xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision e1e38ea1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
24 
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
28 #include "xfs_sb.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34 
35 static kmem_zone_t *xfs_buf_zone;
36 
37 #define xb_to_gfp(flags) \
38 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
39 
40 
41 static inline int
42 xfs_buf_is_vmapped(
43 	struct xfs_buf	*bp)
44 {
45 	/*
46 	 * Return true if the buffer is vmapped.
47 	 *
48 	 * b_addr is null if the buffer is not mapped, but the code is clever
49 	 * enough to know it doesn't have to map a single page, so the check has
50 	 * to be both for b_addr and bp->b_page_count > 1.
51 	 */
52 	return bp->b_addr && bp->b_page_count > 1;
53 }
54 
55 static inline int
56 xfs_buf_vmap_len(
57 	struct xfs_buf	*bp)
58 {
59 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
60 }
61 
62 /*
63  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
64  * this buffer. The count is incremented once per buffer (per hold cycle)
65  * because the corresponding decrement is deferred to buffer release. Buffers
66  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
67  * tracking adds unnecessary overhead. This is used for sychronization purposes
68  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
69  * in-flight buffers.
70  *
71  * Buffers that are never released (e.g., superblock, iclog buffers) must set
72  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
73  * never reaches zero and unmount hangs indefinitely.
74  */
75 static inline void
76 xfs_buf_ioacct_inc(
77 	struct xfs_buf	*bp)
78 {
79 	if (bp->b_flags & XBF_NO_IOACCT)
80 		return;
81 
82 	ASSERT(bp->b_flags & XBF_ASYNC);
83 	spin_lock(&bp->b_lock);
84 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
85 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
86 		percpu_counter_inc(&bp->b_target->bt_io_count);
87 	}
88 	spin_unlock(&bp->b_lock);
89 }
90 
91 /*
92  * Clear the in-flight state on a buffer about to be released to the LRU or
93  * freed and unaccount from the buftarg.
94  */
95 static inline void
96 __xfs_buf_ioacct_dec(
97 	struct xfs_buf	*bp)
98 {
99 	lockdep_assert_held(&bp->b_lock);
100 
101 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
102 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
103 		percpu_counter_dec(&bp->b_target->bt_io_count);
104 	}
105 }
106 
107 static inline void
108 xfs_buf_ioacct_dec(
109 	struct xfs_buf	*bp)
110 {
111 	spin_lock(&bp->b_lock);
112 	__xfs_buf_ioacct_dec(bp);
113 	spin_unlock(&bp->b_lock);
114 }
115 
116 /*
117  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
118  * b_lru_ref count so that the buffer is freed immediately when the buffer
119  * reference count falls to zero. If the buffer is already on the LRU, we need
120  * to remove the reference that LRU holds on the buffer.
121  *
122  * This prevents build-up of stale buffers on the LRU.
123  */
124 void
125 xfs_buf_stale(
126 	struct xfs_buf	*bp)
127 {
128 	ASSERT(xfs_buf_islocked(bp));
129 
130 	bp->b_flags |= XBF_STALE;
131 
132 	/*
133 	 * Clear the delwri status so that a delwri queue walker will not
134 	 * flush this buffer to disk now that it is stale. The delwri queue has
135 	 * a reference to the buffer, so this is safe to do.
136 	 */
137 	bp->b_flags &= ~_XBF_DELWRI_Q;
138 
139 	/*
140 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
141 	 * could reset b_flags. There is no guarantee that the buffer is
142 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
143 	 * status now to preserve accounting consistency.
144 	 */
145 	spin_lock(&bp->b_lock);
146 	__xfs_buf_ioacct_dec(bp);
147 
148 	atomic_set(&bp->b_lru_ref, 0);
149 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
150 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
151 		atomic_dec(&bp->b_hold);
152 
153 	ASSERT(atomic_read(&bp->b_hold) >= 1);
154 	spin_unlock(&bp->b_lock);
155 }
156 
157 static int
158 xfs_buf_get_maps(
159 	struct xfs_buf		*bp,
160 	int			map_count)
161 {
162 	ASSERT(bp->b_maps == NULL);
163 	bp->b_map_count = map_count;
164 
165 	if (map_count == 1) {
166 		bp->b_maps = &bp->__b_map;
167 		return 0;
168 	}
169 
170 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
171 				KM_NOFS);
172 	if (!bp->b_maps)
173 		return -ENOMEM;
174 	return 0;
175 }
176 
177 /*
178  *	Frees b_pages if it was allocated.
179  */
180 static void
181 xfs_buf_free_maps(
182 	struct xfs_buf	*bp)
183 {
184 	if (bp->b_maps != &bp->__b_map) {
185 		kmem_free(bp->b_maps);
186 		bp->b_maps = NULL;
187 	}
188 }
189 
190 struct xfs_buf *
191 _xfs_buf_alloc(
192 	struct xfs_buftarg	*target,
193 	struct xfs_buf_map	*map,
194 	int			nmaps,
195 	xfs_buf_flags_t		flags)
196 {
197 	struct xfs_buf		*bp;
198 	int			error;
199 	int			i;
200 
201 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
202 	if (unlikely(!bp))
203 		return NULL;
204 
205 	/*
206 	 * We don't want certain flags to appear in b_flags unless they are
207 	 * specifically set by later operations on the buffer.
208 	 */
209 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
210 
211 	atomic_set(&bp->b_hold, 1);
212 	atomic_set(&bp->b_lru_ref, 1);
213 	init_completion(&bp->b_iowait);
214 	INIT_LIST_HEAD(&bp->b_lru);
215 	INIT_LIST_HEAD(&bp->b_list);
216 	INIT_LIST_HEAD(&bp->b_li_list);
217 	sema_init(&bp->b_sema, 0); /* held, no waiters */
218 	spin_lock_init(&bp->b_lock);
219 	bp->b_target = target;
220 	bp->b_flags = flags;
221 
222 	/*
223 	 * Set length and io_length to the same value initially.
224 	 * I/O routines should use io_length, which will be the same in
225 	 * most cases but may be reset (e.g. XFS recovery).
226 	 */
227 	error = xfs_buf_get_maps(bp, nmaps);
228 	if (error)  {
229 		kmem_zone_free(xfs_buf_zone, bp);
230 		return NULL;
231 	}
232 
233 	bp->b_bn = map[0].bm_bn;
234 	bp->b_length = 0;
235 	for (i = 0; i < nmaps; i++) {
236 		bp->b_maps[i].bm_bn = map[i].bm_bn;
237 		bp->b_maps[i].bm_len = map[i].bm_len;
238 		bp->b_length += map[i].bm_len;
239 	}
240 	bp->b_io_length = bp->b_length;
241 
242 	atomic_set(&bp->b_pin_count, 0);
243 	init_waitqueue_head(&bp->b_waiters);
244 
245 	XFS_STATS_INC(target->bt_mount, xb_create);
246 	trace_xfs_buf_init(bp, _RET_IP_);
247 
248 	return bp;
249 }
250 
251 /*
252  *	Allocate a page array capable of holding a specified number
253  *	of pages, and point the page buf at it.
254  */
255 STATIC int
256 _xfs_buf_get_pages(
257 	xfs_buf_t		*bp,
258 	int			page_count)
259 {
260 	/* Make sure that we have a page list */
261 	if (bp->b_pages == NULL) {
262 		bp->b_page_count = page_count;
263 		if (page_count <= XB_PAGES) {
264 			bp->b_pages = bp->b_page_array;
265 		} else {
266 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
267 						 page_count, KM_NOFS);
268 			if (bp->b_pages == NULL)
269 				return -ENOMEM;
270 		}
271 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
272 	}
273 	return 0;
274 }
275 
276 /*
277  *	Frees b_pages if it was allocated.
278  */
279 STATIC void
280 _xfs_buf_free_pages(
281 	xfs_buf_t	*bp)
282 {
283 	if (bp->b_pages != bp->b_page_array) {
284 		kmem_free(bp->b_pages);
285 		bp->b_pages = NULL;
286 	}
287 }
288 
289 /*
290  *	Releases the specified buffer.
291  *
292  * 	The modification state of any associated pages is left unchanged.
