;
773 
774 	pageaddr = (unsigned long)mem & PAGE_MASK;
775 	offset = (unsigned long)mem - pageaddr;
776 	buflen = PAGE_ALIGN(len + offset);
777 	page_count = buflen >> PAGE_SHIFT;
778 
779 	/* Free any previous set of page pointers */
780 	if (bp->b_pages)
781 		_xfs_buf_free_pages(bp);
782 
783 	bp->b_pages = NULL;
784 	bp->b_addr = mem;
785 
786 	rval = _xfs_buf_get_pages(bp, page_count);
787 	if (rval)
788 		return rval;
789 
790 	bp->b_offset = offset;
791 
792 	for (i = 0; i < bp->b_page_count; i++) {
793 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
794 		pageaddr += PAGE_SIZE;
795 	}
796 
797 	bp->b_io_length = BTOBB(len);
798 	bp->b_length = BTOBB(buflen);
799 
800 	return 0;
801 }
802 
803 xfs_buf_t *
804 xfs_buf_get_uncached(
805 	struct xfs_buftarg	*target,
806 	size_t			numblks,
807 	int			flags)
808 {
809 	unsigned long		page_count;
810 	int			error, i;
811 	struct xfs_buf		*bp;
812 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
813 
814 	bp = _xfs_buf_alloc(target, &map, 1, 0);
815 	if (unlikely(bp == NULL))
816 		goto fail;
817 
818 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
819 	error = _xfs_buf_get_pages(bp, page_count);
820 	if (error)
821 		goto fail_free_buf;
822 
823 	for (i = 0; i < page_count; i++) {
824 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
825 		if (!bp->b_pages[i])
826 			goto fail_free_mem;
827 	}
828 	bp->b_flags |= _XBF_PAGES;
829 
830 	error = _xfs_buf_map_pages(bp, 0);
831 	if (unlikely(error)) {
832 		xfs_warn(target->bt_mount,
833 			"%s: failed to map pages", __func__);
834 		goto fail_free_mem;
835 	}
836 
837 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
838 	return bp;
839 
840  fail_free_mem:
841 	while (--i >= 0)
842 		__free_page(bp->b_pages[i]);
843 	_xfs_buf_free_pages(bp);
844  fail_free_buf:
845 	xfs_buf_free_maps(bp);
846 	kmem_zone_free(xfs_buf_zone, bp);
847  fail:
848 	return NULL;
849 }
850 
851 /*
852  *	Increment reference count on buffer, to hold the buffer concurrently
853  *	with another thread which may release (free) the buffer asynchronously.
854  *	Must hold the buffer already to call this function.
855  */
856 void
857 xfs_buf_hold(
858 	xfs_buf_t		*bp)
859 {
860 	trace_xfs_buf_hold(bp, _RET_IP_);
861 	atomic_inc(&bp->b_hold);
862 }
863 
864 /*
865  *	Releases a hold on the specified buffer.  If the
866  *	the hold count is 1, calls xfs_buf_free.
867  */
868 void
869 xfs_buf_rele(
870 	xfs_buf_t		*bp)
871 {
872 	struct xfs_perag	*pag = bp->b_pag;
873 
874 	trace_xfs_buf_rele(bp, _RET_IP_);
875 
876 	if (!pag) {
877 		ASSERT(list_empty(&bp->b_lru));
878 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
879 		if (atomic_dec_and_test(&bp->b_hold))
880 			xfs_buf_free(bp);
881 		return;
882 	}
883 
884 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
885 
886 	ASSERT(atomic_read(&bp->b_hold) > 0);
887 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
888 		spin_lock(&bp->b_lock);
889 		if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
890 			/*
891 			 * If the buffer is added to the LRU take a new
892 			 * reference to the buffer for the LRU and clear the
893 			 * (now stale) dispose list state flag
894 			 */
895 			if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
896 				bp->b_state &= ~XFS_BSTATE_DISPOSE;
897 				atomic_inc(&bp->b_hold);
898 			}
899 			spin_unlock(&bp->b_lock);
900 			spin_unlock(&pag->pag_buf_lock);
901 		} else {
902 			/*
903 			 * most of the time buffers will already be removed from
904 			 * the LRU, so optimise that case by checking for the
905 			 * XFS_BSTATE_DISPOSE flag indicating the last list the
906 			 * buffer was on was the disposal list
907 			 */
908 			if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
909 				list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
910 			} else {
911 				ASSERT(list_empty(&bp->b_lru));
912 			}
913 			spin_unlock(&bp->b_lock);
914 
915 			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
916 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
917 			spin_unlock(&pag->pag_buf_lock);
918 			xfs_perag_put(pag);
919 			xfs_buf_free(bp);
920 		}
921 	}
922 }
923 
924 
925 /*
926  *	Lock a buffer object, if it is not already locked.
