xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision d2ba09c1)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
37 
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
41 #include "xfs_sb.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44 #include "xfs_log.h"
45 #include "xfs_errortag.h"
46 #include "xfs_error.h"
47 
48 static kmem_zone_t *xfs_buf_zone;
49 
50 #ifdef XFS_BUF_LOCK_TRACKING
51 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
52 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
53 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
54 #else
55 # define XB_SET_OWNER(bp)	do { } while (0)
56 # define XB_CLEAR_OWNER(bp)	do { } while (0)
57 # define XB_GET_OWNER(bp)	do { } while (0)
58 #endif
59 
60 #define xb_to_gfp(flags) \
61 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
62 
63 
64 static inline int
65 xfs_buf_is_vmapped(
66 	struct xfs_buf	*bp)
67 {
68 	/*
69 	 * Return true if the buffer is vmapped.
70 	 *
71 	 * b_addr is null if the buffer is not mapped, but the code is clever
72 	 * enough to know it doesn't have to map a single page, so the check has
73 	 * to be both for b_addr and bp->b_page_count > 1.
74 	 */
75 	return bp->b_addr && bp->b_page_count > 1;
76 }
77 
78 static inline int
79 xfs_buf_vmap_len(
80 	struct xfs_buf	*bp)
81 {
82 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83 }
84 
85 /*
86  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
87  * this buffer. The count is incremented once per buffer (per hold cycle)
88  * because the corresponding decrement is deferred to buffer release. Buffers
89  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
90  * tracking adds unnecessary overhead. This is used for sychronization purposes
91  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
92  * in-flight buffers.
93  *
94  * Buffers that are never released (e.g., superblock, iclog buffers) must set
95  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
96  * never reaches zero and unmount hangs indefinitely.
97  */
98 static inline void
99 xfs_buf_ioacct_inc(
100 	struct xfs_buf	*bp)
101 {
102 	if (bp->b_flags & XBF_NO_IOACCT)
103 		return;
104 
105 	ASSERT(bp->b_flags & XBF_ASYNC);
106 	spin_lock(&bp->b_lock);
107 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
108 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
109 		percpu_counter_inc(&bp->b_target->bt_io_count);
110 	}
111 	spin_unlock(&bp->b_lock);
112 }
113 
114 /*
115  * Clear the in-flight state on a buffer about to be released to the LRU or
116  * freed and unaccount from the buftarg.
117  */
118 static inline void
119 __xfs_buf_ioacct_dec(
120 	struct xfs_buf	*bp)
121 {
122 	lockdep_assert_held(&bp->b_lock);
123 
124 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
125 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
126 		percpu_counter_dec(&bp->b_target->bt_io_count);
127 	}
128 }
129 
130 static inline void
131 xfs_buf_ioacct_dec(
132 	struct xfs_buf	*bp)
133 {
134 	spin_lock(&bp->b_lock);
135 	__xfs_buf_ioacct_dec(bp);
136 	spin_unlock(&bp->b_lock);
137 }
138 
139 /*
140  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
141  * b_lru_ref count so that the buffer is freed immediately when the buffer
142  * reference count falls to zero. If the buffer is already on the LRU, we need
143  * to remove the reference that LRU holds on the buffer.
144  *
145  * This prevents build-up of stale buffers on the LRU.
146  */
147 void
148 xfs_buf_stale(
149 	struct xfs_buf	*bp)
150 {
151 	ASSERT(xfs_buf_islocked(bp));
152 
153 	bp->b_flags |= XBF_STALE;
154 
155 	/*
156 	 * Clear the delwri status so that a delwri queue walker will not
157 	 * flush this buffer to disk now that it is stale. The delwri queue has
158 	 * a reference to the buffer, so this is safe to do.
159 	 */
160 	bp->b_flags &= ~_XBF_DELWRI_Q;
161 
162 	/*
163 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
164 	 * could reset b_flags. There is no guarantee that the buffer is
165 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
166 	 * status now to preserve accounting consistency.
167 	 */
168 	spin_lock(&bp->b_lock);
169 	__xfs_buf_ioacct_dec(bp);
170 
171 	atomic_set(&bp->b_lru_ref, 0);
172 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
173 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
174 		atomic_dec(&bp->b_hold);
175 
176 	ASSERT(atomic_read(&bp->b_hold) >= 1);
177 	spin_unlock(&bp->b_lock);
178 }
179 
180 static int
181 xfs_buf_get_maps(
182 	struct xfs_buf		*bp,
183 	int			map_count)
184 {
185 	ASSERT(bp->b_maps == NULL);
186 	bp->b_map_count = map_count;
187 
188 	if (map_count == 1) {
189 		bp->b_maps = &bp->__b_map;
190 		return 0;
191 	}
192 
193 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
194 				KM_NOFS);
195 	if (!bp->b_maps)
196 		return -ENOMEM;
197 	return 0;
198 }
199 
200 /*
201  *	Frees b_pages if it was allocated.
202  */
203 static void
204 xfs_buf_free_maps(
205 	struct xfs_buf	*bp)
206 {
207 	if (bp->b_maps != &bp->__b_map) {
208 		kmem_free(bp->b_maps);
209 		bp->b_maps = NULL;
210 	}
211 }
212 
213 struct xfs_buf *
214 _xfs_buf_alloc(
215 	struct xfs_buftarg	*target,
216 	struct xfs_buf_map	*map,
217 	int			nmaps,
218 	xfs_buf_flags_t		flags)
219 {
220 	struct xfs_buf		*bp;
221 	int			error;
222 	int			i;
223 
224 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
225 	if (unlikely(!bp))
226 		return NULL;
227 
228 	/*
229 	 * We don't want certain flags to appear in b_flags unless they are
230 	 * specifically set by later operations on the buffer.
231 	 */
232 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
233 
234 	atomic_set(&bp->b_hold, 1);
235 	atomic_set(&bp->b_lru_ref, 1);
236 	init_completion(&bp->b_iowait);
237 	INIT_LIST_HEAD(&bp->b_lru);
238 	INIT_LIST_HEAD(&bp->b_list);
239 	INIT_LIST_HEAD(&bp->b_li_list);
240 	sema_init(&bp->b_sema, 0); /* held, no waiters */
241 	spin_lock_init(&bp->b_lock);
242 	XB_SET_OWNER(bp);
243 	bp->b_target = target;
244 	bp->b_flags = flags;
245 
246 	/*
247 	 * Set length and io_length to the same value initially.
248 	 * I/O routines should use io_length, which will be the same in
249 	 * most cases but may be reset (e.g. XFS recovery).
250 	 */
251 	error = xfs_buf_get_maps(bp, nmaps);
252 	if (error)  {
253 		kmem_zone_free(xfs_buf_zone, bp);
254 		return NULL;
255 	}
256 
257 	bp->b_bn = map[0].bm_bn;
258 	bp->b_length = 0;
259 	for (i = 0; i < nmaps; i++) {
260 		bp->b_maps[i].bm_bn = map[i].bm_bn;
261 		bp->b_maps[i].bm_len = map[i].bm_len;
262 		bp->b_length += map[i].bm_len;
263 	}
264 	bp->b_io_length = bp->b_length;
265 
266 	atomic_set(&bp->b_pin_count, 0);
267 	init_waitqueue_head(&bp->b_waiters);
268 
269 	XFS_STATS_INC(target->bt_mount, xb_create);
270 	trace_xfs_buf_init(bp, _RET_IP_);
271 
272 	return bp;
273 }
274 
275 /*
276  *	Allocate a page array capable of holding a specified number
277  *	of pages, and point the page buf at it.
278  */
279 STATIC int
280 _xfs_buf_get_pages(
281 	xfs_buf_t		*bp,
282 	int			page_count)
283 {
284 	/* Make sure that we have a page list */
285 	if (bp->b_pages == NULL) {
286 		bp->b_page_count = page_count;
287 		if (page_count <= XB_PAGES) {
288 			bp->b_pages = bp->b_page_array;
289 		} else {
290 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
291 						 page_count, KM_NOFS);
292 			if (bp->b_pages == NULL)
293 				return -ENOMEM;
294 		}
295 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
296 	}
297 	return 0;
298 }
299 
300 /*
301  *	Frees b_pages if it was allocated.
302  */
303 STATIC void
304 _xfs_buf_free_pages(
305 	xfs_buf_t	*bp)
306 {
307 	if (bp->b_pages != bp->b_page_array) {
308 		kmem_free(bp->b_pages);
309 		bp->b_pages = NULL;
310 	}
311 }
312 
313 /*
314  *	Releases the specified buffer.
