xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 
20 static kmem_zone_t *xfs_buf_zone;
21 
22 #define xb_to_gfp(flags) \
23 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
24 
25 /*
26  * Locking orders
27  *
28  * xfs_buf_ioacct_inc:
29  * xfs_buf_ioacct_dec:
30  *	b_sema (caller holds)
31  *	  b_lock
32  *
33  * xfs_buf_stale:
34  *	b_sema (caller holds)
35  *	  b_lock
36  *	    lru_lock
37  *
38  * xfs_buf_rele:
39  *	b_lock
40  *	  pag_buf_lock
41  *	    lru_lock
42  *
43  * xfs_buftarg_wait_rele
44  *	lru_lock
45  *	  b_lock (trylock due to inversion)
46  *
47  * xfs_buftarg_isolate
48  *	lru_lock
49  *	  b_lock (trylock due to inversion)
50  */
51 
52 static inline int
53 xfs_buf_is_vmapped(
54 	struct xfs_buf	*bp)
55 {
56 	/*
57 	 * Return true if the buffer is vmapped.
58 	 *
59 	 * b_addr is null if the buffer is not mapped, but the code is clever
60 	 * enough to know it doesn't have to map a single page, so the check has
61 	 * to be both for b_addr and bp->b_page_count > 1.
62 	 */
63 	return bp->b_addr && bp->b_page_count > 1;
64 }
65 
66 static inline int
67 xfs_buf_vmap_len(
68 	struct xfs_buf	*bp)
69 {
70 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71 }
72 
73 /*
74  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75  * this buffer. The count is incremented once per buffer (per hold cycle)
76  * because the corresponding decrement is deferred to buffer release. Buffers
77  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78  * tracking adds unnecessary overhead. This is used for sychronization purposes
79  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80  * in-flight buffers.
81  *
82  * Buffers that are never released (e.g., superblock, iclog buffers) must set
83  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84  * never reaches zero and unmount hangs indefinitely.
85  */
86 static inline void
87 xfs_buf_ioacct_inc(
88 	struct xfs_buf	*bp)
89 {
90 	if (bp->b_flags & XBF_NO_IOACCT)
91 		return;
92 
93 	ASSERT(bp->b_flags & XBF_ASYNC);
94 	spin_lock(&bp->b_lock);
95 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 		percpu_counter_inc(&bp->b_target->bt_io_count);
98 	}
99 	spin_unlock(&bp->b_lock);
100 }
101 
102 /*
103  * Clear the in-flight state on a buffer about to be released to the LRU or
104  * freed and unaccount from the buftarg.
105  */
106 static inline void
107 __xfs_buf_ioacct_dec(
108 	struct xfs_buf	*bp)
109 {
110 	lockdep_assert_held(&bp->b_lock);
111 
112 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 		percpu_counter_dec(&bp->b_target->bt_io_count);
115 	}
116 }
117 
118 static inline void
119 xfs_buf_ioacct_dec(
120 	struct xfs_buf	*bp)
121 {
122 	spin_lock(&bp->b_lock);
123 	__xfs_buf_ioacct_dec(bp);
124 	spin_unlock(&bp->b_lock);
125 }
126 
127 /*
128  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129  * b_lru_ref count so that the buffer is freed immediately when the buffer
130  * reference count falls to zero. If the buffer is already on the LRU, we need
131  * to remove the reference that LRU holds on the buffer.
132  *
133  * This prevents build-up of stale buffers on the LRU.
134  */
135 void
136 xfs_buf_stale(
137 	struct xfs_buf	*bp)
138 {
139 	ASSERT(xfs_buf_islocked(bp));
140 
141 	bp->b_flags |= XBF_STALE;
142 
143 	/*
144 	 * Clear the delwri status so that a delwri queue walker will not
145 	 * flush this buffer to disk now that it is stale. The delwri queue has
146 	 * a reference to the buffer, so this is safe to do.
147 	 */
148 	bp->b_flags &= ~_XBF_DELWRI_Q;
149 
150 	/*
151 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 	 * could reset b_flags. There is no guarantee that the buffer is
153 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 	 * status now to preserve accounting consistency.
155 	 */
156 	spin_lock(&bp->b_lock);
157 	__xfs_buf_ioacct_dec(bp);
158 
159 	atomic_set(&bp->b_lru_ref, 0);
160 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
161 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 		atomic_dec(&bp->b_hold);
163 
164 	ASSERT(atomic_read(&bp->b_hold) >= 1);
165 	spin_unlock(&bp->b_lock);
166 }
167 
168 static int
169 xfs_buf_get_maps(
170 	struct xfs_buf		*bp,
171 	int			map_count)
172 {
173 	ASSERT(bp->b_maps == NULL);
174 	bp->b_map_count = map_count;
175 
176 	if (map_count == 1) {
177 		bp->b_maps = &bp->__b_map;
178 		return 0;
179 	}
180 
181 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 				KM_NOFS);
183 	if (!bp->b_maps)
184 		return -ENOMEM;
185 	return 0;
186 }
187 
188 /*
189  *	Frees b_pages if it was allocated.
190  */
191 static void
192 xfs_buf_free_maps(
193 	struct xfs_buf	*bp)
194 {
195 	if (bp->b_maps != &bp->__b_map) {
196 		kmem_free(bp->b_maps);
197 		bp->b_maps = NULL;
198 	}
199 }
200 
201 static int
202 _xfs_buf_alloc(
203 	struct xfs_buftarg	*target,
204 	struct xfs_buf_map	*map,
205 	int			nmaps,
206 	xfs_buf_flags_t		flags,
207 	struct xfs_buf		**bpp)
208 {
209 	struct xfs_buf		*bp;
210 	int			error;
211 	int			i;
212 
213 	*bpp = NULL;
214 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
215 	if (unlikely(!bp))
216 		return -ENOMEM;
217 
218 	/*
219 	 * We don't want certain flags to appear in b_flags unless they are
220 	 * specifically set by later operations on the buffer.
221 	 */
222 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
223 
224 	atomic_set(&bp->b_hold, 1);
225 	atomic_set(&bp->b_lru_ref, 1);
226 	init_completion(&bp->b_iowait);
227 	INIT_LIST_HEAD(&bp->b_lru);
228 	INIT_LIST_HEAD(&bp->b_list);
229 	INIT_LIST_HEAD(&bp->b_li_list);
230 	sema_init(&bp->b_sema, 0); /* held, no waiters */
231 	spin_lock_init(&bp->b_lock);
232 	bp->b_target = target;
233 	bp->b_mount = target->bt_mount;
234 	bp->b_flags = flags;
235 
236 	/*
237 	 * Set length and io_length to the same value initially.
238 	 * I/O routines should use io_length, which will be the same in
239 	 * most cases but may be reset (e.g. XFS recovery).
240 	 */
241 	error = xfs_buf_get_maps(bp, nmaps);
242 	if (error)  {
243 		kmem_cache_free(xfs_buf_zone, bp);
244 		return error;
245 	}
246 
247 	bp->b_bn = map[0].bm_bn;
248 	bp->b_length = 0;
249 	for (i = 0; i < nmaps; i++) {
250 		bp->b_maps[i].bm_bn = map[i].bm_bn;
251 		bp->b_maps[i].bm_len = map[i].bm_len;
252 		bp->b_length += map[i].bm_len;
253 	}
254 
255 	atomic_set(&bp->b_pin_count, 0);
256 	init_waitqueue_head(&bp->b_waiters);
257 
258 	XFS_STATS_INC(bp->b_mount, xb_create);
259 	trace_xfs_buf_init(bp, _RET_IP_);
260 
261 	*bpp = bp;
262 	return 0;
263 }
264 
265 /*
266  *	Allocate a page array capable of holding a specified number
267  *	of pages, and point the page buf at it.
268  */
269 STATIC int
270 _xfs_buf_get_pages(
271 	xfs_buf_t		*bp,
272 	int			page_count)
273 {
274 	/* Make sure that we have a page list */
275 	if (bp->b_pages == NULL) {
276 		bp->b_page_count = page_count;
277 		if (page_count <= XB_PAGES) {
278 			bp->b_pages = bp->b_page_array;
279 		} else {
280 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
281 						 page_count, KM_NOFS);
282 			if (bp->b_pages == NULL)
283 				return -ENOMEM;
284 		}
285 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
286 	}
287 	return 0;
288 }
289 
290 /*
291  *	Frees b_pages if it was allocated.
292  */
293 STATIC void
294 _xfs_buf_free_pages(
295 	xfs_buf_t	*bp)
296 {
297 	if (bp->b_pages != bp->b_page_array) {
298 		kmem_free(bp->b_pages);
299 		bp->b_pages = NULL;
300 	}
301 }
302 
303 /*
304  *	Releases the specified buffer.