927  *
928  *	If we come across a stale, pinned, locked buffer, we know that we are
929  *	being asked to lock a buffer that has been reallocated. Because it is
930  *	pinned, we know that the log has not been pushed to disk and hence it
931  *	will still be locked.  Rather than continuing to have trylock attempts
932  *	fail until someone else pushes the log, push it ourselves before
933  *	returning.  This means that the xfsaild will not get stuck trying
934  *	to push on stale inode buffers.
935  */
936 int
937 xfs_buf_trylock(
938 	struct xfs_buf		*bp)
939 {
940 	int			locked;
941 
942 	locked = down_trylock(&bp->b_sema) == 0;
943 	if (locked)
944 		XB_SET_OWNER(bp);
945 
946 	trace_xfs_buf_trylock(bp, _RET_IP_);
947 	return locked;
948 }
949 
950 /*
951  *	Lock a buffer object.
952  *
953  *	If we come across a stale, pinned, locked buffer, we know that we
954  *	are being asked to lock a buffer that has been reallocated. Because
955  *	it is pinned, we know that the log has not been pushed to disk and
956  *	hence it will still be locked. Rather than sleeping until someone
957  *	else pushes the log, push it ourselves before trying to get the lock.
958  */
959 void
960 xfs_buf_lock(
961 	struct xfs_buf		*bp)
962 {
963 	trace_xfs_buf_lock(bp, _RET_IP_);
964 
965 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
966 		xfs_log_force(bp->b_target->bt_mount, 0);
967 	down(&bp->b_sema);
968 	XB_SET_OWNER(bp);
969 
970 	trace_xfs_buf_lock_done(bp, _RET_IP_);
971 }
972 
973 void
974 xfs_buf_unlock(
975 	struct xfs_buf		*bp)
976 {
977 	XB_CLEAR_OWNER(bp);
978 	up(&bp->b_sema);
979 
980 	trace_xfs_buf_unlock(bp, _RET_IP_);
981 }
982 
983 STATIC void
984 xfs_buf_wait_unpin(
985 	xfs_buf_t		*bp)
986 {
987 	DECLARE_WAITQUEUE	(wait, current);
988 
989 	if (atomic_read(&bp->b_pin_count) == 0)
990 		return;
991 
992 	add_wait_queue(&bp->b_waiters, &wait);
993 	for (;;) {
994 		set_current_state(TASK_UNINTERRUPTIBLE);
995 		if (atomic_read(&bp->b_pin_count) == 0)
996 			break;
997 		io_schedule();
998 	}
999 	remove_wait_queue(&bp->b_waiters, &wait);
1000 	set_current_state(TASK_RUNNING);
1001 }
1002 
1003 /*
1004  *	Buffer Utility Routines
1005  */
1006 
1007 void
1008 xfs_buf_ioend(
1009 	struct xfs_buf	*bp)
1010 {
1011 	bool		read = bp->b_flags & XBF_READ;
1012 
1013 	trace_xfs_buf_iodone(bp, _RET_IP_);
1014 
1015 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1016 
1017 	/*
1018 	 * Pull in IO completion errors now. We are guaranteed to be running
1019 	 * single threaded, so we don't need the lock to read b_io_error.