315  *
316  * 	The modification state of any associated pages is left unchanged.
317  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
318  * 	hashed and refcounted buffers
319  */
320 void
321 xfs_buf_free(
322 	xfs_buf_t		*bp)
323 {
324 	trace_xfs_buf_free(bp, _RET_IP_);
325 
326 	ASSERT(list_empty(&bp->b_lru));
327 
328 	if (bp->b_flags & _XBF_PAGES) {
329 		uint		i;
330 
331 		if (xfs_buf_is_vmapped(bp))
332 			vm_unmap_ram(bp->b_addr - bp->b_offset,
333 					bp->b_page_count);
334 
335 		for (i = 0; i < bp->b_page_count; i++) {
336 			struct page	*page = bp->b_pages[i];
337 
338 			__free_page(page);
339 		}
340 	} else if (bp->b_flags & _XBF_KMEM)
341 		kmem_free(bp->b_addr);
342 	_xfs_buf_free_pages(bp);
343 	xfs_buf_free_maps(bp);
344 	kmem_zone_free(xfs_buf_zone, bp);
345 }
346 
347 /*
348  * Allocates all the pages for buffer in question and builds it's page list.
349  */
350 STATIC int
351 xfs_buf_allocate_memory(
352 	xfs_buf_t		*bp,
353 	uint			flags)
354 {
355 	size_t			size;
356 	size_t			nbytes, offset;
357 	gfp_t			gfp_mask = xb_to_gfp(flags);
358 	unsigned short		page_count, i;
359 	xfs_off_t		start, end;
360 	int			error;
361 
362 	/*
363 	 * for buffers that are contained within a single page, just allocate
364 	 * the memory from the heap - there's no need for the complexity of
365 	 * page arrays to keep allocation down to order 0.
366 	 */
367 	size = BBTOB(bp->b_length);
368 	if (size < PAGE_SIZE) {
369 		bp->b_addr = kmem_alloc(size, KM_NOFS);
370 		if (!bp->b_addr) {
371 			/* low memory - use alloc_page loop instead */
372 			goto use_alloc_page;
373 		}
374 
375 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
376 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
377 			/* b_addr spans two pages - use alloc_page instead */
378 			kmem_free(bp->b_addr);
379 			bp->b_addr = NULL;
380 			goto use_alloc_page;
381 		}
382 		bp->b_offset = offset_in_page(bp->b_addr);
383 		bp->b_pages = bp->b_page_array;
384 		bp->b_pages[0] = virt_to_page(bp->b_addr);
385 		bp->b_page_count = 1;
386 		bp->b_flags |= _XBF_KMEM;
387 		return 0;
388 	}
389 
390 use_alloc_page:
391 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
392 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
393 								>> PAGE_SHIFT;
394 	page_count = end - start;
395 	error = _xfs_buf_get_pages(bp, page_count);
396 	if (unlikely(error))
397 		return error;
398 
399 	offset = bp->b_offset;
400 	bp->b_flags |= _XBF_PAGES;
401 
402 	for (i = 0; i < bp->b_page_count; i++) {
403 		struct page	*page;
404 		uint		retries = 0;
405 retry:
406 		page = alloc_page(gfp_mask);
407 		if (unlikely(page == NULL)) {
408 			if (flags & XBF_READ_AHEAD) {
409 				bp->b_page_count = i;
410 				error = -ENOMEM;
411 				goto out_free_pages;
412 			}
413 
414 			/*
415 			 * This could deadlock.
416 			 *
417 			 * But until all the XFS lowlevel code is revamped to
418 			 * handle buffer allocation failures we can't do much.
419 			 */
420 			if (!(++retries % 100))
421 				xfs_err(NULL,
422 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
423 					current->comm, current->pid,
424 					__func__, gfp_mask);
425 
426 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
427 			congestion_wait(BLK_RW_ASYNC, HZ/50);
428 			goto retry;
429 		}
430 
431 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
432 
433 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
434 		size -= nbytes;
435 		bp->b_pages[i] = page;
436 		offset = 0;
437 	}
438 	return 0;
439 
440 out_free_pages:
441 	for (i = 0; i < bp->b_page_count; i++)
442 		__free_page(bp->b_pages[i]);
443 	bp->b_flags &= ~_XBF_PAGES;
444 	return error;
445 }
446 
447 /*
448  *	Map buffer into kernel address-space if necessary.
449  */
450 STATIC int
451 _xfs_buf_map_pages(
452 	xfs_buf_t		*bp,
453 	uint			flags)
454 {
455 	ASSERT(bp->b_flags & _XBF_PAGES);
456 	if (bp->b_page_count == 1) {
457 		/* A single page buffer is always mappable */
458 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
459 	} else if (flags & XBF_UNMAPPED) {
460 		bp->b_addr = NULL;
461 	} else {
462 		int retried = 0;
463 		unsigned nofs_flag;
464 
465 		/*
466 		 * vm_map_ram() will allocate auxillary structures (e.g.
467 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
468 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
469 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
470 		 * memory reclaim re-entering the filesystem here and
471 		 * potentially deadlocking.
472 		 */
473 		nofs_flag = memalloc_nofs_save();
474 		do {
475 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
476 						-1, PAGE_KERNEL);
477 			if (bp->b_addr)
478 				break;
479 			vm_unmap_aliases();
480 		} while (retried++ <= 1);
481 		memalloc_nofs_restore(nofs_flag);
482 
483 		if (!bp->b_addr)
484 			return -ENOMEM;
485 		bp->b_addr += bp->b_offset;
486 	}
487 
488 	return 0;
489 }
490 
491 /*
492  *	Finding and Reading Buffers
493  */
494 static int
495 _xfs_buf_obj_cmp(
496 	struct rhashtable_compare_arg	*arg,
497 	const void			*obj)
498 {
499 	const struct xfs_buf_map	*map = arg->key;
500 	const struct xfs_buf		*bp = obj;
501 
502 	/*
503 	 * The key hashing in the lookup path depends on the key being the
504 	 * first element of the compare_arg, make sure to assert this.
505 	 */
506 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
507 
508 	if (bp->b_bn != map->bm_bn)
509 		return 1;
510 
511 	if (unlikely(bp->b_length != map->bm_len)) {
512 		/*
513 		 * found a block number match. If the range doesn't
514 		 * match, the only way this is allowed is if the buffer
515 		 * in the cache is stale and the transaction that made
516 		 * it stale has not yet committed. i.e. we are
517 		 * reallocating a busy extent. Skip this buffer and
518 		 * continue searching for an exact match.
519 		 */
520 		ASSERT(bp->b_flags & XBF_STALE);
521 		return 1;
522 	}
523 	return 0;
524 }
525 
526 static const struct rhashtable_params xfs_buf_hash_params = {
527 	.min_size		= 32,	/* empty AGs have minimal footprint */
528 	.nelem_hint		= 16,
529 	.key_len		= sizeof(xfs_daddr_t),
530 	.key_offset		= offsetof(struct xfs_buf, b_bn),
531 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
532 	.automatic_shrinking	= true,
533 	.obj_cmpfn		= _xfs_buf_obj_cmp,
534 };
535 
536 int
537 xfs_buf_hash_init(
538 	struct xfs_perag	*pag)
539 {
540 	spin_lock_init(&pag->pag_buf_lock);
541 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
542 }
543 
544 void
545 xfs_buf_hash_destroy(
546 	struct xfs_perag	*pag)
547 {
548 	rhashtable_destroy(&pag->pag_buf_hash);
549 }
550 
551 /*
552  *	Look up, and creates if absent, a lockable buffer for
553  *	a given range of an inode.  The buffer is returned
554  *	locked.	No I/O is implied by this call.
555  */
556 xfs_buf_t *
557 _xfs_buf_find(
558 	struct xfs_buftarg	*btp,
559 	struct xfs_buf_map	*map,
560 	int			nmaps,
561 	xfs_buf_flags_t		flags,
562 	xfs_buf_t		*new_bp)
563 {
564 	struct xfs_perag	*pag;
565 	xfs_buf_t		*bp;
566 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
567 	xfs_daddr_t		eofs;
568 	int			i;
569 
570 	for (i = 0; i < nmaps; i++)
571 		cmap.bm_len += map[i].bm_len;
572 
573 	/* Check for IOs smaller than the sector size / not sector aligned */
574 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
575 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
576 
577 	/*
578 	 * Corrupted block numbers can get through to here, unfortunately, so we
579 	 * have to check that the buffer falls within the filesystem bounds.