305  *
306  * 	The modification state of any associated pages is left unchanged.
307  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
308  * 	hashed and refcounted buffers
309  */
310 static void
311 xfs_buf_free(
312 	xfs_buf_t		*bp)
313 {
314 	trace_xfs_buf_free(bp, _RET_IP_);
315 
316 	ASSERT(list_empty(&bp->b_lru));
317 
318 	if (bp->b_flags & _XBF_PAGES) {
319 		uint		i;
320 
321 		if (xfs_buf_is_vmapped(bp))
322 			vm_unmap_ram(bp->b_addr - bp->b_offset,
323 					bp->b_page_count);
324 
325 		for (i = 0; i < bp->b_page_count; i++) {
326 			struct page	*page = bp->b_pages[i];
327 
328 			__free_page(page);
329 		}
330 		if (current->reclaim_state)
331 			current->reclaim_state->reclaimed_slab +=
332 							bp->b_page_count;
333 	} else if (bp->b_flags & _XBF_KMEM)
334 		kmem_free(bp->b_addr);
335 	_xfs_buf_free_pages(bp);
336 	xfs_buf_free_maps(bp);
337 	kmem_cache_free(xfs_buf_zone, bp);
338 }
339 
340 /*
341  * Allocates all the pages for buffer in question and builds it's page list.
342  */
343 STATIC int
344 xfs_buf_allocate_memory(
345 	xfs_buf_t		*bp,
346 	uint			flags)
347 {
348 	size_t			size;
349 	size_t			nbytes, offset;
350 	gfp_t			gfp_mask = xb_to_gfp(flags);
351 	unsigned short		page_count, i;
352 	xfs_off_t		start, end;
353 	int			error;
354 	xfs_km_flags_t		kmflag_mask = 0;
355 
356 	/*
357 	 * assure zeroed buffer for non-read cases.
358 	 */
359 	if (!(flags & XBF_READ)) {
360 		kmflag_mask |= KM_ZERO;
361 		gfp_mask |= __GFP_ZERO;
362 	}
363 
364 	/*
365 	 * for buffers that are contained within a single page, just allocate
366 	 * the memory from the heap - there's no need for the complexity of
367 	 * page arrays to keep allocation down to order 0.
368 	 */
369 	size = BBTOB(bp->b_length);
370 	if (size < PAGE_SIZE) {
371 		int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
372 		bp->b_addr = kmem_alloc_io(size, align_mask,
373 					   KM_NOFS | kmflag_mask);
374 		if (!bp->b_addr) {
375 			/* low memory - use alloc_page loop instead */
376 			goto use_alloc_page;
377 		}
378 
379 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
380 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
381 			/* b_addr spans two pages - use alloc_page instead */
382 			kmem_free(bp->b_addr);
383 			bp->b_addr = NULL;
384 			goto use_alloc_page;
385 		}
386 		bp->b_offset = offset_in_page(bp->b_addr);
387 		bp->b_pages = bp->b_page_array;
388 		bp->b_pages[0] = kmem_to_page(bp->b_addr);
389 		bp->b_page_count = 1;
390 		bp->b_flags |= _XBF_KMEM;
391 		return 0;
392 	}
393 
394 use_alloc_page:
395 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
396 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
397 								>> PAGE_SHIFT;
398 	page_count = end - start;
399 	error = _xfs_buf_get_pages(bp, page_count);
400 	if (unlikely(error))
401 		return error;
402 
403 	offset = bp->b_offset;
404 	bp->b_flags |= _XBF_PAGES;
405 
406 	for (i = 0; i < bp->b_page_count; i++) {
407 		struct page	*page;
408 		uint		retries = 0;
409 retry:
410 		page = alloc_page(gfp_mask);
411 		if (unlikely(page == NULL)) {
412 			if (flags & XBF_READ_AHEAD) {
413 				bp->b_page_count = i;
414 				error = -ENOMEM;
415 				goto out_free_pages;
416 			}
417 
418 			/*
419 			 * This could deadlock.
420 			 *
421 			 * But until all the XFS lowlevel code is revamped to
422 			 * handle buffer allocation failures we can't do much.
423 			 */
424 			if (!(++retries % 100))
425 				xfs_err(NULL,
426 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
427 					current->comm, current->pid,
428 					__func__, gfp_mask);
429 
430 			XFS_STATS_INC(bp->b_mount, xb_page_retries);
431 			congestion_wait(BLK_RW_ASYNC, HZ/50);
432 			goto retry;
433 		}
434 
435 		XFS_STATS_INC(bp->b_mount, xb_page_found);
436 
437 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
438 		size -= nbytes;
439 		bp->b_pages[i] = page;
440 		offset = 0;
441 	}
442 	return 0;
443 
444 out_free_pages:
445 	for (i = 0; i < bp->b_page_count; i++)
446 		__free_page(bp->b_pages[i]);
447 	bp->b_flags &= ~_XBF_PAGES;
448 	return error;
449 }
450 
451 /*
452  *	Map buffer into kernel address-space if necessary.
453  */
454 STATIC int
455 _xfs_buf_map_pages(
456 	xfs_buf_t		*bp,
457 	uint			flags)
458 {
459 	ASSERT(bp->b_flags & _XBF_PAGES);
460 	if (bp->b_page_count == 1) {
461 		/* A single page buffer is always mappable */
462 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
463 	} else if (flags & XBF_UNMAPPED) {
464 		bp->b_addr = NULL;
465 	} else {
466 		int retried = 0;
467 		unsigned nofs_flag;
468 
469 		/*
470 		 * vm_map_ram() will allocate auxiliary structures (e.g.
471 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
472 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
473 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
474 		 * memory reclaim re-entering the filesystem here and
475 		 * potentially deadlocking.
476 		 */
477 		nofs_flag = memalloc_nofs_save();
478 		do {
479 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
480 						-1, PAGE_KERNEL);
481 			if (bp->b_addr)
482 				break;
483 			vm_unmap_aliases();
484 		} while (retried++ <= 1);
485 		memalloc_nofs_restore(nofs_flag);
486 
487 		if (!bp->b_addr)
488 			return -ENOMEM;
489 		bp->b_addr += bp->b_offset;
490 	}
491 
492 	return 0;
493 }
494 
495 /*
496  *	Finding and Reading Buffers
497  */
498 static int
499 _xfs_buf_obj_cmp(
500 	struct rhashtable_compare_arg	*arg,
501 	const void			*obj)
502 {
503 	const struct xfs_buf_map	*map = arg->key;
504 	const struct xfs_buf		*bp = obj;
505 
506 	/*
507 	 * The key hashing in the lookup path depends on the key being the
508 	 * first element of the compare_arg, make sure to assert this.
509 	 */
510 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
511 
512 	if (bp->b_bn != map->bm_bn)
513 		return 1;
514 
515 	if (unlikely(bp->b_length != map->bm_len)) {
516 		/*
517 		 * found a block number match. If the range doesn't
518 		 * match, the only way this is allowed is if the buffer
519 		 * in the cache is stale and the transaction that made
520 		 * it stale has not yet committed. i.e. we are
521 		 * reallocating a busy extent. Skip this buffer and
522 		 * continue searching for an exact match.
523 		 */
524 		ASSERT(bp->b_flags & XBF_STALE);
525 		return 1;
526 	}
527 	return 0;
528 }
529 
530 static const struct rhashtable_params xfs_buf_hash_params = {
531 	.min_size		= 32,	/* empty AGs have minimal footprint */
532 	.nelem_hint		= 16,
533 	.key_len		= sizeof(xfs_daddr_t),
534 	.key_offset		= offsetof(struct xfs_buf, b_bn),
535 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
536 	.automatic_shrinking	= true,
537 	.obj_cmpfn		= _xfs_buf_obj_cmp,
538 };
539 
540 int
541 xfs_buf_hash_init(
542 	struct xfs_perag	*pag)
543 {
544 	spin_lock_init(&pag->pag_buf_lock);
545 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
546 }
547 
548 void
549 xfs_buf_hash_destroy(
550 	struct xfs_perag	*pag)
551 {
552 	rhashtable_destroy(&pag->pag_buf_hash);
553 }
554 
555 /*
556  * Look up a buffer in the buffer cache and return it referenced and locked
557  * in @found_bp.
558  *
559  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
560  * cache.
561  *
562  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
563  * -EAGAIN if we fail to lock it.
