xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision d78c317f)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46 
47 static struct workqueue_struct *xfslogd_workqueue;
48 struct workqueue_struct *xfsdatad_workqueue;
49 struct workqueue_struct *xfsconvertd_workqueue;
50 
51 #ifdef XFS_BUF_LOCK_TRACKING
52 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
53 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
54 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
55 #else
56 # define XB_SET_OWNER(bp)	do { } while (0)
57 # define XB_CLEAR_OWNER(bp)	do { } while (0)
58 # define XB_GET_OWNER(bp)	do { } while (0)
59 #endif
60 
61 #define xb_to_gfp(flags) \
62 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
63 	  ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
64 
65 #define xb_to_km(flags) \
66 	 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
67 
68 
69 static inline int
70 xfs_buf_is_vmapped(
71 	struct xfs_buf	*bp)
72 {
73 	/*
74 	 * Return true if the buffer is vmapped.
75 	 *
76 	 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
77 	 * code is clever enough to know it doesn't have to map a single page,
78 	 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
79 	 */
80 	return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
81 }
82 
83 static inline int
84 xfs_buf_vmap_len(
85 	struct xfs_buf	*bp)
86 {
87 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
88 }
89 
90 /*
91  * xfs_buf_lru_add - add a buffer to the LRU.
92  *
93  * The LRU takes a new reference to the buffer so that it will only be freed
94  * once the shrinker takes the buffer off the LRU.
95  */
96 STATIC void
97 xfs_buf_lru_add(
98 	struct xfs_buf	*bp)
99 {
100 	struct xfs_buftarg *btp = bp->b_target;
101 
102 	spin_lock(&btp->bt_lru_lock);
103 	if (list_empty(&bp->b_lru)) {
104 		atomic_inc(&bp->b_hold);
105 		list_add_tail(&bp->b_lru, &btp->bt_lru);
106 		btp->bt_lru_nr++;
107 	}
108 	spin_unlock(&btp->bt_lru_lock);
109 }
110 
111 /*
112  * xfs_buf_lru_del - remove a buffer from the LRU
113  *
114  * The unlocked check is safe here because it only occurs when there are not
115  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
116  * to optimise the shrinker removing the buffer from the LRU and calling
117  * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
118  * bt_lru_lock.
119  */
120 STATIC void
121 xfs_buf_lru_del(
122 	struct xfs_buf	*bp)
123 {
124 	struct xfs_buftarg *btp = bp->b_target;
125 
126 	if (list_empty(&bp->b_lru))
127 		return;
128 
129 	spin_lock(&btp->bt_lru_lock);
130 	if (!list_empty(&bp->b_lru)) {
131 		list_del_init(&bp->b_lru);
132 		btp->bt_lru_nr--;
133 	}
134 	spin_unlock(&btp->bt_lru_lock);
135 }
136 
137 /*
138  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
139  * b_lru_ref count so that the buffer is freed immediately when the buffer
140  * reference count falls to zero. If the buffer is already on the LRU, we need
141  * to remove the reference that LRU holds on the buffer.
142  *
143  * This prevents build-up of stale buffers on the LRU.
144  */
145 void
146 xfs_buf_stale(
147 	struct xfs_buf	*bp)
148 {
149 	bp->b_flags |= XBF_STALE;
150 	xfs_buf_delwri_dequeue(bp);
151 	atomic_set(&(bp)->b_lru_ref, 0);
152 	if (!list_empty(&bp->b_lru)) {
153 		struct xfs_buftarg *btp = bp->b_target;
154 
155 		spin_lock(&btp->bt_lru_lock);
156 		if (!list_empty(&bp->b_lru)) {
157 			list_del_init(&bp->b_lru);
158 			btp->bt_lru_nr--;
159 			atomic_dec(&bp->b_hold);
160 		}
161 		spin_unlock(&btp->bt_lru_lock);
162 	}
163 	ASSERT(atomic_read(&bp->b_hold) >= 1);
164 }
165 
166 struct xfs_buf *
167 xfs_buf_alloc(
168 	struct xfs_buftarg	*target,
169 	xfs_off_t		range_base,
170 	size_t			range_length,
171 	xfs_buf_flags_t		flags)
172 {
173 	struct xfs_buf		*bp;
174 
175 	bp = kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags));
176 	if (unlikely(!bp))
177 		return NULL;
178 
179 	/*
180 	 * We don't want certain flags to appear in b_flags.
181 	 */
182 	flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
183 
184 	memset(bp, 0, sizeof(xfs_buf_t));
185 	atomic_set(&bp->b_hold, 1);
186 	atomic_set(&bp->b_lru_ref, 1);
187 	init_completion(&bp->b_iowait);
188 	INIT_LIST_HEAD(&bp->b_lru);
189 	INIT_LIST_HEAD(&bp->b_list);
190 	RB_CLEAR_NODE(&bp->b_rbnode);
191 	sema_init(&bp->b_sema, 0); /* held, no waiters */
192 	XB_SET_OWNER(bp);
193 	bp->b_target = target;
194 	bp->b_file_offset = range_base;
195 	/*
196 	 * Set buffer_length and count_desired to the same value initially.
197 	 * I/O routines should use count_desired, which will be the same in
198 	 * most cases but may be reset (e.g. XFS recovery).
199 	 */
200 	bp->b_buffer_length = bp->b_count_desired = range_length;
201 	bp->b_flags = flags;
202 	bp->b_bn = XFS_BUF_DADDR_NULL;
203 	atomic_set(&bp->b_pin_count, 0);
204 	init_waitqueue_head(&bp->b_waiters);
205 
206 	XFS_STATS_INC(xb_create);
207 	trace_xfs_buf_init(bp, _RET_IP_);
208 
209 	return bp;
210 }
211 
212 /*
213  *	Allocate a page array capable of holding a specified number
214  *	of pages, and point the page buf at it.
215  */
216 STATIC int
217 _xfs_buf_get_pages(
218 	xfs_buf_t		*bp,
219 	int			page_count,
220 	xfs_buf_flags_t		flags)
221 {
222 	/* Make sure that we have a page list */
223 	if (bp->b_pages == NULL) {
224 		bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 		bp->b_page_count = page_count;
226 		if (page_count <= XB_PAGES) {
227 			bp->b_pages = bp->b_page_array;
228 		} else {
229 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 					page_count, xb_to_km(flags));
231 			if (bp->b_pages == NULL)
232 				return -ENOMEM;
233 		}
234 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
235 	}
236 	return 0;
237 }
238 
239 /*
240  *	Frees b_pages if it was allocated.
241  */
242 STATIC void
243 _xfs_buf_free_pages(
244 	xfs_buf_t	*bp)
245 {
246 	if (bp->b_pages != bp->b_page_array) {
247 		kmem_free(bp->b_pages);
248 		bp->b_pages = NULL;
249 	}
250 }
251 
252 /*
253  *	Releases the specified buffer.
254  *
255  * 	The modification state of any associated pages is left unchanged.