580 	 */
581 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
582 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
583 		/*
584 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
585 		 * but none of the higher level infrastructure supports
586 		 * returning a specific error on buffer lookup failures.
587 		 */
588 		xfs_alert(btp->bt_mount,
589 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
590 			  __func__, cmap.bm_bn, eofs);
591 		WARN_ON(1);
592 		return NULL;
593 	}
594 
595 	pag = xfs_perag_get(btp->bt_mount,
596 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
597 
598 	spin_lock(&pag->pag_buf_lock);
599 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
600 				    xfs_buf_hash_params);
601 	if (bp) {
602 		atomic_inc(&bp->b_hold);
603 		goto found;
604 	}
605 
606 	/* No match found */
607 	if (new_bp) {
608 		/* the buffer keeps the perag reference until it is freed */
609 		new_bp->b_pag = pag;
610 		rhashtable_insert_fast(&pag->pag_buf_hash,
611 				       &new_bp->b_rhash_head,
612 				       xfs_buf_hash_params);
613 		spin_unlock(&pag->pag_buf_lock);
614 	} else {
615 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
616 		spin_unlock(&pag->pag_buf_lock);
617 		xfs_perag_put(pag);
618 	}
619 	return new_bp;
620 
621 found:
622 	spin_unlock(&pag->pag_buf_lock);
623 	xfs_perag_put(pag);
624 
625 	if (!xfs_buf_trylock(bp)) {
626 		if (flags & XBF_TRYLOCK) {
627 			xfs_buf_rele(bp);
628 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
629 			return NULL;
630 		}
631 		xfs_buf_lock(bp);
632 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
633 	}
634 
635 	/*
636 	 * if the buffer is stale, clear all the external state associated with
637 	 * it. We need to keep flags such as how we allocated the buffer memory
638 	 * intact here.
639 	 */
640 	if (bp->b_flags & XBF_STALE) {
641 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
642 		ASSERT(bp->b_iodone == NULL);
643 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
644 		bp->b_ops = NULL;
645 	}
646 
647 	trace_xfs_buf_find(bp, flags, _RET_IP_);
648 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
649 	return bp;
650 }
651 
652 /*
653  * Assembles a buffer covering the specified range. The code is optimised for
654  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
655  * more hits than misses.
656  */
657 struct xfs_buf *
658 xfs_buf_get_map(
659 	struct xfs_buftarg	*target,
660 	struct xfs_buf_map	*map,
661 	int			nmaps,
662 	xfs_buf_flags_t		flags)
663 {
664 	struct xfs_buf		*bp;
665 	struct xfs_buf		*new_bp;
666 	int			error = 0;
667 
668 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
669 	if (likely(bp))
670 		goto found;
671 
672 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
673 	if (unlikely(!new_bp))
674 		return NULL;
675 
676 	error = xfs_buf_allocate_memory(new_bp, flags);
677 	if (error) {
678 		xfs_buf_free(new_bp);
679 		return NULL;
680 	}
681 
682 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
683 	if (!bp) {
684 		xfs_buf_free(new_bp);
685 		return NULL;
686 	}
687 
688 	if (bp != new_bp)
689 		xfs_buf_free(new_bp);
690 
691 found:
692 	if (!bp->b_addr) {
693 		error = _xfs_buf_map_pages(bp, flags);
694 		if (unlikely(error)) {
695 			xfs_warn(target->bt_mount,
696 				"%s: failed to map pagesn", __func__);
697 			xfs_buf_relse(bp);
698 			return NULL;
699 		}
700 	}
701 
702 	/*
703 	 * Clear b_error if this is a lookup from a caller that doesn't expect
704 	 * valid data to be found in the buffer.
705 	 */
706 	if (!(flags & XBF_READ))
707 		xfs_buf_ioerror(bp, 0);
708 
709 	XFS_STATS_INC(target->bt_mount, xb_get);
710 	trace_xfs_buf_get(bp, flags, _RET_IP_);
711 	return bp;
712 }
713 
714 STATIC int
715 _xfs_buf_read(
716 	xfs_buf_t		*bp,
717 	xfs_buf_flags_t		flags)
718 {
719 	ASSERT(!(flags & XBF_WRITE));
720 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
721 
722 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
723 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
724 
725 	if (flags & XBF_ASYNC) {
726 		xfs_buf_submit(bp);
727 		return 0;
728 	}
729 	return xfs_buf_submit_wait(bp);
730 }
731 
732 xfs_buf_t *
733 xfs_buf_read_map(
734 	struct xfs_buftarg	*target,
735 	struct xfs_buf_map	*map,
736 	int			nmaps,
737 	xfs_buf_flags_t		flags,
738 	const struct xfs_buf_ops *ops)
739 {
740 	struct xfs_buf		*bp;
741 
742 	flags |= XBF_READ;
743 
744 	bp = xfs_buf_get_map(target, map, nmaps, flags);
745 	if (bp) {
746 		trace_xfs_buf_read(bp, flags, _RET_IP_);
747 
748 		if (!(bp->b_flags & XBF_DONE)) {
749 			XFS_STATS_INC(target->bt_mount, xb_get_read);
750 			bp->b_ops = ops;
751 			_xfs_buf_read(bp, flags);
752 		} else if (flags & XBF_ASYNC) {
753 			/*
754 			 * Read ahead call which is already satisfied,
755 			 * drop the buffer
756 			 */
757 			xfs_buf_relse(bp);
758 			return NULL;
759 		} else {
760 			/* We do not want read in the flags */
761 			bp->b_flags &= ~XBF_READ;
762 		}
763 	}
764 
765 	return bp;
766 }
767 
768 /*
769  *	If we are not low on memory then do the readahead in a deadlock
770  *	safe manner.
771  */
772 void
773 xfs_buf_readahead_map(
774 	struct xfs_buftarg	*target,
775 	struct xfs_buf_map	*map,
776 	int			nmaps,
777 	const struct xfs_buf_ops *ops)
778 {
779 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
780 		return;
781 
782 	xfs_buf_read_map(target, map, nmaps,
783 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
784 }
785 
786 /*
787  * Read an uncached buffer from disk. Allocates and returns a locked
788  * buffer containing the disk contents or nothing.
789  */
790 int
791 xfs_buf_read_uncached(
792 	struct xfs_buftarg	*target,
793 	xfs_daddr_t		daddr,
794 	size_t			numblks,
795 	int			flags,
796 	struct xfs_buf		**bpp,
797 	const struct xfs_buf_ops *ops)
798 {
799 	struct xfs_buf		*bp;
800 
801 	*bpp = NULL;
802 
803 	bp = xfs_buf_get_uncached(target, numblks, flags);
804 	if (!bp)
805 		return -ENOMEM;
806 
807 	/* set up the buffer for a read IO */
808 	ASSERT(bp->b_map_count == 1);
809 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
810 	bp->b_maps[0].bm_bn = daddr;
811 	bp->b_flags |= XBF_READ;
812 	bp->b_ops = ops;
813 
814 	xfs_buf_submit_wait(bp);
815 	if (bp->b_error) {
816 		int	error = bp->b_error;
817 		xfs_buf_relse(bp);
818 		return error;
819 	}
820 
821 	*bpp = bp;
822 	return 0;
823 }
824 
825 /*
826  * Return a buffer allocated as an empty buffer and associated to external
827  * memory via xfs_buf_associate_memory() back to it's empty state.