564  *
565  * Return values are:
566  *	-EFSCORRUPTED if have been supplied with an invalid address
567  *	-EAGAIN on trylock failure
568  *	-ENOENT if we fail to find a match and @new_bp was NULL
569  *	0, with @found_bp:
570  *		- @new_bp if we inserted it into the cache
571  *		- the buffer we found and locked.
572  */
573 static int
574 xfs_buf_find(
575 	struct xfs_buftarg	*btp,
576 	struct xfs_buf_map	*map,
577 	int			nmaps,
578 	xfs_buf_flags_t		flags,
579 	struct xfs_buf		*new_bp,
580 	struct xfs_buf		**found_bp)
581 {
582 	struct xfs_perag	*pag;
583 	xfs_buf_t		*bp;
584 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
585 	xfs_daddr_t		eofs;
586 	int			i;
587 
588 	*found_bp = NULL;
589 
590 	for (i = 0; i < nmaps; i++)
591 		cmap.bm_len += map[i].bm_len;
592 
593 	/* Check for IOs smaller than the sector size / not sector aligned */
594 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
595 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
596 
597 	/*
598 	 * Corrupted block numbers can get through to here, unfortunately, so we
599 	 * have to check that the buffer falls within the filesystem bounds.
600 	 */
601 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
602 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
603 		xfs_alert(btp->bt_mount,
604 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
605 			  __func__, cmap.bm_bn, eofs);
606 		WARN_ON(1);
607 		return -EFSCORRUPTED;
608 	}
609 
610 	pag = xfs_perag_get(btp->bt_mount,
611 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
612 
613 	spin_lock(&pag->pag_buf_lock);
614 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
615 				    xfs_buf_hash_params);
616 	if (bp) {
617 		atomic_inc(&bp->b_hold);
618 		goto found;
619 	}
620 
621 	/* No match found */
622 	if (!new_bp) {
623 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
624 		spin_unlock(&pag->pag_buf_lock);
625 		xfs_perag_put(pag);
626 		return -ENOENT;
627 	}
628 
629 	/* the buffer keeps the perag reference until it is freed */
630 	new_bp->b_pag = pag;
631 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
632 			       xfs_buf_hash_params);
633 	spin_unlock(&pag->pag_buf_lock);
634 	*found_bp = new_bp;
635 	return 0;
636 
637 found:
638 	spin_unlock(&pag->pag_buf_lock);
639 	xfs_perag_put(pag);
640 
641 	if (!xfs_buf_trylock(bp)) {
642 		if (flags & XBF_TRYLOCK) {
643 			xfs_buf_rele(bp);
644 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
645 			return -EAGAIN;
646 		}
647 		xfs_buf_lock(bp);
648 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
649 	}
650 
651 	/*
652 	 * if the buffer is stale, clear all the external state associated with
653 	 * it. We need to keep flags such as how we allocated the buffer memory
654 	 * intact here.
655 	 */
656 	if (bp->b_flags & XBF_STALE) {
657 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
658 		ASSERT(bp->b_iodone == NULL);
659 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
660 		bp->b_ops = NULL;
661 	}
662 
663 	trace_xfs_buf_find(bp, flags, _RET_IP_);
664 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
665 	*found_bp = bp;
666 	return 0;
667 }
668 
669 struct xfs_buf *
670 xfs_buf_incore(
671 	struct xfs_buftarg	*target,
672 	xfs_daddr_t		blkno,
673 	size_t			numblks,
674 	xfs_buf_flags_t		flags)
675 {
676 	struct xfs_buf		*bp;
677 	int			error;
678 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
679 
680 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
681 	if (error)
682 		return NULL;
683 	return bp;
684 }
685 
686 /*
687  * Assembles a buffer covering the specified range. The code is optimised for
688  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
689  * more hits than misses.
690  */
691 int
692 xfs_buf_get_map(
693 	struct xfs_buftarg	*target,
694 	struct xfs_buf_map	*map,
695 	int			nmaps,
696 	xfs_buf_flags_t		flags,
697 	struct xfs_buf		**bpp)
698 {
699 	struct xfs_buf		*bp;
700 	struct xfs_buf		*new_bp;
701 	int			error = 0;
702 
703 	*bpp = NULL;
704 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
705 	if (!error)
706 		goto found;
707 	if (error != -ENOENT)
708 		return error;
709 
710 	error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
711 	if (error)
712 		return error;
713 
714 	error = xfs_buf_allocate_memory(new_bp, flags);
715 	if (error) {
716 		xfs_buf_free(new_bp);
717 		return error;
718 	}
719 
720 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
721 	if (error) {
722 		xfs_buf_free(new_bp);
723 		return error;
724 	}
725 
726 	if (bp != new_bp)
727 		xfs_buf_free(new_bp);
728 
729 found:
730 	if (!bp->b_addr) {
731 		error = _xfs_buf_map_pages(bp, flags);
732 		if (unlikely(error)) {
733 			xfs_warn_ratelimited(target->bt_mount,
734 				"%s: failed to map %u pages", __func__,
735 				bp->b_page_count);
736 			xfs_buf_relse(bp);
737 			return error;
738 		}
739 	}
740 
741 	/*
742 	 * Clear b_error if this is a lookup from a caller that doesn't expect
743 	 * valid data to be found in the buffer.
744 	 */
745 	if (!(flags & XBF_READ))
746 		xfs_buf_ioerror(bp, 0);
747 
748 	XFS_STATS_INC(target->bt_mount, xb_get);
749 	trace_xfs_buf_get(bp, flags, _RET_IP_);
750 	*bpp = bp;
751 	return 0;
752 }
753 
754 STATIC int
755 _xfs_buf_read(
756 	xfs_buf_t		*bp,
757 	xfs_buf_flags_t		flags)
758 {
759 	ASSERT(!(flags & XBF_WRITE));
760 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
761 
762 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
763 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
764 
765 	return xfs_buf_submit(bp);
766 }
767 
768 /*
769  * Reverify a buffer found in cache without an attached ->b_ops.
770  *
771  * If the caller passed an ops structure and the buffer doesn't have ops
772  * assigned, set the ops and use it to verify the contents. If verification
773  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
774  * already in XBF_DONE state on entry.
775  *
776  * Under normal operations, every in-core buffer is verified on read I/O
777  * completion. There are two scenarios that can lead to in-core buffers without
778  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
779  * filesystem, though these buffers are purged at the end of recovery. The
780  * other is online repair, which intentionally reads with a NULL buffer ops to
781  * run several verifiers across an in-core buffer in order to establish buffer
782  * type.  If repair can't establish that, the buffer will be left in memory
783  * with NULL buffer ops.
784  */
785 int
786 xfs_buf_reverify(
787 	struct xfs_buf		*bp,
788 	const struct xfs_buf_ops *ops)
789 {
790 	ASSERT(bp->b_flags & XBF_DONE);
791 	ASSERT(bp->b_error == 0);
792 
793 	if (!ops || bp->b_ops)
794 		return 0;
795 
796 	bp->b_ops = ops;
797 	bp->b_ops->verify_read(bp);
798 	if (bp->b_error)
799 		bp->b_flags &= ~XBF_DONE;
800 	return bp->b_error;
801 }
802 
803 int
804 xfs_buf_read_map(
805 	struct xfs_buftarg	*target,
806 	struct xfs_buf_map	*map,
807 	int			nmaps,
808 	xfs_buf_flags_t		flags,
809 	struct xfs_buf		**bpp,
810 	const struct xfs_buf_ops *ops,
811 	xfs_failaddr_t		fa)
812 {
813 	struct xfs_buf		*bp;
814 	int			error;
815 
816 	flags |= XBF_READ;
817 	*bpp = NULL;
818 
819 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
820 	if (error)
821 		return error;
822 
823 	trace_xfs_buf_read(bp, flags, _RET_IP_);
824 
825 	if (!(bp->b_flags & XBF_DONE)) {
826 		/* Initiate the buffer read and wait. */
827 		XFS_STATS_INC(target->bt_mount, xb_get_read);
828 		bp->b_ops = ops;
829 		error = _xfs_buf_read(bp, flags);
830 
831 		/* Readahead iodone already dropped the buffer, so exit. */
832 		if (flags & XBF_ASYNC)
833 			return 0;
834 	} else {
835 		/* Buffer already read; all we need to do is check it. */
836 		error = xfs_buf_reverify(bp, ops);
837 
838 		/* Readahead already finished; drop the buffer and exit. */
839 		if (flags & XBF_ASYNC) {
840 			xfs_buf_relse(bp);
841 			return 0;
842 		}
843 
844 		/* We do not want read in the flags */
845 		bp->b_flags &= ~XBF_READ;
846 		ASSERT(bp->b_ops != NULL || ops == NULL);
847 	}
848 
849 	/*
850 	 * If we've had a read error, then the contents of the buffer are
851 	 * invalid and should not be used. To ensure that a followup read tries
852 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
853 	 * mark the buffer stale. This ensures that anyone who has a current
854 	 * reference to the buffer will interpret it's contents correctly and
855 	 * future cache lookups will also treat it as an empty, uninitialised
856 	 * buffer.
