xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision d2999e1b)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_log_format.h"
38 #include "xfs_trans_resv.h"
39 #include "xfs_sb.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44 
45 static kmem_zone_t *xfs_buf_zone;
46 
47 static struct workqueue_struct *xfslogd_workqueue;
48 
49 #ifdef XFS_BUF_LOCK_TRACKING
50 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
51 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
52 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
53 #else
54 # define XB_SET_OWNER(bp)	do { } while (0)
55 # define XB_CLEAR_OWNER(bp)	do { } while (0)
56 # define XB_GET_OWNER(bp)	do { } while (0)
57 #endif
58 
59 #define xb_to_gfp(flags) \
60 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
61 
62 
63 static inline int
64 xfs_buf_is_vmapped(
65 	struct xfs_buf	*bp)
66 {
67 	/*
68 	 * Return true if the buffer is vmapped.
69 	 *
70 	 * b_addr is null if the buffer is not mapped, but the code is clever
71 	 * enough to know it doesn't have to map a single page, so the check has
72 	 * to be both for b_addr and bp->b_page_count > 1.
73 	 */
74 	return bp->b_addr && bp->b_page_count > 1;
75 }
76 
77 static inline int
78 xfs_buf_vmap_len(
79 	struct xfs_buf	*bp)
80 {
81 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
82 }
83 
84 /*
85  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86  * b_lru_ref count so that the buffer is freed immediately when the buffer
87  * reference count falls to zero. If the buffer is already on the LRU, we need
88  * to remove the reference that LRU holds on the buffer.
89  *
90  * This prevents build-up of stale buffers on the LRU.
91  */
92 void
93 xfs_buf_stale(
94 	struct xfs_buf	*bp)
95 {
96 	ASSERT(xfs_buf_islocked(bp));
97 
98 	bp->b_flags |= XBF_STALE;
99 
100 	/*
101 	 * Clear the delwri status so that a delwri queue walker will not
102 	 * flush this buffer to disk now that it is stale. The delwri queue has
103 	 * a reference to the buffer, so this is safe to do.
104 	 */
105 	bp->b_flags &= ~_XBF_DELWRI_Q;
106 
107 	spin_lock(&bp->b_lock);
108 	atomic_set(&bp->b_lru_ref, 0);
109 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
110 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
111 		atomic_dec(&bp->b_hold);
112 
113 	ASSERT(atomic_read(&bp->b_hold) >= 1);
114 	spin_unlock(&bp->b_lock);
115 }
116 
117 static int
118 xfs_buf_get_maps(
119 	struct xfs_buf		*bp,
120 	int			map_count)
121 {
122 	ASSERT(bp->b_maps == NULL);
123 	bp->b_map_count = map_count;
124 
125 	if (map_count == 1) {
126 		bp->b_maps = &bp->__b_map;
127 		return 0;
128 	}
129 
130 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
131 				KM_NOFS);
132 	if (!bp->b_maps)
133 		return ENOMEM;
134 	return 0;
135 }
136 
137 /*
138  *	Frees b_pages if it was allocated.
139  */
140 static void
141 xfs_buf_free_maps(
142 	struct xfs_buf	*bp)
143 {
144 	if (bp->b_maps != &bp->__b_map) {
145 		kmem_free(bp->b_maps);
146 		bp->b_maps = NULL;
147 	}
148 }
149 
150 struct xfs_buf *
151 _xfs_buf_alloc(
152 	struct xfs_buftarg	*target,
153 	struct xfs_buf_map	*map,
154 	int			nmaps,
155 	xfs_buf_flags_t		flags)
156 {
157 	struct xfs_buf		*bp;
158 	int			error;
159 	int			i;
160 
161 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
162 	if (unlikely(!bp))
163 		return NULL;
164 
165 	/*
166 	 * We don't want certain flags to appear in b_flags unless they are
167 	 * specifically set by later operations on the buffer.