293  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
294  * 	hashed and refcounted buffers
295  */
296 void
297 xfs_buf_free(
298 	xfs_buf_t		*bp)
299 {
300 	trace_xfs_buf_free(bp, _RET_IP_);
301 
302 	ASSERT(list_empty(&bp->b_lru));
303 
304 	if (bp->b_flags & _XBF_PAGES) {
305 		uint		i;
306 
307 		if (xfs_buf_is_vmapped(bp))
308 			vm_unmap_ram(bp->b_addr - bp->b_offset,
309 					bp->b_page_count);
310 
311 		for (i = 0; i < bp->b_page_count; i++) {
312 			struct page	*page = bp->b_pages[i];
313 
314 			__free_page(page);
315 		}
316 	} else if (bp->b_flags & _XBF_KMEM)
317 		kmem_free(bp->b_addr);
318 	_xfs_buf_free_pages(bp);
319 	xfs_buf_free_maps(bp);
320 	kmem_zone_free(xfs_buf_zone, bp);
321 }
322 
323 /*
324  * Allocates all the pages for buffer in question and builds it's page list.
325  */
326 STATIC int
327 xfs_buf_allocate_memory(
328 	xfs_buf_t		*bp,
329 	uint			flags)
330 {
331 	size_t			size;
332 	size_t			nbytes, offset;
333 	gfp_t			gfp_mask = xb_to_gfp(flags);
334 	unsigned short		page_count, i;
335 	xfs_off_t		start, end;
336 	int			error;
337 
338 	/*
339 	 * for buffers that are contained within a single page, just allocate
340 	 * the memory from the heap - there's no need for the complexity of
341 	 * page arrays to keep allocation down to order 0.
342 	 */
343 	size = BBTOB(bp->b_length);
344 	if (size < PAGE_SIZE) {
345 		bp->b_addr = kmem_alloc(size, KM_NOFS);
346 		if (!bp->b_addr) {
347 			/* low memory - use alloc_page loop instead */
348 			goto use_alloc_page;
349 		}
350 
351 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
352 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
353 			/* b_addr spans two pages - use alloc_page instead */
354 			kmem_free(bp->b_addr);
355 			bp->b_addr = NULL;
356 			goto use_alloc_page;
357 		}
358 		bp->b_offset = offset_in_page(bp->b_addr);
359 		bp->b_pages = bp->b_page_array;
360 		bp->b_pages[0] = virt_to_page(bp->b_addr);
361 		bp->b_page_count = 1;
362 		bp->b_flags |= _XBF_KMEM;
363 		return 0;
364 	}
365 
366 use_alloc_page:
367 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
368 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
369 								>> PAGE_SHIFT;
370 	page_count = end - start;
371 	error = _xfs_buf_get_pages(bp, page_count);
372 	if (unlikely(error))
373 		return error;
374 
375 	offset = bp->b_offset;
376 	bp->b_flags |= _XBF_PAGES;
377 
378 	for (i = 0; i < bp->b_page_count; i++) {
379 		struct page	*page;
380 		uint		retries = 0;
381 retry:
382 		page = alloc_page(gfp_mask);
383 		if (unlikely(page == NULL)) {
384 			if (flags & XBF_READ_AHEAD) {
385 				bp->b_page_count = i;
386 				error = -ENOMEM;
387 				goto out_free_pages;
388 			}
389 
390 			/*
391 			 * This could deadlock.
392 			 *
393 			 * But until all the XFS lowlevel code is revamped to
394 			 * handle buffer allocation failures we can't do much.
395 			 */
396 			if (!(++retries % 100))
397 				xfs_err(NULL,
398 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
399 					current->comm, current->pid,
400 					__func__, gfp_mask);
401 
402 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
403 			congestion_wait(BLK_RW_ASYNC, HZ/50);
404 			goto retry;
405 		}
406 
407 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
408 
409 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
410 		size -= nbytes;
411 		bp->b_pages[i] = page;
412 		offset = 0;
413 	}
414 	return 0;
415 
416 out_free_pages:
417 	for (i = 0; i < bp->b_page_count; i++)
418 		__free_page(bp->b_pages[i]);
419 	bp->b_flags &= ~_XBF_PAGES;
420 	return error;
421 }
422 
423 /*
424  *	Map buffer into kernel address-space if necessary.
425  */
426 STATIC int
427 _xfs_buf_map_pages(
428 	xfs_buf_t		*bp,
429 	uint			flags)
430 {
431 	ASSERT(bp->b_flags & _XBF_PAGES);
432 	if (bp->b_page_count == 1) {
433 		/* A single page buffer is always mappable */
434 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
435 	} else if (flags & XBF_UNMAPPED) {
436 		bp->b_addr = NULL;
437 	} else {
438 		int retried = 0;
439 		unsigned nofs_flag;
440 
441 		/*
442 		 * vm_map_ram() will allocate auxillary structures (e.g.
443 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
444 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
445 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
446 		 * memory reclaim re-entering the filesystem here and
447 		 * potentially deadlocking.
448 		 */
449 		nofs_flag = memalloc_nofs_save();
450 		do {
451 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
452 						-1, PAGE_KERNEL);
453 			if (bp->b_addr)
454 				break;
455 			vm_unmap_aliases();
456 		} while (retried++ <= 1);
457 		memalloc_nofs_restore(nofs_flag);
458 
459 		if (!bp->b_addr)
460 			return -ENOMEM;
461 		bp->b_addr += bp->b_offset;
462 	}
463 
464 	return 0;
465 }
466 
467 /*
468  *	Finding and Reading Buffers
469  */
470 static int
471 _xfs_buf_obj_cmp(
472 	struct rhashtable_compare_arg	*arg,
473 	const void			*obj)
474 {
475 	const struct xfs_buf_map	*map = arg->key;
476 	const struct xfs_buf		*bp = obj;
477 
478 	/*
479 	 * The key hashing in the lookup path depends on the key being the
480 	 * first element of the compare_arg, make sure to assert this.
481 	 */
482 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
483 
484 	if (bp->b_bn != map->bm_bn)
485 		return 1;
486 
487 	if (unlikely(bp->b_length != map->bm_len)) {
488 		/*
489 		 * found a block number match. If the range doesn't
490 		 * match, the only way this is allowed is if the buffer
491 		 * in the cache is stale and the transaction that made
492 		 * it stale has not yet committed. i.e. we are
493 		 * reallocating a busy extent. Skip this buffer and
494 		 * continue searching for an exact match.
495 		 */
496 		ASSERT(bp->b_flags & XBF_STALE);
497 		return 1;
498 	}
499 	return 0;
500 }
501 
502 static const struct rhashtable_params xfs_buf_hash_params = {
503 	.min_size		= 32,	/* empty AGs have minimal footprint */
504 	.nelem_hint		= 16,
505 	.key_len		= sizeof(xfs_daddr_t),
506 	.key_offset		= offsetof(struct xfs_buf, b_bn),
507 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
508 	.automatic_shrinking	= true,
509 	.obj_cmpfn		= _xfs_buf_obj_cmp,
510 };
511 
512 int
513 xfs_buf_hash_init(
514 	struct xfs_perag	*pag)
515 {
516 	spin_lock_init(&pag->pag_buf_lock);
517 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
518 }
519 
520 void
521 xfs_buf_hash_destroy(
522 	struct xfs_perag	*pag)
523 {
524 	rhashtable_destroy(&pag->pag_buf_hash);
525 }
526 
527 /*
528  * Look up a buffer in the buffer cache and return it referenced and locked
529  * in @found_bp.
530  *
531  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
532  * cache.
533  *
534  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
535  * -EAGAIN if we fail to lock it.
536  *
537  * Return values are:
538  *	-EFSCORRUPTED if have been supplied with an invalid address
539  *	-EAGAIN on trylock failure
540  *	-ENOENT if we fail to find a match and @new_bp was NULL
541  *	0, with @found_bp:
542  *		- @new_bp if we inserted it into the cache
543  *		- the buffer we found and locked.