1020 	 */
1021 	if (!bp->b_error && bp->b_io_error)
1022 		xfs_buf_ioerror(bp, bp->b_io_error);
1023 
1024 	/* Only validate buffers that were read without errors */
1025 	if (read && !bp->b_error && bp->b_ops) {
1026 		ASSERT(!bp->b_iodone);
1027 		bp->b_ops->verify_read(bp);
1028 	}
1029 
1030 	if (!bp->b_error)
1031 		bp->b_flags |= XBF_DONE;
1032 
1033 	if (bp->b_iodone)
1034 		(*(bp->b_iodone))(bp);
1035 	else if (bp->b_flags & XBF_ASYNC)
1036 		xfs_buf_relse(bp);
1037 	else
1038 		complete(&bp->b_iowait);
1039 }
1040 
1041 static void
1042 xfs_buf_ioend_work(
1043 	struct work_struct	*work)
1044 {
1045 	struct xfs_buf		*bp =
1046 		container_of(work, xfs_buf_t, b_iodone_work);
1047 
1048 	xfs_buf_ioend(bp);
1049 }
1050 
1051 void
1052 xfs_buf_ioend_async(
1053 	struct xfs_buf	*bp)
1054 {
1055 	INIT_WORK(&bp->b_iodone_work, xfs_buf_ioend_work);
1056 	queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1057 }
1058 
1059 void
1060 xfs_buf_ioerror(
1061 	xfs_buf_t		*bp,
1062 	int			error)
1063 {
1064 	ASSERT(error <= 0 && error >= -1000);
1065 	bp->b_error = error;
1066 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1067 }
1068 
1069 void
1070 xfs_buf_ioerror_alert(
1071 	struct xfs_buf		*bp,
1072 	const char		*func)
1073 {
1074 	xfs_alert(bp->b_target->bt_mount,
1075 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1076 		(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1077 }
1078 
1079 int
1080 xfs_bwrite(
1081 	struct xfs_buf		*bp)
1082 {
1083 	int			error;
1084 
1085 	ASSERT(xfs_buf_islocked(bp));
1086 
1087 	bp->b_flags |= XBF_WRITE;
1088 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1089 			 XBF_WRITE_FAIL | XBF_DONE);
1090 
1091 	error = xfs_buf_submit_wait(bp);
1092 	if (error) {
1093 		xfs_force_shutdown(bp->b_target->bt_mount,
1094 				   SHUTDOWN_META_IO_ERROR);
1095 	}
1096 	return error;
1097 }
1098 
1099 STATIC void
1100 xfs_buf_bio_end_io(
1101 	struct bio		*bio,
1102 	int			error)
1103 {
1104 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1105 
1106 	/*
1107 	 * don't overwrite existing errors - otherwise we can lose errors on
1108 	 * buffers that require multiple bios to complete.
1109 	 */
1110 	if (error) {
1111 		spin_lock(&bp->b_lock);
1112 		if (!bp->b_io_error)
1113 			bp->b_io_error = error;
1114 		spin_unlock(&bp->b_lock);
1115 	}
1116 
1117 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1118 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1119 
1120 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1121 		xfs_buf_ioend_async(bp);
1122 	bio_put(bio);
1123 }
1124 
1125 static void
1126 xfs_buf_ioapply_map(
1127 	struct xfs_buf	*bp,
1128 	int		map,
1129 	int		*buf_offset,
1130 	int		*count,
1131 	int		rw)
1132 {
1133 	int		page_index;
1134 	int		total_nr_pages = bp->b_page_count;
1135 	int		nr_pages;
1136 	struct bio	*bio;
1137 	sector_t	sector =  bp->b_maps[map].bm_bn;
1138 	int		size;
1139 	int		offset;
1140 
1141 	total_nr_pages = bp->b_page_count;
1142 
1143 	/* skip the pages in the buffer before the start offset */
1144 	page_index = 0;
1145 	offset = *buf_offset;
1146 	while (offset >= PAGE_SIZE) {
1147 		page_index++;
1148 		offset -= PAGE_SIZE;
1149 	}
1150 
1151 	/*
1152 	 * Limit the IO size to the length of the current vector, and update the
1153 	 * remaining IO count for the next time around.
1154 	 */
1155 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1156 	*count -= size;
1157 	*buf_offset += size;
1158 
1159 next_chunk:
1160 	atomic_inc(&bp->b_io_remaining);
1161 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1162 	if (nr_pages > total_nr_pages)
1163 		nr_pages = total_nr_pages;
1164 
1165 	bio = bio_alloc(GFP_NOIO, nr_pages);
1166 	bio->bi_bdev = bp->b_target->bt_bdev;
1167 	bio->bi_iter.bi_sector = sector;
1168 	bio->bi_end_io = xfs_buf_bio_end_io;
1169 	bio->bi_private = bp;
1170 
1171 
1172 	for (; size && nr_pages; nr_pages--, page_index++) {
1173 		int	rbytes, nbytes = PAGE_SIZE - offset;
1174 
1175 		if (nbytes > size)
1176 			nbytes = size;
1177 
1178 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1179 				      offset);
1180 		if (rbytes < nbytes)
1181 			break;
1182 
1183 		offset = 0;
1184 		sector += BTOBB(nbytes);
1185 		size -= nbytes;
1186 		total_nr_pages--;
1187 	}
1188 
1189 	if (likely(bio->bi_iter.bi_size)) {
1190 		if (xfs_buf_is_vmapped(bp)) {
1191 			flush_kernel_vmap_range(bp->b_addr,
1192 						xfs_buf_vmap_len(bp));
1193 		}
1194 		submit_bio(rw, bio);
1195 		if (size)
1196 			goto next_chunk;
1197 	} else {
1198 		/*
1199 		 * This is guaranteed not to be the last io reference count
1200 		 * because the caller (xfs_buf_submit) holds a count itself.