168 	 */
169 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
170 
171 	atomic_set(&bp->b_hold, 1);
172 	atomic_set(&bp->b_lru_ref, 1);
173 	init_completion(&bp->b_iowait);
174 	INIT_LIST_HEAD(&bp->b_lru);
175 	INIT_LIST_HEAD(&bp->b_list);
176 	RB_CLEAR_NODE(&bp->b_rbnode);
177 	sema_init(&bp->b_sema, 0); /* held, no waiters */
178 	spin_lock_init(&bp->b_lock);
179 	XB_SET_OWNER(bp);
180 	bp->b_target = target;
181 	bp->b_flags = flags;
182 
183 	/*
184 	 * Set length and io_length to the same value initially.
185 	 * I/O routines should use io_length, which will be the same in
186 	 * most cases but may be reset (e.g. XFS recovery).
187 	 */
188 	error = xfs_buf_get_maps(bp, nmaps);
189 	if (error)  {
190 		kmem_zone_free(xfs_buf_zone, bp);
191 		return NULL;
192 	}
193 
194 	bp->b_bn = map[0].bm_bn;
195 	bp->b_length = 0;
196 	for (i = 0; i < nmaps; i++) {
197 		bp->b_maps[i].bm_bn = map[i].bm_bn;
198 		bp->b_maps[i].bm_len = map[i].bm_len;
199 		bp->b_length += map[i].bm_len;
200 	}
201 	bp->b_io_length = bp->b_length;
202 
203 	atomic_set(&bp->b_pin_count, 0);
204 	init_waitqueue_head(&bp->b_waiters);
205 
206 	XFS_STATS_INC(xb_create);
207 	trace_xfs_buf_init(bp, _RET_IP_);
208 
209 	return bp;
210 }
211 
212 /*
213  *	Allocate a page array capable of holding a specified number
214  *	of pages, and point the page buf at it.
215  */
216 STATIC int
217 _xfs_buf_get_pages(
218 	xfs_buf_t		*bp,
219 	int			page_count)
220 {
221 	/* Make sure that we have a page list */
222 	if (bp->b_pages == NULL) {
223 		bp->b_page_count = page_count;
224 		if (page_count <= XB_PAGES) {
225 			bp->b_pages = bp->b_page_array;
226 		} else {
227 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 						 page_count, KM_NOFS);
229 			if (bp->b_pages == NULL)
230 				return -ENOMEM;
231 		}
232 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
233 	}
234 	return 0;
235 }
236 
237 /*
238  *	Frees b_pages if it was allocated.
239  */
240 STATIC void
241 _xfs_buf_free_pages(
242 	xfs_buf_t	*bp)
243 {
244 	if (bp->b_pages != bp->b_page_array) {
245 		kmem_free(bp->b_pages);
246 		bp->b_pages = NULL;
247 	}
248 }
249 
250 /*
251  *	Releases the specified buffer.
252  *
253  * 	The modification state of any associated pages is left unchanged.
254  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
255  * 	hashed and refcounted buffers
256  */
257 void
258 xfs_buf_free(
259 	xfs_buf_t		*bp)
260 {
261 	trace_xfs_buf_free(bp, _RET_IP_);
262 
263 	ASSERT(list_empty(&bp->b_lru));
264 
265 	if (bp->b_flags & _XBF_PAGES) {
266 		uint		i;
267 
268 		if (xfs_buf_is_vmapped(bp))
269 			vm_unmap_ram(bp->b_addr - bp->b_offset,
270 					bp->b_page_count);
271 
272 		for (i = 0; i < bp->b_page_count; i++) {
273 			struct page	*page = bp->b_pages[i];
274 
275 			__free_page(page);
276 		}
277 	} else if (bp->b_flags & _XBF_KMEM)
278 		kmem_free(bp->b_addr);
279 	_xfs_buf_free_pages(bp);
280 	xfs_buf_free_maps(bp);
281 	kmem_zone_free(xfs_buf_zone, bp);
282 }
283 
284 /*
285  * Allocates all the pages for buffer in question and builds it's page list.
286  */
287 STATIC int
288 xfs_buf_allocate_memory(
289 	xfs_buf_t		*bp,
290 	uint			flags)
291 {
292 	size_t			size;
293 	size_t			nbytes, offset;
294 	gfp_t			gfp_mask = xb_to_gfp(flags);
295 	unsigned short		page_count, i;
296 	xfs_off_t		start, end;
297 	int			error;
298 
299 	/*
300 	 * for buffers that are contained within a single page, just allocate
301 	 * the memory from the heap - there's no need for the complexity of
302 	 * page arrays to keep allocation down to order 0.