544  */
545 static int
546 xfs_buf_find(
547 	struct xfs_buftarg	*btp,
548 	struct xfs_buf_map	*map,
549 	int			nmaps,
550 	xfs_buf_flags_t		flags,
551 	struct xfs_buf		*new_bp,
552 	struct xfs_buf		**found_bp)
553 {
554 	struct xfs_perag	*pag;
555 	xfs_buf_t		*bp;
556 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
557 	xfs_daddr_t		eofs;
558 	int			i;
559 
560 	*found_bp = NULL;
561 
562 	for (i = 0; i < nmaps; i++)
563 		cmap.bm_len += map[i].bm_len;
564 
565 	/* Check for IOs smaller than the sector size / not sector aligned */
566 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
567 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
568 
569 	/*
570 	 * Corrupted block numbers can get through to here, unfortunately, so we
571 	 * have to check that the buffer falls within the filesystem bounds.
572 	 */
573 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
574 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
575 		xfs_alert(btp->bt_mount,
576 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
577 			  __func__, cmap.bm_bn, eofs);
578 		WARN_ON(1);
579 		return -EFSCORRUPTED;
580 	}
581 
582 	pag = xfs_perag_get(btp->bt_mount,
583 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
584 
585 	spin_lock(&pag->pag_buf_lock);
586 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
587 				    xfs_buf_hash_params);
588 	if (bp) {
589 		atomic_inc(&bp->b_hold);
590 		goto found;
591 	}
592 
593 	/* No match found */
594 	if (!new_bp) {
595 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
596 		spin_unlock(&pag->pag_buf_lock);
597 		xfs_perag_put(pag);
598 		return -ENOENT;
599 	}
600 
601 	/* the buffer keeps the perag reference until it is freed */
602 	new_bp->b_pag = pag;
603 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
604 			       xfs_buf_hash_params);
605 	spin_unlock(&pag->pag_buf_lock);
606 	*found_bp = new_bp;
607 	return 0;
608 
609 found:
610 	spin_unlock(&pag->pag_buf_lock);
611 	xfs_perag_put(pag);
612 
613 	if (!xfs_buf_trylock(bp)) {
614 		if (flags & XBF_TRYLOCK) {
615 			xfs_buf_rele(bp);
616 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
617 			return -EAGAIN;
618 		}
619 		xfs_buf_lock(bp);
620 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
621 	}
622 
623 	/*
624 	 * if the buffer is stale, clear all the external state associated with
625 	 * it. We need to keep flags such as how we allocated the buffer memory
626 	 * intact here.
627 	 */
628 	if (bp->b_flags & XBF_STALE) {
629 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
630 		ASSERT(bp->b_iodone == NULL);
631 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
632 		bp->b_ops = NULL;
633 	}
634 
635 	trace_xfs_buf_find(bp, flags, _RET_IP_);
636 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
637 	*found_bp = bp;
638 	return 0;
639 }
640 
641 struct xfs_buf *
642 xfs_buf_incore(
643 	struct xfs_buftarg	*target,
644 	xfs_daddr_t		blkno,
645 	size_t			numblks,
646 	xfs_buf_flags_t		flags)
647 {
648 	struct xfs_buf		*bp;
649 	int			error;
650 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
651 
652 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
653 	if (error)
654 		return NULL;
655 	return bp;
656 }
657 
658 /*
659  * Assembles a buffer covering the specified range. The code is optimised for
660  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
661  * more hits than misses.
662  */
663 struct xfs_buf *
664 xfs_buf_get_map(
665 	struct xfs_buftarg	*target,
666 	struct xfs_buf_map	*map,
667 	int			nmaps,
668 	xfs_buf_flags_t		flags)
669 {
670 	struct xfs_buf		*bp;
671 	struct xfs_buf		*new_bp;
672 	int			error = 0;
673 
674 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
675 
676 	switch (error) {
677 	case 0:
678 		/* cache hit */
679 		goto found;
680 	case -EAGAIN:
681 		/* cache hit, trylock failure, caller handles failure */
682 		ASSERT(flags & XBF_TRYLOCK);
683 		return NULL;
684 	case -ENOENT:
685 		/* cache miss, go for insert */
686 		break;
687 	case -EFSCORRUPTED:
688 	default:
689 		/*
690 		 * None of the higher layers understand failure types
691 		 * yet, so return NULL to signal a fatal lookup error.
692 		 */
693 		return NULL;
694 	}
695 
696 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
697 	if (unlikely(!new_bp))
698 		return NULL;
699 
700 	error = xfs_buf_allocate_memory(new_bp, flags);
701 	if (error) {
702 		xfs_buf_free(new_bp);
703 		return NULL;
704 	}
705 
706 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
707 	if (error) {
708 		xfs_buf_free(new_bp);
709 		return NULL;
710 	}
711 
712 	if (bp != new_bp)
713 		xfs_buf_free(new_bp);
714 
715 found:
716 	if (!bp->b_addr) {
717 		error = _xfs_buf_map_pages(bp, flags);
718 		if (unlikely(error)) {
719 			xfs_warn(target->bt_mount,
720 				"%s: failed to map pagesn", __func__);
721 			xfs_buf_relse(bp);
722 			return NULL;
723 		}
724 	}
725 
726 	/*
727 	 * Clear b_error if this is a lookup from a caller that doesn't expect
728 	 * valid data to be found in the buffer.
729 	 */
730 	if (!(flags & XBF_READ))
731 		xfs_buf_ioerror(bp, 0);
732 
733 	XFS_STATS_INC(target->bt_mount, xb_get);
734 	trace_xfs_buf_get(bp, flags, _RET_IP_);
735 	return bp;
736 }
737 
738 STATIC int
739 _xfs_buf_read(
740 	xfs_buf_t		*bp,
741 	xfs_buf_flags_t		flags)
742 {
743 	ASSERT(!(flags & XBF_WRITE));
744 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
745 
746 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
747 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
748 
749 	return xfs_buf_submit(bp);
750 }
751 
752 xfs_buf_t *
753 xfs_buf_read_map(
754 	struct xfs_buftarg	*target,
755 	struct xfs_buf_map	*map,
756 	int			nmaps,
757 	xfs_buf_flags_t		flags,
758 	const struct xfs_buf_ops *ops)
759 {
760 	struct xfs_buf		*bp;
761 
762 	flags |= XBF_READ;
763 
764 	bp = xfs_buf_get_map(target, map, nmaps, flags);
765 	if (bp) {
766 		trace_xfs_buf_read(bp, flags, _RET_IP_);
767 
768 		if (!(bp->b_flags & XBF_DONE)) {
769 			XFS_STATS_INC(target->bt_mount, xb_get_read);
770 			bp->b_ops = ops;
771 			_xfs_buf_read(bp, flags);
772 		} else if (flags & XBF_ASYNC) {
773 			/*
774 			 * Read ahead call which is already satisfied,
775 			 * drop the buffer
776 			 */
777 			xfs_buf_relse(bp);
778 			return NULL;
779 		} else {
780 			/* We do not want read in the flags */
781 			bp->b_flags &= ~XBF_READ;
782 		}
783 	}
784 
785 	return bp;
786 }
787 
788 /*
789  *	If we are not low on memory then do the readahead in a deadlock
790  *	safe manner.
791  */
792 void
793 xfs_buf_readahead_map(
794 	struct xfs_buftarg	*target,
795 	struct xfs_buf_map	*map,
796 	int			nmaps,
797 	const struct xfs_buf_ops *ops)
798 {
799 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
800 		return;
801 
802 	xfs_buf_read_map(target, map, nmaps,
803 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
804 }
805 
806 /*
807  * Read an uncached buffer from disk. Allocates and returns a locked
808  * buffer containing the disk contents or nothing.
809  */
810 int
811 xfs_buf_read_uncached(
812 	struct xfs_buftarg	*target,
813 	xfs_daddr_t		daddr,
814 	size_t			numblks,
815 	int			flags,
816 	struct xfs_buf		**bpp,
817 	const struct xfs_buf_ops *ops)
818 {
819 	struct xfs_buf		*bp;
820 
821 	*bpp = NULL;
822 
823 	bp = xfs_buf_get_uncached(target, numblks, flags);
824 	if (!bp)
825 		return -ENOMEM;
826 
827 	/* set up the buffer for a read IO */
828 	ASSERT(bp->b_map_count == 1);
829 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
830 	bp->b_maps[0].bm_bn = daddr;
831 	bp->b_flags |= XBF_READ;
832 	bp->b_ops = ops;
833 
834 	xfs_buf_submit(bp);
835 	if (bp->b_error) {
836 		int	error = bp->b_error;
837 		xfs_buf_relse(bp);
838 		return error;
839 	}
840 
841 	*bpp = bp;
842 	return 0;
843 }
844 
845 /*
846  * Return a buffer allocated as an empty buffer and associated to external
847  * memory via xfs_buf_associate_memory() back to it's empty state.