1201 		 */
1202 		atomic_dec(&bp->b_io_remaining);
1203 		xfs_buf_ioerror(bp, -EIO);
1204 		bio_put(bio);
1205 	}
1206 
1207 }
1208 
1209 STATIC void
1210 _xfs_buf_ioapply(
1211 	struct xfs_buf	*bp)
1212 {
1213 	struct blk_plug	plug;
1214 	int		rw;
1215 	int		offset;
1216 	int		size;
1217 	int		i;
1218 
1219 	/*
1220 	 * Make sure we capture only current IO errors rather than stale errors
1221 	 * left over from previous use of the buffer (e.g. failed readahead).
1222 	 */
1223 	bp->b_error = 0;
1224 
1225 	if (bp->b_flags & XBF_WRITE) {
1226 		if (bp->b_flags & XBF_SYNCIO)
1227 			rw = WRITE_SYNC;
1228 		else
1229 			rw = WRITE;
1230 		if (bp->b_flags & XBF_FUA)
1231 			rw |= REQ_FUA;
1232 		if (bp->b_flags & XBF_FLUSH)
1233 			rw |= REQ_FLUSH;
1234 
1235 		/*
1236 		 * Run the write verifier callback function if it exists. If
1237 		 * this function fails it will mark the buffer with an error and
1238 		 * the IO should not be dispatched.
1239 		 */
1240 		if (bp->b_ops) {
1241 			bp->b_ops->verify_write(bp);
1242 			if (bp->b_error) {
1243 				xfs_force_shutdown(bp->b_target->bt_mount,
1244 						   SHUTDOWN_CORRUPT_INCORE);
1245 				return;
1246 			}
1247 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1248 			struct xfs_mount *mp = bp->b_target->bt_mount;
1249 
1250 			/*
1251 			 * non-crc filesystems don't attach verifiers during
1252 			 * log recovery, so don't warn for such filesystems.
1253 			 */
1254 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1255 				xfs_warn(mp,
1256 					"%s: no ops on block 0x%llx/0x%x",
1257 					__func__, bp->b_bn, bp->b_length);
1258 				xfs_hex_dump(bp->b_addr, 64);
1259 				dump_stack();
1260 			}
1261 		}
1262 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1263 		rw = READA;
1264 	} else {
1265 		rw = READ;
1266 	}
1267 
1268 	/* we only use the buffer cache for meta-data */
1269 	rw |= REQ_META;
1270 
1271 	/*
1272 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1273 	 * into the buffer and the desired IO size before we start -
1274 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1275 	 * subsequent call.
1276 	 */
1277 	offset = bp->b_offset;
1278 	size = BBTOB(bp->b_io_length);
1279 	blk_start_plug(&plug);
1280 	for (i = 0; i < bp->b_map_count; i++) {
1281 		xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1282 		if (bp->b_error)
1283 			break;
1284 		if (size <= 0)
1285 			break;	/* all done */
1286 	}
1287 	blk_finish_plug(&plug);
1288 }
1289 
1290 /*
1291  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1292  * the current reference to the IO. It is not safe to reference the buffer after
1293  * a call to this function unless the caller holds an additional reference
1294  * itself.
1295  */
1296 void
1297 xfs_buf_submit(
1298 	struct xfs_buf	*bp)
1299 {
1300 	trace_xfs_buf_submit(bp, _RET_IP_);
1301 
1302 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1303 	ASSERT(bp->b_flags & XBF_ASYNC);
1304 
1305 	/* on shutdown we stale and complete the buffer immediately */
1306 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1307 		xfs_buf_ioerror(bp, -EIO);
1308 		bp->b_flags &= ~XBF_DONE;
1309 		xfs_buf_stale(bp);
1310 		xfs_buf_ioend(bp);
1311 		return;
1312 	}
1313 
1314 	if (bp->b_flags & XBF_WRITE)
1315 		xfs_buf_wait_unpin(bp);
1316 
1317 	/* clear the internal error state to avoid spurious errors */
1318 	bp->b_io_error = 0;
1319 
1320 	/*
1321 	 * The caller's reference is released during I/O completion.
1322 	 * This occurs some time after the last b_io_remaining reference is
1323 	 * released, so after we drop our Io reference we have to have some
1324 	 * other reference to ensure the buffer doesn't go away from underneath
1325 	 * us. Take a direct reference to ensure we have safe access to the
1326 	 * buffer until we are finished with it.
