1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 #include <linux/sched/mm.h> 37 38 #include "xfs_format.h" 39 #include "xfs_log_format.h" 40 #include "xfs_trans_resv.h" 41 #include "xfs_sb.h" 42 #include "xfs_mount.h" 43 #include "xfs_trace.h" 44 #include "xfs_log.h" 45 #include "xfs_errortag.h" 46 #include "xfs_error.h" 47 48 static kmem_zone_t *xfs_buf_zone; 49 50 #ifdef XFS_BUF_LOCK_TRACKING 51 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 52 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 53 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 54 #else 55 # define XB_SET_OWNER(bp) do { } while (0) 56 # define XB_CLEAR_OWNER(bp) do { } while (0) 57 # define XB_GET_OWNER(bp) do { } while (0) 58 #endif 59 60 #define xb_to_gfp(flags) \ 61 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 62 63 64 static inline int 65 xfs_buf_is_vmapped( 66 struct xfs_buf *bp) 67 { 68 /* 69 * Return true if the buffer is vmapped. 70 * 71 * b_addr is null if the buffer is not mapped, but the code is clever 72 * enough to know it doesn't have to map a single page, so the check has 73 * to be both for b_addr and bp->b_page_count > 1. 74 */ 75 return bp->b_addr && bp->b_page_count > 1; 76 } 77 78 static inline int 79 xfs_buf_vmap_len( 80 struct xfs_buf *bp) 81 { 82 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 83 } 84 85 /* 86 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 87 * this buffer. The count is incremented once per buffer (per hold cycle) 88 * because the corresponding decrement is deferred to buffer release. Buffers 89 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 90 * tracking adds unnecessary overhead. This is used for sychronization purposes 91 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of 92 * in-flight buffers. 93 * 94 * Buffers that are never released (e.g., superblock, iclog buffers) must set 95 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 96 * never reaches zero and unmount hangs indefinitely. 97 */ 98 static inline void 99 xfs_buf_ioacct_inc( 100 struct xfs_buf *bp) 101 { 102 if (bp->b_flags & XBF_NO_IOACCT) 103 return; 104 105 ASSERT(bp->b_flags & XBF_ASYNC); 106 spin_lock(&bp->b_lock); 107 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { 108 bp->b_state |= XFS_BSTATE_IN_FLIGHT; 109 percpu_counter_inc(&bp->b_target->bt_io_count); 110 } 111 spin_unlock(&bp->b_lock); 112 } 113 114 /* 115 * Clear the in-flight state on a buffer about to be released to the LRU or 116 * freed and unaccount from the buftarg. 117 */ 118 static inline void 119 __xfs_buf_ioacct_dec( 120 struct xfs_buf *bp) 121 { 122 lockdep_assert_held(&bp->b_lock); 123 124 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { 125 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; 126 percpu_counter_dec(&bp->b_target->bt_io_count); 127 } 128 } 129 130 static inline void 131 xfs_buf_ioacct_dec( 132 struct xfs_buf *bp) 133 { 134 spin_lock(&bp->b_lock); 135 __xfs_buf_ioacct_dec(bp); 136 spin_unlock(&bp->b_lock); 137 } 138 139 /* 140 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 141 * b_lru_ref count so that the buffer is freed immediately when the buffer 142 * reference count falls to zero. If the buffer is already on the LRU, we need 143 * to remove the reference that LRU holds on the buffer. 144 * 145 * This prevents build-up of stale buffers on the LRU. 146 */ 147 void 148 xfs_buf_stale( 149 struct xfs_buf *bp) 150 { 151 ASSERT(xfs_buf_islocked(bp)); 152 153 bp->b_flags |= XBF_STALE; 154 155 /* 156 * Clear the delwri status so that a delwri queue walker will not 157 * flush this buffer to disk now that it is stale. The delwri queue has 158 * a reference to the buffer, so this is safe to do. 159 */ 160 bp->b_flags &= ~_XBF_DELWRI_Q; 161 162 /* 163 * Once the buffer is marked stale and unlocked, a subsequent lookup 164 * could reset b_flags. There is no guarantee that the buffer is 165 * unaccounted (released to LRU) before that occurs. Drop in-flight 166 * status now to preserve accounting consistency. 167 */ 168 spin_lock(&bp->b_lock); 169 __xfs_buf_ioacct_dec(bp); 170 171 atomic_set(&bp->b_lru_ref, 0); 172 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 173 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 174 atomic_dec(&bp->b_hold); 175 176 ASSERT(atomic_read(&bp->b_hold) >= 1); 177 spin_unlock(&bp->b_lock); 178 } 179 180 static int 181 xfs_buf_get_maps( 182 struct xfs_buf *bp, 183 int map_count) 184 { 185 ASSERT(bp->b_maps == NULL); 186 bp->b_map_count = map_count; 187 188 if (map_count == 1) { 189 bp->b_maps = &bp->__b_map; 190 return 0; 191 } 192 193 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 194 KM_NOFS); 195 if (!bp->b_maps) 196 return -ENOMEM; 197 return 0; 198 } 199 200 /* 201 * Frees b_pages if it was allocated. 202 */ 203 static void 204 xfs_buf_free_maps( 205 struct xfs_buf *bp) 206 { 207 if (bp->b_maps != &bp->__b_map) { 208 kmem_free(bp->b_maps); 209 bp->b_maps = NULL; 210 } 211 } 212 213 struct xfs_buf * 214 _xfs_buf_alloc( 215 struct xfs_buftarg *target, 216 struct xfs_buf_map *map, 217 int nmaps, 218 xfs_buf_flags_t flags) 219 { 220 struct xfs_buf *bp; 221 int error; 222 int i; 223 224 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 225 if (unlikely(!bp)) 226 return NULL; 227 228 /* 229 * We don't want certain flags to appear in b_flags unless they are 230 * specifically set by later operations on the buffer. 231 */ 232 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 233 234 atomic_set(&bp->b_hold, 1); 235 atomic_set(&bp->b_lru_ref, 1); 236 init_completion(&bp->b_iowait); 237 INIT_LIST_HEAD(&bp->b_lru); 238 INIT_LIST_HEAD(&bp->b_list); 239 INIT_LIST_HEAD(&bp->b_li_list); 240 sema_init(&bp->b_sema, 0); /* held, no waiters */ 241 spin_lock_init(&bp->b_lock); 242 XB_SET_OWNER(bp); 243 bp->b_target = target; 244 bp->b_flags = flags; 245 246 /* 247 * Set length and io_length to the same value initially. 248 * I/O routines should use io_length, which will be the same in 249 * most cases but may be reset (e.g. XFS recovery). 250 */ 251 error = xfs_buf_get_maps(bp, nmaps); 252 if (error) { 253 kmem_zone_free(xfs_buf_zone, bp); 254 return NULL; 255 } 256 257 bp->b_bn = map[0].bm_bn; 258 bp->b_length = 0; 259 for (i = 0; i < nmaps; i++) { 260 bp->b_maps[i].bm_bn = map[i].bm_bn; 261 bp->b_maps[i].bm_len = map[i].bm_len; 262 bp->b_length += map[i].bm_len; 263 } 264 bp->b_io_length = bp->b_length; 265 266 atomic_set(&bp->b_pin_count, 0); 267 init_waitqueue_head(&bp->b_waiters); 268 269 XFS_STATS_INC(target->bt_mount, xb_create); 270 trace_xfs_buf_init(bp, _RET_IP_); 271 272 return bp; 273 } 274 275 /* 276 * Allocate a page array capable of holding a specified number 277 * of pages, and point the page buf at it. 278 */ 279 STATIC int 280 _xfs_buf_get_pages( 281 xfs_buf_t *bp, 282 int page_count) 283 { 284 /* Make sure that we have a page list */ 285 if (bp->b_pages == NULL) { 286 bp->b_page_count = page_count; 287 if (page_count <= XB_PAGES) { 288 bp->b_pages = bp->b_page_array; 289 } else { 290 bp->b_pages = kmem_alloc(sizeof(struct page *) * 291 page_count, KM_NOFS); 292 if (bp->b_pages == NULL) 293 return -ENOMEM; 294 } 295 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 296 } 297 return 0; 298 } 299 300 /* 301 * Frees b_pages if it was allocated. 