848  */
849 void
850 xfs_buf_set_empty(
851 	struct xfs_buf		*bp,
852 	size_t			numblks)
853 {
854 	if (bp->b_pages)
855 		_xfs_buf_free_pages(bp);
856 
857 	bp->b_pages = NULL;
858 	bp->b_page_count = 0;
859 	bp->b_addr = NULL;
860 	bp->b_length = numblks;
861 	bp->b_io_length = numblks;
862 
863 	ASSERT(bp->b_map_count == 1);
864 	bp->b_bn = XFS_BUF_DADDR_NULL;
865 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
866 	bp->b_maps[0].bm_len = bp->b_length;
867 }
868 
869 static inline struct page *
870 mem_to_page(
871 	void			*addr)
872 {
873 	if ((!is_vmalloc_addr(addr))) {
874 		return virt_to_page(addr);
875 	} else {
876 		return vmalloc_to_page(addr);
877 	}
878 }
879 
880 int
881 xfs_buf_associate_memory(
882 	xfs_buf_t		*bp,
883 	void			*mem,
884 	size_t			len)
885 {
886 	int			rval;
887 	int			i = 0;
888 	unsigned long		pageaddr;
889 	unsigned long		offset;
890 	size_t			buflen;
891 	int			page_count;
892 
893 	pageaddr = (unsigned long)mem & PAGE_MASK;
894 	offset = (unsigned long)mem - pageaddr;
895 	buflen = PAGE_ALIGN(len + offset);
896 	page_count = buflen >> PAGE_SHIFT;
897 
898 	/* Free any previous set of page pointers */
899 	if (bp->b_pages)
900 		_xfs_buf_free_pages(bp);
901 
902 	bp->b_pages = NULL;
903 	bp->b_addr = mem;
904 
905 	rval = _xfs_buf_get_pages(bp, page_count);
906 	if (rval)
907 		return rval;
908 
909 	bp->b_offset = offset;
910 
911 	for (i = 0; i < bp->b_page_count; i++) {
912 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
913 		pageaddr += PAGE_SIZE;
914 	}
915 
916 	bp->b_io_length = BTOBB(len);
917 	bp->b_length = BTOBB(buflen);
918 
919 	return 0;
920 }
921 
922 xfs_buf_t *
923 xfs_buf_get_uncached(
924 	struct xfs_buftarg	*target,
925 	size_t			numblks,
926 	int			flags)
927 {
928 	unsigned long		page_count;
929 	int			error, i;
930 	struct xfs_buf		*bp;
931 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
932 
933 	/* flags might contain irrelevant bits, pass only what we care about */
934 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
935 	if (unlikely(bp == NULL))
936 		goto fail;
937 
938 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
939 	error = _xfs_buf_get_pages(bp, page_count);
940 	if (error)
941 		goto fail_free_buf;
942 
943 	for (i = 0; i < page_count; i++) {
944 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
945 		if (!bp->b_pages[i])
946 			goto fail_free_mem;
947 	}
948 	bp->b_flags |= _XBF_PAGES;
949 
950 	error = _xfs_buf_map_pages(bp, 0);
951 	if (unlikely(error)) {
952 		xfs_warn(target->bt_mount,
953 			"%s: failed to map pages", __func__);
954 		goto fail_free_mem;
955 	}
956 
957 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
958 	return bp;
959 
960  fail_free_mem:
961 	while (--i >= 0)
962 		__free_page(bp->b_pages[i]);
963 	_xfs_buf_free_pages(bp);
964  fail_free_buf:
965 	xfs_buf_free_maps(bp);
966 	kmem_zone_free(xfs_buf_zone, bp);
967  fail:
968 	return NULL;
969 }
970 
971 /*
972  *	Increment reference count on buffer, to hold the buffer concurrently
973  *	with another thread which may release (free) the buffer asynchronously.
974  *	Must hold the buffer already to call this function.
975  */
976 void
977 xfs_buf_hold(
978 	xfs_buf_t		*bp)
979 {
980 	trace_xfs_buf_hold(bp, _RET_IP_);
981 	atomic_inc(&bp->b_hold);
982 }
983 
984 /*
985  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
986  * placed on LRU or freed (depending on b_lru_ref).
987  */
988 void
989 xfs_buf_rele(
990 	xfs_buf_t		*bp)
991 {
992 	struct xfs_perag	*pag = bp->b_pag;
993 	bool			release;
994 	bool			freebuf = false;
995 
996 	trace_xfs_buf_rele(bp, _RET_IP_);
997 
998 	if (!pag) {
999 		ASSERT(list_empty(&bp->b_lru));
1000 		if (atomic_dec_and_test(&bp->b_hold)) {
1001 			xfs_buf_ioacct_dec(bp);
1002 			xfs_buf_free(bp);
1003 		}
1004 		return;
1005 	}
1006 
1007 	ASSERT(atomic_read(&bp->b_hold) > 0);
1008 
1009 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1010 	spin_lock(&bp->b_lock);
1011 	if (!release) {
1012 		/*
1013 		 * Drop the in-flight state if the buffer is already on the LRU
1014 		 * and it holds the only reference. This is racy because we
1015 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1016 		 * ensures the decrement occurs only once per-buf.
1017 		 */
1018 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1019 			__xfs_buf_ioacct_dec(bp);
1020 		goto out_unlock;
1021 	}
1022 
1023 	/* the last reference has been dropped ... */
1024 	__xfs_buf_ioacct_dec(bp);
1025 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1026 		/*
1027 		 * If the buffer is added to the LRU take a new reference to the
1028 		 * buffer for the LRU and clear the (now stale) dispose list
1029 		 * state flag
1030 		 */
1031 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1032 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1033 			atomic_inc(&bp->b_hold);
1034 		}
1035 		spin_unlock(&pag->pag_buf_lock);
1036 	} else {
1037 		/*
1038 		 * most of the time buffers will already be removed from the
1039 		 * LRU, so optimise that case by checking for the
1040 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1041 		 * was on was the disposal list
1042 		 */
1043 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1044 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1045 		} else {
1046 			ASSERT(list_empty(&bp->b_lru));
1047 		}
1048 
1049 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1050 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1051 				       xfs_buf_hash_params);
1052 		spin_unlock(&pag->pag_buf_lock);
1053 		xfs_perag_put(pag);
1054 		freebuf = true;
1055 	}
1056 
1057 out_unlock:
1058 	spin_unlock(&bp->b_lock);
1059 
1060 	if (freebuf)
1061 		xfs_buf_free(bp);
1062 }
1063 
1064 
1065 /*
1066  *	Lock a buffer object, if it is not already locked.
1067  *
1068  *	If we come across a stale, pinned, locked buffer, we know that we are
1069  *	being asked to lock a buffer that has been reallocated. Because it is
1070  *	pinned, we know that the log has not been pushed to disk and hence it
1071  *	will still be locked.  Rather than continuing to have trylock attempts
1072  *	fail until someone else pushes the log, push it ourselves before
1073  *	returning.  This means that the xfsaild will not get stuck trying
1074  *	to push on stale inode buffers.
1075  */
1076 int
1077 xfs_buf_trylock(
1078 	struct xfs_buf		*bp)
1079 {
1080 	int			locked;
1081 
1082 	locked = down_trylock(&bp->b_sema) == 0;
1083 	if (locked)
1084 		trace_xfs_buf_trylock(bp, _RET_IP_);
1085 	else
1086 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1087 	return locked;
1088 }
1089 
1090 /*
1091  *	Lock a buffer object.
1092  *
1093  *	If we come across a stale, pinned, locked buffer, we know that we
1094  *	are being asked to lock a buffer that has been reallocated. Because
1095  *	it is pinned, we know that the log has not been pushed to disk and
1096  *	hence it will still be locked. Rather than sleeping until someone
1097  *	else pushes the log, push it ourselves before trying to get the lock.