857 	 */
858 	if (error) {
859 		if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
860 			xfs_buf_ioerror_alert(bp, fa);
861 
862 		bp->b_flags &= ~XBF_DONE;
863 		xfs_buf_stale(bp);
864 		xfs_buf_relse(bp);
865 
866 		/* bad CRC means corrupted metadata */
867 		if (error == -EFSBADCRC)
868 			error = -EFSCORRUPTED;
869 		return error;
870 	}
871 
872 	*bpp = bp;
873 	return 0;
874 }
875 
876 /*
877  *	If we are not low on memory then do the readahead in a deadlock
878  *	safe manner.
879  */
880 void
881 xfs_buf_readahead_map(
882 	struct xfs_buftarg	*target,
883 	struct xfs_buf_map	*map,
884 	int			nmaps,
885 	const struct xfs_buf_ops *ops)
886 {
887 	struct xfs_buf		*bp;
888 
889 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
890 		return;
891 
892 	xfs_buf_read_map(target, map, nmaps,
893 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
894 		     __this_address);
895 }
896 
897 /*
898  * Read an uncached buffer from disk. Allocates and returns a locked
899  * buffer containing the disk contents or nothing.
900  */
901 int
902 xfs_buf_read_uncached(
903 	struct xfs_buftarg	*target,
904 	xfs_daddr_t		daddr,
905 	size_t			numblks,
906 	int			flags,
907 	struct xfs_buf		**bpp,
908 	const struct xfs_buf_ops *ops)
909 {
910 	struct xfs_buf		*bp;
911 	int			error;
912 
913 	*bpp = NULL;
914 
915 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
916 	if (error)
917 		return error;
918 
919 	/* set up the buffer for a read IO */
920 	ASSERT(bp->b_map_count == 1);
921 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
922 	bp->b_maps[0].bm_bn = daddr;
923 	bp->b_flags |= XBF_READ;
924 	bp->b_ops = ops;
925 
926 	xfs_buf_submit(bp);
927 	if (bp->b_error) {
928 		error = bp->b_error;
929 		xfs_buf_relse(bp);
930 		return error;
931 	}
932 
933 	*bpp = bp;
934 	return 0;
935 }
936 
937 int
938 xfs_buf_get_uncached(
939 	struct xfs_buftarg	*target,
940 	size_t			numblks,
941 	int			flags,
942 	struct xfs_buf		**bpp)
943 {
944 	unsigned long		page_count;
945 	int			error, i;
946 	struct xfs_buf		*bp;
947 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
948 
949 	*bpp = NULL;
950 
951 	/* flags might contain irrelevant bits, pass only what we care about */
952 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
953 	if (error)
954 		goto fail;
955 
956 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
957 	error = _xfs_buf_get_pages(bp, page_count);
958 	if (error)
959 		goto fail_free_buf;
960 
961 	for (i = 0; i < page_count; i++) {
962 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
963 		if (!bp->b_pages[i]) {
964 			error = -ENOMEM;
965 			goto fail_free_mem;
966 		}
967 	}
968 	bp->b_flags |= _XBF_PAGES;
969 
970 	error = _xfs_buf_map_pages(bp, 0);
971 	if (unlikely(error)) {
972 		xfs_warn(target->bt_mount,
973 			"%s: failed to map pages", __func__);
974 		goto fail_free_mem;
975 	}
976 
977 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
978 	*bpp = bp;
979 	return 0;
980 
981  fail_free_mem:
982 	while (--i >= 0)
983 		__free_page(bp->b_pages[i]);
984 	_xfs_buf_free_pages(bp);
985  fail_free_buf:
986 	xfs_buf_free_maps(bp);
987 	kmem_cache_free(xfs_buf_zone, bp);
988  fail:
989 	return error;
990 }
991 
992 /*
993  *	Increment reference count on buffer, to hold the buffer concurrently
994  *	with another thread which may release (free) the buffer asynchronously.
995  *	Must hold the buffer already to call this function.
996  */
997 void
998 xfs_buf_hold(
999 	xfs_buf_t		*bp)
1000 {
1001 	trace_xfs_buf_hold(bp, _RET_IP_);
1002 	atomic_inc(&bp->b_hold);
1003 }
1004 
1005 /*
1006  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1007  * placed on LRU or freed (depending on b_lru_ref).
1008  */
1009 void
1010 xfs_buf_rele(
1011 	xfs_buf_t		*bp)
1012 {
1013 	struct xfs_perag	*pag = bp->b_pag;
1014 	bool			release;
1015 	bool			freebuf = false;
1016 
1017 	trace_xfs_buf_rele(bp, _RET_IP_);
1018 
1019 	if (!pag) {
1020 		ASSERT(list_empty(&bp->b_lru));
1021 		if (atomic_dec_and_test(&bp->b_hold)) {
1022 			xfs_buf_ioacct_dec(bp);
1023 			xfs_buf_free(bp);
1024 		}
1025 		return;
1026 	}
1027 
1028 	ASSERT(atomic_read(&bp->b_hold) > 0);
1029 
1030 	/*
1031 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1032 	 * calls. The pag_buf_lock being taken on the last reference only
1033 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1034 	 * to last reference we drop here is not serialised against the last
1035 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1036 	 * first, the last "release" reference can win the race to the lock and
1037 	 * free the buffer before the second-to-last reference is processed,
1038 	 * leading to a use-after-free scenario.
1039 	 */
1040 	spin_lock(&bp->b_lock);
1041 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1042 	if (!release) {
1043 		/*
1044 		 * Drop the in-flight state if the buffer is already on the LRU
1045 		 * and it holds the only reference. This is racy because we
1046 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1047 		 * ensures the decrement occurs only once per-buf.
1048 		 */
1049 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1050 			__xfs_buf_ioacct_dec(bp);
1051 		goto out_unlock;
1052 	}
1053 
1054 	/* the last reference has been dropped ... */
1055 	__xfs_buf_ioacct_dec(bp);
1056 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1057 		/*
1058 		 * If the buffer is added to the LRU take a new reference to the
1059 		 * buffer for the LRU and clear the (now stale) dispose list
1060 		 * state flag
1061 		 */
1062 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1063 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1064 			atomic_inc(&bp->b_hold);
1065 		}
1066 		spin_unlock(&pag->pag_buf_lock);
1067 	} else {
1068 		/*
1069 		 * most of the time buffers will already be removed from the
1070 		 * LRU, so optimise that case by checking for the
1071 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1072 		 * was on was the disposal list
1073 		 */
1074 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1075 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1076 		} else {
1077 			ASSERT(list_empty(&bp->b_lru));
1078 		}
1079 
1080 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1081 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1082 				       xfs_buf_hash_params);
1083 		spin_unlock(&pag->pag_buf_lock);
1084 		xfs_perag_put(pag);
1085 		freebuf = true;
1086 	}
1087 
1088 out_unlock:
1089 	spin_unlock(&bp->b_lock);
1090 
1091 	if (freebuf)
1092 		xfs_buf_free(bp);
1093 }
1094 
1095 
1096 /*
1097  *	Lock a buffer object, if it is not already locked.
1098  *
1099  *	If we come across a stale, pinned, locked buffer, we know that we are
1100  *	being asked to lock a buffer that has been reallocated. Because it is
1101  *	pinned, we know that the log has not been pushed to disk and hence it
1102  *	will still be locked.  Rather than continuing to have trylock attempts
1103  *	fail until someone else pushes the log, push it ourselves before
1104  *	returning.  This means that the xfsaild will not get stuck trying
1105  *	to push on stale inode buffers.
1106  */
1107 int
1108 xfs_buf_trylock(
1109 	struct xfs_buf		*bp)
1110 {
1111 	int			locked;
1112 
1113 	locked = down_trylock(&bp->b_sema) == 0;
1114 	if (locked)
1115 		trace_xfs_buf_trylock(bp, _RET_IP_);
1116 	else
1117 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1118 	return locked;
1119 }
1120 
1121 /*
1122  *	Lock a buffer object.