828  */
829 void
830 xfs_buf_set_empty(
831 	struct xfs_buf		*bp,
832 	size_t			numblks)
833 {
834 	if (bp->b_pages)
835 		_xfs_buf_free_pages(bp);
836 
837 	bp->b_pages = NULL;
838 	bp->b_page_count = 0;
839 	bp->b_addr = NULL;
840 	bp->b_length = numblks;
841 	bp->b_io_length = numblks;
842 
843 	ASSERT(bp->b_map_count == 1);
844 	bp->b_bn = XFS_BUF_DADDR_NULL;
845 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
846 	bp->b_maps[0].bm_len = bp->b_length;
847 }
848 
849 static inline struct page *
850 mem_to_page(
851 	void			*addr)
852 {
853 	if ((!is_vmalloc_addr(addr))) {
854 		return virt_to_page(addr);
855 	} else {
856 		return vmalloc_to_page(addr);
857 	}
858 }
859 
860 int
861 xfs_buf_associate_memory(
862 	xfs_buf_t		*bp,
863 	void			*mem,
864 	size_t			len)
865 {
866 	int			rval;
867 	int			i = 0;
868 	unsigned long		pageaddr;
869 	unsigned long		offset;
870 	size_t			buflen;
871 	int			page_count;
872 
873 	pageaddr = (unsigned long)mem & PAGE_MASK;
874 	offset = (unsigned long)mem - pageaddr;
875 	buflen = PAGE_ALIGN(len + offset);
876 	page_count = buflen >> PAGE_SHIFT;
877 
878 	/* Free any previous set of page pointers */
879 	if (bp->b_pages)
880 		_xfs_buf_free_pages(bp);
881 
882 	bp->b_pages = NULL;
883 	bp->b_addr = mem;
884 
885 	rval = _xfs_buf_get_pages(bp, page_count);
886 	if (rval)
887 		return rval;
888 
889 	bp->b_offset = offset;
890 
891 	for (i = 0; i < bp->b_page_count; i++) {
892 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
893 		pageaddr += PAGE_SIZE;
894 	}
895 
896 	bp->b_io_length = BTOBB(len);
897 	bp->b_length = BTOBB(buflen);
898 
899 	return 0;
900 }
901 
902 xfs_buf_t *
903 xfs_buf_get_uncached(
904 	struct xfs_buftarg	*target,
905 	size_t			numblks,
906 	int			flags)
907 {
908 	unsigned long		page_count;
909 	int			error, i;
910 	struct xfs_buf		*bp;
911 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
912 
913 	/* flags might contain irrelevant bits, pass only what we care about */
914 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
915 	if (unlikely(bp == NULL))
916 		goto fail;
917 
918 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
919 	error = _xfs_buf_get_pages(bp, page_count);
920 	if (error)
921 		goto fail_free_buf;
922 
923 	for (i = 0; i < page_count; i++) {
924 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
925 		if (!bp->b_pages[i])
926 			goto fail_free_mem;
927 	}
928 	bp->b_flags |= _XBF_PAGES;
929 
930 	error = _xfs_buf_map_pages(bp, 0);
931 	if (unlikely(error)) {
932 		xfs_warn(target->bt_mount,
933 			"%s: failed to map pages", __func__);
934 		goto fail_free_mem;
935 	}
936 
937 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
938 	return bp;
939 
940  fail_free_mem:
941 	while (--i >= 0)
942 		__free_page(bp->b_pages[i]);
943 	_xfs_buf_free_pages(bp);
944  fail_free_buf:
945 	xfs_buf_free_maps(bp);
946 	kmem_zone_free(xfs_buf_zone, bp);
947  fail:
948 	return NULL;
949 }
950 
951 /*
952  *	Increment reference count on buffer, to hold the buffer concurrently
953  *	with another thread which may release (free) the buffer asynchronously.
954  *	Must hold the buffer already to call this function.
955  */
956 void
957 xfs_buf_hold(
958 	xfs_buf_t		*bp)
959 {
960 	trace_xfs_buf_hold(bp, _RET_IP_);
961 	atomic_inc(&bp->b_hold);
962 }
963 
964 /*
965  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
966  * placed on LRU or freed (depending on b_lru_ref).
967  */
968 void
969 xfs_buf_rele(
970 	xfs_buf_t		*bp)
971 {
972 	struct xfs_perag	*pag = bp->b_pag;
973 	bool			release;
974 	bool			freebuf = false;
975 
976 	trace_xfs_buf_rele(bp, _RET_IP_);
977 
978 	if (!pag) {
979 		ASSERT(list_empty(&bp->b_lru));
980 		if (atomic_dec_and_test(&bp->b_hold)) {
981 			xfs_buf_ioacct_dec(bp);
982 			xfs_buf_free(bp);
983 		}
984 		return;
985 	}
986 
987 	ASSERT(atomic_read(&bp->b_hold) > 0);
988 
989 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
990 	spin_lock(&bp->b_lock);
991 	if (!release) {
992 		/*
993 		 * Drop the in-flight state if the buffer is already on the LRU
994 		 * and it holds the only reference. This is racy because we
995 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
996 		 * ensures the decrement occurs only once per-buf.
997 		 */
998 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
999 			__xfs_buf_ioacct_dec(bp);
1000 		goto out_unlock;
1001 	}
1002 
1003 	/* the last reference has been dropped ... */
1004 	__xfs_buf_ioacct_dec(bp);
1005 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1006 		/*
1007 		 * If the buffer is added to the LRU take a new reference to the
1008 		 * buffer for the LRU and clear the (now stale) dispose list
1009 		 * state flag
1010 		 */
1011 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1012 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1013 			atomic_inc(&bp->b_hold);
1014 		}
1015 		spin_unlock(&pag->pag_buf_lock);
1016 	} else {
1017 		/*
1018 		 * most of the time buffers will already be removed from the
1019 		 * LRU, so optimise that case by checking for the
1020 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1021 		 * was on was the disposal list
1022 		 */
1023 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1024 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1025 		} else {
1026 			ASSERT(list_empty(&bp->b_lru));
1027 		}
1028 
1029 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1030 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1031 				       xfs_buf_hash_params);
1032 		spin_unlock(&pag->pag_buf_lock);
1033 		xfs_perag_put(pag);
1034 		freebuf = true;
1035 	}
1036 
1037 out_unlock:
1038 	spin_unlock(&bp->b_lock);
1039 
1040 	if (freebuf)
1041 		xfs_buf_free(bp);
1042 }
1043 
1044 
1045 /*
1046  *	Lock a buffer object, if it is not already locked.
1047  *
1048  *	If we come across a stale, pinned, locked buffer, we know that we are
1049  *	being asked to lock a buffer that has been reallocated. Because it is
1050  *	pinned, we know that the log has not been pushed to disk and hence it
1051  *	will still be locked.  Rather than continuing to have trylock attempts
1052  *	fail until someone else pushes the log, push it ourselves before
1053  *	returning.  This means that the xfsaild will not get stuck trying
1054  *	to push on stale inode buffers.
1055  */
1056 int
1057 xfs_buf_trylock(
1058 	struct xfs_buf		*bp)
1059 {
1060 	int			locked;
1061 
1062 	locked = down_trylock(&bp->b_sema) == 0;
1063 	if (locked) {
1064 		XB_SET_OWNER(bp);
1065 		trace_xfs_buf_trylock(bp, _RET_IP_);
1066 	} else {
1067 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1068 	}
1069 	return locked;
1070 }
1071 
1072 /*
1073  *	Lock a buffer object.
1074  *
1075  *	If we come across a stale, pinned, locked buffer, we know that we
1076  *	are being asked to lock a buffer that has been reallocated. Because
1077  *	it is pinned, we know that the log has not been pushed to disk and
1078  *	hence it will still be locked. Rather than sleeping until someone
1079  *	else pushes the log, push it ourselves before trying to get the lock.
1080  */
1081 void
1082 xfs_buf_lock(
1083 	struct xfs_buf		*bp)
1084 {
1085 	trace_xfs_buf_lock(bp, _RET_IP_);
1086 
1087 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1088 		xfs_log_force(bp->b_target->bt_mount, 0);
1089 	down(&bp->b_sema);
1090 	XB_SET_OWNER(bp);
1091 
1092 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1093 }
1094 
1095 void
1096 xfs_buf_unlock(
1097 	struct xfs_buf		*bp)
1098 {
1099 	ASSERT(xfs_buf_islocked(bp));
1100 
1101 	XB_CLEAR_OWNER(bp);
1102 	up(&bp->b_sema);
1103 
1104 	trace_xfs_buf_unlock(bp, _RET_IP_);
1105 }
1106 
1107 STATIC void
1108 xfs_buf_wait_unpin(
1109 	xfs_buf_t		*bp)
1110 {
1111 	DECLARE_WAITQUEUE	(wait, current);
1112 
1113 	if (atomic_read(&bp->b_pin_count) == 0)
1114 		return;
1115 
1116 	add_wait_queue(&bp->b_waiters, &wait);
1117 	for (;;) {
1118 		set_current_state(TASK_UNINTERRUPTIBLE);
1119 		if (atomic_read(&bp->b_pin_count) == 0)
1120 			break;
1121 		io_schedule();
1122 	}
1123 	remove_wait_queue(&bp->b_waiters, &wait);
1124 	set_current_state(TASK_RUNNING);
1125 }
1126 
1127 /*
1128  *	Buffer Utility Routines
1129  */
1130 
1131 void
1132 xfs_buf_ioend(
1133 	struct xfs_buf	*bp)
1134 {
1135 	bool		read = bp->b_flags & XBF_READ;
1136 
1137 	trace_xfs_buf_iodone(bp, _RET_IP_);
1138 
1139 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1140 
1141 	/*
1142 	 * Pull in IO completion errors now. We are guaranteed to be running
1143 	 * single threaded, so we don't need the lock to read b_io_error.