302 */ 303 STATIC void 304 _xfs_buf_free_pages( 305 xfs_buf_t *bp) 306 { 307 if (bp->b_pages != bp->b_page_array) { 308 kmem_free(bp->b_pages); 309 bp->b_pages = NULL; 310 } 311 } 312 313 /* 314 * Releases the specified buffer. 315 * 316 * The modification state of any associated pages is left unchanged. 317 * The buffer must not be on any hash - use xfs_buf_rele instead for 318 * hashed and refcounted buffers 319 */ 320 void 321 xfs_buf_free( 322 xfs_buf_t *bp) 323 { 324 trace_xfs_buf_free(bp, _RET_IP_); 325 326 ASSERT(list_empty(&bp->b_lru)); 327 328 if (bp->b_flags & _XBF_PAGES) { 329 uint i; 330 331 if (xfs_buf_is_vmapped(bp)) 332 vm_unmap_ram(bp->b_addr - bp->b_offset, 333 bp->b_page_count); 334 335 for (i = 0; i < bp->b_page_count; i++) { 336 struct page *page = bp->b_pages[i]; 337 338 __free_page(page); 339 } 340 } else if (bp->b_flags & _XBF_KMEM) 341 kmem_free(bp->b_addr); 342 _xfs_buf_free_pages(bp); 343 xfs_buf_free_maps(bp); 344 kmem_zone_free(xfs_buf_zone, bp); 345 } 346 347 /* 348 * Allocates all the pages for buffer in question and builds it's page list. 349 */ 350 STATIC int 351 xfs_buf_allocate_memory( 352 xfs_buf_t *bp, 353 uint flags) 354 { 355 size_t size; 356 size_t nbytes, offset; 357 gfp_t gfp_mask = xb_to_gfp(flags); 358 unsigned short page_count, i; 359 xfs_off_t start, end; 360 int error; 361 362 /* 363 * for buffers that are contained within a single page, just allocate 364 * the memory from the heap - there's no need for the complexity of 365 * page arrays to keep allocation down to order 0. 366 */ 367 size = BBTOB(bp->b_length); 368 if (size < PAGE_SIZE) { 369 bp->b_addr = kmem_alloc(size, KM_NOFS); 370 if (!bp->b_addr) { 371 /* low memory - use alloc_page loop instead */ 372 goto use_alloc_page; 373 } 374 375 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 376 ((unsigned long)bp->b_addr & PAGE_MASK)) { 377 /* b_addr spans two pages - use alloc_page instead */ 378 kmem_free(bp->b_addr); 379 bp->b_addr = NULL; 380 goto use_alloc_page; 381 } 382 bp->b_offset = offset_in_page(bp->b_addr); 383 bp->b_pages = bp->b_page_array; 384 bp->b_pages[0] = virt_to_page(bp->b_addr); 385 bp->b_page_count = 1; 386 bp->b_flags |= _XBF_KMEM; 387 return 0; 388 } 389 390 use_alloc_page: 391 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 392 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 393 >> PAGE_SHIFT; 394 page_count = end - start; 395 error = _xfs_buf_get_pages(bp, page_count); 396 if (unlikely(error)) 397 return error; 398 399 offset = bp->b_offset; 400 bp->b_flags |= _XBF_PAGES; 401 402 for (i = 0; i < bp->b_page_count; i++) { 403 struct page *page; 404 uint retries = 0; 405 retry: 406 page = alloc_page(gfp_mask); 407 if (unlikely(page == NULL)) { 408 if (flags & XBF_READ_AHEAD) { 409 bp->b_page_count = i; 410 error = -ENOMEM; 411 goto out_free_pages; 412 } 413 414 /* 415 * This could deadlock. 416 * 417 * But until all the XFS lowlevel code is revamped to 418 * handle buffer allocation failures we can't do much. 419 */ 420 if (!(++retries % 100)) 421 xfs_err(NULL, 422 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", 423 current->comm, current->pid, 424 __func__, gfp_mask); 425 426 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries); 427 congestion_wait(BLK_RW_ASYNC, HZ/50); 428 goto retry; 429 } 430 431 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found); 432 433 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 434 size -= nbytes; 435 bp->b_pages[i] = page; 436 offset = 0; 437 } 438 return 0; 439 440 out_free_pages: 441 for (i = 0; i < bp->b_page_count; i++) 442 __free_page(bp->b_pages[i]); 443 bp->b_flags &= ~_XBF_PAGES; 444 return error; 445 } 446 447 /* 448 * Map buffer into kernel address-space if necessary. 449 */ 450 STATIC int 451 _xfs_buf_map_pages( 452 xfs_buf_t *bp, 453 uint flags) 454 { 455 ASSERT(bp->b_flags & _XBF_PAGES); 456 if (bp->b_page_count == 1) { 457 /* A single page buffer is always mappable */ 458 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 459 } else if (flags & XBF_UNMAPPED) { 460 bp->b_addr = NULL; 461 } else { 462 int retried = 0; 463 unsigned nofs_flag; 464 465 /* 466 * vm_map_ram() will allocate auxillary structures (e.g. 467 * pagetables) with GFP_KERNEL, yet we are likely to be under 468 * GFP_NOFS context here. Hence we need to tell memory reclaim 469 * that we are in such a context via PF_MEMALLOC_NOFS to prevent 470 * memory reclaim re-entering the filesystem here and 471 * potentially deadlocking. 472 */ 473 nofs_flag = memalloc_nofs_save(); 474 do { 475 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 476 -1, PAGE_KERNEL); 477 if (bp->b_addr) 478 break; 479 vm_unmap_aliases(); 480 } while (retried++ <= 1); 481 memalloc_nofs_restore(nofs_flag); 482 483 if (!bp->b_addr) 484 return -ENOMEM; 485 bp->b_addr += bp->b_offset; 486 } 487 488 return 0; 489 } 490 491 /* 492 * Finding and Reading Buffers 493 */ 494 static int 495 _xfs_buf_obj_cmp( 496 struct rhashtable_compare_arg *arg, 497 const void *obj) 498 { 499 const struct xfs_buf_map *map = arg->key; 500 const struct xfs_buf *bp = obj; 501 502 /* 503 * The key hashing in the lookup path depends on the key being the 504 * first element of the compare_arg, make sure to assert this. 505 */ 506 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 507 508 if (bp->b_bn != map->bm_bn) 509 return 1; 510 511 if (unlikely(bp->b_length != map->bm_len)) { 512 /* 513 * found a block number match. If the range doesn't 514 * match, the only way this is allowed is if the buffer 515 * in the cache is stale and the transaction that made 516 * it stale has not yet committed. i.e. we are 517 * reallocating a busy extent. Skip this buffer and 518 * continue searching for an exact match. 519 */ 520 ASSERT(bp->b_flags & XBF_STALE); 521 return 1; 522 } 523 return 0; 524 } 525 526 static const struct rhashtable_params xfs_buf_hash_params = { 527 .min_size = 32, /* empty AGs have minimal footprint */ 528 .nelem_hint = 16, 529 .key_len = sizeof(xfs_daddr_t), 530 .key_offset = offsetof(struct xfs_buf, b_bn), 531 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 532 .automatic_shrinking = true, 533 .obj_cmpfn = _xfs_buf_obj_cmp, 534 }; 535 536 int 537 xfs_buf_hash_init( 538 struct xfs_perag *pag) 539 { 540 spin_lock_init(&pag->pag_buf_lock); 541 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); 542 } 543 544 void 545 xfs_buf_hash_destroy( 546 struct xfs_perag *pag) 547 { 548 rhashtable_destroy(&pag->pag_buf_hash); 549 } 550 551 /* 552 * Look up, and creates if absent, a lockable buffer for 553 * a given range of an inode. The buffer is returned 554 * locked. No I/O is implied by this call. 555 */ 556 xfs_buf_t * 557 _xfs_buf_find( 558 struct xfs_buftarg *btp, 559 struct xfs_buf_map *map, 560 int nmaps, 561 xfs_buf_flags_t flags, 562 xfs_buf_t *new_bp) 563 { 564 struct xfs_perag *pag; 565 xfs_buf_t *bp; 566 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 567 xfs_daddr_t eofs; 568 int i; 569 570 for (i = 0; i < nmaps; i++) 571 cmap.bm_len += map[i].bm_len; 572 573 /* Check for IOs smaller than the sector size / not sector aligned */ 574 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize)); 575 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 576 577 /* 578 * Corrupted block numbers can get through to here, unfortunately, so we 579 * have to check that the buffer falls within the filesystem bounds. 