1123  *
1124  *	If we come across a stale, pinned, locked buffer, we know that we
1125  *	are being asked to lock a buffer that has been reallocated. Because
1126  *	it is pinned, we know that the log has not been pushed to disk and
1127  *	hence it will still be locked. Rather than sleeping until someone
1128  *	else pushes the log, push it ourselves before trying to get the lock.
1129  */
1130 void
1131 xfs_buf_lock(
1132 	struct xfs_buf		*bp)
1133 {
1134 	trace_xfs_buf_lock(bp, _RET_IP_);
1135 
1136 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1137 		xfs_log_force(bp->b_mount, 0);
1138 	down(&bp->b_sema);
1139 
1140 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1141 }
1142 
1143 void
1144 xfs_buf_unlock(
1145 	struct xfs_buf		*bp)
1146 {
1147 	ASSERT(xfs_buf_islocked(bp));
1148 
1149 	up(&bp->b_sema);
1150 	trace_xfs_buf_unlock(bp, _RET_IP_);
1151 }
1152 
1153 STATIC void
1154 xfs_buf_wait_unpin(
1155 	xfs_buf_t		*bp)
1156 {
1157 	DECLARE_WAITQUEUE	(wait, current);
1158 
1159 	if (atomic_read(&bp->b_pin_count) == 0)
1160 		return;
1161 
1162 	add_wait_queue(&bp->b_waiters, &wait);
1163 	for (;;) {
1164 		set_current_state(TASK_UNINTERRUPTIBLE);
1165 		if (atomic_read(&bp->b_pin_count) == 0)
1166 			break;
1167 		io_schedule();
1168 	}
1169 	remove_wait_queue(&bp->b_waiters, &wait);
1170 	set_current_state(TASK_RUNNING);
1171 }
1172 
1173 /*
1174  *	Buffer Utility Routines
1175  */
1176 
1177 void
1178 xfs_buf_ioend(
1179 	struct xfs_buf	*bp)
1180 {
1181 	bool		read = bp->b_flags & XBF_READ;
1182 
1183 	trace_xfs_buf_iodone(bp, _RET_IP_);
1184 
1185 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1186 
1187 	/*
1188 	 * Pull in IO completion errors now. We are guaranteed to be running
1189 	 * single threaded, so we don't need the lock to read b_io_error.
1190 	 */
1191 	if (!bp->b_error && bp->b_io_error)
1192 		xfs_buf_ioerror(bp, bp->b_io_error);
1193 
1194 	/* Only validate buffers that were read without errors */
1195 	if (read && !bp->b_error && bp->b_ops) {
1196 		ASSERT(!bp->b_iodone);
1197 		bp->b_ops->verify_read(bp);
1198 	}
1199 
1200 	if (!bp->b_error)
1201 		bp->b_flags |= XBF_DONE;
1202 
1203 	if (bp->b_iodone)
1204 		(*(bp->b_iodone))(bp);
1205 	else if (bp->b_flags & XBF_ASYNC)
1206 		xfs_buf_relse(bp);
1207 	else
1208 		complete(&bp->b_iowait);
1209 }
1210 
1211 static void
1212 xfs_buf_ioend_work(
1213 	struct work_struct	*work)
1214 {
1215 	struct xfs_buf		*bp =
1216 		container_of(work, xfs_buf_t, b_ioend_work);
1217 
1218 	xfs_buf_ioend(bp);
1219 }
1220 
1221 static void
1222 xfs_buf_ioend_async(
1223 	struct xfs_buf	*bp)
1224 {
1225 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1226 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1227 }
1228 
1229 void
1230 __xfs_buf_ioerror(
1231 	xfs_buf_t		*bp,
1232 	int			error,
1233 	xfs_failaddr_t		failaddr)
1234 {
1235 	ASSERT(error <= 0 && error >= -1000);
1236 	bp->b_error = error;
1237 	trace_xfs_buf_ioerror(bp, error, failaddr);
1238 }
1239 
1240 void
1241 xfs_buf_ioerror_alert(
1242 	struct xfs_buf		*bp,
1243 	xfs_failaddr_t		func)
1244 {
1245 	xfs_alert_ratelimited(bp->b_mount,
1246 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1247 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1248 			-bp->b_error);
1249 }
1250 
1251 int
1252 xfs_bwrite(
1253 	struct xfs_buf		*bp)
1254 {
1255 	int			error;
1256 
1257 	ASSERT(xfs_buf_islocked(bp));
1258 
1259 	bp->b_flags |= XBF_WRITE;
1260 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1261 			 XBF_WRITE_FAIL | XBF_DONE);
1262 
1263 	error = xfs_buf_submit(bp);
1264 	if (error)
1265 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1266 	return error;
1267 }
1268 
1269 static void
1270 xfs_buf_bio_end_io(
1271 	struct bio		*bio)
1272 {
1273 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1274 
1275 	/*
1276 	 * don't overwrite existing errors - otherwise we can lose errors on
1277 	 * buffers that require multiple bios to complete.
1278 	 */
1279 	if (bio->bi_status) {
1280 		int error = blk_status_to_errno(bio->bi_status);
1281 
1282 		cmpxchg(&bp->b_io_error, 0, error);
1283 	}
1284 
1285 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1286 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1287 
1288 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1289 		xfs_buf_ioend_async(bp);
1290 	bio_put(bio);
1291 }
1292 
1293 static void
1294 xfs_buf_ioapply_map(
1295 	struct xfs_buf	*bp,
1296 	int		map,
1297 	int		*buf_offset,
1298 	int		*count,
1299 	int		op)
1300 {
1301 	int		page_index;
1302 	int		total_nr_pages = bp->b_page_count;
1303 	int		nr_pages;
1304 	struct bio	*bio;
1305 	sector_t	sector =  bp->b_maps[map].bm_bn;
1306 	int		size;
1307 	int		offset;
1308 
1309 	/* skip the pages in the buffer before the start offset */
1310 	page_index = 0;
1311 	offset = *buf_offset;
1312 	while (offset >= PAGE_SIZE) {
1313 		page_index++;
1314 		offset -= PAGE_SIZE;
1315 	}
1316 
1317 	/*
1318 	 * Limit the IO size to the length of the current vector, and update the
1319 	 * remaining IO count for the next time around.
1320 	 */
1321 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1322 	*count -= size;
1323 	*buf_offset += size;
1324 
1325 next_chunk:
1326 	atomic_inc(&bp->b_io_remaining);
1327 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1328 
1329 	bio = bio_alloc(GFP_NOIO, nr_pages);
1330 	bio_set_dev(bio, bp->b_target->bt_bdev);
1331 	bio->bi_iter.bi_sector = sector;
1332 	bio->bi_end_io = xfs_buf_bio_end_io;
1333 	bio->bi_private = bp;
1334 	bio->bi_opf = op;
1335 
1336 	for (; size && nr_pages; nr_pages--, page_index++) {
1337 		int	rbytes, nbytes = PAGE_SIZE - offset;
1338 
1339 		if (nbytes > size)
1340 			nbytes = size;
1341 
1342 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1343 				      offset);
1344 		if (rbytes < nbytes)
1345 			break;
1346 
1347 		offset = 0;
1348 		sector += BTOBB(nbytes);
1349 		size -= nbytes;
1350 		total_nr_pages--;
1351 	}
1352 
1353 	if (likely(bio->bi_iter.bi_size)) {
1354 		if (xfs_buf_is_vmapped(bp)) {
1355 			flush_kernel_vmap_range(bp->b_addr,
1356 						xfs_buf_vmap_len(bp));
1357 		}
1358 		submit_bio(bio);
1359 		if (size)
1360 			goto next_chunk;
1361 	} else {
1362 		/*
1363 		 * This is guaranteed not to be the last io reference count
1364 		 * because the caller (xfs_buf_submit) holds a count itself.
1365 		 */
1366 		atomic_dec(&bp->b_io_remaining);
1367 		xfs_buf_ioerror(bp, -EIO);
1368 		bio_put(bio);
1369 	}
1370 
1371 }
1372 
1373 STATIC void
1374 _xfs_buf_ioapply(
1375 	struct xfs_buf	*bp)
1376 {
1377 	struct blk_plug	plug;
1378 	int		op;
1379 	int		offset;
1380 	int		size;
1381 	int		i;
1382 
1383 	/*
1384 	 * Make sure we capture only current IO errors rather than stale errors
1385 	 * left over from previous use of the buffer (e.g. failed readahead).
1386 	 */
1387 	bp->b_error = 0;
1388 
1389 	if (bp->b_flags & XBF_WRITE) {
1390 		op = REQ_OP_WRITE;
1391 
1392 		/*
1393 		 * Run the write verifier callback function if it exists. If
1394 		 * this function fails it will mark the buffer with an error and
1395 		 * the IO should not be dispatched.