1144 	 */
1145 	if (!bp->b_error && bp->b_io_error)
1146 		xfs_buf_ioerror(bp, bp->b_io_error);
1147 
1148 	/* Only validate buffers that were read without errors */
1149 	if (read && !bp->b_error && bp->b_ops) {
1150 		ASSERT(!bp->b_iodone);
1151 		bp->b_ops->verify_read(bp);
1152 	}
1153 
1154 	if (!bp->b_error)
1155 		bp->b_flags |= XBF_DONE;
1156 
1157 	if (bp->b_iodone)
1158 		(*(bp->b_iodone))(bp);
1159 	else if (bp->b_flags & XBF_ASYNC)
1160 		xfs_buf_relse(bp);
1161 	else
1162 		complete(&bp->b_iowait);
1163 }
1164 
1165 static void
1166 xfs_buf_ioend_work(
1167 	struct work_struct	*work)
1168 {
1169 	struct xfs_buf		*bp =
1170 		container_of(work, xfs_buf_t, b_ioend_work);
1171 
1172 	xfs_buf_ioend(bp);
1173 }
1174 
1175 static void
1176 xfs_buf_ioend_async(
1177 	struct xfs_buf	*bp)
1178 {
1179 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1180 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1181 }
1182 
1183 void
1184 __xfs_buf_ioerror(
1185 	xfs_buf_t		*bp,
1186 	int			error,
1187 	xfs_failaddr_t		failaddr)
1188 {
1189 	ASSERT(error <= 0 && error >= -1000);
1190 	bp->b_error = error;
1191 	trace_xfs_buf_ioerror(bp, error, failaddr);
1192 }
1193 
1194 void
1195 xfs_buf_ioerror_alert(
1196 	struct xfs_buf		*bp,
1197 	const char		*func)
1198 {
1199 	xfs_alert(bp->b_target->bt_mount,
1200 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1201 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1202 			-bp->b_error);
1203 }
1204 
1205 int
1206 xfs_bwrite(
1207 	struct xfs_buf		*bp)
1208 {
1209 	int			error;
1210 
1211 	ASSERT(xfs_buf_islocked(bp));
1212 
1213 	bp->b_flags |= XBF_WRITE;
1214 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1215 			 XBF_WRITE_FAIL | XBF_DONE);
1216 
1217 	error = xfs_buf_submit_wait(bp);
1218 	if (error) {
1219 		xfs_force_shutdown(bp->b_target->bt_mount,
1220 				   SHUTDOWN_META_IO_ERROR);
1221 	}
1222 	return error;
1223 }
1224 
1225 static void
1226 xfs_buf_bio_end_io(
1227 	struct bio		*bio)
1228 {
1229 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1230 
1231 	/*
1232 	 * don't overwrite existing errors - otherwise we can lose errors on
1233 	 * buffers that require multiple bios to complete.
1234 	 */
1235 	if (bio->bi_status) {
1236 		int error = blk_status_to_errno(bio->bi_status);
1237 
1238 		cmpxchg(&bp->b_io_error, 0, error);
1239 	}
1240 
1241 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1242 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1243 
1244 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1245 		xfs_buf_ioend_async(bp);
1246 	bio_put(bio);
1247 }
1248 
1249 static void
1250 xfs_buf_ioapply_map(
1251 	struct xfs_buf	*bp,
1252 	int		map,
1253 	int		*buf_offset,
1254 	int		*count,
1255 	int		op,
1256 	int		op_flags)
1257 {
1258 	int		page_index;
1259 	int		total_nr_pages = bp->b_page_count;
1260 	int		nr_pages;
1261 	struct bio	*bio;
1262 	sector_t	sector =  bp->b_maps[map].bm_bn;
1263 	int		size;
1264 	int		offset;
1265 
1266 	/* skip the pages in the buffer before the start offset */
1267 	page_index = 0;
1268 	offset = *buf_offset;
1269 	while (offset >= PAGE_SIZE) {
1270 		page_index++;
1271 		offset -= PAGE_SIZE;
1272 	}
1273 
1274 	/*
1275 	 * Limit the IO size to the length of the current vector, and update the
1276 	 * remaining IO count for the next time around.
1277 	 */
1278 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1279 	*count -= size;
1280 	*buf_offset += size;
1281 
1282 next_chunk:
1283 	atomic_inc(&bp->b_io_remaining);
1284 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1285 
1286 	bio = bio_alloc(GFP_NOIO, nr_pages);
1287 	bio_set_dev(bio, bp->b_target->bt_bdev);
1288 	bio->bi_iter.bi_sector = sector;
1289 	bio->bi_end_io = xfs_buf_bio_end_io;
1290 	bio->bi_private = bp;
1291 	bio_set_op_attrs(bio, op, op_flags);
1292 
1293 	for (; size && nr_pages; nr_pages--, page_index++) {
1294 		int	rbytes, nbytes = PAGE_SIZE - offset;
1295 
1296 		if (nbytes > size)
1297 			nbytes = size;
1298 
1299 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1300 				      offset);
1301 		if (rbytes < nbytes)
1302 			break;
1303 
1304 		offset = 0;
1305 		sector += BTOBB(nbytes);
1306 		size -= nbytes;
1307 		total_nr_pages--;
1308 	}
1309 
1310 	if (likely(bio->bi_iter.bi_size)) {
1311 		if (xfs_buf_is_vmapped(bp)) {
1312 			flush_kernel_vmap_range(bp->b_addr,
1313 						xfs_buf_vmap_len(bp));
1314 		}
1315 		submit_bio(bio);
1316 		if (size)
1317 			goto next_chunk;
1318 	} else {
1319 		/*
1320 		 * This is guaranteed not to be the last io reference count
1321 		 * because the caller (xfs_buf_submit) holds a count itself.
1322 		 */
1323 		atomic_dec(&bp->b_io_remaining);
1324 		xfs_buf_ioerror(bp, -EIO);
1325 		bio_put(bio);
1326 	}
1327 
1328 }
1329 
1330 STATIC void
1331 _xfs_buf_ioapply(
1332 	struct xfs_buf	*bp)
1333 {
1334 	struct blk_plug	plug;
1335 	int		op;
1336 	int		op_flags = 0;
1337 	int		offset;
1338 	int		size;
1339 	int		i;
1340 
1341 	/*
1342 	 * Make sure we capture only current IO errors rather than stale errors
1343 	 * left over from previous use of the buffer (e.g. failed readahead).
1344 	 */
1345 	bp->b_error = 0;
1346 
1347 	/*
1348 	 * Initialize the I/O completion workqueue if we haven't yet or the
1349 	 * submitter has not opted to specify a custom one.
1350 	 */
1351 	if (!bp->b_ioend_wq)
1352 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1353 
1354 	if (bp->b_flags & XBF_WRITE) {
1355 		op = REQ_OP_WRITE;
1356 		if (bp->b_flags & XBF_SYNCIO)
1357 			op_flags = REQ_SYNC;
1358 		if (bp->b_flags & XBF_FUA)
1359 			op_flags |= REQ_FUA;
1360 		if (bp->b_flags & XBF_FLUSH)
1361 			op_flags |= REQ_PREFLUSH;
1362 
1363 		/*
1364 		 * Run the write verifier callback function if it exists. If
1365 		 * this function fails it will mark the buffer with an error and
1366 		 * the IO should not be dispatched.
1367 		 */
1368 		if (bp->b_ops) {
1369 			bp->b_ops->verify_write(bp);
1370 			if (bp->b_error) {
1371 				xfs_force_shutdown(bp->b_target->bt_mount,
1372 						   SHUTDOWN_CORRUPT_INCORE);
1373 				return;
1374 			}
1375 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1376 			struct xfs_mount *mp = bp->b_target->bt_mount;
1377 
1378 			/*
1379 			 * non-crc filesystems don't attach verifiers during
1380 			 * log recovery, so don't warn for such filesystems.