580 */ 581 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 582 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) { 583 /* 584 * XXX (dgc): we should really be returning -EFSCORRUPTED here, 585 * but none of the higher level infrastructure supports 586 * returning a specific error on buffer lookup failures. 587 */ 588 xfs_alert(btp->bt_mount, 589 "%s: daddr 0x%llx out of range, EOFS 0x%llx", 590 __func__, cmap.bm_bn, eofs); 591 WARN_ON(1); 592 return NULL; 593 } 594 595 pag = xfs_perag_get(btp->bt_mount, 596 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); 597 598 spin_lock(&pag->pag_buf_lock); 599 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap, 600 xfs_buf_hash_params); 601 if (bp) { 602 atomic_inc(&bp->b_hold); 603 goto found; 604 } 605 606 /* No match found */ 607 if (new_bp) { 608 /* the buffer keeps the perag reference until it is freed */ 609 new_bp->b_pag = pag; 610 rhashtable_insert_fast(&pag->pag_buf_hash, 611 &new_bp->b_rhash_head, 612 xfs_buf_hash_params); 613 spin_unlock(&pag->pag_buf_lock); 614 } else { 615 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 616 spin_unlock(&pag->pag_buf_lock); 617 xfs_perag_put(pag); 618 } 619 return new_bp; 620 621 found: 622 spin_unlock(&pag->pag_buf_lock); 623 xfs_perag_put(pag); 624 625 if (!xfs_buf_trylock(bp)) { 626 if (flags & XBF_TRYLOCK) { 627 xfs_buf_rele(bp); 628 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 629 return NULL; 630 } 631 xfs_buf_lock(bp); 632 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 633 } 634 635 /* 636 * if the buffer is stale, clear all the external state associated with 637 * it. We need to keep flags such as how we allocated the buffer memory 638 * intact here. 639 */ 640 if (bp->b_flags & XBF_STALE) { 641 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 642 ASSERT(bp->b_iodone == NULL); 643 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 644 bp->b_ops = NULL; 645 } 646 647 trace_xfs_buf_find(bp, flags, _RET_IP_); 648 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 649 return bp; 650 } 651 652 /* 653 * Assembles a buffer covering the specified range. The code is optimised for 654 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 655 * more hits than misses. 656 */ 657 struct xfs_buf * 658 xfs_buf_get_map( 659 struct xfs_buftarg *target, 660 struct xfs_buf_map *map, 661 int nmaps, 662 xfs_buf_flags_t flags) 663 { 664 struct xfs_buf *bp; 665 struct xfs_buf *new_bp; 666 int error = 0; 667 668 bp = _xfs_buf_find(target, map, nmaps, flags, NULL); 669 if (likely(bp)) 670 goto found; 671 672 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 673 if (unlikely(!new_bp)) 674 return NULL; 675 676 error = xfs_buf_allocate_memory(new_bp, flags); 677 if (error) { 678 xfs_buf_free(new_bp); 679 return NULL; 680 } 681 682 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); 683 if (!bp) { 684 xfs_buf_free(new_bp); 685 return NULL; 686 } 687 688 if (bp != new_bp) 689 xfs_buf_free(new_bp); 690 691 found: 692 if (!bp->b_addr) { 693 error = _xfs_buf_map_pages(bp, flags); 694 if (unlikely(error)) { 695 xfs_warn(target->bt_mount, 696 "%s: failed to map pagesn", __func__); 697 xfs_buf_relse(bp); 698 return NULL; 699 } 700 } 701 702 /* 703 * Clear b_error if this is a lookup from a caller that doesn't expect 704 * valid data to be found in the buffer. 705 */ 706 if (!(flags & XBF_READ)) 707 xfs_buf_ioerror(bp, 0); 708 709 XFS_STATS_INC(target->bt_mount, xb_get); 710 trace_xfs_buf_get(bp, flags, _RET_IP_); 711 return bp; 712 } 713 714 STATIC int 715 _xfs_buf_read( 716 xfs_buf_t *bp, 717 xfs_buf_flags_t flags) 718 { 719 ASSERT(!(flags & XBF_WRITE)); 720 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 721 722 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 723 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 724 725 if (flags & XBF_ASYNC) { 726 xfs_buf_submit(bp); 727 return 0; 728 } 729 return xfs_buf_submit_wait(bp); 730 } 731 732 xfs_buf_t * 733 xfs_buf_read_map( 734 struct xfs_buftarg *target, 735 struct xfs_buf_map *map, 736 int nmaps, 737 xfs_buf_flags_t flags, 738 const struct xfs_buf_ops *ops) 739 { 740 struct xfs_buf *bp; 741 742 flags |= XBF_READ; 743 744 bp = xfs_buf_get_map(target, map, nmaps, flags); 745 if (bp) { 746 trace_xfs_buf_read(bp, flags, _RET_IP_); 747 748 if (!(bp->b_flags & XBF_DONE)) { 749 XFS_STATS_INC(target->bt_mount, xb_get_read); 750 bp->b_ops = ops; 751 _xfs_buf_read(bp, flags); 752 } else if (flags & XBF_ASYNC) { 753 /* 754 * Read ahead call which is already satisfied, 755 * drop the buffer 756 */ 757 xfs_buf_relse(bp); 758 return NULL; 759 } else { 760 /* We do not want read in the flags */ 761 bp->b_flags &= ~XBF_READ; 762 } 763 } 764 765 return bp; 766 } 767 768 /* 769 * If we are not low on memory then do the readahead in a deadlock 770 * safe manner. 771 */ 772 void 773 xfs_buf_readahead_map( 774 struct xfs_buftarg *target, 775 struct xfs_buf_map *map, 776 int nmaps, 777 const struct xfs_buf_ops *ops) 778 { 779 if (bdi_read_congested(target->bt_bdev->bd_bdi)) 780 return; 781 782 xfs_buf_read_map(target, map, nmaps, 783 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 784 } 785 786 /* 787 * Read an uncached buffer from disk. Allocates and returns a locked 788 * buffer containing the disk contents or nothing. 789 */ 790 int 791 xfs_buf_read_uncached( 792 struct xfs_buftarg *target, 793 xfs_daddr_t daddr, 794 size_t numblks, 795 int flags, 796 struct xfs_buf **bpp, 797 const struct xfs_buf_ops *ops) 798 { 799 struct xfs_buf *bp; 800 801 *bpp = NULL; 802 803 bp = xfs_buf_get_uncached(target, numblks, flags); 804 if (!bp) 805 return -ENOMEM; 806 807 /* set up the buffer for a read IO */ 808 ASSERT(bp->b_map_count == 1); 809 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 810 bp->b_maps[0].bm_bn = daddr; 811 bp->b_flags |= XBF_READ; 812 bp->b_ops = ops; 813 814 xfs_buf_submit_wait(bp); 815 if (bp->b_error) { 816 int error = bp->b_error; 817 xfs_buf_relse(bp); 818 return error; 819 } 820 821 *bpp = bp; 822 return 0; 823 } 824 825 /* 826 * Return a buffer allocated as an empty buffer and associated to external 827 * memory via xfs_buf_associate_memory() back to it's empty state. 