1098  */
1099 void
1100 xfs_buf_lock(
1101 	struct xfs_buf		*bp)
1102 {
1103 	trace_xfs_buf_lock(bp, _RET_IP_);
1104 
1105 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1106 		xfs_log_force(bp->b_target->bt_mount, 0);
1107 	down(&bp->b_sema);
1108 
1109 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1110 }
1111 
1112 void
1113 xfs_buf_unlock(
1114 	struct xfs_buf		*bp)
1115 {
1116 	ASSERT(xfs_buf_islocked(bp));
1117 
1118 	up(&bp->b_sema);
1119 	trace_xfs_buf_unlock(bp, _RET_IP_);
1120 }
1121 
1122 STATIC void
1123 xfs_buf_wait_unpin(
1124 	xfs_buf_t		*bp)
1125 {
1126 	DECLARE_WAITQUEUE	(wait, current);
1127 
1128 	if (atomic_read(&bp->b_pin_count) == 0)
1129 		return;
1130 
1131 	add_wait_queue(&bp->b_waiters, &wait);
1132 	for (;;) {
1133 		set_current_state(TASK_UNINTERRUPTIBLE);
1134 		if (atomic_read(&bp->b_pin_count) == 0)
1135 			break;
1136 		io_schedule();
1137 	}
1138 	remove_wait_queue(&bp->b_waiters, &wait);
1139 	set_current_state(TASK_RUNNING);
1140 }
1141 
1142 /*
1143  *	Buffer Utility Routines
1144  */
1145 
1146 void
1147 xfs_buf_ioend(
1148 	struct xfs_buf	*bp)
1149 {
1150 	bool		read = bp->b_flags & XBF_READ;
1151 
1152 	trace_xfs_buf_iodone(bp, _RET_IP_);
1153 
1154 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1155 
1156 	/*
1157 	 * Pull in IO completion errors now. We are guaranteed to be running
1158 	 * single threaded, so we don't need the lock to read b_io_error.
1159 	 */
1160 	if (!bp->b_error && bp->b_io_error)
1161 		xfs_buf_ioerror(bp, bp->b_io_error);
1162 
1163 	/* Only validate buffers that were read without errors */
1164 	if (read && !bp->b_error && bp->b_ops) {
1165 		ASSERT(!bp->b_iodone);
1166 		bp->b_ops->verify_read(bp);
1167 	}
1168 
1169 	if (!bp->b_error)
1170 		bp->b_flags |= XBF_DONE;
1171 
1172 	if (bp->b_iodone)
1173 		(*(bp->b_iodone))(bp);
1174 	else if (bp->b_flags & XBF_ASYNC)
1175 		xfs_buf_relse(bp);
1176 	else
1177 		complete(&bp->b_iowait);
1178 }
1179 
1180 static void
1181 xfs_buf_ioend_work(
1182 	struct work_struct	*work)
1183 {
1184 	struct xfs_buf		*bp =
1185 		container_of(work, xfs_buf_t, b_ioend_work);
1186 
1187 	xfs_buf_ioend(bp);
1188 }
1189 
1190 static void
1191 xfs_buf_ioend_async(
1192 	struct xfs_buf	*bp)
1193 {
1194 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1195 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1196 }
1197 
1198 void
1199 __xfs_buf_ioerror(
1200 	xfs_buf_t		*bp,
1201 	int			error,
1202 	xfs_failaddr_t		failaddr)
1203 {
1204 	ASSERT(error <= 0 && error >= -1000);
1205 	bp->b_error = error;
1206 	trace_xfs_buf_ioerror(bp, error, failaddr);
1207 }
1208 
1209 void
1210 xfs_buf_ioerror_alert(
1211 	struct xfs_buf		*bp,
1212 	const char		*func)
1213 {
1214 	xfs_alert(bp->b_target->bt_mount,
1215 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1216 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1217 			-bp->b_error);
1218 }
1219 
1220 int
1221 xfs_bwrite(
1222 	struct xfs_buf		*bp)
1223 {
1224 	int			error;
1225 
1226 	ASSERT(xfs_buf_islocked(bp));
1227 
1228 	bp->b_flags |= XBF_WRITE;
1229 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1230 			 XBF_WRITE_FAIL | XBF_DONE);
1231 
1232 	error = xfs_buf_submit(bp);
1233 	if (error) {
1234 		xfs_force_shutdown(bp->b_target->bt_mount,
1235 				   SHUTDOWN_META_IO_ERROR);
1236 	}
1237 	return error;
1238 }
1239 
1240 static void
1241 xfs_buf_bio_end_io(
1242 	struct bio		*bio)
1243 {
1244 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1245 
1246 	/*
1247 	 * don't overwrite existing errors - otherwise we can lose errors on
1248 	 * buffers that require multiple bios to complete.
1249 	 */
1250 	if (bio->bi_status) {
1251 		int error = blk_status_to_errno(bio->bi_status);
1252 
1253 		cmpxchg(&bp->b_io_error, 0, error);
1254 	}
1255 
1256 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1257 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1258 
1259 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1260 		xfs_buf_ioend_async(bp);
1261 	bio_put(bio);
1262 }
1263 
1264 static void
1265 xfs_buf_ioapply_map(
1266 	struct xfs_buf	*bp,
1267 	int		map,
1268 	int		*buf_offset,
1269 	int		*count,
1270 	int		op,
1271 	int		op_flags)
1272 {
1273 	int		page_index;
1274 	int		total_nr_pages = bp->b_page_count;
1275 	int		nr_pages;
1276 	struct bio	*bio;
1277 	sector_t	sector =  bp->b_maps[map].bm_bn;
1278 	int		size;
1279 	int		offset;
1280 
1281 	/* skip the pages in the buffer before the start offset */
1282 	page_index = 0;
1283 	offset = *buf_offset;
1284 	while (offset >= PAGE_SIZE) {
1285 		page_index++;
1286 		offset -= PAGE_SIZE;
1287 	}
1288 
1289 	/*
1290 	 * Limit the IO size to the length of the current vector, and update the
1291 	 * remaining IO count for the next time around.
1292 	 */
1293 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1294 	*count -= size;
1295 	*buf_offset += size;
1296 
1297 next_chunk:
1298 	atomic_inc(&bp->b_io_remaining);
1299 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1300 
1301 	bio = bio_alloc(GFP_NOIO, nr_pages);
1302 	bio_set_dev(bio, bp->b_target->bt_bdev);
1303 	bio->bi_iter.bi_sector = sector;
1304 	bio->bi_end_io = xfs_buf_bio_end_io;
1305 	bio->bi_private = bp;
1306 	bio_set_op_attrs(bio, op, op_flags);
1307 
1308 	for (; size && nr_pages; nr_pages--, page_index++) {
1309 		int	rbytes, nbytes = PAGE_SIZE - offset;
1310 
1311 		if (nbytes > size)
1312 			nbytes = size;
1313 
1314 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1315 				      offset);
1316 		if (rbytes < nbytes)
1317 			break;
1318 
1319 		offset = 0;
1320 		sector += BTOBB(nbytes);
1321 		size -= nbytes;
1322 		total_nr_pages--;
1323 	}
1324 
1325 	if (likely(bio->bi_iter.bi_size)) {
1326 		if (xfs_buf_is_vmapped(bp)) {
1327 			flush_kernel_vmap_range(bp->b_addr,
1328 						xfs_buf_vmap_len(bp));
1329 		}
1330 		submit_bio(bio);
1331 		if (size)
1332 			goto next_chunk;
1333 	} else {
1334 		/*
1335 		 * This is guaranteed not to be the last io reference count
1336 		 * because the caller (xfs_buf_submit) holds a count itself.
1337 		 */
1338 		atomic_dec(&bp->b_io_remaining);
1339 		xfs_buf_ioerror(bp, -EIO);
1340 		bio_put(bio);
1341 	}
1342 
1343 }
1344 
1345 STATIC void
1346 _xfs_buf_ioapply(
1347 	struct xfs_buf	*bp)
1348 {
1349 	struct blk_plug	plug;
1350 	int		op;
1351 	int		op_flags = 0;
1352 	int		offset;
1353 	int		size;
1354 	int		i;
1355 
1356 	/*
1357 	 * Make sure we capture only current IO errors rather than stale errors
1358 	 * left over from previous use of the buffer (e.g. failed readahead).
1359 	 */
1360 	bp->b_error = 0;
1361 
1362 	/*
1363 	 * Initialize the I/O completion workqueue if we haven't yet or the
1364 	 * submitter has not opted to specify a custom one.