256  * 	The buffer most not be on any hash - use xfs_buf_rele instead for
257  * 	hashed and refcounted buffers
258  */
259 void
260 xfs_buf_free(
261 	xfs_buf_t		*bp)
262 {
263 	trace_xfs_buf_free(bp, _RET_IP_);
264 
265 	ASSERT(list_empty(&bp->b_lru));
266 
267 	if (bp->b_flags & _XBF_PAGES) {
268 		uint		i;
269 
270 		if (xfs_buf_is_vmapped(bp))
271 			vm_unmap_ram(bp->b_addr - bp->b_offset,
272 					bp->b_page_count);
273 
274 		for (i = 0; i < bp->b_page_count; i++) {
275 			struct page	*page = bp->b_pages[i];
276 
277 			__free_page(page);
278 		}
279 	} else if (bp->b_flags & _XBF_KMEM)
280 		kmem_free(bp->b_addr);
281 	_xfs_buf_free_pages(bp);
282 	kmem_zone_free(xfs_buf_zone, bp);
283 }
284 
285 /*
286  * Allocates all the pages for buffer in question and builds it's page list.
287  */
288 STATIC int
289 xfs_buf_allocate_memory(
290 	xfs_buf_t		*bp,
291 	uint			flags)
292 {
293 	size_t			size = bp->b_count_desired;
294 	size_t			nbytes, offset;
295 	gfp_t			gfp_mask = xb_to_gfp(flags);
296 	unsigned short		page_count, i;
297 	xfs_off_t		end;
298 	int			error;
299 
300 	/*
301 	 * for buffers that are contained within a single page, just allocate
302 	 * the memory from the heap - there's no need for the complexity of
303 	 * page arrays to keep allocation down to order 0.
304 	 */
305 	if (bp->b_buffer_length < PAGE_SIZE) {
306 		bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
307 		if (!bp->b_addr) {
308 			/* low memory - use alloc_page loop instead */
309 			goto use_alloc_page;
310 		}
311 
312 		if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
313 								PAGE_MASK) !=
314 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
315 			/* b_addr spans two pages - use alloc_page instead */
316 			kmem_free(bp->b_addr);
317 			bp->b_addr = NULL;
318 			goto use_alloc_page;
319 		}
320 		bp->b_offset = offset_in_page(bp->b_addr);
321 		bp->b_pages = bp->b_page_array;
322 		bp->b_pages[0] = virt_to_page(bp->b_addr);
323 		bp->b_page_count = 1;
324 		bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
325 		return 0;
326 	}
327 
328 use_alloc_page:
329 	end = bp->b_file_offset + bp->b_buffer_length;
330 	page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
331 	error = _xfs_buf_get_pages(bp, page_count, flags);
332 	if (unlikely(error))
333 		return error;
334 
335 	offset = bp->b_offset;
336 	bp->b_flags |= _XBF_PAGES;
337 
338 	for (i = 0; i < bp->b_page_count; i++) {
339 		struct page	*page;
340 		uint		retries = 0;
341 retry:
342 		page = alloc_page(gfp_mask);
343 		if (unlikely(page == NULL)) {
344 			if (flags & XBF_READ_AHEAD) {
345 				bp->b_page_count = i;
346 				error = ENOMEM;
347 				goto out_free_pages;
348 			}
349 
350 			/*
351 			 * This could deadlock.
352 			 *
353 			 * But until all the XFS lowlevel code is revamped to
354 			 * handle buffer allocation failures we can't do much.
355 			 */
356 			if (!(++retries % 100))
357 				xfs_err(NULL,
358 		"possible memory allocation deadlock in %s (mode:0x%x)",
359 					__func__, gfp_mask);
360 
361 			XFS_STATS_INC(xb_page_retries);
362 			congestion_wait(BLK_RW_ASYNC, HZ/50);
363 			goto retry;
364 		}
365 
366 		XFS_STATS_INC(xb_page_found);
367 
368 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
369 		size -= nbytes;
370 		bp->b_pages[i] = page;
371 		offset = 0;
372 	}
373 	return 0;
374 
375 out_free_pages:
376 	for (i = 0; i < bp->b_page_count; i++)
377 		__free_page(bp->b_pages[i]);
378 	return error;
379 }
380 
381 /*
382  *	Map buffer into kernel address-space if necessary.
383  */
384 STATIC int
385 _xfs_buf_map_pages(
386 	xfs_buf_t		*bp,
387 	uint			flags)
388 {
389 	ASSERT(bp->b_flags & _XBF_PAGES);
390 	if (bp->b_page_count == 1) {
391 		/* A single page buffer is always mappable */
392 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
393 		bp->b_flags |= XBF_MAPPED;
394 	} else if (flags & XBF_MAPPED) {
395 		int retried = 0;
396 
397 		do {
398 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
399 						-1, PAGE_KERNEL);
400 			if (bp->b_addr)
401 				break;
402 			vm_unmap_aliases();
403 		} while (retried++ <= 1);
404 
405 		if (!bp->b_addr)
406 			return -ENOMEM;
407 		bp->b_addr += bp->b_offset;
408 		bp->b_flags |= XBF_MAPPED;
409 	}
410 
411 	return 0;
412 }
413 
414 /*
415  *	Finding and Reading Buffers
416  */
417 
418 /*
419  *	Look up, and creates if absent, a lockable buffer for
420  *	a given range of an inode.  The buffer is returned
421  *	locked.	No I/O is implied by this call.
422  */
423 xfs_buf_t *
424 _xfs_buf_find(
425 	xfs_buftarg_t		*btp,	/* block device target		*/
426 	xfs_off_t		ioff,	/* starting offset of range	*/
427 	size_t			isize,	/* length of range		*/
428 	xfs_buf_flags_t		flags,
429 	xfs_buf_t		*new_bp)
430 {
431 	xfs_off_t		range_base;
432 	size_t			range_length;
433 	struct xfs_perag	*pag;
434 	struct rb_node		**rbp;
435 	struct rb_node		*parent;
436 	xfs_buf_t		*bp;
437 
438 	range_base = (ioff << BBSHIFT);
439 	range_length = (isize << BBSHIFT);
440 
441 	/* Check for IOs smaller than the sector size / not sector aligned */
442 	ASSERT(!(range_length < (1 << btp->bt_sshift)));
443 	ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
444 
445 	/* get tree root */
446 	pag = xfs_perag_get(btp->bt_mount,
447 				xfs_daddr_to_agno(btp->bt_mount, ioff));
448 
449 	/* walk tree */
450 	spin_lock(&pag->pag_buf_lock);
451 	rbp = &pag->pag_buf_tree.rb_node;
452 	parent = NULL;
453 	bp = NULL;
454 	while (*rbp) {
455 		parent = *rbp;
456 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
457 
458 		if (range_base < bp->b_file_offset)
459 			rbp = &(*rbp)->rb_left;
460 		else if (range_base > bp->b_file_offset)
461 			rbp = &(*rbp)->rb_right;
462 		else {
463 			/*
464 			 * found a block offset match. If the range doesn't
465 			 * match, the only way this is allowed is if the buffer
466 			 * in the cache is stale and the transaction that made
467 			 * it stale has not yet committed. i.e. we are
468 			 * reallocating a busy extent. Skip this buffer and
469 			 * continue searching to the right for an exact match.