828 */ 829 void 830 xfs_buf_set_empty( 831 struct xfs_buf *bp, 832 size_t numblks) 833 { 834 if (bp->b_pages) 835 _xfs_buf_free_pages(bp); 836 837 bp->b_pages = NULL; 838 bp->b_page_count = 0; 839 bp->b_addr = NULL; 840 bp->b_length = numblks; 841 bp->b_io_length = numblks; 842 843 ASSERT(bp->b_map_count == 1); 844 bp->b_bn = XFS_BUF_DADDR_NULL; 845 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 846 bp->b_maps[0].bm_len = bp->b_length; 847 } 848 849 static inline struct page * 850 mem_to_page( 851 void *addr) 852 { 853 if ((!is_vmalloc_addr(addr))) { 854 return virt_to_page(addr); 855 } else { 856 return vmalloc_to_page(addr); 857 } 858 } 859 860 int 861 xfs_buf_associate_memory( 862 xfs_buf_t *bp, 863 void *mem, 864 size_t len) 865 { 866 int rval; 867 int i = 0; 868 unsigned long pageaddr; 869 unsigned long offset; 870 size_t buflen; 871 int page_count; 872 873 pageaddr = (unsigned long)mem & PAGE_MASK; 874 offset = (unsigned long)mem - pageaddr; 875 buflen = PAGE_ALIGN(len + offset); 876 page_count = buflen >> PAGE_SHIFT; 877 878 /* Free any previous set of page pointers */ 879 if (bp->b_pages) 880 _xfs_buf_free_pages(bp); 881 882 bp->b_pages = NULL; 883 bp->b_addr = mem; 884 885 rval = _xfs_buf_get_pages(bp, page_count); 886 if (rval) 887 return rval; 888 889 bp->b_offset = offset; 890 891 for (i = 0; i < bp->b_page_count; i++) { 892 bp->b_pages[i] = mem_to_page((void *)pageaddr); 893 pageaddr += PAGE_SIZE; 894 } 895 896 bp->b_io_length = BTOBB(len); 897 bp->b_length = BTOBB(buflen); 898 899 return 0; 900 } 901 902 xfs_buf_t * 903 xfs_buf_get_uncached( 904 struct xfs_buftarg *target, 905 size_t numblks, 906 int flags) 907 { 908 unsigned long page_count; 909 int error, i; 910 struct xfs_buf *bp; 911 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 912 913 /* flags might contain irrelevant bits, pass only what we care about */ 914 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT); 915 if (unlikely(bp == NULL)) 916 goto fail; 917 918 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 919 error = _xfs_buf_get_pages(bp, page_count); 920 if (error) 921 goto fail_free_buf; 922 923 for (i = 0; i < page_count; i++) { 924 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 925 if (!bp->b_pages[i]) 926 goto fail_free_mem; 927 } 928 bp->b_flags |= _XBF_PAGES; 929 930 error = _xfs_buf_map_pages(bp, 0); 931 if (unlikely(error)) { 932 xfs_warn(target->bt_mount, 933 "%s: failed to map pages", __func__); 934 goto fail_free_mem; 935 } 936 937 trace_xfs_buf_get_uncached(bp, _RET_IP_); 938 return bp; 939 940 fail_free_mem: 941 while (--i >= 0) 942 __free_page(bp->b_pages[i]); 943 _xfs_buf_free_pages(bp); 944 fail_free_buf: 945 xfs_buf_free_maps(bp); 946 kmem_zone_free(xfs_buf_zone, bp); 947 fail: 948 return NULL; 949 } 950 951 /* 952 * Increment reference count on buffer, to hold the buffer concurrently 953 * with another thread which may release (free) the buffer asynchronously. 954 * Must hold the buffer already to call this function. 955 */ 956 void 957 xfs_buf_hold( 958 xfs_buf_t *bp) 959 { 960 trace_xfs_buf_hold(bp, _RET_IP_); 961 atomic_inc(&bp->b_hold); 962 } 963 964 /* 965 * Release a hold on the specified buffer. If the hold count is 1, the buffer is 966 * placed on LRU or freed (depending on b_lru_ref). 967 */ 968 void 969 xfs_buf_rele( 970 xfs_buf_t *bp) 971 { 972 struct xfs_perag *pag = bp->b_pag; 973 bool release; 974 bool freebuf = false; 975 976 trace_xfs_buf_rele(bp, _RET_IP_); 977 978 if (!pag) { 979 ASSERT(list_empty(&bp->b_lru)); 980 if (atomic_dec_and_test(&bp->b_hold)) { 981 xfs_buf_ioacct_dec(bp); 982 xfs_buf_free(bp); 983 } 984 return; 985 } 986 987 ASSERT(atomic_read(&bp->b_hold) > 0); 988 989 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); 990 spin_lock(&bp->b_lock); 991 if (!release) { 992 /* 993 * Drop the in-flight state if the buffer is already on the LRU 994 * and it holds the only reference. This is racy because we 995 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 996 * ensures the decrement occurs only once per-buf. 997 */ 998 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 999 __xfs_buf_ioacct_dec(bp); 1000 goto out_unlock; 1001 } 1002 1003 /* the last reference has been dropped ... */ 1004 __xfs_buf_ioacct_dec(bp); 1005 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 1006 /* 1007 * If the buffer is added to the LRU take a new reference to the 1008 * buffer for the LRU and clear the (now stale) dispose list 1009 * state flag 1010 */ 1011 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 1012 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1013 atomic_inc(&bp->b_hold); 1014 } 1015 spin_unlock(&pag->pag_buf_lock); 1016 } else { 1017 /* 1018 * most of the time buffers will already be removed from the 1019 * LRU, so optimise that case by checking for the 1020 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1021 * was on was the disposal list 1022 */ 1023 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1024 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 1025 } else { 1026 ASSERT(list_empty(&bp->b_lru)); 1027 } 1028 1029 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1030 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, 1031 xfs_buf_hash_params); 1032 spin_unlock(&pag->pag_buf_lock); 1033 xfs_perag_put(pag); 1034 freebuf = true; 1035 } 1036 1037 out_unlock: 1038 spin_unlock(&bp->b_lock); 1039 1040 if (freebuf) 1041 xfs_buf_free(bp); 1042 } 1043 1044 1045 /* 1046 * Lock a buffer object, if it is not already locked. 1047 * 1048 * If we come across a stale, pinned, locked buffer, we know that we are 1049 * being asked to lock a buffer that has been reallocated. Because it is 1050 * pinned, we know that the log has not been pushed to disk and hence it 1051 * will still be locked. Rather than continuing to have trylock attempts 1052 * fail until someone else pushes the log, push it ourselves before 1053 * returning. This means that the xfsaild will not get stuck trying 1054 * to push on stale inode buffers. 1055 */ 1056 int 1057 xfs_buf_trylock( 1058 struct xfs_buf *bp) 1059 { 1060 int locked; 1061 1062 locked = down_trylock(&bp->b_sema) == 0; 1063 if (locked) { 1064 XB_SET_OWNER(bp); 1065 trace_xfs_buf_trylock(bp, _RET_IP_); 1066 } else { 1067 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1068 } 1069 return locked; 1070 } 1071 1072 /* 1073 * Lock a buffer object. 1074 * 1075 * If we come across a stale, pinned, locked buffer, we know that we 1076 * are being asked to lock a buffer that has been reallocated. Because 1077 * it is pinned, we know that the log has not been pushed to disk and 1078 * hence it will still be locked. Rather than sleeping until someone 1079 * else pushes the log, push it ourselves before trying to get the lock. 1080 */ 1081 void 1082 xfs_buf_lock( 1083 struct xfs_buf *bp) 1084 { 1085 trace_xfs_buf_lock(bp, _RET_IP_); 1086 1087 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1088 xfs_log_force(bp->b_target->bt_mount, 0); 1089 down(&bp->b_sema); 1090 XB_SET_OWNER(bp); 1091 1092 trace_xfs_buf_lock_done(bp, _RET_IP_); 1093 } 1094 1095 void 1096 xfs_buf_unlock( 1097 struct xfs_buf *bp) 1098 { 1099 ASSERT(xfs_buf_islocked(bp)); 1100 1101 XB_CLEAR_OWNER(bp); 1102 up(&bp->b_sema); 1103 1104 trace_xfs_buf_unlock(bp, _RET_IP_); 1105 } 1106 1107 STATIC void 1108 xfs_buf_wait_unpin( 1109 xfs_buf_t *bp) 1110 { 1111 DECLARE_WAITQUEUE (wait, current); 1112 1113 if (atomic_read(&bp->b_pin_count) == 0) 1114 return; 1115 1116 add_wait_queue(&bp->b_waiters, &wait); 1117 for (;;) { 1118 set_current_state(TASK_UNINTERRUPTIBLE); 1119 if (atomic_read(&bp->b_pin_count) == 0) 1120 break; 1121 io_schedule(); 1122 } 1123 remove_wait_queue(&bp->b_waiters, &wait); 1124 set_current_state(TASK_RUNNING); 1125 } 1126 1127 /* 1128 * Buffer Utility Routines 1129 */ 1130 1131 void 1132 xfs_buf_ioend( 1133 struct xfs_buf *bp) 1134 { 1135 bool read = bp->b_flags & XBF_READ; 1136 1137 trace_xfs_buf_iodone(bp, _RET_IP_); 1138 1139 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1140 1141 /* 1142 * Pull in IO completion errors now. We are guaranteed to be running 1143 * single threaded, so we don't need the lock to read b_io_error. 