303 	 */
304 	size = BBTOB(bp->b_length);
305 	if (size < PAGE_SIZE) {
306 		bp->b_addr = kmem_alloc(size, KM_NOFS);
307 		if (!bp->b_addr) {
308 			/* low memory - use alloc_page loop instead */
309 			goto use_alloc_page;
310 		}
311 
312 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
313 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
314 			/* b_addr spans two pages - use alloc_page instead */
315 			kmem_free(bp->b_addr);
316 			bp->b_addr = NULL;
317 			goto use_alloc_page;
318 		}
319 		bp->b_offset = offset_in_page(bp->b_addr);
320 		bp->b_pages = bp->b_page_array;
321 		bp->b_pages[0] = virt_to_page(bp->b_addr);
322 		bp->b_page_count = 1;
323 		bp->b_flags |= _XBF_KMEM;
324 		return 0;
325 	}
326 
327 use_alloc_page:
328 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
329 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
330 								>> PAGE_SHIFT;
331 	page_count = end - start;
332 	error = _xfs_buf_get_pages(bp, page_count);
333 	if (unlikely(error))
334 		return error;
335 
336 	offset = bp->b_offset;
337 	bp->b_flags |= _XBF_PAGES;
338 
339 	for (i = 0; i < bp->b_page_count; i++) {
340 		struct page	*page;
341 		uint		retries = 0;
342 retry:
343 		page = alloc_page(gfp_mask);
344 		if (unlikely(page == NULL)) {
345 			if (flags & XBF_READ_AHEAD) {
346 				bp->b_page_count = i;
347 				error = ENOMEM;
348 				goto out_free_pages;
349 			}
350 
351 			/*
352 			 * This could deadlock.
353 			 *
354 			 * But until all the XFS lowlevel code is revamped to
355 			 * handle buffer allocation failures we can't do much.
356 			 */
357 			if (!(++retries % 100))
358 				xfs_err(NULL,
359 		"possible memory allocation deadlock in %s (mode:0x%x)",
360 					__func__, gfp_mask);
361 
362 			XFS_STATS_INC(xb_page_retries);
363 			congestion_wait(BLK_RW_ASYNC, HZ/50);
364 			goto retry;
365 		}
366 
367 		XFS_STATS_INC(xb_page_found);
368 
369 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
370 		size -= nbytes;
371 		bp->b_pages[i] = page;
372 		offset = 0;
373 	}
374 	return 0;
375 
376 out_free_pages:
377 	for (i = 0; i < bp->b_page_count; i++)
378 		__free_page(bp->b_pages[i]);
379 	return error;
380 }
381 
382 /*
383  *	Map buffer into kernel address-space if necessary.
384  */
385 STATIC int
386 _xfs_buf_map_pages(
387 	xfs_buf_t		*bp,
388 	uint			flags)
389 {
390 	ASSERT(bp->b_flags & _XBF_PAGES);
391 	if (bp->b_page_count == 1) {
392 		/* A single page buffer is always mappable */
393 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
394 	} else if (flags & XBF_UNMAPPED) {
395 		bp->b_addr = NULL;
396 	} else {
397 		int retried = 0;
398 		unsigned noio_flag;
399 
400 		/*
401 		 * vm_map_ram() will allocate auxillary structures (e.g.
402 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
403 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
404 		 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
405 		 * memory reclaim re-entering the filesystem here and
406 		 * potentially deadlocking.
407 		 */
408 		noio_flag = memalloc_noio_save();
409 		do {
410 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
411 						-1, PAGE_KERNEL);
412 			if (bp->b_addr)
413 				break;
414 			vm_unmap_aliases();
415 		} while (retried++ <= 1);
416 		memalloc_noio_restore(noio_flag);
417 
418 		if (!bp->b_addr)
419 			return -ENOMEM;
420 		bp->b_addr += bp->b_offset;
421 	}
422 
423 	return 0;
424 }
425 
426 /*
427  *	Finding and Reading Buffers
428  */
429 
430 /*
431  *	Look up, and creates if absent, a lockable buffer for
432  *	a given range of an inode.  The buffer is returned
433  *	locked.	No I/O is implied by this call.