1327 	 */
1328 	xfs_buf_hold(bp);
1329 
1330 	/*
1331 	 * Set the count to 1 initially, this will stop an I/O completion
1332 	 * callout which happens before we have started all the I/O from calling
1333 	 * xfs_buf_ioend too early.
1334 	 */
1335 	atomic_set(&bp->b_io_remaining, 1);
1336 	_xfs_buf_ioapply(bp);
1337 
1338 	/*
1339 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1340 	 * reference we took above. If we drop it to zero, run completion so
1341 	 * that we don't return to the caller with completion still pending.
1342 	 */
1343 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1344 		if (bp->b_error)
1345 			xfs_buf_ioend(bp);
1346 		else
1347 			xfs_buf_ioend_async(bp);
1348 	}
1349 
1350 	xfs_buf_rele(bp);
1351 	/* Note: it is not safe to reference bp now we've dropped our ref */
1352 }
1353 
1354 /*
1355  * Synchronous buffer IO submission path, read or write.
1356  */
1357 int
1358 xfs_buf_submit_wait(
1359 	struct xfs_buf	*bp)
1360 {
1361 	int		error;
1362 
1363 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1364 
1365 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1366 
1367 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1368 		xfs_buf_ioerror(bp, -EIO);
1369 		xfs_buf_stale(bp);
1370 		bp->b_flags &= ~XBF_DONE;
1371 		return -EIO;
1372 	}
1373 
1374 	if (bp->b_flags & XBF_WRITE)
1375 		xfs_buf_wait_unpin(bp);
1376 
1377 	/* clear the internal error state to avoid spurious errors */
1378 	bp->b_io_error = 0;
1379 
1380 	/*
1381 	 * For synchronous IO, the IO does not inherit the submitters reference
1382 	 * count, nor the buffer lock. Hence we cannot release the reference we
1383 	 * are about to take until we've waited for all IO completion to occur,
1384 	 * including any xfs_buf_ioend_async() work that may be pending.
1385 	 */
1386 	xfs_buf_hold(bp);
1387 
1388 	/*
1389 	 * Set the count to 1 initially, this will stop an I/O completion
1390 	 * callout which happens before we have started all the I/O from calling
1391 	 * xfs_buf_ioend too early.
1392 	 */
1393 	atomic_set(&bp->b_io_remaining, 1);
1394 	_xfs_buf_ioapply(bp);
1395 
1396 	/*
1397 	 * make sure we run completion synchronously if it raced with us and is
1398 	 * already complete.
1399 	 */
1400 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1401 		xfs_buf_ioend(bp);
1402 
1403 	/* wait for completion before gathering the error from the buffer */
1404 	trace_xfs_buf_iowait(bp, _RET_IP_);
1405 	wait_for_completion(&bp->b_iowait);
1406 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1407 	error = bp->b_error;
1408 
1409 	/*
1410 	 * all done now, we can release the hold that keeps the buffer
1411 	 * referenced for the entire IO.
1412 	 */
1413 	xfs_buf_rele(bp);
1414 	return error;
1415 }
1416 
1417 xfs_caddr_t
1418 xfs_buf_offset(
1419 	xfs_buf_t		*bp,
1420 	size_t			offset)
1421 {
1422 	struct page		*page;
1423 
1424 	if (bp->b_addr)
1425 		return bp->b_addr + offset;
1426 
1427 	offset += bp->b_offset;
1428 	page = bp->b_pages[offset >> PAGE_SHIFT];
1429 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1430 }
1431 
1432 /*
1433  *	Move data into or out of a buffer.
1434  */
1435 void
1436 xfs_buf_iomove(
1437 	xfs_buf_t		*bp,	/* buffer to process		*/
1438 	size_t			boff,	/* starting buffer offset	*/
1439 	size_t			bsize,	/* length to copy		*/
1440 	void			*data,	/* data address			*/
1441 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1442 {
1443 	size_t			bend;
1444 
1445 	bend = boff + bsize;
1446 	while (boff < bend) {
1447 		struct page	*page;
1448 		int		page_index, page_offset, csize;
1449 
1450 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1451 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1452 		page = bp->b_pages[page_index];
1453 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1454 				      BBTOB(bp->b_io_length) - boff);
1455 
1456 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1457 
1458 		switch (mode) {
1459 		case XBRW_ZERO:
1460 			memset(page_address(page) + page_offset, 0, csize);
1461 			break;
1462 		case XBRW_READ:
1463 			memcpy(data, page_address(page) + page_offset, csize);
1464 			break;
1465 		case XBRW_WRITE:
1466 			memcpy(page_address(page) + page_offset, data, csize);
1467 		}
1468 
1469 		boff += csize;
1470 		data += csize;
1471 	}
1472 }
1473 
1474 /*
1475  *	Handling of buffer targets (buftargs).