1144 */ 1145 if (!bp->b_error && bp->b_io_error) 1146 xfs_buf_ioerror(bp, bp->b_io_error); 1147 1148 /* Only validate buffers that were read without errors */ 1149 if (read && !bp->b_error && bp->b_ops) { 1150 ASSERT(!bp->b_iodone); 1151 bp->b_ops->verify_read(bp); 1152 } 1153 1154 if (!bp->b_error) 1155 bp->b_flags |= XBF_DONE; 1156 1157 if (bp->b_iodone) 1158 (*(bp->b_iodone))(bp); 1159 else if (bp->b_flags & XBF_ASYNC) 1160 xfs_buf_relse(bp); 1161 else 1162 complete(&bp->b_iowait); 1163 } 1164 1165 static void 1166 xfs_buf_ioend_work( 1167 struct work_struct *work) 1168 { 1169 struct xfs_buf *bp = 1170 container_of(work, xfs_buf_t, b_ioend_work); 1171 1172 xfs_buf_ioend(bp); 1173 } 1174 1175 static void 1176 xfs_buf_ioend_async( 1177 struct xfs_buf *bp) 1178 { 1179 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1180 queue_work(bp->b_ioend_wq, &bp->b_ioend_work); 1181 } 1182 1183 void 1184 __xfs_buf_ioerror( 1185 xfs_buf_t *bp, 1186 int error, 1187 xfs_failaddr_t failaddr) 1188 { 1189 ASSERT(error <= 0 && error >= -1000); 1190 bp->b_error = error; 1191 trace_xfs_buf_ioerror(bp, error, failaddr); 1192 } 1193 1194 void 1195 xfs_buf_ioerror_alert( 1196 struct xfs_buf *bp, 1197 const char *func) 1198 { 1199 xfs_alert(bp->b_target->bt_mount, 1200 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d", 1201 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length, 1202 -bp->b_error); 1203 } 1204 1205 int 1206 xfs_bwrite( 1207 struct xfs_buf *bp) 1208 { 1209 int error; 1210 1211 ASSERT(xfs_buf_islocked(bp)); 1212 1213 bp->b_flags |= XBF_WRITE; 1214 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1215 XBF_WRITE_FAIL | XBF_DONE); 1216 1217 error = xfs_buf_submit_wait(bp); 1218 if (error) { 1219 xfs_force_shutdown(bp->b_target->bt_mount, 1220 SHUTDOWN_META_IO_ERROR); 1221 } 1222 return error; 1223 } 1224 1225 static void 1226 xfs_buf_bio_end_io( 1227 struct bio *bio) 1228 { 1229 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1230 1231 /* 1232 * don't overwrite existing errors - otherwise we can lose errors on 1233 * buffers that require multiple bios to complete. 1234 */ 1235 if (bio->bi_status) { 1236 int error = blk_status_to_errno(bio->bi_status); 1237 1238 cmpxchg(&bp->b_io_error, 0, error); 1239 } 1240 1241 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1242 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1243 1244 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1245 xfs_buf_ioend_async(bp); 1246 bio_put(bio); 1247 } 1248 1249 static void 1250 xfs_buf_ioapply_map( 1251 struct xfs_buf *bp, 1252 int map, 1253 int *buf_offset, 1254 int *count, 1255 int op, 1256 int op_flags) 1257 { 1258 int page_index; 1259 int total_nr_pages = bp->b_page_count; 1260 int nr_pages; 1261 struct bio *bio; 1262 sector_t sector = bp->b_maps[map].bm_bn; 1263 int size; 1264 int offset; 1265 1266 /* skip the pages in the buffer before the start offset */ 1267 page_index = 0; 1268 offset = *buf_offset; 1269 while (offset >= PAGE_SIZE) { 1270 page_index++; 1271 offset -= PAGE_SIZE; 1272 } 1273 1274 /* 1275 * Limit the IO size to the length of the current vector, and update the 1276 * remaining IO count for the next time around. 1277 */ 1278 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1279 *count -= size; 1280 *buf_offset += size; 1281 1282 next_chunk: 1283 atomic_inc(&bp->b_io_remaining); 1284 nr_pages = min(total_nr_pages, BIO_MAX_PAGES); 1285 1286 bio = bio_alloc(GFP_NOIO, nr_pages); 1287 bio_set_dev(bio, bp->b_target->bt_bdev); 1288 bio->bi_iter.bi_sector = sector; 1289 bio->bi_end_io = xfs_buf_bio_end_io; 1290 bio->bi_private = bp; 1291 bio_set_op_attrs(bio, op, op_flags); 1292 1293 for (; size && nr_pages; nr_pages--, page_index++) { 1294 int rbytes, nbytes = PAGE_SIZE - offset; 1295 1296 if (nbytes > size) 1297 nbytes = size; 1298 1299 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1300 offset); 1301 if (rbytes < nbytes) 1302 break; 1303 1304 offset = 0; 1305 sector += BTOBB(nbytes); 1306 size -= nbytes; 1307 total_nr_pages--; 1308 } 1309 1310 if (likely(bio->bi_iter.bi_size)) { 1311 if (xfs_buf_is_vmapped(bp)) { 1312 flush_kernel_vmap_range(bp->b_addr, 1313 xfs_buf_vmap_len(bp)); 1314 } 1315 submit_bio(bio); 1316 if (size) 1317 goto next_chunk; 1318 } else { 1319 /* 1320 * This is guaranteed not to be the last io reference count 1321 * because the caller (xfs_buf_submit) holds a count itself. 1322 */ 1323 atomic_dec(&bp->b_io_remaining); 1324 xfs_buf_ioerror(bp, -EIO); 1325 bio_put(bio); 1326 } 1327 1328 } 1329 1330 STATIC void 1331 _xfs_buf_ioapply( 1332 struct xfs_buf *bp) 1333 { 1334 struct blk_plug plug; 1335 int op; 1336 int op_flags = 0; 1337 int offset; 1338 int size; 1339 int i; 1340 1341 /* 1342 * Make sure we capture only current IO errors rather than stale errors 1343 * left over from previous use of the buffer (e.g. failed readahead). 1344 */ 1345 bp->b_error = 0; 1346 1347 /* 1348 * Initialize the I/O completion workqueue if we haven't yet or the 1349 * submitter has not opted to specify a custom one. 1350 */ 1351 if (!bp->b_ioend_wq) 1352 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue; 1353 1354 if (bp->b_flags & XBF_WRITE) { 1355 op = REQ_OP_WRITE; 1356 if (bp->b_flags & XBF_SYNCIO) 1357 op_flags = REQ_SYNC; 1358 if (bp->b_flags & XBF_FUA) 1359 op_flags |= REQ_FUA; 1360 if (bp->b_flags & XBF_FLUSH) 1361 op_flags |= REQ_PREFLUSH; 1362 1363 /* 1364 * Run the write verifier callback function if it exists. If 1365 * this function fails it will mark the buffer with an error and 1366 * the IO should not be dispatched. 1367 */ 1368 if (bp->b_ops) { 1369 bp->b_ops->verify_write(bp); 1370 if (bp->b_error) { 1371 xfs_force_shutdown(bp->b_target->bt_mount, 1372 SHUTDOWN_CORRUPT_INCORE); 1373 return; 1374 } 1375 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1376 struct xfs_mount *mp = bp->b_target->bt_mount; 1377 1378 /* 1379 * non-crc filesystems don't attach verifiers during 1380 * log recovery, so don't warn for such filesystems. 1381 */ 1382 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1383 xfs_warn(mp, 1384 "%s: no buf ops on daddr 0x%llx len %d", 1385 __func__, bp->b_bn, bp->b_length); 1386 xfs_hex_dump(bp->b_addr, 1387 XFS_CORRUPTION_DUMP_LEN); 1388 dump_stack(); 1389 } 1390 } 1391 } else if (bp->b_flags & XBF_READ_AHEAD) { 1392 op = REQ_OP_READ; 1393 op_flags = REQ_RAHEAD; 1394 } else { 1395 op = REQ_OP_READ; 1396 } 1397 1398 /* we only use the buffer cache for meta-data */ 1399 op_flags |= REQ_META; 1400 1401 /* 1402 * Walk all the vectors issuing IO on them. Set up the initial offset 1403 * into the buffer and the desired IO size before we start - 1404 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1405 * subsequent call. 1406 */ 1407 offset = bp->b_offset; 1408 size = BBTOB(bp->b_io_length); 1409 blk_start_plug(&plug); 1410 for (i = 0; i < bp->b_map_count; i++) { 1411 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags); 1412 if (bp->b_error) 1413 break; 1414 if (size <= 0) 1415 break; /* all done */ 1416 } 1417 blk_finish_plug(&plug); 1418 } 1419 1420 /* 1421 * Asynchronous IO submission path. This transfers the buffer lock ownership and 1422 * the current reference to the IO. It is not safe to reference the buffer after 1423 * a call to this function unless the caller holds an additional reference 1424 * itself. 