1381 			 */
1382 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1383 				xfs_warn(mp,
1384 					"%s: no buf ops on daddr 0x%llx len %d",
1385 					__func__, bp->b_bn, bp->b_length);
1386 				xfs_hex_dump(bp->b_addr,
1387 						XFS_CORRUPTION_DUMP_LEN);
1388 				dump_stack();
1389 			}
1390 		}
1391 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1392 		op = REQ_OP_READ;
1393 		op_flags = REQ_RAHEAD;
1394 	} else {
1395 		op = REQ_OP_READ;
1396 	}
1397 
1398 	/* we only use the buffer cache for meta-data */
1399 	op_flags |= REQ_META;
1400 
1401 	/*
1402 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1403 	 * into the buffer and the desired IO size before we start -
1404 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1405 	 * subsequent call.
1406 	 */
1407 	offset = bp->b_offset;
1408 	size = BBTOB(bp->b_io_length);
1409 	blk_start_plug(&plug);
1410 	for (i = 0; i < bp->b_map_count; i++) {
1411 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1412 		if (bp->b_error)
1413 			break;
1414 		if (size <= 0)
1415 			break;	/* all done */
1416 	}
1417 	blk_finish_plug(&plug);
1418 }
1419 
1420 /*
1421  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1422  * the current reference to the IO. It is not safe to reference the buffer after
1423  * a call to this function unless the caller holds an additional reference
1424  * itself.
1425  */
1426 void
1427 xfs_buf_submit(
1428 	struct xfs_buf	*bp)
1429 {
1430 	trace_xfs_buf_submit(bp, _RET_IP_);
1431 
1432 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1433 	ASSERT(bp->b_flags & XBF_ASYNC);
1434 
1435 	/* on shutdown we stale and complete the buffer immediately */
1436 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1437 		xfs_buf_ioerror(bp, -EIO);
1438 		bp->b_flags &= ~XBF_DONE;
1439 		xfs_buf_stale(bp);
1440 		xfs_buf_ioend(bp);
1441 		return;
1442 	}
1443 
1444 	if (bp->b_flags & XBF_WRITE)
1445 		xfs_buf_wait_unpin(bp);
1446 
1447 	/* clear the internal error state to avoid spurious errors */
1448 	bp->b_io_error = 0;
1449 
1450 	/*
1451 	 * The caller's reference is released during I/O completion.
1452 	 * This occurs some time after the last b_io_remaining reference is
1453 	 * released, so after we drop our Io reference we have to have some
1454 	 * other reference to ensure the buffer doesn't go away from underneath
1455 	 * us. Take a direct reference to ensure we have safe access to the
1456 	 * buffer until we are finished with it.
1457 	 */
1458 	xfs_buf_hold(bp);
1459 
1460 	/*
1461 	 * Set the count to 1 initially, this will stop an I/O completion
1462 	 * callout which happens before we have started all the I/O from calling
1463 	 * xfs_buf_ioend too early.
1464 	 */
1465 	atomic_set(&bp->b_io_remaining, 1);
1466 	xfs_buf_ioacct_inc(bp);
1467 	_xfs_buf_ioapply(bp);
1468 
1469 	/*
1470 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1471 	 * reference we took above. If we drop it to zero, run completion so
1472 	 * that we don't return to the caller with completion still pending.
1473 	 */
1474 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1475 		if (bp->b_error)
1476 			xfs_buf_ioend(bp);
1477 		else
1478 			xfs_buf_ioend_async(bp);
1479 	}
1480 
1481 	xfs_buf_rele(bp);
1482 	/* Note: it is not safe to reference bp now we've dropped our ref */
1483 }
1484 
1485 /*
1486  * Synchronous buffer IO submission path, read or write.
1487  */
1488 int
1489 xfs_buf_submit_wait(
1490 	struct xfs_buf	*bp)
1491 {
1492 	int		error;
1493 
1494 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1495 
1496 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1497 
1498 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1499 		xfs_buf_ioerror(bp, -EIO);
1500 		xfs_buf_stale(bp);
1501 		bp->b_flags &= ~XBF_DONE;
1502 		return -EIO;
1503 	}
1504 
1505 	if (bp->b_flags & XBF_WRITE)
1506 		xfs_buf_wait_unpin(bp);
1507 
1508 	/* clear the internal error state to avoid spurious errors */
1509 	bp->b_io_error = 0;
1510 
1511 	/*
1512 	 * For synchronous IO, the IO does not inherit the submitters reference
1513 	 * count, nor the buffer lock. Hence we cannot release the reference we
1514 	 * are about to take until we've waited for all IO completion to occur,
1515 	 * including any xfs_buf_ioend_async() work that may be pending.
1516 	 */
1517 	xfs_buf_hold(bp);
1518 
1519 	/*
1520 	 * Set the count to 1 initially, this will stop an I/O completion
1521 	 * callout which happens before we have started all the I/O from calling
1522 	 * xfs_buf_ioend too early.
1523 	 */
1524 	atomic_set(&bp->b_io_remaining, 1);
1525 	_xfs_buf_ioapply(bp);
1526 
1527 	/*
1528 	 * make sure we run completion synchronously if it raced with us and is
1529 	 * already complete.
1530 	 */
1531 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1532 		xfs_buf_ioend(bp);
1533 
1534 	/* wait for completion before gathering the error from the buffer */
1535 	trace_xfs_buf_iowait(bp, _RET_IP_);
1536 	wait_for_completion(&bp->b_iowait);
1537 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1538 	error = bp->b_error;
1539 
1540 	/*
1541 	 * all done now, we can release the hold that keeps the buffer
1542 	 * referenced for the entire IO.
1543 	 */
1544 	xfs_buf_rele(bp);
1545 	return error;
1546 }
1547 
1548 void *
1549 xfs_buf_offset(
1550 	struct xfs_buf		*bp,
1551 	size_t			offset)
1552 {
1553 	struct page		*page;
1554 
1555 	if (bp->b_addr)
1556 		return bp->b_addr + offset;
1557 
1558 	offset += bp->b_offset;
1559 	page = bp->b_pages[offset >> PAGE_SHIFT];
1560 	return page_address(page) + (offset & (PAGE_SIZE-1));
1561 }
1562 
1563 /*
1564  *	Move data into or out of a buffer.
1565  */
1566 void
1567 xfs_buf_iomove(
1568 	xfs_buf_t		*bp,	/* buffer to process		*/
1569 	size_t			boff,	/* starting buffer offset	*/
1570 	size_t			bsize,	/* length to copy		*/
1571 	void			*data,	/* data address			*/
1572 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1573 {
1574 	size_t			bend;
1575 
1576 	bend = boff + bsize;
1577 	while (boff < bend) {
1578 		struct page	*page;
1579 		int		page_index, page_offset, csize;
1580 
1581 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1582 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1583 		page = bp->b_pages[page_index];
1584 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1585 				      BBTOB(bp->b_io_length) - boff);
1586 
1587 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1588 
1589 		switch (mode) {
1590 		case XBRW_ZERO:
1591 			memset(page_address(page) + page_offset, 0, csize);
1592 			break;
1593 		case XBRW_READ:
1594 			memcpy(data, page_address(page) + page_offset, csize);
1595 			break;
1596 		case XBRW_WRITE:
1597 			memcpy(page_address(page) + page_offset, data, csize);
1598 		}
1599 
1600 		boff += csize;
1601 		data += csize;
1602 	}
1603 }
1604 
1605 /*
1606  *	Handling of buffer targets (buftargs).
1607  */
1608 
1609 /*
1610  * Wait for any bufs with callbacks that have been submitted but have not yet
1611  * returned. These buffers will have an elevated hold count, so wait on those
1612  * while freeing all the buffers only held by the LRU.
1613  */
1614 static enum lru_status
1615 xfs_buftarg_wait_rele(
1616 	struct list_head	*item,
1617 	struct list_lru_one	*lru,
1618 	spinlock_t		*lru_lock,
1619 	void			*arg)
1620 
1621 {
1622 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1623 	struct list_head	*dispose = arg;
1624 
1625 	if (atomic_read(&bp->b_hold) > 1) {
1626 		/* need to wait, so skip it this pass */
1627 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1628 		return LRU_SKIP;
1629 	}
1630 	if (!spin_trylock(&bp->b_lock))
1631 		return LRU_SKIP;
1632 
1633 	/*
1634 	 * clear the LRU reference count so the buffer doesn't get
1635 	 * ignored in xfs_buf_rele().