470 			 */
471 			if (bp->b_buffer_length != range_length) {
472 				ASSERT(bp->b_flags & XBF_STALE);
473 				rbp = &(*rbp)->rb_right;
474 				continue;
475 			}
476 			atomic_inc(&bp->b_hold);
477 			goto found;
478 		}
479 	}
480 
481 	/* No match found */
482 	if (new_bp) {
483 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
484 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
485 		/* the buffer keeps the perag reference until it is freed */
486 		new_bp->b_pag = pag;
487 		spin_unlock(&pag->pag_buf_lock);
488 	} else {
489 		XFS_STATS_INC(xb_miss_locked);
490 		spin_unlock(&pag->pag_buf_lock);
491 		xfs_perag_put(pag);
492 	}
493 	return new_bp;
494 
495 found:
496 	spin_unlock(&pag->pag_buf_lock);
497 	xfs_perag_put(pag);
498 
499 	if (!xfs_buf_trylock(bp)) {
500 		if (flags & XBF_TRYLOCK) {
501 			xfs_buf_rele(bp);
502 			XFS_STATS_INC(xb_busy_locked);
503 			return NULL;
504 		}
505 		xfs_buf_lock(bp);
506 		XFS_STATS_INC(xb_get_locked_waited);
507 	}
508 
509 	/*
510 	 * if the buffer is stale, clear all the external state associated with
511 	 * it. We need to keep flags such as how we allocated the buffer memory
512 	 * intact here.
513 	 */
514 	if (bp->b_flags & XBF_STALE) {
515 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
516 		bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
517 	}
518 
519 	trace_xfs_buf_find(bp, flags, _RET_IP_);
520 	XFS_STATS_INC(xb_get_locked);
521 	return bp;
522 }
523 
524 /*
525  * Assembles a buffer covering the specified range. The code is optimised for
526  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
527  * more hits than misses.
528  */
529 struct xfs_buf *
530 xfs_buf_get(
531 	xfs_buftarg_t		*target,/* target for buffer		*/
532 	xfs_off_t		ioff,	/* starting offset of range	*/
533 	size_t			isize,	/* length of range		*/
534 	xfs_buf_flags_t		flags)
535 {
536 	struct xfs_buf		*bp;
537 	struct xfs_buf		*new_bp;
538 	int			error = 0;
539 
540 	bp = _xfs_buf_find(target, ioff, isize, flags, NULL);
541 	if (likely(bp))
542 		goto found;
543 
544 	new_bp = xfs_buf_alloc(target, ioff << BBSHIFT, isize << BBSHIFT,
545 			       flags);
546 	if (unlikely(!new_bp))
547 		return NULL;
548 
549 	bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
550 	if (!bp) {
551 		kmem_zone_free(xfs_buf_zone, new_bp);
552 		return NULL;
553 	}
554 
555 	if (bp == new_bp) {
556 		error = xfs_buf_allocate_memory(bp, flags);
557 		if (error)
558 			goto no_buffer;
559 	} else
560 		kmem_zone_free(xfs_buf_zone, new_bp);
561 
562 	/*
563 	 * Now we have a workable buffer, fill in the block number so
564 	 * that we can do IO on it.
565 	 */
566 	bp->b_bn = ioff;
567 	bp->b_count_desired = bp->b_buffer_length;
568 
569 found:
570 	if (!(bp->b_flags & XBF_MAPPED)) {
571 		error = _xfs_buf_map_pages(bp, flags);
572 		if (unlikely(error)) {
573 			xfs_warn(target->bt_mount,
574 				"%s: failed to map pages\n", __func__);
575 			goto no_buffer;
576 		}
577 	}
578 
579 	XFS_STATS_INC(xb_get);
580 	trace_xfs_buf_get(bp, flags, _RET_IP_);
581 	return bp;
582 
583 no_buffer:
584 	if (flags & (XBF_LOCK | XBF_TRYLOCK))
585 		xfs_buf_unlock(bp);
586 	xfs_buf_rele(bp);
587 	return NULL;
588 }
589 
590 STATIC int
591 _xfs_buf_read(
592 	xfs_buf_t		*bp,
593 	xfs_buf_flags_t		flags)
594 {
595 	int			status;
596 
597 	ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
598 	ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
599 
600 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
601 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
602 
603 	status = xfs_buf_iorequest(bp);
604 	if (status || bp->b_error || (flags & XBF_ASYNC))
605 		return status;
606 	return xfs_buf_iowait(bp);
607 }
608 
609 xfs_buf_t *
610 xfs_buf_read(
611 	xfs_buftarg_t		*target,
612 	xfs_off_t		ioff,
613 	size_t			isize,
614 	xfs_buf_flags_t		flags)
615 {
616 	xfs_buf_t		*bp;
617 
618 	flags |= XBF_READ;
619 
620 	bp = xfs_buf_get(target, ioff, isize, flags);
621 	if (bp) {
622 		trace_xfs_buf_read(bp, flags, _RET_IP_);
623 
624 		if (!XFS_BUF_ISDONE(bp)) {
625 			XFS_STATS_INC(xb_get_read);
626 			_xfs_buf_read(bp, flags);
627 		} else if (flags & XBF_ASYNC) {
628 			/*
629 			 * Read ahead call which is already satisfied,
630 			 * drop the buffer
631 			 */
632 			goto no_buffer;
633 		} else {
634 			/* We do not want read in the flags */
635 			bp->b_flags &= ~XBF_READ;
636 		}
637 	}
638 
639 	return bp;
640 
641  no_buffer:
642 	if (flags & (XBF_LOCK | XBF_TRYLOCK))
643 		xfs_buf_unlock(bp);
644 	xfs_buf_rele(bp);
645 	return NULL;
646 }
647 
648 /*
649  *	If we are not low on memory then do the readahead in a deadlock
650  *	safe manner.
651  */
652 void
653 xfs_buf_readahead(
654 	xfs_buftarg_t		*target,
655 	xfs_off_t		ioff,
656 	size_t			isize)
657 {
658 	if (bdi_read_congested(target->bt_bdi))
659 		return;
660 
661 	xfs_buf_read(target, ioff, isize,
662 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
663 }
664 
665 /*
666  * Read an uncached buffer from disk. Allocates and returns a locked
667  * buffer containing the disk contents or nothing.
668  */
669 struct xfs_buf *
670 xfs_buf_read_uncached(
671 	struct xfs_mount	*mp,
672 	struct xfs_buftarg	*target,
673 	xfs_daddr_t		daddr,
674 	size_t			length,
675 	int			flags)
676 {
677 	xfs_buf_t		*bp;
678 	int			error;
679 
680 	bp = xfs_buf_get_uncached(target, length, flags);
681 	if (!bp)
682 		return NULL;
683 
684 	/* set up the buffer for a read IO */
685 	XFS_BUF_SET_ADDR(bp, daddr);
686 	XFS_BUF_READ(bp);
687 
688 	xfsbdstrat(mp, bp);
689 	error = xfs_buf_iowait(bp);
690 	if (error || bp->b_error) {
691 		xfs_buf_relse(bp);
692 		return NULL;
693 	}
694 	return bp;
695 }
696 
697 /*
698  * Return a buffer allocated as an empty buffer and associated to external
699  * memory via xfs_buf_associate_memory() back to it's empty state.