434  */
435 xfs_buf_t *
436 _xfs_buf_find(
437 	struct xfs_buftarg	*btp,
438 	struct xfs_buf_map	*map,
439 	int			nmaps,
440 	xfs_buf_flags_t		flags,
441 	xfs_buf_t		*new_bp)
442 {
443 	size_t			numbytes;
444 	struct xfs_perag	*pag;
445 	struct rb_node		**rbp;
446 	struct rb_node		*parent;
447 	xfs_buf_t		*bp;
448 	xfs_daddr_t		blkno = map[0].bm_bn;
449 	xfs_daddr_t		eofs;
450 	int			numblks = 0;
451 	int			i;
452 
453 	for (i = 0; i < nmaps; i++)
454 		numblks += map[i].bm_len;
455 	numbytes = BBTOB(numblks);
456 
457 	/* Check for IOs smaller than the sector size / not sector aligned */
458 	ASSERT(!(numbytes < btp->bt_meta_sectorsize));
459 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
460 
461 	/*
462 	 * Corrupted block numbers can get through to here, unfortunately, so we
463 	 * have to check that the buffer falls within the filesystem bounds.
464 	 */
465 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
466 	if (blkno >= eofs) {
467 		/*
468 		 * XXX (dgc): we should really be returning EFSCORRUPTED here,
469 		 * but none of the higher level infrastructure supports
470 		 * returning a specific error on buffer lookup failures.
471 		 */
472 		xfs_alert(btp->bt_mount,
473 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
474 			  __func__, blkno, eofs);
475 		WARN_ON(1);
476 		return NULL;
477 	}
478 
479 	/* get tree root */
480 	pag = xfs_perag_get(btp->bt_mount,
481 				xfs_daddr_to_agno(btp->bt_mount, blkno));
482 
483 	/* walk tree */
484 	spin_lock(&pag->pag_buf_lock);
485 	rbp = &pag->pag_buf_tree.rb_node;
486 	parent = NULL;
487 	bp = NULL;
488 	while (*rbp) {
489 		parent = *rbp;
490 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
491 
492 		if (blkno < bp->b_bn)
493 			rbp = &(*rbp)->rb_left;
494 		else if (blkno > bp->b_bn)
495 			rbp = &(*rbp)->rb_right;
496 		else {
497 			/*
498 			 * found a block number match. If the range doesn't
499 			 * match, the only way this is allowed is if the buffer
500 			 * in the cache is stale and the transaction that made
501 			 * it stale has not yet committed. i.e. we are
502 			 * reallocating a busy extent. Skip this buffer and
503 			 * continue searching to the right for an exact match.
504 			 */
505 			if (bp->b_length != numblks) {
506 				ASSERT(bp->b_flags & XBF_STALE);
507 				rbp = &(*rbp)->rb_right;
508 				continue;
509 			}
510 			atomic_inc(&bp->b_hold);
511 			goto found;
512 		}
513 	}
514 
515 	/* No match found */
516 	if (new_bp) {
517 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
518 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
519 		/* the buffer keeps the perag reference until it is freed */
520 		new_bp->b_pag = pag;
521 		spin_unlock(&pag->pag_buf_lock);
522 	} else {
523 		XFS_STATS_INC(xb_miss_locked);
524 		spin_unlock(&pag->pag_buf_lock);
525 		xfs_perag_put(pag);
526 	}
527 	return new_bp;
528 
529 found:
530 	spin_unlock(&pag->pag_buf_lock);
531 	xfs_perag_put(pag);
532 
533 	if (!xfs_buf_trylock(bp)) {
534 		if (flags & XBF_TRYLOCK) {
535 			xfs_buf_rele(bp);
536 			XFS_STATS_INC(xb_busy_locked);
537 			return NULL;
538 		}
539 		xfs_buf_lock(bp);
540 		XFS_STATS_INC(xb_get_locked_waited);
541 	}
542 
543 	/*
544 	 * if the buffer is stale, clear all the external state associated with
545 	 * it. We need to keep flags such as how we allocated the buffer memory
546 	 * intact here.