1425 */ 1426 void 1427 xfs_buf_submit( 1428 struct xfs_buf *bp) 1429 { 1430 trace_xfs_buf_submit(bp, _RET_IP_); 1431 1432 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1433 ASSERT(bp->b_flags & XBF_ASYNC); 1434 1435 /* on shutdown we stale and complete the buffer immediately */ 1436 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1437 xfs_buf_ioerror(bp, -EIO); 1438 bp->b_flags &= ~XBF_DONE; 1439 xfs_buf_stale(bp); 1440 xfs_buf_ioend(bp); 1441 return; 1442 } 1443 1444 if (bp->b_flags & XBF_WRITE) 1445 xfs_buf_wait_unpin(bp); 1446 1447 /* clear the internal error state to avoid spurious errors */ 1448 bp->b_io_error = 0; 1449 1450 /* 1451 * The caller's reference is released during I/O completion. 1452 * This occurs some time after the last b_io_remaining reference is 1453 * released, so after we drop our Io reference we have to have some 1454 * other reference to ensure the buffer doesn't go away from underneath 1455 * us. Take a direct reference to ensure we have safe access to the 1456 * buffer until we are finished with it. 1457 */ 1458 xfs_buf_hold(bp); 1459 1460 /* 1461 * Set the count to 1 initially, this will stop an I/O completion 1462 * callout which happens before we have started all the I/O from calling 1463 * xfs_buf_ioend too early. 1464 */ 1465 atomic_set(&bp->b_io_remaining, 1); 1466 xfs_buf_ioacct_inc(bp); 1467 _xfs_buf_ioapply(bp); 1468 1469 /* 1470 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1471 * reference we took above. If we drop it to zero, run completion so 1472 * that we don't return to the caller with completion still pending. 1473 */ 1474 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1475 if (bp->b_error) 1476 xfs_buf_ioend(bp); 1477 else 1478 xfs_buf_ioend_async(bp); 1479 } 1480 1481 xfs_buf_rele(bp); 1482 /* Note: it is not safe to reference bp now we've dropped our ref */ 1483 } 1484 1485 /* 1486 * Synchronous buffer IO submission path, read or write. 1487 */ 1488 int 1489 xfs_buf_submit_wait( 1490 struct xfs_buf *bp) 1491 { 1492 int error; 1493 1494 trace_xfs_buf_submit_wait(bp, _RET_IP_); 1495 1496 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC))); 1497 1498 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1499 xfs_buf_ioerror(bp, -EIO); 1500 xfs_buf_stale(bp); 1501 bp->b_flags &= ~XBF_DONE; 1502 return -EIO; 1503 } 1504 1505 if (bp->b_flags & XBF_WRITE) 1506 xfs_buf_wait_unpin(bp); 1507 1508 /* clear the internal error state to avoid spurious errors */ 1509 bp->b_io_error = 0; 1510 1511 /* 1512 * For synchronous IO, the IO does not inherit the submitters reference 1513 * count, nor the buffer lock. Hence we cannot release the reference we 1514 * are about to take until we've waited for all IO completion to occur, 1515 * including any xfs_buf_ioend_async() work that may be pending. 1516 */ 1517 xfs_buf_hold(bp); 1518 1519 /* 1520 * Set the count to 1 initially, this will stop an I/O completion 1521 * callout which happens before we have started all the I/O from calling 1522 * xfs_buf_ioend too early. 1523 */ 1524 atomic_set(&bp->b_io_remaining, 1); 1525 _xfs_buf_ioapply(bp); 1526 1527 /* 1528 * make sure we run completion synchronously if it raced with us and is 1529 * already complete. 1530 */ 1531 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1532 xfs_buf_ioend(bp); 1533 1534 /* wait for completion before gathering the error from the buffer */ 1535 trace_xfs_buf_iowait(bp, _RET_IP_); 1536 wait_for_completion(&bp->b_iowait); 1537 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1538 error = bp->b_error; 1539 1540 /* 1541 * all done now, we can release the hold that keeps the buffer 1542 * referenced for the entire IO. 1543 */ 1544 xfs_buf_rele(bp); 1545 return error; 1546 } 1547 1548 void * 1549 xfs_buf_offset( 1550 struct xfs_buf *bp, 1551 size_t offset) 1552 { 1553 struct page *page; 1554 1555 if (bp->b_addr) 1556 return bp->b_addr + offset; 1557 1558 offset += bp->b_offset; 1559 page = bp->b_pages[offset >> PAGE_SHIFT]; 1560 return page_address(page) + (offset & (PAGE_SIZE-1)); 1561 } 1562 1563 /* 1564 * Move data into or out of a buffer. 1565 */ 1566 void 1567 xfs_buf_iomove( 1568 xfs_buf_t *bp, /* buffer to process */ 1569 size_t boff, /* starting buffer offset */ 1570 size_t bsize, /* length to copy */ 1571 void *data, /* data address */ 1572 xfs_buf_rw_t mode) /* read/write/zero flag */ 1573 { 1574 size_t bend; 1575 1576 bend = boff + bsize; 1577 while (boff < bend) { 1578 struct page *page; 1579 int page_index, page_offset, csize; 1580 1581 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1582 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1583 page = bp->b_pages[page_index]; 1584 csize = min_t(size_t, PAGE_SIZE - page_offset, 1585 BBTOB(bp->b_io_length) - boff); 1586 1587 ASSERT((csize + page_offset) <= PAGE_SIZE); 1588 1589 switch (mode) { 1590 case XBRW_ZERO: 1591 memset(page_address(page) + page_offset, 0, csize); 1592 break; 1593 case XBRW_READ: 1594 memcpy(data, page_address(page) + page_offset, csize); 1595 break; 1596 case XBRW_WRITE: 1597 memcpy(page_address(page) + page_offset, data, csize); 1598 } 1599 1600 boff += csize; 1601 data += csize; 1602 } 1603 } 1604 1605 /* 1606 * Handling of buffer targets (buftargs). 1607 */ 1608 1609 /* 1610 * Wait for any bufs with callbacks that have been submitted but have not yet 1611 * returned. These buffers will have an elevated hold count, so wait on those 1612 * while freeing all the buffers only held by the LRU. 1613 */ 1614 static enum lru_status 1615 xfs_buftarg_wait_rele( 1616 struct list_head *item, 1617 struct list_lru_one *lru, 1618 spinlock_t *lru_lock, 1619 void *arg) 1620 1621 { 1622 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1623 struct list_head *dispose = arg; 1624 1625 if (atomic_read(&bp->b_hold) > 1) { 1626 /* need to wait, so skip it this pass */ 1627 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1628 return LRU_SKIP; 1629 } 1630 if (!spin_trylock(&bp->b_lock)) 1631 return LRU_SKIP; 1632 1633 /* 1634 * clear the LRU reference count so the buffer doesn't get 1635 * ignored in xfs_buf_rele(). 1636 */ 1637 atomic_set(&bp->b_lru_ref, 0); 1638 bp->b_state |= XFS_BSTATE_DISPOSE; 1639 list_lru_isolate_move(lru, item, dispose); 1640 spin_unlock(&bp->b_lock); 1641 return LRU_REMOVED; 1642 } 1643 1644 void 1645 xfs_wait_buftarg( 1646 struct xfs_buftarg *btp) 1647 { 1648 LIST_HEAD(dispose); 1649 int loop = 0; 1650 1651 /* 1652 * First wait on the buftarg I/O count for all in-flight buffers to be 1653 * released. This is critical as new buffers do not make the LRU until 1654 * they are released. 