1636 	 */
1637 	atomic_set(&bp->b_lru_ref, 0);
1638 	bp->b_state |= XFS_BSTATE_DISPOSE;
1639 	list_lru_isolate_move(lru, item, dispose);
1640 	spin_unlock(&bp->b_lock);
1641 	return LRU_REMOVED;
1642 }
1643 
1644 void
1645 xfs_wait_buftarg(
1646 	struct xfs_buftarg	*btp)
1647 {
1648 	LIST_HEAD(dispose);
1649 	int loop = 0;
1650 
1651 	/*
1652 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1653 	 * released. This is critical as new buffers do not make the LRU until
1654 	 * they are released.
1655 	 *
1656 	 * Next, flush the buffer workqueue to ensure all completion processing
1657 	 * has finished. Just waiting on buffer locks is not sufficient for
1658 	 * async IO as the reference count held over IO is not released until
1659 	 * after the buffer lock is dropped. Hence we need to ensure here that
1660 	 * all reference counts have been dropped before we start walking the
1661 	 * LRU list.
1662 	 */
1663 	while (percpu_counter_sum(&btp->bt_io_count))
1664 		delay(100);
1665 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1666 
1667 	/* loop until there is nothing left on the lru list. */
1668 	while (list_lru_count(&btp->bt_lru)) {
1669 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1670 			      &dispose, LONG_MAX);
1671 
1672 		while (!list_empty(&dispose)) {
1673 			struct xfs_buf *bp;
1674 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1675 			list_del_init(&bp->b_lru);
1676 			if (bp->b_flags & XBF_WRITE_FAIL) {
1677 				xfs_alert(btp->bt_mount,
1678 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1679 					(long long)bp->b_bn);
1680 				xfs_alert(btp->bt_mount,
1681 "Please run xfs_repair to determine the extent of the problem.");
1682 			}
1683 			xfs_buf_rele(bp);
1684 		}
1685 		if (loop++ != 0)
1686 			delay(100);
1687 	}
1688 }
1689 
1690 static enum lru_status
1691 xfs_buftarg_isolate(
1692 	struct list_head	*item,
1693 	struct list_lru_one	*lru,
1694 	spinlock_t		*lru_lock,
1695 	void			*arg)
1696 {
1697 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1698 	struct list_head	*dispose = arg;
1699 
1700 	/*
1701 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1702 	 * If we fail to get the lock, just skip it.
1703 	 */
1704 	if (!spin_trylock(&bp->b_lock))
1705 		return LRU_SKIP;
1706 	/*
1707 	 * Decrement the b_lru_ref count unless the value is already
1708 	 * zero. If the value is already zero, we need to reclaim the
1709 	 * buffer, otherwise it gets another trip through the LRU.
1710 	 */
1711 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1712 		spin_unlock(&bp->b_lock);
1713 		return LRU_ROTATE;
1714 	}
1715 
1716 	bp->b_state |= XFS_BSTATE_DISPOSE;
1717 	list_lru_isolate_move(lru, item, dispose);
1718 	spin_unlock(&bp->b_lock);
1719 	return LRU_REMOVED;
1720 }
1721 
1722 static unsigned long
1723 xfs_buftarg_shrink_scan(
1724 	struct shrinker		*shrink,
1725 	struct shrink_control	*sc)
1726 {
1727 	struct xfs_buftarg	*btp = container_of(shrink,
1728 					struct xfs_buftarg, bt_shrinker);
1729 	LIST_HEAD(dispose);
1730 	unsigned long		freed;
1731 
1732 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1733 				     xfs_buftarg_isolate, &dispose);
1734 
1735 	while (!list_empty(&dispose)) {
1736 		struct xfs_buf *bp;
1737 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1738 		list_del_init(&bp->b_lru);
1739 		xfs_buf_rele(bp);
1740 	}
1741 
1742 	return freed;
1743 }
1744 
1745 static unsigned long
1746 xfs_buftarg_shrink_count(
1747 	struct shrinker		*shrink,
1748 	struct shrink_control	*sc)
1749 {
1750 	struct xfs_buftarg	*btp = container_of(shrink,
1751 					struct xfs_buftarg, bt_shrinker);
1752 	return list_lru_shrink_count(&btp->bt_lru, sc);
1753 }
1754 
1755 void
1756 xfs_free_buftarg(
1757 	struct xfs_buftarg	*btp)
1758 {
1759 	unregister_shrinker(&btp->bt_shrinker);
1760 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1761 	percpu_counter_destroy(&btp->bt_io_count);
1762 	list_lru_destroy(&btp->bt_lru);
1763 
1764 	xfs_blkdev_issue_flush(btp);
1765 
1766 	kmem_free(btp);
1767 }
1768 
1769 int
1770 xfs_setsize_buftarg(
1771 	xfs_buftarg_t		*btp,
1772 	unsigned int		sectorsize)
1773 {
1774 	/* Set up metadata sector size info */
1775 	btp->bt_meta_sectorsize = sectorsize;
1776 	btp->bt_meta_sectormask = sectorsize - 1;
1777 
1778 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1779 		xfs_warn(btp->bt_mount,
1780 			"Cannot set_blocksize to %u on device %pg",
1781 			sectorsize, btp->bt_bdev);
1782 		return -EINVAL;
1783 	}
1784 
1785 	/* Set up device logical sector size mask */
1786 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1787 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1788 
1789 	return 0;
1790 }
1791 
1792 /*
1793  * When allocating the initial buffer target we have not yet
1794  * read in the superblock, so don't know what sized sectors
1795  * are being used at this early stage.  Play safe.
1796  */
1797 STATIC int
1798 xfs_setsize_buftarg_early(
1799 	xfs_buftarg_t		*btp,
1800 	struct block_device	*bdev)
1801 {
1802 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1803 }
1804 
1805 xfs_buftarg_t *
1806 xfs_alloc_buftarg(
1807 	struct xfs_mount	*mp,
1808 	struct block_device	*bdev,
1809 	struct dax_device	*dax_dev)
1810 {
1811 	xfs_buftarg_t		*btp;
1812 
1813 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1814 
1815 	btp->bt_mount = mp;
1816 	btp->bt_dev =  bdev->bd_dev;
1817 	btp->bt_bdev = bdev;
1818 	btp->bt_daxdev = dax_dev;
1819 
1820 	if (xfs_setsize_buftarg_early(btp, bdev))
1821 		goto error_free;
1822 
1823 	if (list_lru_init(&btp->bt_lru))
1824 		goto error_free;
1825 
1826 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1827 		goto error_lru;
1828 
1829 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1830 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1831 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1832 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1833 	if (register_shrinker(&btp->bt_shrinker))
1834 		goto error_pcpu;
1835 	return btp;
1836 
1837 error_pcpu:
1838 	percpu_counter_destroy(&btp->bt_io_count);
1839 error_lru:
1840 	list_lru_destroy(&btp->bt_lru);
1841 error_free:
1842 	kmem_free(btp);
1843 	return NULL;
1844 }
1845 
1846 /*
1847  * Cancel a delayed write list.
1848  *
1849  * Remove each buffer from the list, clear the delwri queue flag and drop the
1850  * associated buffer reference.
1851  */
1852 void
1853 xfs_buf_delwri_cancel(
1854 	struct list_head	*list)
1855 {
1856 	struct xfs_buf		*bp;
1857 
1858 	while (!list_empty(list)) {
1859 		bp = list_first_entry(list, struct xfs_buf, b_list);
1860 
1861 		xfs_buf_lock(bp);
1862 		bp->b_flags &= ~_XBF_DELWRI_Q;
1863 		list_del_init(&bp->b_list);
1864 		xfs_buf_relse(bp);
1865 	}
1866 }
1867 
1868 /*
1869  * Add a buffer to the delayed write list.
1870  *
1871  * This queues a buffer for writeout if it hasn't already been.  Note that
1872  * neither this routine nor the buffer list submission functions perform
1873  * any internal synchronization.  It is expected that the lists are thread-local
1874  * to the callers.
1875  *
1876  * Returns true if we queued up the buffer, or false if it already had
1877  * been on the buffer list.
1878  */
1879 bool
1880 xfs_buf_delwri_queue(
1881 	struct xfs_buf		*bp,
1882 	struct list_head	*list)
1883 {
1884 	ASSERT(xfs_buf_islocked(bp));
1885 	ASSERT(!(bp->b_flags & XBF_READ));
1886 
1887 	/*
1888 	 * If the buffer is already marked delwri it already is queued up
1889 	 * by someone else for imediate writeout.  Just ignore it in that
1890 	 * case.