1365 	 */
1366 	if (!bp->b_ioend_wq)
1367 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1368 
1369 	if (bp->b_flags & XBF_WRITE) {
1370 		op = REQ_OP_WRITE;
1371 		if (bp->b_flags & XBF_SYNCIO)
1372 			op_flags = REQ_SYNC;
1373 		if (bp->b_flags & XBF_FUA)
1374 			op_flags |= REQ_FUA;
1375 		if (bp->b_flags & XBF_FLUSH)
1376 			op_flags |= REQ_PREFLUSH;
1377 
1378 		/*
1379 		 * Run the write verifier callback function if it exists. If
1380 		 * this function fails it will mark the buffer with an error and
1381 		 * the IO should not be dispatched.
1382 		 */
1383 		if (bp->b_ops) {
1384 			bp->b_ops->verify_write(bp);
1385 			if (bp->b_error) {
1386 				xfs_force_shutdown(bp->b_target->bt_mount,
1387 						   SHUTDOWN_CORRUPT_INCORE);
1388 				return;
1389 			}
1390 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1391 			struct xfs_mount *mp = bp->b_target->bt_mount;
1392 
1393 			/*
1394 			 * non-crc filesystems don't attach verifiers during
1395 			 * log recovery, so don't warn for such filesystems.
1396 			 */
1397 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1398 				xfs_warn(mp,
1399 					"%s: no buf ops on daddr 0x%llx len %d",
1400 					__func__, bp->b_bn, bp->b_length);
1401 				xfs_hex_dump(bp->b_addr,
1402 						XFS_CORRUPTION_DUMP_LEN);
1403 				dump_stack();
1404 			}
1405 		}
1406 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1407 		op = REQ_OP_READ;
1408 		op_flags = REQ_RAHEAD;
1409 	} else {
1410 		op = REQ_OP_READ;
1411 	}
1412 
1413 	/* we only use the buffer cache for meta-data */
1414 	op_flags |= REQ_META;
1415 
1416 	/*
1417 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1418 	 * into the buffer and the desired IO size before we start -
1419 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1420 	 * subsequent call.
1421 	 */
1422 	offset = bp->b_offset;
1423 	size = BBTOB(bp->b_io_length);
1424 	blk_start_plug(&plug);
1425 	for (i = 0; i < bp->b_map_count; i++) {
1426 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1427 		if (bp->b_error)
1428 			break;
1429 		if (size <= 0)
1430 			break;	/* all done */
1431 	}
1432 	blk_finish_plug(&plug);
1433 }
1434 
1435 /*
1436  * Wait for I/O completion of a sync buffer and return the I/O error code.
1437  */
1438 static int
1439 xfs_buf_iowait(
1440 	struct xfs_buf	*bp)
1441 {
1442 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1443 
1444 	trace_xfs_buf_iowait(bp, _RET_IP_);
1445 	wait_for_completion(&bp->b_iowait);
1446 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1447 
1448 	return bp->b_error;
1449 }
1450 
1451 /*
1452  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1453  * the buffer lock ownership and the current reference to the IO. It is not
1454  * safe to reference the buffer after a call to this function unless the caller
1455  * holds an additional reference itself.
1456  */
1457 int
1458 __xfs_buf_submit(
1459 	struct xfs_buf	*bp,
1460 	bool		wait)
1461 {
1462 	int		error = 0;
1463 
1464 	trace_xfs_buf_submit(bp, _RET_IP_);
1465 
1466 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1467 
1468 	/* on shutdown we stale and complete the buffer immediately */
1469 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1470 		xfs_buf_ioerror(bp, -EIO);
1471 		bp->b_flags &= ~XBF_DONE;
1472 		xfs_buf_stale(bp);
1473 		if (bp->b_flags & XBF_ASYNC)
1474 			xfs_buf_ioend(bp);
1475 		return -EIO;
1476 	}
1477 
1478 	/*
1479 	 * Grab a reference so the buffer does not go away underneath us. For
1480 	 * async buffers, I/O completion drops the callers reference, which
1481 	 * could occur before submission returns.
1482 	 */
1483 	xfs_buf_hold(bp);
1484 
1485 	if (bp->b_flags & XBF_WRITE)
1486 		xfs_buf_wait_unpin(bp);
1487 
1488 	/* clear the internal error state to avoid spurious errors */
1489 	bp->b_io_error = 0;
1490 
1491 	/*
1492 	 * Set the count to 1 initially, this will stop an I/O completion
1493 	 * callout which happens before we have started all the I/O from calling
1494 	 * xfs_buf_ioend too early.
1495 	 */
1496 	atomic_set(&bp->b_io_remaining, 1);
1497 	if (bp->b_flags & XBF_ASYNC)
1498 		xfs_buf_ioacct_inc(bp);
1499 	_xfs_buf_ioapply(bp);
1500 
1501 	/*
1502 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1503 	 * reference we took above. If we drop it to zero, run completion so
1504 	 * that we don't return to the caller with completion still pending.
1505 	 */
1506 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1507 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1508 			xfs_buf_ioend(bp);
1509 		else
1510 			xfs_buf_ioend_async(bp);
1511 	}
1512 
1513 	if (wait)
1514 		error = xfs_buf_iowait(bp);
1515 
1516 	/*
1517 	 * Release the hold that keeps the buffer referenced for the entire
1518 	 * I/O. Note that if the buffer is async, it is not safe to reference
1519 	 * after this release.
1520 	 */
1521 	xfs_buf_rele(bp);
1522 	return error;
1523 }
1524 
1525 void *
1526 xfs_buf_offset(
1527 	struct xfs_buf		*bp,
1528 	size_t			offset)
1529 {
1530 	struct page		*page;
1531 
1532 	if (bp->b_addr)
1533 		return bp->b_addr + offset;
1534 
1535 	offset += bp->b_offset;
1536 	page = bp->b_pages[offset >> PAGE_SHIFT];
1537 	return page_address(page) + (offset & (PAGE_SIZE-1));
1538 }
1539 
1540 /*
1541  *	Move data into or out of a buffer.
1542  */
1543 void
1544 xfs_buf_iomove(
1545 	xfs_buf_t		*bp,	/* buffer to process		*/
1546 	size_t			boff,	/* starting buffer offset	*/
1547 	size_t			bsize,	/* length to copy		*/
1548 	void			*data,	/* data address			*/
1549 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1550 {
1551 	size_t			bend;
1552 
1553 	bend = boff + bsize;
1554 	while (boff < bend) {
1555 		struct page	*page;
1556 		int		page_index, page_offset, csize;
1557 
1558 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1559 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1560 		page = bp->b_pages[page_index];
1561 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1562 				      BBTOB(bp->b_io_length) - boff);
1563 
1564 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1565 
1566 		switch (mode) {
1567 		case XBRW_ZERO:
1568 			memset(page_address(page) + page_offset, 0, csize);
1569 			break;
1570 		case XBRW_READ:
1571 			memcpy(data, page_address(page) + page_offset, csize);
1572 			break;
1573 		case XBRW_WRITE:
1574 			memcpy(page_address(page) + page_offset, data, csize);
1575 		}
1576 
1577 		boff += csize;
1578 		data += csize;
1579 	}
1580 }
1581 
1582 /*
1583  *	Handling of buffer targets (buftargs).
1584  */
1585 
1586 /*
1587  * Wait for any bufs with callbacks that have been submitted but have not yet
1588  * returned. These buffers will have an elevated hold count, so wait on those
1589  * while freeing all the buffers only held by the LRU.
1590  */
1591 static enum lru_status
1592 xfs_buftarg_wait_rele(
1593 	struct list_head	*item,
1594 	struct list_lru_one	*lru,
1595 	spinlock_t		*lru_lock,
1596 	void			*arg)
1597 
1598 {
1599 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1600 	struct list_head	*dispose = arg;
1601 
1602 	if (atomic_read(&bp->b_hold) > 1) {
1603 		/* need to wait, so skip it this pass */
1604 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1605 		return LRU_SKIP;
1606 	}
1607 	if (!spin_trylock(&bp->b_lock))
1608 		return LRU_SKIP;
1609 
1610 	/*
1611 	 * clear the LRU reference count so the buffer doesn't get
1612 	 * ignored in xfs_buf_rele().