1655 * 1656 * Next, flush the buffer workqueue to ensure all completion processing 1657 * has finished. Just waiting on buffer locks is not sufficient for 1658 * async IO as the reference count held over IO is not released until 1659 * after the buffer lock is dropped. Hence we need to ensure here that 1660 * all reference counts have been dropped before we start walking the 1661 * LRU list. 1662 */ 1663 while (percpu_counter_sum(&btp->bt_io_count)) 1664 delay(100); 1665 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1666 1667 /* loop until there is nothing left on the lru list. */ 1668 while (list_lru_count(&btp->bt_lru)) { 1669 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1670 &dispose, LONG_MAX); 1671 1672 while (!list_empty(&dispose)) { 1673 struct xfs_buf *bp; 1674 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1675 list_del_init(&bp->b_lru); 1676 if (bp->b_flags & XBF_WRITE_FAIL) { 1677 xfs_alert(btp->bt_mount, 1678 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", 1679 (long long)bp->b_bn); 1680 xfs_alert(btp->bt_mount, 1681 "Please run xfs_repair to determine the extent of the problem."); 1682 } 1683 xfs_buf_rele(bp); 1684 } 1685 if (loop++ != 0) 1686 delay(100); 1687 } 1688 } 1689 1690 static enum lru_status 1691 xfs_buftarg_isolate( 1692 struct list_head *item, 1693 struct list_lru_one *lru, 1694 spinlock_t *lru_lock, 1695 void *arg) 1696 { 1697 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1698 struct list_head *dispose = arg; 1699 1700 /* 1701 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1702 * If we fail to get the lock, just skip it. 1703 */ 1704 if (!spin_trylock(&bp->b_lock)) 1705 return LRU_SKIP; 1706 /* 1707 * Decrement the b_lru_ref count unless the value is already 1708 * zero. If the value is already zero, we need to reclaim the 1709 * buffer, otherwise it gets another trip through the LRU. 1710 */ 1711 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1712 spin_unlock(&bp->b_lock); 1713 return LRU_ROTATE; 1714 } 1715 1716 bp->b_state |= XFS_BSTATE_DISPOSE; 1717 list_lru_isolate_move(lru, item, dispose); 1718 spin_unlock(&bp->b_lock); 1719 return LRU_REMOVED; 1720 } 1721 1722 static unsigned long 1723 xfs_buftarg_shrink_scan( 1724 struct shrinker *shrink, 1725 struct shrink_control *sc) 1726 { 1727 struct xfs_buftarg *btp = container_of(shrink, 1728 struct xfs_buftarg, bt_shrinker); 1729 LIST_HEAD(dispose); 1730 unsigned long freed; 1731 1732 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1733 xfs_buftarg_isolate, &dispose); 1734 1735 while (!list_empty(&dispose)) { 1736 struct xfs_buf *bp; 1737 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1738 list_del_init(&bp->b_lru); 1739 xfs_buf_rele(bp); 1740 } 1741 1742 return freed; 1743 } 1744 1745 static unsigned long 1746 xfs_buftarg_shrink_count( 1747 struct shrinker *shrink, 1748 struct shrink_control *sc) 1749 { 1750 struct xfs_buftarg *btp = container_of(shrink, 1751 struct xfs_buftarg, bt_shrinker); 1752 return list_lru_shrink_count(&btp->bt_lru, sc); 1753 } 1754 1755 void 1756 xfs_free_buftarg( 1757 struct xfs_buftarg *btp) 1758 { 1759 unregister_shrinker(&btp->bt_shrinker); 1760 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1761 percpu_counter_destroy(&btp->bt_io_count); 1762 list_lru_destroy(&btp->bt_lru); 1763 1764 xfs_blkdev_issue_flush(btp); 1765 1766 kmem_free(btp); 1767 } 1768 1769 int 1770 xfs_setsize_buftarg( 1771 xfs_buftarg_t *btp, 1772 unsigned int sectorsize) 1773 { 1774 /* Set up metadata sector size info */ 1775 btp->bt_meta_sectorsize = sectorsize; 1776 btp->bt_meta_sectormask = sectorsize - 1; 1777 1778 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1779 xfs_warn(btp->bt_mount, 1780 "Cannot set_blocksize to %u on device %pg", 1781 sectorsize, btp->bt_bdev); 1782 return -EINVAL; 1783 } 1784 1785 /* Set up device logical sector size mask */ 1786 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1787 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1788 1789 return 0; 1790 } 1791 1792 /* 1793 * When allocating the initial buffer target we have not yet 1794 * read in the superblock, so don't know what sized sectors 1795 * are being used at this early stage. Play safe. 1796 */ 1797 STATIC int 1798 xfs_setsize_buftarg_early( 1799 xfs_buftarg_t *btp, 1800 struct block_device *bdev) 1801 { 1802 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1803 } 1804 1805 xfs_buftarg_t * 1806 xfs_alloc_buftarg( 1807 struct xfs_mount *mp, 1808 struct block_device *bdev, 1809 struct dax_device *dax_dev) 1810 { 1811 xfs_buftarg_t *btp; 1812 1813 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); 1814 1815 btp->bt_mount = mp; 1816 btp->bt_dev = bdev->bd_dev; 1817 btp->bt_bdev = bdev; 1818 btp->bt_daxdev = dax_dev; 1819 1820 if (xfs_setsize_buftarg_early(btp, bdev)) 1821 goto error_free; 1822 1823 if (list_lru_init(&btp->bt_lru)) 1824 goto error_free; 1825 1826 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 1827 goto error_lru; 1828 1829 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1830 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1831 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1832 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1833 if (register_shrinker(&btp->bt_shrinker)) 1834 goto error_pcpu; 1835 return btp; 1836 1837 error_pcpu: 1838 percpu_counter_destroy(&btp->bt_io_count); 1839 error_lru: 1840 list_lru_destroy(&btp->bt_lru); 1841 error_free: 1842 kmem_free(btp); 1843 return NULL; 1844 } 1845 1846 /* 1847 * Cancel a delayed write list. 1848 * 1849 * Remove each buffer from the list, clear the delwri queue flag and drop the 1850 * associated buffer reference. 1851 */ 1852 void 1853 xfs_buf_delwri_cancel( 1854 struct list_head *list) 1855 { 1856 struct xfs_buf *bp; 1857 1858 while (!list_empty(list)) { 1859 bp = list_first_entry(list, struct xfs_buf, b_list); 1860 1861 xfs_buf_lock(bp); 1862 bp->b_flags &= ~_XBF_DELWRI_Q; 1863 list_del_init(&bp->b_list); 1864 xfs_buf_relse(bp); 1865 } 1866 } 1867 1868 /* 1869 * Add a buffer to the delayed write list. 1870 * 1871 * This queues a buffer for writeout if it hasn't already been. Note that 1872 * neither this routine nor the buffer list submission functions perform 1873 * any internal synchronization. It is expected that the lists are thread-local 1874 * to the callers. 1875 * 1876 * Returns true if we queued up the buffer, or false if it already had 1877 * been on the buffer list. 1878 */ 1879 bool 1880 xfs_buf_delwri_queue( 1881 struct xfs_buf *bp, 1882 struct list_head *list) 1883 { 1884 ASSERT(xfs_buf_islocked(bp)); 1885 ASSERT(!(bp->b_flags & XBF_READ)); 1886 1887 /* 1888 * If the buffer is already marked delwri it already is queued up 1889 * by someone else for imediate writeout. Just ignore it in that 1890 * case. 1891 */ 1892 if (bp->b_flags & _XBF_DELWRI_Q) { 1893 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1894 return false; 1895 } 1896 1897 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1898 1899 /* 1900 * If a buffer gets written out synchronously or marked stale while it 1901 * is on a delwri list we lazily remove it. To do this, the other party 1902 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1903 * It remains referenced and on the list. In a rare corner case it 1904 * might get readded to a delwri list after the synchronous writeout, in 1905 * which case we need just need to re-add the flag here. 1906 */ 1907 bp->b_flags |= _XBF_DELWRI_Q; 1908 if (list_empty(&bp->b_list)) { 1909 atomic_inc(&bp->b_hold); 1910 list_add_tail(&bp->b_list, list); 1911 } 1912 1913 return true; 1914 } 1915 1916 /* 1917 * Compare function is more complex than it needs to be because 1918 * the return value is only 32 bits and we are doing comparisons 1919 * on 64 bit values 1920 */ 1921 static int 1922 xfs_buf_cmp( 1923 void *priv, 1924 struct list_head *a, 1925 struct list_head *b) 1926 { 1927 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1928 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1929 xfs_daddr_t diff; 1930 1931 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1932 if (diff < 0) 1933 return -1; 1934 if (diff > 0) 1935 return 1; 1936 return 0; 1937 } 1938 1939 /* 1940 * submit buffers for write. 