1396 		 */
1397 		if (bp->b_ops) {
1398 			bp->b_ops->verify_write(bp);
1399 			if (bp->b_error) {
1400 				xfs_force_shutdown(bp->b_mount,
1401 						   SHUTDOWN_CORRUPT_INCORE);
1402 				return;
1403 			}
1404 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1405 			struct xfs_mount *mp = bp->b_mount;
1406 
1407 			/*
1408 			 * non-crc filesystems don't attach verifiers during
1409 			 * log recovery, so don't warn for such filesystems.
1410 			 */
1411 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1412 				xfs_warn(mp,
1413 					"%s: no buf ops on daddr 0x%llx len %d",
1414 					__func__, bp->b_bn, bp->b_length);
1415 				xfs_hex_dump(bp->b_addr,
1416 						XFS_CORRUPTION_DUMP_LEN);
1417 				dump_stack();
1418 			}
1419 		}
1420 	} else {
1421 		op = REQ_OP_READ;
1422 		if (bp->b_flags & XBF_READ_AHEAD)
1423 			op |= REQ_RAHEAD;
1424 	}
1425 
1426 	/* we only use the buffer cache for meta-data */
1427 	op |= REQ_META;
1428 
1429 	/*
1430 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1431 	 * into the buffer and the desired IO size before we start -
1432 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1433 	 * subsequent call.
1434 	 */
1435 	offset = bp->b_offset;
1436 	size = BBTOB(bp->b_length);
1437 	blk_start_plug(&plug);
1438 	for (i = 0; i < bp->b_map_count; i++) {
1439 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1440 		if (bp->b_error)
1441 			break;
1442 		if (size <= 0)
1443 			break;	/* all done */
1444 	}
1445 	blk_finish_plug(&plug);
1446 }
1447 
1448 /*
1449  * Wait for I/O completion of a sync buffer and return the I/O error code.
1450  */
1451 static int
1452 xfs_buf_iowait(
1453 	struct xfs_buf	*bp)
1454 {
1455 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1456 
1457 	trace_xfs_buf_iowait(bp, _RET_IP_);
1458 	wait_for_completion(&bp->b_iowait);
1459 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1460 
1461 	return bp->b_error;
1462 }
1463 
1464 /*
1465  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1466  * the buffer lock ownership and the current reference to the IO. It is not
1467  * safe to reference the buffer after a call to this function unless the caller
1468  * holds an additional reference itself.
1469  */
1470 int
1471 __xfs_buf_submit(
1472 	struct xfs_buf	*bp,
1473 	bool		wait)
1474 {
1475 	int		error = 0;
1476 
1477 	trace_xfs_buf_submit(bp, _RET_IP_);
1478 
1479 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1480 
1481 	/* on shutdown we stale and complete the buffer immediately */
1482 	if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1483 		xfs_buf_ioerror(bp, -EIO);
1484 		bp->b_flags &= ~XBF_DONE;
1485 		xfs_buf_stale(bp);
1486 		xfs_buf_ioend(bp);
1487 		return -EIO;
1488 	}
1489 
1490 	/*
1491 	 * Grab a reference so the buffer does not go away underneath us. For
1492 	 * async buffers, I/O completion drops the callers reference, which
1493 	 * could occur before submission returns.
1494 	 */
1495 	xfs_buf_hold(bp);
1496 
1497 	if (bp->b_flags & XBF_WRITE)
1498 		xfs_buf_wait_unpin(bp);
1499 
1500 	/* clear the internal error state to avoid spurious errors */
1501 	bp->b_io_error = 0;
1502 
1503 	/*
1504 	 * Set the count to 1 initially, this will stop an I/O completion
1505 	 * callout which happens before we have started all the I/O from calling
1506 	 * xfs_buf_ioend too early.
1507 	 */
1508 	atomic_set(&bp->b_io_remaining, 1);
1509 	if (bp->b_flags & XBF_ASYNC)
1510 		xfs_buf_ioacct_inc(bp);
1511 	_xfs_buf_ioapply(bp);
1512 
1513 	/*
1514 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1515 	 * reference we took above. If we drop it to zero, run completion so
1516 	 * that we don't return to the caller with completion still pending.
1517 	 */
1518 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1519 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1520 			xfs_buf_ioend(bp);
1521 		else
1522 			xfs_buf_ioend_async(bp);
1523 	}
1524 
1525 	if (wait)
1526 		error = xfs_buf_iowait(bp);
1527 
1528 	/*
1529 	 * Release the hold that keeps the buffer referenced for the entire
1530 	 * I/O. Note that if the buffer is async, it is not safe to reference
1531 	 * after this release.
1532 	 */
1533 	xfs_buf_rele(bp);
1534 	return error;
1535 }
1536 
1537 void *
1538 xfs_buf_offset(
1539 	struct xfs_buf		*bp,
1540 	size_t			offset)
1541 {
1542 	struct page		*page;
1543 
1544 	if (bp->b_addr)
1545 		return bp->b_addr + offset;
1546 
1547 	offset += bp->b_offset;
1548 	page = bp->b_pages[offset >> PAGE_SHIFT];
1549 	return page_address(page) + (offset & (PAGE_SIZE-1));
1550 }
1551 
1552 void
1553 xfs_buf_zero(
1554 	struct xfs_buf		*bp,
1555 	size_t			boff,
1556 	size_t			bsize)
1557 {
1558 	size_t			bend;
1559 
1560 	bend = boff + bsize;
1561 	while (boff < bend) {
1562 		struct page	*page;
1563 		int		page_index, page_offset, csize;
1564 
1565 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1566 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1567 		page = bp->b_pages[page_index];
1568 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1569 				      BBTOB(bp->b_length) - boff);
1570 
1571 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1572 
1573 		memset(page_address(page) + page_offset, 0, csize);
1574 
1575 		boff += csize;
1576 	}
1577 }
1578 
1579 /*
1580  * Log a message about and stale a buffer that a caller has decided is corrupt.
1581  *
1582  * This function should be called for the kinds of metadata corruption that
1583  * cannot be detect from a verifier, such as incorrect inter-block relationship
1584  * data.  Do /not/ call this function from a verifier function.
1585  *
1586  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1587  * be marked stale, but b_error will not be set.  The caller is responsible for
1588  * releasing the buffer or fixing it.
1589  */
1590 void
1591 __xfs_buf_mark_corrupt(
1592 	struct xfs_buf		*bp,
1593 	xfs_failaddr_t		fa)
1594 {
1595 	ASSERT(bp->b_flags & XBF_DONE);
1596 
1597 	xfs_buf_corruption_error(bp, fa);
1598 	xfs_buf_stale(bp);
1599 }
1600 
1601 /*
1602  *	Handling of buffer targets (buftargs).
1603  */
1604 
1605 /*
1606  * Wait for any bufs with callbacks that have been submitted but have not yet
1607  * returned. These buffers will have an elevated hold count, so wait on those
1608  * while freeing all the buffers only held by the LRU.
1609  */
1610 static enum lru_status
1611 xfs_buftarg_wait_rele(
1612 	struct list_head	*item,
1613 	struct list_lru_one	*lru,
1614 	spinlock_t		*lru_lock,
1615 	void			*arg)
1616 
1617 {
1618 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1619 	struct list_head	*dispose = arg;
1620 
1621 	if (atomic_read(&bp->b_hold) > 1) {
1622 		/* need to wait, so skip it this pass */
1623 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1624 		return LRU_SKIP;
1625 	}
1626 	if (!spin_trylock(&bp->b_lock))
1627 		return LRU_SKIP;
1628 
1629 	/*
1630 	 * clear the LRU reference count so the buffer doesn't get
1631 	 * ignored in xfs_buf_rele().
1632 	 */
1633 	atomic_set(&bp->b_lru_ref, 0);
1634 	bp->b_state |= XFS_BSTATE_DISPOSE;
1635 	list_lru_isolate_move(lru, item, dispose);
1636 	spin_unlock(&bp->b_lock);
1637 	return LRU_REMOVED;
1638 }
1639 
1640 void
1641 xfs_wait_buftarg(
1642 	struct xfs_buftarg	*btp)
1643 {
1644 	LIST_HEAD(dispose);
1645 	int loop = 0;
1646 
1647 	/*
1648 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1649 	 * released. This is critical as new buffers do not make the LRU until
1650 	 * they are released.
1651 	 *
1652 	 * Next, flush the buffer workqueue to ensure all completion processing
1653 	 * has finished. Just waiting on buffer locks is not sufficient for
1654 	 * async IO as the reference count held over IO is not released until
1655 	 * after the buffer lock is dropped. Hence we need to ensure here that
1656 	 * all reference counts have been dropped before we start walking the
1657 	 * LRU list.