1613 	 */
1614 	atomic_set(&bp->b_lru_ref, 0);
1615 	bp->b_state |= XFS_BSTATE_DISPOSE;
1616 	list_lru_isolate_move(lru, item, dispose);
1617 	spin_unlock(&bp->b_lock);
1618 	return LRU_REMOVED;
1619 }
1620 
1621 void
1622 xfs_wait_buftarg(
1623 	struct xfs_buftarg	*btp)
1624 {
1625 	LIST_HEAD(dispose);
1626 	int loop = 0;
1627 
1628 	/*
1629 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1630 	 * released. This is critical as new buffers do not make the LRU until
1631 	 * they are released.
1632 	 *
1633 	 * Next, flush the buffer workqueue to ensure all completion processing
1634 	 * has finished. Just waiting on buffer locks is not sufficient for
1635 	 * async IO as the reference count held over IO is not released until
1636 	 * after the buffer lock is dropped. Hence we need to ensure here that
1637 	 * all reference counts have been dropped before we start walking the
1638 	 * LRU list.
1639 	 */
1640 	while (percpu_counter_sum(&btp->bt_io_count))
1641 		delay(100);
1642 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1643 
1644 	/* loop until there is nothing left on the lru list. */
1645 	while (list_lru_count(&btp->bt_lru)) {
1646 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1647 			      &dispose, LONG_MAX);
1648 
1649 		while (!list_empty(&dispose)) {
1650 			struct xfs_buf *bp;
1651 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1652 			list_del_init(&bp->b_lru);
1653 			if (bp->b_flags & XBF_WRITE_FAIL) {
1654 				xfs_alert(btp->bt_mount,
1655 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1656 					(long long)bp->b_bn);
1657 				xfs_alert(btp->bt_mount,
1658 "Please run xfs_repair to determine the extent of the problem.");
1659 			}
1660 			xfs_buf_rele(bp);
1661 		}
1662 		if (loop++ != 0)
1663 			delay(100);
1664 	}
1665 }
1666 
1667 static enum lru_status
1668 xfs_buftarg_isolate(
1669 	struct list_head	*item,
1670 	struct list_lru_one	*lru,
1671 	spinlock_t		*lru_lock,
1672 	void			*arg)
1673 {
1674 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1675 	struct list_head	*dispose = arg;
1676 
1677 	/*
1678 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1679 	 * If we fail to get the lock, just skip it.
1680 	 */
1681 	if (!spin_trylock(&bp->b_lock))
1682 		return LRU_SKIP;
1683 	/*
1684 	 * Decrement the b_lru_ref count unless the value is already
1685 	 * zero. If the value is already zero, we need to reclaim the
1686 	 * buffer, otherwise it gets another trip through the LRU.
1687 	 */
1688 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1689 		spin_unlock(&bp->b_lock);
1690 		return LRU_ROTATE;
1691 	}
1692 
1693 	bp->b_state |= XFS_BSTATE_DISPOSE;
1694 	list_lru_isolate_move(lru, item, dispose);
1695 	spin_unlock(&bp->b_lock);
1696 	return LRU_REMOVED;
1697 }
1698 
1699 static unsigned long
1700 xfs_buftarg_shrink_scan(
1701 	struct shrinker		*shrink,
1702 	struct shrink_control	*sc)
1703 {
1704 	struct xfs_buftarg	*btp = container_of(shrink,
1705 					struct xfs_buftarg, bt_shrinker);
1706 	LIST_HEAD(dispose);
1707 	unsigned long		freed;
1708 
1709 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1710 				     xfs_buftarg_isolate, &dispose);
1711 
1712 	while (!list_empty(&dispose)) {
1713 		struct xfs_buf *bp;
1714 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1715 		list_del_init(&bp->b_lru);
1716 		xfs_buf_rele(bp);
1717 	}
1718 
1719 	return freed;
1720 }
1721 
1722 static unsigned long
1723 xfs_buftarg_shrink_count(
1724 	struct shrinker		*shrink,
1725 	struct shrink_control	*sc)
1726 {
1727 	struct xfs_buftarg	*btp = container_of(shrink,
1728 					struct xfs_buftarg, bt_shrinker);
1729 	return list_lru_shrink_count(&btp->bt_lru, sc);
1730 }
1731 
1732 void
1733 xfs_free_buftarg(
1734 	struct xfs_buftarg	*btp)
1735 {
1736 	unregister_shrinker(&btp->bt_shrinker);
1737 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1738 	percpu_counter_destroy(&btp->bt_io_count);
1739 	list_lru_destroy(&btp->bt_lru);
1740 
1741 	xfs_blkdev_issue_flush(btp);
1742 
1743 	kmem_free(btp);
1744 }
1745 
1746 int
1747 xfs_setsize_buftarg(
1748 	xfs_buftarg_t		*btp,
1749 	unsigned int		sectorsize)
1750 {
1751 	/* Set up metadata sector size info */
1752 	btp->bt_meta_sectorsize = sectorsize;
1753 	btp->bt_meta_sectormask = sectorsize - 1;
1754 
1755 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1756 		xfs_warn(btp->bt_mount,
1757 			"Cannot set_blocksize to %u on device %pg",
1758 			sectorsize, btp->bt_bdev);
1759 		return -EINVAL;
1760 	}
1761 
1762 	/* Set up device logical sector size mask */
1763 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1764 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1765 
1766 	return 0;
1767 }
1768 
1769 /*
1770  * When allocating the initial buffer target we have not yet
1771  * read in the superblock, so don't know what sized sectors
1772  * are being used at this early stage.  Play safe.
1773  */
1774 STATIC int
1775 xfs_setsize_buftarg_early(
1776 	xfs_buftarg_t		*btp,
1777 	struct block_device	*bdev)
1778 {
1779 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1780 }
1781 
1782 xfs_buftarg_t *
1783 xfs_alloc_buftarg(
1784 	struct xfs_mount	*mp,
1785 	struct block_device	*bdev,
1786 	struct dax_device	*dax_dev)
1787 {
1788 	xfs_buftarg_t		*btp;
1789 
1790 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1791 
1792 	btp->bt_mount = mp;
1793 	btp->bt_dev =  bdev->bd_dev;
1794 	btp->bt_bdev = bdev;
1795 	btp->bt_daxdev = dax_dev;
1796 
1797 	if (xfs_setsize_buftarg_early(btp, bdev))
1798 		goto error_free;
1799 
1800 	if (list_lru_init(&btp->bt_lru))
1801 		goto error_free;
1802 
1803 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1804 		goto error_lru;
1805 
1806 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1807 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1808 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1809 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1810 	if (register_shrinker(&btp->bt_shrinker))
1811 		goto error_pcpu;
1812 	return btp;
1813 
1814 error_pcpu:
1815 	percpu_counter_destroy(&btp->bt_io_count);
1816 error_lru:
1817 	list_lru_destroy(&btp->bt_lru);
1818 error_free:
1819 	kmem_free(btp);
1820 	return NULL;
1821 }
1822 
1823 /*
1824  * Cancel a delayed write list.
1825  *
1826  * Remove each buffer from the list, clear the delwri queue flag and drop the
1827  * associated buffer reference.
1828  */
1829 void
1830 xfs_buf_delwri_cancel(
1831 	struct list_head	*list)
1832 {
1833 	struct xfs_buf		*bp;
1834 
1835 	while (!list_empty(list)) {
1836 		bp = list_first_entry(list, struct xfs_buf, b_list);
1837 
1838 		xfs_buf_lock(bp);
1839 		bp->b_flags &= ~_XBF_DELWRI_Q;
1840 		list_del_init(&bp->b_list);
1841 		xfs_buf_relse(bp);
1842 	}
1843 }
1844 
1845 /*
1846  * Add a buffer to the delayed write list.
1847  *
1848  * This queues a buffer for writeout if it hasn't already been.  Note that
1849  * neither this routine nor the buffer list submission functions perform
1850  * any internal synchronization.  It is expected that the lists are thread-local
1851  * to the callers.
1852  *
1853  * Returns true if we queued up the buffer, or false if it already had
1854  * been on the buffer list.