700  */
701 void
702 xfs_buf_set_empty(
703 	struct xfs_buf		*bp,
704 	size_t			len)
705 {
706 	if (bp->b_pages)
707 		_xfs_buf_free_pages(bp);
708 
709 	bp->b_pages = NULL;
710 	bp->b_page_count = 0;
711 	bp->b_addr = NULL;
712 	bp->b_file_offset = 0;
713 	bp->b_buffer_length = bp->b_count_desired = len;
714 	bp->b_bn = XFS_BUF_DADDR_NULL;
715 	bp->b_flags &= ~XBF_MAPPED;
716 }
717 
718 static inline struct page *
719 mem_to_page(
720 	void			*addr)
721 {
722 	if ((!is_vmalloc_addr(addr))) {
723 		return virt_to_page(addr);
724 	} else {
725 		return vmalloc_to_page(addr);
726 	}
727 }
728 
729 int
730 xfs_buf_associate_memory(
731 	xfs_buf_t		*bp,
732 	void			*mem,
733 	size_t			len)
734 {
735 	int			rval;
736 	int			i = 0;
737 	unsigned long		pageaddr;
738 	unsigned long		offset;
739 	size_t			buflen;
740 	int			page_count;
741 
742 	pageaddr = (unsigned long)mem & PAGE_MASK;
743 	offset = (unsigned long)mem - pageaddr;
744 	buflen = PAGE_ALIGN(len + offset);
745 	page_count = buflen >> PAGE_SHIFT;
746 
747 	/* Free any previous set of page pointers */
748 	if (bp->b_pages)
749 		_xfs_buf_free_pages(bp);
750 
751 	bp->b_pages = NULL;
752 	bp->b_addr = mem;
753 
754 	rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
755 	if (rval)
756 		return rval;
757 
758 	bp->b_offset = offset;
759 
760 	for (i = 0; i < bp->b_page_count; i++) {
761 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
762 		pageaddr += PAGE_SIZE;
763 	}
764 
765 	bp->b_count_desired = len;
766 	bp->b_buffer_length = buflen;
767 	bp->b_flags |= XBF_MAPPED;
768 
769 	return 0;
770 }
771 
772 xfs_buf_t *
773 xfs_buf_get_uncached(
774 	struct xfs_buftarg	*target,
775 	size_t			len,
776 	int			flags)
777 {
778 	unsigned long		page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
779 	int			error, i;
780 	xfs_buf_t		*bp;
781 
782 	bp = xfs_buf_alloc(target, 0, len, 0);
783 	if (unlikely(bp == NULL))
784 		goto fail;
785 
786 	error = _xfs_buf_get_pages(bp, page_count, 0);
787 	if (error)
788 		goto fail_free_buf;
789 
790 	for (i = 0; i < page_count; i++) {
791 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
792 		if (!bp->b_pages[i])
793 			goto fail_free_mem;
794 	}
795 	bp->b_flags |= _XBF_PAGES;
796 
797 	error = _xfs_buf_map_pages(bp, XBF_MAPPED);
798 	if (unlikely(error)) {
799 		xfs_warn(target->bt_mount,
800 			"%s: failed to map pages\n", __func__);
801 		goto fail_free_mem;
802 	}
803 
804 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
805 	return bp;
806 
807  fail_free_mem:
808 	while (--i >= 0)
809 		__free_page(bp->b_pages[i]);
810 	_xfs_buf_free_pages(bp);
811  fail_free_buf:
812 	kmem_zone_free(xfs_buf_zone, bp);
813  fail:
814 	return NULL;
815 }
816 
817 /*
818  *	Increment reference count on buffer, to hold the buffer concurrently
819  *	with another thread which may release (free) the buffer asynchronously.
820  *	Must hold the buffer already to call this function.
821  */
822 void
823 xfs_buf_hold(
824 	xfs_buf_t		*bp)
825 {
826 	trace_xfs_buf_hold(bp, _RET_IP_);
827 	atomic_inc(&bp->b_hold);
828 }
829 
830 /*
831  *	Releases a hold on the specified buffer.  If the
832  *	the hold count is 1, calls xfs_buf_free.
833  */
834 void
835 xfs_buf_rele(
836 	xfs_buf_t		*bp)
837 {
838 	struct xfs_perag	*pag = bp->b_pag;
839 
840 	trace_xfs_buf_rele(bp, _RET_IP_);
841 
842 	if (!pag) {
843 		ASSERT(list_empty(&bp->b_lru));
844 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
845 		if (atomic_dec_and_test(&bp->b_hold))
846 			xfs_buf_free(bp);
847 		return;
848 	}
849 
850 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
851 
852 	ASSERT(atomic_read(&bp->b_hold) > 0);
853 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
854 		if (!(bp->b_flags & XBF_STALE) &&
855 			   atomic_read(&bp->b_lru_ref)) {
856 			xfs_buf_lru_add(bp);
857 			spin_unlock(&pag->pag_buf_lock);
858 		} else {
859 			xfs_buf_lru_del(bp);
860 			ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
861 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
862 			spin_unlock(&pag->pag_buf_lock);
863 			xfs_perag_put(pag);
864 			xfs_buf_free(bp);
865 		}
866 	}
867 }
868 
869 
870 /*
871  *	Lock a buffer object, if it is not already locked.
872  *
873  *	If we come across a stale, pinned, locked buffer, we know that we are
874  *	being asked to lock a buffer that has been reallocated. Because it is
875  *	pinned, we know that the log has not been pushed to disk and hence it
876  *	will still be locked.  Rather than continuing to have trylock attempts
877  *	fail until someone else pushes the log, push it ourselves before
878  *	returning.  This means that the xfsaild will not get stuck trying
879  *	to push on stale inode buffers.
880  */
881 int
882 xfs_buf_trylock(
883 	struct xfs_buf		*bp)
884 {
885 	int			locked;
886 
887 	locked = down_trylock(&bp->b_sema) == 0;
888 	if (locked)
889 		XB_SET_OWNER(bp);
890 	else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
891 		xfs_log_force(bp->b_target->bt_mount, 0);
892 
893 	trace_xfs_buf_trylock(bp, _RET_IP_);
894 	return locked;
895 }
896 
897 /*
898  *	Lock a buffer object.
899  *
900  *	If we come across a stale, pinned, locked buffer, we know that we
901  *	are being asked to lock a buffer that has been reallocated. Because
902  *	it is pinned, we know that the log has not been pushed to disk and
903  *	hence it will still be locked. Rather than sleeping until someone
904  *	else pushes the log, push it ourselves before trying to get the lock.
905  */
906 void
907 xfs_buf_lock(
908 	struct xfs_buf		*bp)
909 {
910 	trace_xfs_buf_lock(bp, _RET_IP_);
911 
912 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
913 		xfs_log_force(bp->b_target->bt_mount, 0);
914 	down(&bp->b_sema);
915 	XB_SET_OWNER(bp);
916 
917 	trace_xfs_buf_lock_done(bp, _RET_IP_);
918 }
919 
920 /*
921  *	Releases the lock on the buffer object.
922  *	If the buffer is marked delwri but is not queued, do so before we
923  *	unlock the buffer as we need to set flags correctly.  We also need to
924  *	take a reference for the delwri queue because the unlocker is going to
925  *	drop their's and they don't know we just queued it.