1658 	 */
1659 	while (percpu_counter_sum(&btp->bt_io_count))
1660 		delay(100);
1661 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1662 
1663 	/* loop until there is nothing left on the lru list. */
1664 	while (list_lru_count(&btp->bt_lru)) {
1665 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1666 			      &dispose, LONG_MAX);
1667 
1668 		while (!list_empty(&dispose)) {
1669 			struct xfs_buf *bp;
1670 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1671 			list_del_init(&bp->b_lru);
1672 			if (bp->b_flags & XBF_WRITE_FAIL) {
1673 				xfs_alert(btp->bt_mount,
1674 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1675 					(long long)bp->b_bn);
1676 				xfs_alert(btp->bt_mount,
1677 "Please run xfs_repair to determine the extent of the problem.");
1678 			}
1679 			xfs_buf_rele(bp);
1680 		}
1681 		if (loop++ != 0)
1682 			delay(100);
1683 	}
1684 }
1685 
1686 static enum lru_status
1687 xfs_buftarg_isolate(
1688 	struct list_head	*item,
1689 	struct list_lru_one	*lru,
1690 	spinlock_t		*lru_lock,
1691 	void			*arg)
1692 {
1693 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1694 	struct list_head	*dispose = arg;
1695 
1696 	/*
1697 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1698 	 * If we fail to get the lock, just skip it.
1699 	 */
1700 	if (!spin_trylock(&bp->b_lock))
1701 		return LRU_SKIP;
1702 	/*
1703 	 * Decrement the b_lru_ref count unless the value is already
1704 	 * zero. If the value is already zero, we need to reclaim the
1705 	 * buffer, otherwise it gets another trip through the LRU.
1706 	 */
1707 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1708 		spin_unlock(&bp->b_lock);
1709 		return LRU_ROTATE;
1710 	}
1711 
1712 	bp->b_state |= XFS_BSTATE_DISPOSE;
1713 	list_lru_isolate_move(lru, item, dispose);
1714 	spin_unlock(&bp->b_lock);
1715 	return LRU_REMOVED;
1716 }
1717 
1718 static unsigned long
1719 xfs_buftarg_shrink_scan(
1720 	struct shrinker		*shrink,
1721 	struct shrink_control	*sc)
1722 {
1723 	struct xfs_buftarg	*btp = container_of(shrink,
1724 					struct xfs_buftarg, bt_shrinker);
1725 	LIST_HEAD(dispose);
1726 	unsigned long		freed;
1727 
1728 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1729 				     xfs_buftarg_isolate, &dispose);
1730 
1731 	while (!list_empty(&dispose)) {
1732 		struct xfs_buf *bp;
1733 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1734 		list_del_init(&bp->b_lru);
1735 		xfs_buf_rele(bp);
1736 	}
1737 
1738 	return freed;
1739 }
1740 
1741 static unsigned long
1742 xfs_buftarg_shrink_count(
1743 	struct shrinker		*shrink,
1744 	struct shrink_control	*sc)
1745 {
1746 	struct xfs_buftarg	*btp = container_of(shrink,
1747 					struct xfs_buftarg, bt_shrinker);
1748 	return list_lru_shrink_count(&btp->bt_lru, sc);
1749 }
1750 
1751 void
1752 xfs_free_buftarg(
1753 	struct xfs_buftarg	*btp)
1754 {
1755 	unregister_shrinker(&btp->bt_shrinker);
1756 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1757 	percpu_counter_destroy(&btp->bt_io_count);
1758 	list_lru_destroy(&btp->bt_lru);
1759 
1760 	xfs_blkdev_issue_flush(btp);
1761 
1762 	kmem_free(btp);
1763 }
1764 
1765 int
1766 xfs_setsize_buftarg(
1767 	xfs_buftarg_t		*btp,
1768 	unsigned int		sectorsize)
1769 {
1770 	/* Set up metadata sector size info */
1771 	btp->bt_meta_sectorsize = sectorsize;
1772 	btp->bt_meta_sectormask = sectorsize - 1;
1773 
1774 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1775 		xfs_warn(btp->bt_mount,
1776 			"Cannot set_blocksize to %u on device %pg",
1777 			sectorsize, btp->bt_bdev);
1778 		return -EINVAL;
1779 	}
1780 
1781 	/* Set up device logical sector size mask */
1782 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1783 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1784 
1785 	return 0;
1786 }
1787 
1788 /*
1789  * When allocating the initial buffer target we have not yet
1790  * read in the superblock, so don't know what sized sectors
1791  * are being used at this early stage.  Play safe.
1792  */
1793 STATIC int
1794 xfs_setsize_buftarg_early(
1795 	xfs_buftarg_t		*btp,
1796 	struct block_device	*bdev)
1797 {
1798 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1799 }
1800 
1801 xfs_buftarg_t *
1802 xfs_alloc_buftarg(
1803 	struct xfs_mount	*mp,
1804 	struct block_device	*bdev,
1805 	struct dax_device	*dax_dev)
1806 {
1807 	xfs_buftarg_t		*btp;
1808 
1809 	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1810 
1811 	btp->bt_mount = mp;
1812 	btp->bt_dev =  bdev->bd_dev;
1813 	btp->bt_bdev = bdev;
1814 	btp->bt_daxdev = dax_dev;
1815 
1816 	if (xfs_setsize_buftarg_early(btp, bdev))
1817 		goto error_free;
1818 
1819 	if (list_lru_init(&btp->bt_lru))
1820 		goto error_free;
1821 
1822 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1823 		goto error_lru;
1824 
1825 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1826 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1827 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1828 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1829 	if (register_shrinker(&btp->bt_shrinker))
1830 		goto error_pcpu;
1831 	return btp;
1832 
1833 error_pcpu:
1834 	percpu_counter_destroy(&btp->bt_io_count);
1835 error_lru:
1836 	list_lru_destroy(&btp->bt_lru);
1837 error_free:
1838 	kmem_free(btp);
1839 	return NULL;
1840 }
1841 
1842 /*
1843  * Cancel a delayed write list.
1844  *
1845  * Remove each buffer from the list, clear the delwri queue flag and drop the
1846  * associated buffer reference.
1847  */
1848 void
1849 xfs_buf_delwri_cancel(
1850 	struct list_head	*list)
1851 {
1852 	struct xfs_buf		*bp;
1853 
1854 	while (!list_empty(list)) {
1855 		bp = list_first_entry(list, struct xfs_buf, b_list);
1856 
1857 		xfs_buf_lock(bp);
1858 		bp->b_flags &= ~_XBF_DELWRI_Q;
1859 		list_del_init(&bp->b_list);
1860 		xfs_buf_relse(bp);
1861 	}
1862 }
1863 
1864 /*
1865  * Add a buffer to the delayed write list.
1866  *
1867  * This queues a buffer for writeout if it hasn't already been.  Note that
1868  * neither this routine nor the buffer list submission functions perform
1869  * any internal synchronization.  It is expected that the lists are thread-local
1870  * to the callers.
1871  *
1872  * Returns true if we queued up the buffer, or false if it already had
1873  * been on the buffer list.
1874  */
1875 bool
1876 xfs_buf_delwri_queue(
1877 	struct xfs_buf		*bp,
1878 	struct list_head	*list)
1879 {
1880 	ASSERT(xfs_buf_islocked(bp));
1881 	ASSERT(!(bp->b_flags & XBF_READ));
1882 
1883 	/*
1884 	 * If the buffer is already marked delwri it already is queued up
1885 	 * by someone else for imediate writeout.  Just ignore it in that
1886 	 * case.
1887 	 */
1888 	if (bp->b_flags & _XBF_DELWRI_Q) {
1889 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1890 		return false;
1891 	}
1892 
1893 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1894 
1895 	/*
1896 	 * If a buffer gets written out synchronously or marked stale while it
1897 	 * is on a delwri list we lazily remove it. To do this, the other party
1898 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1899 	 * It remains referenced and on the list.  In a rare corner case it
1900 	 * might get readded to a delwri list after the synchronous writeout, in
1901 	 * which case we need just need to re-add the flag here.