1855  */
1856 bool
1857 xfs_buf_delwri_queue(
1858 	struct xfs_buf		*bp,
1859 	struct list_head	*list)
1860 {
1861 	ASSERT(xfs_buf_islocked(bp));
1862 	ASSERT(!(bp->b_flags & XBF_READ));
1863 
1864 	/*
1865 	 * If the buffer is already marked delwri it already is queued up
1866 	 * by someone else for imediate writeout.  Just ignore it in that
1867 	 * case.
1868 	 */
1869 	if (bp->b_flags & _XBF_DELWRI_Q) {
1870 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1871 		return false;
1872 	}
1873 
1874 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1875 
1876 	/*
1877 	 * If a buffer gets written out synchronously or marked stale while it
1878 	 * is on a delwri list we lazily remove it. To do this, the other party
1879 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1880 	 * It remains referenced and on the list.  In a rare corner case it
1881 	 * might get readded to a delwri list after the synchronous writeout, in
1882 	 * which case we need just need to re-add the flag here.
1883 	 */
1884 	bp->b_flags |= _XBF_DELWRI_Q;
1885 	if (list_empty(&bp->b_list)) {
1886 		atomic_inc(&bp->b_hold);
1887 		list_add_tail(&bp->b_list, list);
1888 	}
1889 
1890 	return true;
1891 }
1892 
1893 /*
1894  * Compare function is more complex than it needs to be because
1895  * the return value is only 32 bits and we are doing comparisons
1896  * on 64 bit values
1897  */
1898 static int
1899 xfs_buf_cmp(
1900 	void		*priv,
1901 	struct list_head *a,
1902 	struct list_head *b)
1903 {
1904 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1905 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1906 	xfs_daddr_t		diff;
1907 
1908 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1909 	if (diff < 0)
1910 		return -1;
1911 	if (diff > 0)
1912 		return 1;
1913 	return 0;
1914 }
1915 
1916 /*
1917  * Submit buffers for write. If wait_list is specified, the buffers are
1918  * submitted using sync I/O and placed on the wait list such that the caller can
1919  * iowait each buffer. Otherwise async I/O is used and the buffers are released
1920  * at I/O completion time. In either case, buffers remain locked until I/O
1921  * completes and the buffer is released from the queue.
1922  */
1923 static int
1924 xfs_buf_delwri_submit_buffers(
1925 	struct list_head	*buffer_list,
1926 	struct list_head	*wait_list)
1927 {
1928 	struct xfs_buf		*bp, *n;
1929 	LIST_HEAD		(submit_list);
1930 	int			pinned = 0;
1931 	struct blk_plug		plug;
1932 
1933 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1934 
1935 	blk_start_plug(&plug);
1936 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1937 		if (!wait_list) {
1938 			if (xfs_buf_ispinned(bp)) {
1939 				pinned++;
1940 				continue;
1941 			}
1942 			if (!xfs_buf_trylock(bp))
1943 				continue;
1944 		} else {
1945 			xfs_buf_lock(bp);
1946 		}
1947 
1948 		/*
1949 		 * Someone else might have written the buffer synchronously or
1950 		 * marked it stale in the meantime.  In that case only the
1951 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1952 		 * reference and remove it from the list here.
1953 		 */
1954 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1955 			list_del_init(&bp->b_list);
1956 			xfs_buf_relse(bp);
1957 			continue;
1958 		}
1959 
1960 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1961 
1962 		/*
1963 		 * If we have a wait list, each buffer (and associated delwri
1964 		 * queue reference) transfers to it and is submitted
1965 		 * synchronously. Otherwise, drop the buffer from the delwri
1966 		 * queue and submit async.
1967 		 */
1968 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1969 		bp->b_flags |= XBF_WRITE;
1970 		if (wait_list) {
1971 			bp->b_flags &= ~XBF_ASYNC;
1972 			list_move_tail(&bp->b_list, wait_list);
1973 		} else {
1974 			bp->b_flags |= XBF_ASYNC;
1975 			list_del_init(&bp->b_list);
1976 		}
1977 		__xfs_buf_submit(bp, false);
1978 	}
1979 	blk_finish_plug(&plug);
1980 
1981 	return pinned;
1982 }
1983 
1984 /*
1985  * Write out a buffer list asynchronously.
1986  *
1987  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1988  * out and not wait for I/O completion on any of the buffers.  This interface
1989  * is only safely useable for callers that can track I/O completion by higher
1990  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1991  * function.
1992  */
1993 int
1994 xfs_buf_delwri_submit_nowait(
1995 	struct list_head	*buffer_list)
1996 {
1997 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1998 }
1999 
2000 /*
2001  * Write out a buffer list synchronously.
2002  *
2003  * This will take the @buffer_list, write all buffers out and wait for I/O
2004  * completion on all of the buffers. @buffer_list is consumed by the function,
2005  * so callers must have some other way of tracking buffers if they require such
2006  * functionality.
2007  */
2008 int
2009 xfs_buf_delwri_submit(
2010 	struct list_head	*buffer_list)
2011 {
2012 	LIST_HEAD		(wait_list);
2013 	int			error = 0, error2;
2014 	struct xfs_buf		*bp;
2015 
2016 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2017 
2018 	/* Wait for IO to complete. */
2019 	while (!list_empty(&wait_list)) {
2020 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2021 
2022 		list_del_init(&bp->b_list);
2023 
2024 		/*
2025 		 * Wait on the locked buffer, check for errors and unlock and
2026 		 * release the delwri queue reference.
2027 		 */
2028 		error2 = xfs_buf_iowait(bp);
2029 		xfs_buf_relse(bp);
2030 		if (!error)
2031 			error = error2;
2032 	}
2033 
2034 	return error;
2035 }
2036 
2037 /*
2038  * Push a single buffer on a delwri queue.
2039  *
2040  * The purpose of this function is to submit a single buffer of a delwri queue
2041  * and return with the buffer still on the original queue. The waiting delwri
2042  * buffer submission infrastructure guarantees transfer of the delwri queue
2043  * buffer reference to a temporary wait list. We reuse this infrastructure to
2044  * transfer the buffer back to the original queue.
2045  *
2046  * Note the buffer transitions from the queued state, to the submitted and wait
2047  * listed state and back to the queued state during this call. The buffer
2048  * locking and queue management logic between _delwri_pushbuf() and
2049  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2050  * before returning.
2051  */
2052 int
2053 xfs_buf_delwri_pushbuf(
2054 	struct xfs_buf		*bp,
2055 	struct list_head	*buffer_list)
2056 {
2057 	LIST_HEAD		(submit_list);
2058 	int			error;
2059 
2060 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2061 
2062 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2063 
2064 	/*
2065 	 * Isolate the buffer to a new local list so we can submit it for I/O
2066 	 * independently from the rest of the original list.
2067 	 */
2068 	xfs_buf_lock(bp);
2069 	list_move(&bp->b_list, &submit_list);
2070 	xfs_buf_unlock(bp);
2071 
2072 	/*
2073 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2074 	 * the buffer on the wait list with the original reference. Rather than
2075 	 * bounce the buffer from a local wait list back to the original list
2076 	 * after I/O completion, reuse the original list as the wait list.
2077 	 */
2078 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2079 
2080 	/*
2081 	 * The buffer is now locked, under I/O and wait listed on the original
2082 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2083 	 * return with the buffer unlocked and on the original queue.
2084 	 */
2085 	error = xfs_buf_iowait(bp);
2086 	bp->b_flags |= _XBF_DELWRI_Q;
2087 	xfs_buf_unlock(bp);
2088 
2089 	return error;
2090 }
2091 
2092 int __init
2093 xfs_buf_init(void)
2094 {
2095 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2096 						KM_ZONE_HWALIGN, NULL);
2097 	if (!xfs_buf_zone)
2098 		goto out;
2099 
2100 	return 0;
2101 
2102  out:
2103 	return -ENOMEM;
2104 }
2105 
2106 void
2107 xfs_buf_terminate(void)
2108 {
2109 	kmem_zone_destroy(xfs_buf_zone);
2110 }
2111 
2112 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2113 {
2114 	/*
2115 	 * Set the lru reference count to 0 based on the error injection tag.
2116 	 * This allows userspace to disrupt buffer caching for debug/testing
2117 	 * purposes.
2118 	 */
2119 	if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2120 			   XFS_ERRTAG_BUF_LRU_REF))
2121 		lru_ref = 0;
2122 
2123 	atomic_set(&bp->b_lru_ref, lru_ref);
2124 }
2125