926  */
927 void
928 xfs_buf_unlock(
929 	struct xfs_buf		*bp)
930 {
931 	XB_CLEAR_OWNER(bp);
932 	up(&bp->b_sema);
933 
934 	trace_xfs_buf_unlock(bp, _RET_IP_);
935 }
936 
937 STATIC void
938 xfs_buf_wait_unpin(
939 	xfs_buf_t		*bp)
940 {
941 	DECLARE_WAITQUEUE	(wait, current);
942 
943 	if (atomic_read(&bp->b_pin_count) == 0)
944 		return;
945 
946 	add_wait_queue(&bp->b_waiters, &wait);
947 	for (;;) {
948 		set_current_state(TASK_UNINTERRUPTIBLE);
949 		if (atomic_read(&bp->b_pin_count) == 0)
950 			break;
951 		io_schedule();
952 	}
953 	remove_wait_queue(&bp->b_waiters, &wait);
954 	set_current_state(TASK_RUNNING);
955 }
956 
957 /*
958  *	Buffer Utility Routines
959  */
960 
961 STATIC void
962 xfs_buf_iodone_work(
963 	struct work_struct	*work)
964 {
965 	xfs_buf_t		*bp =
966 		container_of(work, xfs_buf_t, b_iodone_work);
967 
968 	if (bp->b_iodone)
969 		(*(bp->b_iodone))(bp);
970 	else if (bp->b_flags & XBF_ASYNC)
971 		xfs_buf_relse(bp);
972 }
973 
974 void
975 xfs_buf_ioend(
976 	xfs_buf_t		*bp,
977 	int			schedule)
978 {
979 	trace_xfs_buf_iodone(bp, _RET_IP_);
980 
981 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
982 	if (bp->b_error == 0)
983 		bp->b_flags |= XBF_DONE;
984 
985 	if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
986 		if (schedule) {
987 			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
988 			queue_work(xfslogd_workqueue, &bp->b_iodone_work);
989 		} else {
990 			xfs_buf_iodone_work(&bp->b_iodone_work);
991 		}
992 	} else {
993 		complete(&bp->b_iowait);
994 	}
995 }
996 
997 void
998 xfs_buf_ioerror(
999 	xfs_buf_t		*bp,
1000 	int			error)
1001 {
1002 	ASSERT(error >= 0 && error <= 0xffff);
1003 	bp->b_error = (unsigned short)error;
1004 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1005 }
1006 
1007 void
1008 xfs_buf_ioerror_alert(
1009 	struct xfs_buf		*bp,
1010 	const char		*func)
1011 {
1012 	xfs_alert(bp->b_target->bt_mount,
1013 "metadata I/O error: block 0x%llx (\"%s\") error %d buf count %zd",
1014 		(__uint64_t)XFS_BUF_ADDR(bp), func,
1015 		bp->b_error, XFS_BUF_COUNT(bp));
1016 }
1017 
1018 int
1019 xfs_bwrite(
1020 	struct xfs_buf		*bp)
1021 {
1022 	int			error;
1023 
1024 	bp->b_flags |= XBF_WRITE;
1025 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1026 
1027 	xfs_buf_delwri_dequeue(bp);
1028 	xfs_bdstrat_cb(bp);
1029 
1030 	error = xfs_buf_iowait(bp);
1031 	if (error) {
1032 		xfs_force_shutdown(bp->b_target->bt_mount,
1033 				   SHUTDOWN_META_IO_ERROR);
1034 	}
1035 	return error;
1036 }
1037 
1038 /*
1039  * Called when we want to stop a buffer from getting written or read.
1040  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1041  * so that the proper iodone callbacks get called.
1042  */
1043 STATIC int
1044 xfs_bioerror(
1045 	xfs_buf_t *bp)
1046 {
1047 #ifdef XFSERRORDEBUG
1048 	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1049 #endif
1050 
1051 	/*
1052 	 * No need to wait until the buffer is unpinned, we aren't flushing it.
1053 	 */
1054 	xfs_buf_ioerror(bp, EIO);
1055 
1056 	/*
1057 	 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1058 	 */
1059 	XFS_BUF_UNREAD(bp);
1060 	XFS_BUF_UNDONE(bp);
1061 	xfs_buf_stale(bp);
1062 
1063 	xfs_buf_ioend(bp, 0);
1064 
1065 	return EIO;
1066 }
1067 
1068 /*
1069  * Same as xfs_bioerror, except that we are releasing the buffer
1070  * here ourselves, and avoiding the xfs_buf_ioend call.
1071  * This is meant for userdata errors; metadata bufs come with
1072  * iodone functions attached, so that we can track down errors.
1073  */
1074 STATIC int
1075 xfs_bioerror_relse(
1076 	struct xfs_buf	*bp)
1077 {
1078 	int64_t		fl = bp->b_flags;
1079 	/*
1080 	 * No need to wait until the buffer is unpinned.
1081 	 * We aren't flushing it.
1082 	 *
1083 	 * chunkhold expects B_DONE to be set, whether
1084 	 * we actually finish the I/O or not. We don't want to
1085 	 * change that interface.
1086 	 */
1087 	XFS_BUF_UNREAD(bp);
1088 	XFS_BUF_DONE(bp);
1089 	xfs_buf_stale(bp);
1090 	bp->b_iodone = NULL;
1091 	if (!(fl & XBF_ASYNC)) {
1092 		/*
1093 		 * Mark b_error and B_ERROR _both_.
1094 		 * Lot's of chunkcache code assumes that.
1095 		 * There's no reason to mark error for
1096 		 * ASYNC buffers.
1097 		 */
1098 		xfs_buf_ioerror(bp, EIO);
1099 		complete(&bp->b_iowait);
1100 	} else {
1101 		xfs_buf_relse(bp);
1102 	}
1103 
1104 	return EIO;
1105 }
1106 
1107 
1108 /*
1109  * All xfs metadata buffers except log state machine buffers
1110  * get this attached as their b_bdstrat callback function.
1111  * This is so that we can catch a buffer
1112  * after prematurely unpinning it to forcibly shutdown the filesystem.
1113  */
1114 int
1115 xfs_bdstrat_cb(
1116 	struct xfs_buf	*bp)
1117 {
1118 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1119 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1120 		/*
1121 		 * Metadata write that didn't get logged but
1122 		 * written delayed anyway. These aren't associated
1123 		 * with a transaction, and can be ignored.
1124 		 */
1125 		if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1126 			return xfs_bioerror_relse(bp);
1127 		else
1128 			return xfs_bioerror(bp);
1129 	}
1130 
1131 	xfs_buf_iorequest(bp);
1132 	return 0;
1133 }
1134 
1135 /*
1136  * Wrapper around bdstrat so that we can stop data from going to disk in case
1137  * we are shutting down the filesystem.  Typically user data goes thru this
1138  * path; one of the exceptions is the superblock.