1476  */
1477 
1478 /*
1479  * Wait for any bufs with callbacks that have been submitted but have not yet
1480  * returned. These buffers will have an elevated hold count, so wait on those
1481  * while freeing all the buffers only held by the LRU.
1482  */
1483 static enum lru_status
1484 xfs_buftarg_wait_rele(
1485 	struct list_head	*item,
1486 	spinlock_t		*lru_lock,
1487 	void			*arg)
1488 
1489 {
1490 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1491 	struct list_head	*dispose = arg;
1492 
1493 	if (atomic_read(&bp->b_hold) > 1) {
1494 		/* need to wait, so skip it this pass */
1495 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1496 		return LRU_SKIP;
1497 	}
1498 	if (!spin_trylock(&bp->b_lock))
1499 		return LRU_SKIP;
1500 
1501 	/*
1502 	 * clear the LRU reference count so the buffer doesn't get
1503 	 * ignored in xfs_buf_rele().
1504 	 */
1505 	atomic_set(&bp->b_lru_ref, 0);
1506 	bp->b_state |= XFS_BSTATE_DISPOSE;
1507 	list_move(item, dispose);
1508 	spin_unlock(&bp->b_lock);
1509 	return LRU_REMOVED;
1510 }
1511 
1512 void
1513 xfs_wait_buftarg(
1514 	struct xfs_buftarg	*btp)
1515 {
1516 	LIST_HEAD(dispose);
1517 	int loop = 0;
1518 
1519 	/* loop until there is nothing left on the lru list. */
1520 	while (list_lru_count(&btp->bt_lru)) {
1521 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1522 			      &dispose, LONG_MAX);
1523 
1524 		while (!list_empty(&dispose)) {
1525 			struct xfs_buf *bp;
1526 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1527 			list_del_init(&bp->b_lru);
1528 			if (bp->b_flags & XBF_WRITE_FAIL) {
1529 				xfs_alert(btp->bt_mount,
1530 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1531 "Please run xfs_repair to determine the extent of the problem.",
1532 					(long long)bp->b_bn);
1533 			}
1534 			xfs_buf_rele(bp);
1535 		}
1536 		if (loop++ != 0)
1537 			delay(100);
1538 	}
1539 }
1540 
1541 static enum lru_status
1542 xfs_buftarg_isolate(
1543 	struct list_head	*item,
1544 	spinlock_t		*lru_lock,
1545 	void			*arg)
1546 {
1547 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1548 	struct list_head	*dispose = arg;
1549 
1550 	/*
1551 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1552 	 * If we fail to get the lock, just skip it.
1553 	 */
1554 	if (!spin_trylock(&bp->b_lock))
1555 		return LRU_SKIP;
1556 	/*
1557 	 * Decrement the b_lru_ref count unless the value is already
1558 	 * zero. If the value is already zero, we need to reclaim the
1559 	 * buffer, otherwise it gets another trip through the LRU.
1560 	 */
1561 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1562 		spin_unlock(&bp->b_lock);
1563 		return LRU_ROTATE;
1564 	}
1565 
1566 	bp->b_state |= XFS_BSTATE_DISPOSE;
1567 	list_move(item, dispose);
1568 	spin_unlock(&bp->b_lock);
1569 	return LRU_REMOVED;
1570 }
1571 
1572 static unsigned long
1573 xfs_buftarg_shrink_scan(
1574 	struct shrinker		*shrink,
1575 	struct shrink_control	*sc)
1576 {
1577 	struct xfs_buftarg	*btp = container_of(shrink,
1578 					struct xfs_buftarg, bt_shrinker);
1579 	LIST_HEAD(dispose);
1580 	unsigned long		freed;
1581 	unsigned long		nr_to_scan = sc->nr_to_scan;
1582 
1583 	freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1584 				       &dispose, &nr_to_scan);
1585 
1586 	while (!list_empty(&dispose)) {
1587 		struct xfs_buf *bp;
1588 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1589 		list_del_init(&bp->b_lru);
1590 		xfs_buf_rele(bp);
1591 	}
1592 
1593 	return freed;
1594 }
1595 
1596 static unsigned long
1597 xfs_buftarg_shrink_count(
1598 	struct shrinker		*shrink,
1599 	struct shrink_control	*sc)
1600 {
1601 	struct xfs_buftarg	*btp = container_of(shrink,
1602 					struct xfs_buftarg, bt_shrinker);
1603 	return list_lru_count_node(&btp->bt_lru, sc->nid);