1902 	 */
1903 	bp->b_flags |= _XBF_DELWRI_Q;
1904 	if (list_empty(&bp->b_list)) {
1905 		atomic_inc(&bp->b_hold);
1906 		list_add_tail(&bp->b_list, list);
1907 	}
1908 
1909 	return true;
1910 }
1911 
1912 /*
1913  * Compare function is more complex than it needs to be because
1914  * the return value is only 32 bits and we are doing comparisons
1915  * on 64 bit values
1916  */
1917 static int
1918 xfs_buf_cmp(
1919 	void		*priv,
1920 	struct list_head *a,
1921 	struct list_head *b)
1922 {
1923 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1924 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1925 	xfs_daddr_t		diff;
1926 
1927 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1928 	if (diff < 0)
1929 		return -1;
1930 	if (diff > 0)
1931 		return 1;
1932 	return 0;
1933 }
1934 
1935 /*
1936  * Submit buffers for write. If wait_list is specified, the buffers are
1937  * submitted using sync I/O and placed on the wait list such that the caller can
1938  * iowait each buffer. Otherwise async I/O is used and the buffers are released
1939  * at I/O completion time. In either case, buffers remain locked until I/O
1940  * completes and the buffer is released from the queue.
1941  */
1942 static int
1943 xfs_buf_delwri_submit_buffers(
1944 	struct list_head	*buffer_list,
1945 	struct list_head	*wait_list)
1946 {
1947 	struct xfs_buf		*bp, *n;
1948 	int			pinned = 0;
1949 	struct blk_plug		plug;
1950 
1951 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1952 
1953 	blk_start_plug(&plug);
1954 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1955 		if (!wait_list) {
1956 			if (xfs_buf_ispinned(bp)) {
1957 				pinned++;
1958 				continue;
1959 			}
1960 			if (!xfs_buf_trylock(bp))
1961 				continue;
1962 		} else {
1963 			xfs_buf_lock(bp);
1964 		}
1965 
1966 		/*
1967 		 * Someone else might have written the buffer synchronously or
1968 		 * marked it stale in the meantime.  In that case only the
1969 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1970 		 * reference and remove it from the list here.
1971 		 */
1972 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1973 			list_del_init(&bp->b_list);
1974 			xfs_buf_relse(bp);
1975 			continue;
1976 		}
1977 
1978 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1979 
1980 		/*
1981 		 * If we have a wait list, each buffer (and associated delwri
1982 		 * queue reference) transfers to it and is submitted
1983 		 * synchronously. Otherwise, drop the buffer from the delwri
1984 		 * queue and submit async.
1985 		 */
1986 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1987 		bp->b_flags |= XBF_WRITE;
1988 		if (wait_list) {
1989 			bp->b_flags &= ~XBF_ASYNC;
1990 			list_move_tail(&bp->b_list, wait_list);
1991 		} else {
1992 			bp->b_flags |= XBF_ASYNC;
1993 			list_del_init(&bp->b_list);
1994 		}
1995 		__xfs_buf_submit(bp, false);
1996 	}
1997 	blk_finish_plug(&plug);
1998 
1999 	return pinned;
2000 }
2001 
2002 /*
2003  * Write out a buffer list asynchronously.
2004  *
2005  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2006  * out and not wait for I/O completion on any of the buffers.  This interface
2007  * is only safely useable for callers that can track I/O completion by higher
2008  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2009  * function.
2010  *
2011  * Note: this function will skip buffers it would block on, and in doing so
2012  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2013  * it is up to the caller to ensure that the buffer list is fully submitted or
2014  * cancelled appropriately when they are finished with the list. Failure to
2015  * cancel or resubmit the list until it is empty will result in leaked buffers
2016  * at unmount time.
2017  */
2018 int
2019 xfs_buf_delwri_submit_nowait(
2020 	struct list_head	*buffer_list)
2021 {
2022 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2023 }
2024 
2025 /*
2026  * Write out a buffer list synchronously.
2027  *
2028  * This will take the @buffer_list, write all buffers out and wait for I/O
2029  * completion on all of the buffers. @buffer_list is consumed by the function,
2030  * so callers must have some other way of tracking buffers if they require such
2031  * functionality.
2032  */
2033 int
2034 xfs_buf_delwri_submit(
2035 	struct list_head	*buffer_list)
2036 {
2037 	LIST_HEAD		(wait_list);
2038 	int			error = 0, error2;
2039 	struct xfs_buf		*bp;
2040 
2041 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2042 
2043 	/* Wait for IO to complete. */
2044 	while (!list_empty(&wait_list)) {
2045 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2046 
2047 		list_del_init(&bp->b_list);
2048 
2049 		/*
2050 		 * Wait on the locked buffer, check for errors and unlock and
2051 		 * release the delwri queue reference.
2052 		 */
2053 		error2 = xfs_buf_iowait(bp);
2054 		xfs_buf_relse(bp);
2055 		if (!error)
2056 			error = error2;
2057 	}
2058 
2059 	return error;
2060 }
2061 
2062 /*
2063  * Push a single buffer on a delwri queue.
2064  *
2065  * The purpose of this function is to submit a single buffer of a delwri queue
2066  * and return with the buffer still on the original queue. The waiting delwri
2067  * buffer submission infrastructure guarantees transfer of the delwri queue
2068  * buffer reference to a temporary wait list. We reuse this infrastructure to
2069  * transfer the buffer back to the original queue.
2070  *
2071  * Note the buffer transitions from the queued state, to the submitted and wait
2072  * listed state and back to the queued state during this call. The buffer
2073  * locking and queue management logic between _delwri_pushbuf() and
2074  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2075  * before returning.
2076  */
2077 int
2078 xfs_buf_delwri_pushbuf(
2079 	struct xfs_buf		*bp,
2080 	struct list_head	*buffer_list)
2081 {
2082 	LIST_HEAD		(submit_list);
2083 	int			error;
2084 
2085 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2086 
2087 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2088 
2089 	/*
2090 	 * Isolate the buffer to a new local list so we can submit it for I/O
2091 	 * independently from the rest of the original list.
2092 	 */
2093 	xfs_buf_lock(bp);
2094 	list_move(&bp->b_list, &submit_list);
2095 	xfs_buf_unlock(bp);
2096 
2097 	/*
2098 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2099 	 * the buffer on the wait list with the original reference. Rather than
2100 	 * bounce the buffer from a local wait list back to the original list
2101 	 * after I/O completion, reuse the original list as the wait list.
2102 	 */
2103 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2104 
2105 	/*
2106 	 * The buffer is now locked, under I/O and wait listed on the original
2107 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2108 	 * return with the buffer unlocked and on the original queue.
2109 	 */
2110 	error = xfs_buf_iowait(bp);
2111 	bp->b_flags |= _XBF_DELWRI_Q;
2112 	xfs_buf_unlock(bp);
2113 
2114 	return error;
2115 }
2116 
2117 int __init
2118 xfs_buf_init(void)
2119 {
2120 	xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2121 					 SLAB_HWCACHE_ALIGN |
2122 					 SLAB_RECLAIM_ACCOUNT |
2123 					 SLAB_MEM_SPREAD,
2124 					 NULL);
2125 	if (!xfs_buf_zone)
2126 		goto out;
2127 
2128 	return 0;
2129 
2130  out:
2131 	return -ENOMEM;
2132 }
2133 
2134 void
2135 xfs_buf_terminate(void)
2136 {
2137 	kmem_cache_destroy(xfs_buf_zone);
2138 }
2139 
2140 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2141 {
2142 	/*
2143 	 * Set the lru reference count to 0 based on the error injection tag.
2144 	 * This allows userspace to disrupt buffer caching for debug/testing
2145 	 * purposes.
2146 	 */
2147 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2148 		lru_ref = 0;
2149 
2150 	atomic_set(&bp->b_lru_ref, lru_ref);
2151 }
2152 
2153 /*
2154  * Verify an on-disk magic value against the magic value specified in the
2155  * verifier structure. The verifier magic is in disk byte order so the caller is
2156  * expected to pass the value directly from disk.
2157  */
2158 bool
2159 xfs_verify_magic(
2160 	struct xfs_buf		*bp,
2161 	__be32			dmagic)
2162 {
2163 	struct xfs_mount	*mp = bp->b_mount;
2164 	int			idx;
2165 
2166 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2167 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2168 		return false;
2169 	return dmagic == bp->b_ops->magic[idx];
2170 }
2171 /*
2172  * Verify an on-disk magic value against the magic value specified in the
2173  * verifier structure. The verifier magic is in disk byte order so the caller is
2174  * expected to pass the value directly from disk.
2175  */
2176 bool
2177 xfs_verify_magic16(
2178 	struct xfs_buf		*bp,
2179 	__be16			dmagic)
2180 {
2181 	struct xfs_mount	*mp = bp->b_mount;
2182 	int			idx;
2183 
2184 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2185 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2186 		return false;
2187 	return dmagic == bp->b_ops->magic16[idx];
2188 }
2189