1941 * 1942 * When we have a large buffer list, we do not want to hold all the buffers 1943 * locked while we block on the request queue waiting for IO dispatch. To avoid 1944 * this problem, we lock and submit buffers in groups of 50, thereby minimising 1945 * the lock hold times for lists which may contain thousands of objects. 1946 * 1947 * To do this, we sort the buffer list before we walk the list to lock and 1948 * submit buffers, and we plug and unplug around each group of buffers we 1949 * submit. 1950 */ 1951 static int 1952 xfs_buf_delwri_submit_buffers( 1953 struct list_head *buffer_list, 1954 struct list_head *wait_list) 1955 { 1956 struct xfs_buf *bp, *n; 1957 LIST_HEAD (submit_list); 1958 int pinned = 0; 1959 struct blk_plug plug; 1960 1961 list_sort(NULL, buffer_list, xfs_buf_cmp); 1962 1963 blk_start_plug(&plug); 1964 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1965 if (!wait_list) { 1966 if (xfs_buf_ispinned(bp)) { 1967 pinned++; 1968 continue; 1969 } 1970 if (!xfs_buf_trylock(bp)) 1971 continue; 1972 } else { 1973 xfs_buf_lock(bp); 1974 } 1975 1976 /* 1977 * Someone else might have written the buffer synchronously or 1978 * marked it stale in the meantime. In that case only the 1979 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1980 * reference and remove it from the list here. 1981 */ 1982 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1983 list_del_init(&bp->b_list); 1984 xfs_buf_relse(bp); 1985 continue; 1986 } 1987 1988 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1989 1990 /* 1991 * We do all IO submission async. This means if we need 1992 * to wait for IO completion we need to take an extra 1993 * reference so the buffer is still valid on the other 1994 * side. We need to move the buffer onto the io_list 1995 * at this point so the caller can still access it. 1996 */ 1997 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL); 1998 bp->b_flags |= XBF_WRITE | XBF_ASYNC; 1999 if (wait_list) { 2000 xfs_buf_hold(bp); 2001 list_move_tail(&bp->b_list, wait_list); 2002 } else 2003 list_del_init(&bp->b_list); 2004 2005 xfs_buf_submit(bp); 2006 } 2007 blk_finish_plug(&plug); 2008 2009 return pinned; 2010 } 2011 2012 /* 2013 * Write out a buffer list asynchronously. 2014 * 2015 * This will take the @buffer_list, write all non-locked and non-pinned buffers 2016 * out and not wait for I/O completion on any of the buffers. This interface 2017 * is only safely useable for callers that can track I/O completion by higher 2018 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 2019 * function. 2020 */ 2021 int 2022 xfs_buf_delwri_submit_nowait( 2023 struct list_head *buffer_list) 2024 { 2025 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 2026 } 2027 2028 /* 2029 * Write out a buffer list synchronously. 2030 * 2031 * This will take the @buffer_list, write all buffers out and wait for I/O 2032 * completion on all of the buffers. @buffer_list is consumed by the function, 2033 * so callers must have some other way of tracking buffers if they require such 2034 * functionality. 2035 */ 2036 int 2037 xfs_buf_delwri_submit( 2038 struct list_head *buffer_list) 2039 { 2040 LIST_HEAD (wait_list); 2041 int error = 0, error2; 2042 struct xfs_buf *bp; 2043 2044 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 2045 2046 /* Wait for IO to complete. */ 2047 while (!list_empty(&wait_list)) { 2048 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 2049 2050 list_del_init(&bp->b_list); 2051 2052 /* locking the buffer will wait for async IO completion. */ 2053 xfs_buf_lock(bp); 2054 error2 = bp->b_error; 2055 xfs_buf_relse(bp); 2056 if (!error) 2057 error = error2; 2058 } 2059 2060 return error; 2061 } 2062 2063 /* 2064 * Push a single buffer on a delwri queue. 2065 * 2066 * The purpose of this function is to submit a single buffer of a delwri queue 2067 * and return with the buffer still on the original queue. The waiting delwri 2068 * buffer submission infrastructure guarantees transfer of the delwri queue 2069 * buffer reference to a temporary wait list. We reuse this infrastructure to 2070 * transfer the buffer back to the original queue. 2071 * 2072 * Note the buffer transitions from the queued state, to the submitted and wait 2073 * listed state and back to the queued state during this call. The buffer 2074 * locking and queue management logic between _delwri_pushbuf() and 2075 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2076 * before returning. 2077 */ 2078 int 2079 xfs_buf_delwri_pushbuf( 2080 struct xfs_buf *bp, 2081 struct list_head *buffer_list) 2082 { 2083 LIST_HEAD (submit_list); 2084 int error; 2085 2086 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2087 2088 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2089 2090 /* 2091 * Isolate the buffer to a new local list so we can submit it for I/O 2092 * independently from the rest of the original list. 2093 */ 2094 xfs_buf_lock(bp); 2095 list_move(&bp->b_list, &submit_list); 2096 xfs_buf_unlock(bp); 2097 2098 /* 2099 * Delwri submission clears the DELWRI_Q buffer flag and returns with 2100 * the buffer on the wait list with an associated reference. Rather than 2101 * bounce the buffer from a local wait list back to the original list 2102 * after I/O completion, reuse the original list as the wait list. 2103 */ 2104 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); 2105 2106 /* 2107 * The buffer is now under I/O and wait listed as during typical delwri 2108 * submission. Lock the buffer to wait for I/O completion. Rather than 2109 * remove the buffer from the wait list and release the reference, we 2110 * want to return with the buffer queued to the original list. The 2111 * buffer already sits on the original list with a wait list reference, 2112 * however. If we let the queue inherit that wait list reference, all we 2113 * need to do is reset the DELWRI_Q flag. 2114 */ 2115 xfs_buf_lock(bp); 2116 error = bp->b_error; 2117 bp->b_flags |= _XBF_DELWRI_Q; 2118 xfs_buf_unlock(bp); 2119 2120 return error; 2121 } 2122 2123 int __init 2124 xfs_buf_init(void) 2125 { 2126 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 2127 KM_ZONE_HWALIGN, NULL); 2128 if (!xfs_buf_zone) 2129 goto out; 2130 2131 return 0; 2132 2133 out: 2134 return -ENOMEM; 2135 } 2136 2137 void 2138 xfs_buf_terminate(void) 2139 { 2140 kmem_zone_destroy(xfs_buf_zone); 2141 } 2142 2143 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) 2144 { 2145 /* 2146 * Set the lru reference count to 0 based on the error injection tag. 2147 * This allows userspace to disrupt buffer caching for debug/testing 2148 * purposes. 2149 */ 2150 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount, 2151 XFS_ERRTAG_BUF_LRU_REF)) 2152 lru_ref = 0; 2153 2154 atomic_set(&bp->b_lru_ref, lru_ref); 2155 } 2156