1604 }
1605 
1606 void
1607 xfs_free_buftarg(
1608 	struct xfs_mount	*mp,
1609 	struct xfs_buftarg	*btp)
1610 {
1611 	unregister_shrinker(&btp->bt_shrinker);
1612 	list_lru_destroy(&btp->bt_lru);
1613 
1614 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1615 		xfs_blkdev_issue_flush(btp);
1616 
1617 	kmem_free(btp);
1618 }
1619 
1620 int
1621 xfs_setsize_buftarg(
1622 	xfs_buftarg_t		*btp,
1623 	unsigned int		sectorsize)
1624 {
1625 	/* Set up metadata sector size info */
1626 	btp->bt_meta_sectorsize = sectorsize;
1627 	btp->bt_meta_sectormask = sectorsize - 1;
1628 
1629 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1630 		char name[BDEVNAME_SIZE];
1631 
1632 		bdevname(btp->bt_bdev, name);
1633 
1634 		xfs_warn(btp->bt_mount,
1635 			"Cannot set_blocksize to %u on device %s",
1636 			sectorsize, name);
1637 		return -EINVAL;
1638 	}
1639 
1640 	/* Set up device logical sector size mask */
1641 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1642 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1643 
1644 	return 0;
1645 }
1646 
1647 /*
1648  * When allocating the initial buffer target we have not yet
1649  * read in the superblock, so don't know what sized sectors
1650  * are being used at this early stage.  Play safe.
1651  */
1652 STATIC int
1653 xfs_setsize_buftarg_early(
1654 	xfs_buftarg_t		*btp,
1655 	struct block_device	*bdev)
1656 {
1657 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1658 }
1659 
1660 xfs_buftarg_t *
1661 xfs_alloc_buftarg(
1662 	struct xfs_mount	*mp,
1663 	struct block_device	*bdev)
1664 {
1665 	xfs_buftarg_t		*btp;
1666 
1667 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1668 
1669 	btp->bt_mount = mp;
1670 	btp->bt_dev =  bdev->bd_dev;
1671 	btp->bt_bdev = bdev;
1672 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1673 
1674 	if (xfs_setsize_buftarg_early(btp, bdev))
1675 		goto error;
1676 
1677 	if (list_lru_init(&btp->bt_lru))
1678 		goto error;
1679 
1680 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1681 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1682 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1683 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1684 	register_shrinker(&btp->bt_shrinker);
1685 	return btp;
1686 
1687 error:
1688 	kmem_free(btp);
1689 	return NULL;
1690 }
1691 
1692 /*
1693  * Add a buffer to the delayed write list.
1694  *
1695  * This queues a buffer for writeout if it hasn't already been.  Note that
1696  * neither this routine nor the buffer list submission functions perform
1697  * any internal synchronization.  It is expected that the lists are thread-local
1698  * to the callers.
1699  *
1700  * Returns true if we queued up the buffer, or false if it already had
1701  * been on the buffer list.
1702  */
1703 bool
1704 xfs_buf_delwri_queue(
1705 	struct xfs_buf		*bp,
1706 	struct list_head	*list)
1707 {
1708 	ASSERT(xfs_buf_islocked(bp));
1709 	ASSERT(!(bp->b_flags & XBF_READ));
1710 
1711 	/*
1712 	 * If the buffer is already marked delwri it already is queued up
1713 	 * by someone else for imediate writeout.  Just ignore it in that
1714 	 * case.
1715 	 */
1716 	if (bp->b_flags & _XBF_DELWRI_Q) {
1717 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1718 		return false;
1719 	}
1720 
1721 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1722 
1723 	/*
1724 	 * If a buffer gets written out synchronously or marked stale while it
1725 	 * is on a delwri list we lazily remove it. To do this, the other party
1726 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1727 	 * It remains referenced and on the list.  In a rare corner case it
1728 	 * might get readded to a delwri list after the synchronous writeout, in
1729 	 * which case we need just need to re-add the flag here.