1139  */
1140 void
1141 xfsbdstrat(
1142 	struct xfs_mount	*mp,
1143 	struct xfs_buf		*bp)
1144 {
1145 	if (XFS_FORCED_SHUTDOWN(mp)) {
1146 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1147 		xfs_bioerror_relse(bp);
1148 		return;
1149 	}
1150 
1151 	xfs_buf_iorequest(bp);
1152 }
1153 
1154 STATIC void
1155 _xfs_buf_ioend(
1156 	xfs_buf_t		*bp,
1157 	int			schedule)
1158 {
1159 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1160 		xfs_buf_ioend(bp, schedule);
1161 }
1162 
1163 STATIC void
1164 xfs_buf_bio_end_io(
1165 	struct bio		*bio,
1166 	int			error)
1167 {
1168 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1169 
1170 	xfs_buf_ioerror(bp, -error);
1171 
1172 	if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1173 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1174 
1175 	_xfs_buf_ioend(bp, 1);
1176 	bio_put(bio);
1177 }
1178 
1179 STATIC void
1180 _xfs_buf_ioapply(
1181 	xfs_buf_t		*bp)
1182 {
1183 	int			rw, map_i, total_nr_pages, nr_pages;
1184 	struct bio		*bio;
1185 	int			offset = bp->b_offset;
1186 	int			size = bp->b_count_desired;
1187 	sector_t		sector = bp->b_bn;
1188 
1189 	total_nr_pages = bp->b_page_count;
1190 	map_i = 0;
1191 
1192 	if (bp->b_flags & XBF_WRITE) {
1193 		if (bp->b_flags & XBF_SYNCIO)
1194 			rw = WRITE_SYNC;
1195 		else
1196 			rw = WRITE;
1197 		if (bp->b_flags & XBF_FUA)
1198 			rw |= REQ_FUA;
1199 		if (bp->b_flags & XBF_FLUSH)
1200 			rw |= REQ_FLUSH;
1201 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1202 		rw = READA;
1203 	} else {
1204 		rw = READ;
1205 	}
1206 
1207 	/* we only use the buffer cache for meta-data */
1208 	rw |= REQ_META;
1209 
1210 next_chunk:
1211 	atomic_inc(&bp->b_io_remaining);
1212 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1213 	if (nr_pages > total_nr_pages)
1214 		nr_pages = total_nr_pages;
1215 
1216 	bio = bio_alloc(GFP_NOIO, nr_pages);
1217 	bio->bi_bdev = bp->b_target->bt_bdev;
1218 	bio->bi_sector = sector;
1219 	bio->bi_end_io = xfs_buf_bio_end_io;
1220 	bio->bi_private = bp;
1221 
1222 
1223 	for (; size && nr_pages; nr_pages--, map_i++) {
1224 		int	rbytes, nbytes = PAGE_SIZE - offset;
1225 
1226 		if (nbytes > size)
1227 			nbytes = size;
1228 
1229 		rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1230 		if (rbytes < nbytes)
1231 			break;
1232 
1233 		offset = 0;
1234 		sector += nbytes >> BBSHIFT;
1235 		size -= nbytes;
1236 		total_nr_pages--;
1237 	}
1238 
1239 	if (likely(bio->bi_size)) {
1240 		if (xfs_buf_is_vmapped(bp)) {
1241 			flush_kernel_vmap_range(bp->b_addr,
1242 						xfs_buf_vmap_len(bp));
1243 		}
1244 		submit_bio(rw, bio);
1245 		if (size)
1246 			goto next_chunk;
1247 	} else {
1248 		xfs_buf_ioerror(bp, EIO);
1249 		bio_put(bio);
1250 	}
1251 }
1252 
1253 int
1254 xfs_buf_iorequest(
1255 	xfs_buf_t		*bp)
1256 {
1257 	trace_xfs_buf_iorequest(bp, _RET_IP_);
1258 
1259 	ASSERT(!(bp->b_flags & XBF_DELWRI));
1260 
1261 	if (bp->b_flags & XBF_WRITE)
1262 		xfs_buf_wait_unpin(bp);
1263 	xfs_buf_hold(bp);
1264 
1265 	/* Set the count to 1 initially, this will stop an I/O
1266 	 * completion callout which happens before we have started
1267 	 * all the I/O from calling xfs_buf_ioend too early.
1268 	 */
1269 	atomic_set(&bp->b_io_remaining, 1);
1270 	_xfs_buf_ioapply(bp);
1271 	_xfs_buf_ioend(bp, 0);
1272 
1273 	xfs_buf_rele(bp);
1274 	return 0;
1275 }
1276 
1277 /*
1278  *	Waits for I/O to complete on the buffer supplied.
1279  *	It returns immediately if no I/O is pending.
1280  *	It returns the I/O error code, if any, or 0 if there was no error.
1281  */
1282 int
1283 xfs_buf_iowait(
1284 	xfs_buf_t		*bp)
1285 {
1286 	trace_xfs_buf_iowait(bp, _RET_IP_);
1287 
1288 	wait_for_completion(&bp->b_iowait);
1289 
1290 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1291 	return bp->b_error;
1292 }
1293 
1294 xfs_caddr_t
1295 xfs_buf_offset(
1296 	xfs_buf_t		*bp,
1297 	size_t			offset)
1298 {
1299 	struct page		*page;
1300 
1301 	if (bp->b_flags & XBF_MAPPED)
1302 		return bp->b_addr + offset;
1303 
1304 	offset += bp->b_offset;
1305 	page = bp->b_pages[offset >> PAGE_SHIFT];
1306 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1307 }
1308 
1309 /*
1310  *	Move data into or out of a buffer.
1311  */
1312 void
1313 xfs_buf_iomove(
1314 	xfs_buf_t		*bp,	/* buffer to process		*/
1315 	size_t			boff,	/* starting buffer offset	*/
1316 	size_t			bsize,	/* length to copy		*/
1317 	void			*data,	/* data address			*/
1318 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1319 {
1320 	size_t			bend, cpoff, csize;
1321 	struct page		*page;
1322 
1323 	bend = boff + bsize;
1324 	while (boff < bend) {
1325 		page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1326 		cpoff = xfs_buf_poff(boff + bp->b_offset);
1327 		csize = min_t(size_t,
1328 			      PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1329 
1330 		ASSERT(((csize + cpoff) <= PAGE_SIZE));
1331 
1332 		switch (mode) {
1333 		case XBRW_ZERO:
1334 			memset(page_address(page) + cpoff, 0, csize);
1335 			break;
1336 		case XBRW_READ:
1337 			memcpy(data, page_address(page) + cpoff, csize);
1338 			break;
1339 		case XBRW_WRITE:
1340 			memcpy(page_address(page) + cpoff, data, csize);
1341 		}
1342 
1343 		boff += csize;
1344 		data += csize;
1345 	}
1346 }
1347 
1348 /*
1349  *	Handling of buffer targets (buftargs).
1350  */
1351 
1352 /*
1353  * Wait for any bufs with callbacks that have been submitted but have not yet
1354  * returned. These buffers will have an elevated hold count, so wait on those
1355  * while freeing all the buffers only held by the LRU.
1356  */
1357 void
1358 xfs_wait_buftarg(
1359 	struct xfs_buftarg	*btp)
1360 {
1361 	struct xfs_buf		*bp;
1362 
1363 restart:
1364 	spin_lock(&btp->bt_lru_lock);
1365 	while (!list_empty(&btp->bt_lru)) {
1366 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1367 		if (atomic_read(&bp->b_hold) > 1) {
1368 			spin_unlock(&btp->bt_lru_lock);
1369 			delay(100);
1370 			goto restart;
1371 		}
1372 		/*
1373 		 * clear the LRU reference count so the buffer doesn't get
1374 		 * ignored in xfs_buf_rele().