1891 	 */
1892 	if (bp->b_flags & _XBF_DELWRI_Q) {
1893 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1894 		return false;
1895 	}
1896 
1897 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1898 
1899 	/*
1900 	 * If a buffer gets written out synchronously or marked stale while it
1901 	 * is on a delwri list we lazily remove it. To do this, the other party
1902 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1903 	 * It remains referenced and on the list.  In a rare corner case it
1904 	 * might get readded to a delwri list after the synchronous writeout, in
1905 	 * which case we need just need to re-add the flag here.
1906 	 */
1907 	bp->b_flags |= _XBF_DELWRI_Q;
1908 	if (list_empty(&bp->b_list)) {
1909 		atomic_inc(&bp->b_hold);
1910 		list_add_tail(&bp->b_list, list);
1911 	}
1912 
1913 	return true;
1914 }
1915 
1916 /*
1917  * Compare function is more complex than it needs to be because
1918  * the return value is only 32 bits and we are doing comparisons
1919  * on 64 bit values
1920  */
1921 static int
1922 xfs_buf_cmp(
1923 	void		*priv,
1924 	struct list_head *a,
1925 	struct list_head *b)
1926 {
1927 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1928 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1929 	xfs_daddr_t		diff;
1930 
1931 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1932 	if (diff < 0)
1933 		return -1;
1934 	if (diff > 0)
1935 		return 1;
1936 	return 0;
1937 }
1938 
1939 /*
1940  * submit buffers for write.
1941  *
1942  * When we have a large buffer list, we do not want to hold all the buffers
1943  * locked while we block on the request queue waiting for IO dispatch. To avoid
1944  * this problem, we lock and submit buffers in groups of 50, thereby minimising
1945  * the lock hold times for lists which may contain thousands of objects.
1946  *
1947  * To do this, we sort the buffer list before we walk the list to lock and
1948  * submit buffers, and we plug and unplug around each group of buffers we
1949  * submit.
1950  */
1951 static int
1952 xfs_buf_delwri_submit_buffers(
1953 	struct list_head	*buffer_list,
1954 	struct list_head	*wait_list)
1955 {
1956 	struct xfs_buf		*bp, *n;
1957 	LIST_HEAD		(submit_list);
1958 	int			pinned = 0;
1959 	struct blk_plug		plug;
1960 
1961 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1962 
1963 	blk_start_plug(&plug);
1964 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1965 		if (!wait_list) {
1966 			if (xfs_buf_ispinned(bp)) {
1967 				pinned++;
1968 				continue;
1969 			}
1970 			if (!xfs_buf_trylock(bp))
1971 				continue;
1972 		} else {
1973 			xfs_buf_lock(bp);
1974 		}
1975 
1976 		/*
1977 		 * Someone else might have written the buffer synchronously or
1978 		 * marked it stale in the meantime.  In that case only the
1979 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1980 		 * reference and remove it from the list here.
1981 		 */
1982 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1983 			list_del_init(&bp->b_list);
1984 			xfs_buf_relse(bp);
1985 			continue;
1986 		}
1987 
1988 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1989 
1990 		/*
1991 		 * We do all IO submission async. This means if we need
1992 		 * to wait for IO completion we need to take an extra
1993 		 * reference so the buffer is still valid on the other
1994 		 * side. We need to move the buffer onto the io_list
1995 		 * at this point so the caller can still access it.
1996 		 */
1997 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1998 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1999 		if (wait_list) {
2000 			xfs_buf_hold(bp);
2001 			list_move_tail(&bp->b_list, wait_list);
2002 		} else
2003 			list_del_init(&bp->b_list);
2004 
2005 		xfs_buf_submit(bp);
2006 	}
2007 	blk_finish_plug(&plug);
2008 
2009 	return pinned;
2010 }
2011 
2012 /*
2013  * Write out a buffer list asynchronously.
2014  *
2015  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2016  * out and not wait for I/O completion on any of the buffers.  This interface
2017  * is only safely useable for callers that can track I/O completion by higher
2018  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2019  * function.
2020  */
2021 int
2022 xfs_buf_delwri_submit_nowait(
2023 	struct list_head	*buffer_list)
2024 {
2025 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2026 }
2027 
2028 /*
2029  * Write out a buffer list synchronously.
2030  *
2031  * This will take the @buffer_list, write all buffers out and wait for I/O
2032  * completion on all of the buffers. @buffer_list is consumed by the function,
2033  * so callers must have some other way of tracking buffers if they require such
2034  * functionality.
2035  */
2036 int
2037 xfs_buf_delwri_submit(
2038 	struct list_head	*buffer_list)
2039 {
2040 	LIST_HEAD		(wait_list);
2041 	int			error = 0, error2;
2042 	struct xfs_buf		*bp;
2043 
2044 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2045 
2046 	/* Wait for IO to complete. */
2047 	while (!list_empty(&wait_list)) {
2048 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2049 
2050 		list_del_init(&bp->b_list);
2051 
2052 		/* locking the buffer will wait for async IO completion. */
2053 		xfs_buf_lock(bp);
2054 		error2 = bp->b_error;
2055 		xfs_buf_relse(bp);
2056 		if (!error)
2057 			error = error2;
2058 	}
2059 
2060 	return error;
2061 }
2062 
2063 /*
2064  * Push a single buffer on a delwri queue.
2065  *
2066  * The purpose of this function is to submit a single buffer of a delwri queue
2067  * and return with the buffer still on the original queue. The waiting delwri
2068  * buffer submission infrastructure guarantees transfer of the delwri queue
2069  * buffer reference to a temporary wait list. We reuse this infrastructure to
2070  * transfer the buffer back to the original queue.
2071  *
2072  * Note the buffer transitions from the queued state, to the submitted and wait
2073  * listed state and back to the queued state during this call. The buffer
2074  * locking and queue management logic between _delwri_pushbuf() and
2075  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2076  * before returning.
2077  */
2078 int
2079 xfs_buf_delwri_pushbuf(
2080 	struct xfs_buf		*bp,
2081 	struct list_head	*buffer_list)
2082 {
2083 	LIST_HEAD		(submit_list);
2084 	int			error;
2085 
2086 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2087 
2088 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2089 
2090 	/*
2091 	 * Isolate the buffer to a new local list so we can submit it for I/O
2092 	 * independently from the rest of the original list.
2093 	 */
2094 	xfs_buf_lock(bp);
2095 	list_move(&bp->b_list, &submit_list);
2096 	xfs_buf_unlock(bp);
2097 
2098 	/*
2099 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2100 	 * the buffer on the wait list with an associated reference. Rather than
2101 	 * bounce the buffer from a local wait list back to the original list
2102 	 * after I/O completion, reuse the original list as the wait list.
2103 	 */
2104 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2105 
2106 	/*
2107 	 * The buffer is now under I/O and wait listed as during typical delwri
2108 	 * submission. Lock the buffer to wait for I/O completion. Rather than
2109 	 * remove the buffer from the wait list and release the reference, we
2110 	 * want to return with the buffer queued to the original list. The
2111 	 * buffer already sits on the original list with a wait list reference,
2112 	 * however. If we let the queue inherit that wait list reference, all we
2113 	 * need to do is reset the DELWRI_Q flag.
2114 	 */
2115 	xfs_buf_lock(bp);
2116 	error = bp->b_error;
2117 	bp->b_flags |= _XBF_DELWRI_Q;
2118 	xfs_buf_unlock(bp);
2119 
2120 	return error;
2121 }
2122 
2123 int __init
2124 xfs_buf_init(void)
2125 {
2126 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2127 						KM_ZONE_HWALIGN, NULL);
2128 	if (!xfs_buf_zone)
2129 		goto out;
2130 
2131 	return 0;
2132 
2133  out:
2134 	return -ENOMEM;
2135 }
2136 
2137 void
2138 xfs_buf_terminate(void)
2139 {
2140 	kmem_zone_destroy(xfs_buf_zone);
2141 }
2142 
2143 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2144 {
2145 	/*
2146 	 * Set the lru reference count to 0 based on the error injection tag.
2147 	 * This allows userspace to disrupt buffer caching for debug/testing
2148 	 * purposes.
2149 	 */
2150 	if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2151 			   XFS_ERRTAG_BUF_LRU_REF))
2152 		lru_ref = 0;
2153 
2154 	atomic_set(&bp->b_lru_ref, lru_ref);
2155 }
2156