1730 	 */
1731 	bp->b_flags |= _XBF_DELWRI_Q;
1732 	if (list_empty(&bp->b_list)) {
1733 		atomic_inc(&bp->b_hold);
1734 		list_add_tail(&bp->b_list, list);
1735 	}
1736 
1737 	return true;
1738 }
1739 
1740 /*
1741  * Compare function is more complex than it needs to be because
1742  * the return value is only 32 bits and we are doing comparisons
1743  * on 64 bit values
1744  */
1745 static int
1746 xfs_buf_cmp(
1747 	void		*priv,
1748 	struct list_head *a,
1749 	struct list_head *b)
1750 {
1751 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1752 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1753 	xfs_daddr_t		diff;
1754 
1755 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1756 	if (diff < 0)
1757 		return -1;
1758 	if (diff > 0)
1759 		return 1;
1760 	return 0;
1761 }
1762 
1763 static int
1764 __xfs_buf_delwri_submit(
1765 	struct list_head	*buffer_list,
1766 	struct list_head	*io_list,
1767 	bool			wait)
1768 {
1769 	struct blk_plug		plug;
1770 	struct xfs_buf		*bp, *n;
1771 	int			pinned = 0;
1772 
1773 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1774 		if (!wait) {
1775 			if (xfs_buf_ispinned(bp)) {
1776 				pinned++;
1777 				continue;
1778 			}
1779 			if (!xfs_buf_trylock(bp))
1780 				continue;
1781 		} else {
1782 			xfs_buf_lock(bp);
1783 		}
1784 
1785 		/*
1786 		 * Someone else might have written the buffer synchronously or
1787 		 * marked it stale in the meantime.  In that case only the
1788 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1789 		 * reference and remove it from the list here.
1790 		 */
1791 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1792 			list_del_init(&bp->b_list);
1793 			xfs_buf_relse(bp);
1794 			continue;
1795 		}
1796 
1797 		list_move_tail(&bp->b_list, io_list);
1798 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1799 	}
1800 
1801 	list_sort(NULL, io_list, xfs_buf_cmp);
1802 
1803 	blk_start_plug(&plug);
1804 	list_for_each_entry_safe(bp, n, io_list, b_list) {
1805 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1806 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1807 
1808 		/*
1809 		 * we do all Io submission async. This means if we need to wait
1810 		 * for IO completion we need to take an extra reference so the
1811 		 * buffer is still valid on the other side.
1812 		 */
1813 		if (wait)
1814 			xfs_buf_hold(bp);
1815 		else
1816 			list_del_init(&bp->b_list);
1817 
1818 		xfs_buf_submit(bp);
1819 	}
1820 	blk_finish_plug(&plug);
1821 
1822 	return pinned;
1823 }
1824 
1825 /*
1826  * Write out a buffer list asynchronously.
1827  *
1828  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1829  * out and not wait for I/O completion on any of the buffers.  This interface
1830  * is only safely useable for callers that can track I/O completion by higher
1831  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1832  * function.
1833  */
1834 int
1835 xfs_buf_delwri_submit_nowait(
1836 	struct list_head	*buffer_list)
1837 {
1838 	LIST_HEAD		(io_list);
1839 	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1840 }
1841 
1842 /*
1843  * Write out a buffer list synchronously.
1844  *
1845  * This will take the @buffer_list, write all buffers out and wait for I/O
1846  * completion on all of the buffers. @buffer_list is consumed by the function,
1847  * so callers must have some other way of tracking buffers if they require such
1848  * functionality.
1849  */
1850 int
1851 xfs_buf_delwri_submit(
1852 	struct list_head	*buffer_list)
1853 {
1854 	LIST_HEAD		(io_list);
1855 	int			error = 0, error2;
1856 	struct xfs_buf		*bp;
1857 
1858 	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
1859 
1860 	/* Wait for IO to complete. */
1861 	while (!list_empty(&io_list)) {
1862 		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1863 
1864 		list_del_init(&bp->b_list);
1865 
1866 		/* locking the buffer will wait for async IO completion. */
1867 		xfs_buf_lock(bp);
1868 		error2 = bp->b_error;
1869 		xfs_buf_relse(bp);
1870 		if (!error)
1871 			error = error2;
1872 	}
1873 
1874 	return error;
1875 }
1876 
1877 int __init
1878 xfs_buf_init(void)
1879 {
1880 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1881 						KM_ZONE_HWALIGN, NULL);
1882 	if (!xfs_buf_zone)
1883 		goto out;
1884 
1885 	xfslogd_workqueue = alloc_workqueue("xfslogd",
1886 				WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_FREEZABLE, 1);
1887 	if (!xfslogd_workqueue)
1888 		goto out_free_buf_zone;
1889 
1890 	return 0;
1891 
1892  out_free_buf_zone:
1893 	kmem_zone_destroy(xfs_buf_zone);
1894  out:
1895 	return -ENOMEM;
1896 }
1897 
1898 void
1899 xfs_buf_terminate(void)
1900 {
1901 	destroy_workqueue(xfslogd_workqueue);
1902 	kmem_zone_destroy(xfs_buf_zone);
1903 }
1904