1375 		 */
1376 		atomic_set(&bp->b_lru_ref, 0);
1377 		spin_unlock(&btp->bt_lru_lock);
1378 		xfs_buf_rele(bp);
1379 		spin_lock(&btp->bt_lru_lock);
1380 	}
1381 	spin_unlock(&btp->bt_lru_lock);
1382 }
1383 
1384 int
1385 xfs_buftarg_shrink(
1386 	struct shrinker		*shrink,
1387 	struct shrink_control	*sc)
1388 {
1389 	struct xfs_buftarg	*btp = container_of(shrink,
1390 					struct xfs_buftarg, bt_shrinker);
1391 	struct xfs_buf		*bp;
1392 	int nr_to_scan = sc->nr_to_scan;
1393 	LIST_HEAD(dispose);
1394 
1395 	if (!nr_to_scan)
1396 		return btp->bt_lru_nr;
1397 
1398 	spin_lock(&btp->bt_lru_lock);
1399 	while (!list_empty(&btp->bt_lru)) {
1400 		if (nr_to_scan-- <= 0)
1401 			break;
1402 
1403 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1404 
1405 		/*
1406 		 * Decrement the b_lru_ref count unless the value is already
1407 		 * zero. If the value is already zero, we need to reclaim the
1408 		 * buffer, otherwise it gets another trip through the LRU.
1409 		 */
1410 		if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1411 			list_move_tail(&bp->b_lru, &btp->bt_lru);
1412 			continue;
1413 		}
1414 
1415 		/*
1416 		 * remove the buffer from the LRU now to avoid needing another
1417 		 * lock round trip inside xfs_buf_rele().
1418 		 */
1419 		list_move(&bp->b_lru, &dispose);
1420 		btp->bt_lru_nr--;
1421 	}
1422 	spin_unlock(&btp->bt_lru_lock);
1423 
1424 	while (!list_empty(&dispose)) {
1425 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1426 		list_del_init(&bp->b_lru);
1427 		xfs_buf_rele(bp);
1428 	}
1429 
1430 	return btp->bt_lru_nr;
1431 }
1432 
1433 void
1434 xfs_free_buftarg(
1435 	struct xfs_mount	*mp,
1436 	struct xfs_buftarg	*btp)
1437 {
1438 	unregister_shrinker(&btp->bt_shrinker);
1439 
1440 	xfs_flush_buftarg(btp, 1);
1441 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1442 		xfs_blkdev_issue_flush(btp);
1443 
1444 	kthread_stop(btp->bt_task);
1445 	kmem_free(btp);
1446 }
1447 
1448 STATIC int
1449 xfs_setsize_buftarg_flags(
1450 	xfs_buftarg_t		*btp,
1451 	unsigned int		blocksize,
1452 	unsigned int		sectorsize,
1453 	int			verbose)
1454 {
1455 	btp->bt_bsize = blocksize;
1456 	btp->bt_sshift = ffs(sectorsize) - 1;
1457 	btp->bt_smask = sectorsize - 1;
1458 
1459 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1460 		char name[BDEVNAME_SIZE];
1461 
1462 		bdevname(btp->bt_bdev, name);
1463 
1464 		xfs_warn(btp->bt_mount,
1465 			"Cannot set_blocksize to %u on device %s\n",
1466 			sectorsize, name);
1467 		return EINVAL;
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 /*
1474  *	When allocating the initial buffer target we have not yet
1475  *	read in the superblock, so don't know what sized sectors
1476  *	are being used is at this early stage.  Play safe.
1477  */
1478 STATIC int
1479 xfs_setsize_buftarg_early(
1480 	xfs_buftarg_t		*btp,
1481 	struct block_device	*bdev)
1482 {
1483 	return xfs_setsize_buftarg_flags(btp,
1484 			PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1485 }
1486 
1487 int
1488 xfs_setsize_buftarg(
1489 	xfs_buftarg_t		*btp,
1490 	unsigned int		blocksize,
1491 	unsigned int		sectorsize)
1492 {
1493 	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1494 }
1495 
1496 STATIC int
1497 xfs_alloc_delwri_queue(
1498 	xfs_buftarg_t		*btp,
1499 	const char		*fsname)
1500 {
1501 	INIT_LIST_HEAD(&btp->bt_delwri_queue);
1502 	spin_lock_init(&btp->bt_delwri_lock);
1503 	btp->bt_flags = 0;
1504 	btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1505 	if (IS_ERR(btp->bt_task))
1506 		return PTR_ERR(btp->bt_task);
1507 	return 0;
1508 }
1509 
1510 xfs_buftarg_t *
1511 xfs_alloc_buftarg(
1512 	struct xfs_mount	*mp,
1513 	struct block_device	*bdev,
1514 	int			external,
1515 	const char		*fsname)
1516 {
1517 	xfs_buftarg_t		*btp;
1518 
1519 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1520 
1521 	btp->bt_mount = mp;
1522 	btp->bt_dev =  bdev->bd_dev;
1523 	btp->bt_bdev = bdev;
1524 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1525 	if (!btp->bt_bdi)
1526 		goto error;
1527 
1528 	INIT_LIST_HEAD(&btp->bt_lru);
1529 	spin_lock_init(&btp->bt_lru_lock);
1530 	if (xfs_setsize_buftarg_early(btp, bdev))
1531 		goto error;
1532 	if (xfs_alloc_delwri_queue(btp, fsname))
1533 		goto error;
1534 	btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1535 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1536 	register_shrinker(&btp->bt_shrinker);
1537 	return btp;
1538 
1539 error:
1540 	kmem_free(btp);
1541 	return NULL;
1542 }
1543 
1544 
1545 /*
1546  *	Delayed write buffer handling
1547  */
1548 void
1549 xfs_buf_delwri_queue(
1550 	xfs_buf_t		*bp)
1551 {
1552 	struct xfs_buftarg	*btp = bp->b_target;
1553 
1554 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1555 
1556 	ASSERT(!(bp->b_flags & XBF_READ));
1557 
1558 	spin_lock(&btp->bt_delwri_lock);
1559 	if (!list_empty(&bp->b_list)) {
1560 		/* if already in the queue, move it to the tail */
1561 		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1562 		list_move_tail(&bp->b_list, &btp->bt_delwri_queue);
1563 	} else {
1564 		/* start xfsbufd as it is about to have something to do */
1565 		if (list_empty(&btp->bt_delwri_queue))
1566 			wake_up_process(bp->b_target->bt_task);
1567 
1568 		atomic_inc(&bp->b_hold);
1569 		bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC;
1570 		list_add_tail(&bp->b_list, &btp->bt_delwri_queue);
1571 	}
1572 	bp->b_queuetime = jiffies;
1573 	spin_unlock(&btp->bt_delwri_lock);
1574 }
1575 
1576 void
1577 xfs_buf_delwri_dequeue(
1578 	xfs_buf_t		*bp)
1579 {
1580 	int			dequeued = 0;
1581 
1582 	spin_lock(&bp->b_target->bt_delwri_lock);
1583 	if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1584 		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1585 		list_del_init(&bp->b_list);
1586 		dequeued = 1;
1587 	}
1588 	bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1589 	spin_unlock(&bp->b_target->bt_delwri_lock);
1590 
1591 	if (dequeued)
1592 		xfs_buf_rele(bp);
1593 
1594 	trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1595 }
1596 
1597 /*
1598  * If a delwri buffer needs to be pushed before it has aged out, then promote
1599  * it to the head of the delwri queue so that it will be flushed on the next
1600  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1601  * than the age currently needed to flush the buffer. Hence the next time the
1602  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1603  */
1604 void
1605 xfs_buf_delwri_promote(
1606 	struct xfs_buf	*bp)
1607 {
1608 	struct xfs_buftarg *btp = bp->b_target;
1609 	long		age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1610 
1611 	ASSERT(bp->b_flags & XBF_DELWRI);
1612 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1613 
1614 	/*
1615 	 * Check the buffer age before locking the delayed write queue as we
1616 	 * don't need to promote buffers that are already past the flush age.
1617 	 */
1618 	if (bp->b_queuetime < jiffies - age)
1619 		return;
1620 	bp->b_queuetime = jiffies - age;
1621 	spin_lock(&btp->bt_delwri_lock);
1622 	list_move(&bp->b_list, &btp->bt_delwri_queue);
1623 	spin_unlock(&btp->bt_delwri_lock);
1624 }
1625 
1626 /*
1627  * Move as many buffers as specified to the supplied list
1628  * idicating if we skipped any buffers to prevent deadlocks.
1629  */
1630 STATIC int
1631 xfs_buf_delwri_split(
1632 	xfs_buftarg_t	*target,
1633 	struct list_head *list,
1634 	unsigned long	age)
1635 {
1636 	xfs_buf_t	*bp, *n;
1637 	int		skipped = 0;
1638 	int		force;
1639 
1640 	force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1641 	INIT_LIST_HEAD(list);
1642 	spin_lock(&target->bt_delwri_lock);
1643 	list_for_each_entry_safe(bp, n, &target->bt_delwri_queue, b_list) {
1644 		ASSERT(bp->b_flags & XBF_DELWRI);
1645 
1646 		if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
1647 			if (!force &&
1648 			    time_before(jiffies, bp->b_queuetime + age)) {
1649 				xfs_buf_unlock(bp);
1650 				break;
1651 			}
1652 
1653 			bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1654 			bp->b_flags |= XBF_WRITE;
1655 			list_move_tail(&bp->b_list, list);
1656 			trace_xfs_buf_delwri_split(bp, _RET_IP_);
1657 		} else
1658 			skipped++;
1659 	}
1660 
1661 	spin_unlock(&target->bt_delwri_lock);
1662 	return skipped;
1663 }
1664 
1665 /*
1666  * Compare function is more complex than it needs to be because
1667  * the return value is only 32 bits and we are doing comparisons
1668  * on 64 bit values
1669  */
1670 static int
1671 xfs_buf_cmp(
1672 	void		*priv,
1673 	struct list_head *a,
1674 	struct list_head *b)
1675 {
1676 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1677 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1678 	xfs_daddr_t		diff;
1679 
1680 	diff = ap->b_bn - bp->b_bn;
1681 	if (diff < 0)
1682 		return -1;
1683 	if (diff > 0)
1684 		return 1;
1685 	return 0;
1686 }
1687 
1688 STATIC int
1689 xfsbufd(
1690 	void		*data)
1691 {
1692 	xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1693 
1694 	current->flags |= PF_MEMALLOC;
1695 
1696 	set_freezable();
1697 
1698 	do {
1699 		long	age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1700 		long	tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1701 		struct list_head tmp;
1702 		struct blk_plug plug;
1703 
1704 		if (unlikely(freezing(current)))
1705 			try_to_freeze();
1706 
1707 		/* sleep for a long time if there is nothing to do. */
1708 		if (list_empty(&target->bt_delwri_queue))
1709 			tout = MAX_SCHEDULE_TIMEOUT;
1710 		schedule_timeout_interruptible(tout);
1711 
1712 		xfs_buf_delwri_split(target, &tmp, age);
1713 		list_sort(NULL, &tmp, xfs_buf_cmp);
1714 
1715 		blk_start_plug(&plug);
1716 		while (!list_empty(&tmp)) {
1717 			struct xfs_buf *bp;
1718 			bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1719 			list_del_init(&bp->b_list);
1720 			xfs_bdstrat_cb(bp);
1721 		}
1722 		blk_finish_plug(&plug);
1723 	} while (!kthread_should_stop());
1724 
1725 	return 0;
1726 }
1727 
1728 /*
1729  *	Go through all incore buffers, and release buffers if they belong to
1730  *	the given device. This is used in filesystem error handling to
1731  *	preserve the consistency of its metadata.
1732  */
1733 int
1734 xfs_flush_buftarg(
1735 	xfs_buftarg_t	*target,
1736 	int		wait)
1737 {
1738 	xfs_buf_t	*bp;
1739 	int		pincount = 0;
1740 	LIST_HEAD(tmp_list);
1741 	LIST_HEAD(wait_list);
1742 	struct blk_plug plug;
1743 
1744 	flush_workqueue(xfslogd_workqueue);
1745 
1746 	set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1747 	pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1748 
1749 	/*
1750 	 * Dropped the delayed write list lock, now walk the temporary list.
1751 	 * All I/O is issued async and then if we need to wait for completion
1752 	 * we do that after issuing all the IO.
1753 	 */
1754 	list_sort(NULL, &tmp_list, xfs_buf_cmp);
1755 
1756 	blk_start_plug(&plug);
1757 	while (!list_empty(&tmp_list)) {
1758 		bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1759 		ASSERT(target == bp->b_target);
1760 		list_del_init(&bp->b_list);
1761 		if (wait) {
1762 			bp->b_flags &= ~XBF_ASYNC;
1763 			list_add(&bp->b_list, &wait_list);
1764 		}
1765 		xfs_bdstrat_cb(bp);
1766 	}
1767 	blk_finish_plug(&plug);
1768 
1769 	if (wait) {
1770 		/* Wait for IO to complete. */
1771 		while (!list_empty(&wait_list)) {
1772 			bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1773 
1774 			list_del_init(&bp->b_list);
1775 			xfs_buf_iowait(bp);
1776 			xfs_buf_relse(bp);
1777 		}
1778 	}
1779 
1780 	return pincount;
1781 }
1782 
1783 int __init
1784 xfs_buf_init(void)
1785 {
1786 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1787 						KM_ZONE_HWALIGN, NULL);
1788 	if (!xfs_buf_zone)
1789 		goto out;
1790 
1791 	xfslogd_workqueue = alloc_workqueue("xfslogd",
1792 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1793 	if (!xfslogd_workqueue)
1794 		goto out_free_buf_zone;
1795 
1796 	xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1797 	if (!xfsdatad_workqueue)
1798 		goto out_destroy_xfslogd_workqueue;
1799 
1800 	xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1801 						WQ_MEM_RECLAIM, 1);
1802 	if (!xfsconvertd_workqueue)
1803 		goto out_destroy_xfsdatad_workqueue;
1804 
1805 	return 0;
1806 
1807  out_destroy_xfsdatad_workqueue:
1808 	destroy_workqueue(xfsdatad_workqueue);
1809  out_destroy_xfslogd_workqueue:
1810 	destroy_workqueue(xfslogd_workqueue);
1811  out_free_buf_zone:
1812 	kmem_zone_destroy(xfs_buf_zone);
1813  out:
1814 	return -ENOMEM;
1815 }
1816 
1817 void
1818 xfs_buf_terminate(void)
1819 {
1820 	destroy_workqueue(xfsconvertd_workqueue);
1821 	destroy_workqueue(xfsdatad_workqueue);
1822 	destroy_workqueue(xfslogd_workqueue);
1823 	kmem_zone_destroy(xfs_buf_zone);
1824 }
1825