547 	 */
548 	if (bp->b_flags & XBF_STALE) {
549 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
550 		ASSERT(bp->b_iodone == NULL);
551 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
552 		bp->b_ops = NULL;
553 	}
554 
555 	trace_xfs_buf_find(bp, flags, _RET_IP_);
556 	XFS_STATS_INC(xb_get_locked);
557 	return bp;
558 }
559 
560 /*
561  * Assembles a buffer covering the specified range. The code is optimised for
562  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
563  * more hits than misses.
564  */
565 struct xfs_buf *
566 xfs_buf_get_map(
567 	struct xfs_buftarg	*target,
568 	struct xfs_buf_map	*map,
569 	int			nmaps,
570 	xfs_buf_flags_t		flags)
571 {
572 	struct xfs_buf		*bp;
573 	struct xfs_buf		*new_bp;
574 	int			error = 0;
575 
576 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
577 	if (likely(bp))
578 		goto found;
579 
580 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
581 	if (unlikely(!new_bp))
582 		return NULL;
583 
584 	error = xfs_buf_allocate_memory(new_bp, flags);
585 	if (error) {
586 		xfs_buf_free(new_bp);
587 		return NULL;
588 	}
589 
590 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
591 	if (!bp) {
592 		xfs_buf_free(new_bp);
593 		return NULL;
594 	}
595 
596 	if (bp != new_bp)
597 		xfs_buf_free(new_bp);
598 
599 found:
600 	if (!bp->b_addr) {
601 		error = _xfs_buf_map_pages(bp, flags);
602 		if (unlikely(error)) {
603 			xfs_warn(target->bt_mount,
604 				"%s: failed to map pagesn", __func__);
605 			xfs_buf_relse(bp);
606 			return NULL;
607 		}
608 	}
609 
610 	XFS_STATS_INC(xb_get);
611 	trace_xfs_buf_get(bp, flags, _RET_IP_);
612 	return bp;
613 }
614 
615 STATIC int
616 _xfs_buf_read(
617 	xfs_buf_t		*bp,
618 	xfs_buf_flags_t		flags)
619 {
620 	ASSERT(!(flags & XBF_WRITE));
621 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
622 
623 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
624 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
625 
626 	xfs_buf_iorequest(bp);
627 	if (flags & XBF_ASYNC)
628 		return 0;
629 	return xfs_buf_iowait(bp);
630 }
631 
632 xfs_buf_t *
633 xfs_buf_read_map(
634 	struct xfs_buftarg	*target,
635 	struct xfs_buf_map	*map,
636 	int			nmaps,
637 	xfs_buf_flags_t		flags,
638 	const struct xfs_buf_ops *ops)
639 {
640 	struct xfs_buf		*bp;
641 
642 	flags |= XBF_READ;
643 
644 	bp = xfs_buf_get_map(target, map, nmaps, flags);
645 	if (bp) {
646 		trace_xfs_buf_read(bp, flags, _RET_IP_);
647 
648 		if (!XFS_BUF_ISDONE(bp)) {
649 			XFS_STATS_INC(xb_get_read);
650 			bp->b_ops = ops;
651 			_xfs_buf_read(bp, flags);
652 		} else if (flags & XBF_ASYNC) {
653 			/*
654 			 * Read ahead call which is already satisfied,
655 			 * drop the buffer
656 			 */
657 			xfs_buf_relse(bp);
658 			return NULL;
659 		} else {
660 			/* We do not want read in the flags */
661 			bp->b_flags &= ~XBF_READ;
662 		}
663 	}
664 
665 	return bp;
666 }
667 
668 /*
669  *	If we are not low on memory then do the readahead in a deadlock
670  *	safe manner.
671  */
672 void
673 xfs_buf_readahead_map(
674 	struct xfs_buftarg	*target,
675 	struct xfs_buf_map	*map,
676 	int			nmaps,
677 	const struct xfs_buf_ops *ops)
678 {
679 	if (bdi_read_congested(target->bt_bdi))
680 		return;
681 
682 	xfs_buf_read_map(target, map, nmaps,
683 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
684 }
685 
686 /*
687  * Read an uncached buffer from disk. Allocates and returns a locked
688  * buffer containing the disk contents or nothing.
689  */
690 struct xfs_buf *
691 xfs_buf_read_uncached(
692 	struct xfs_buftarg	*target,
693 	xfs_daddr_t		daddr,
694 	size_t			numblks,
695 	int			flags,
696 	const struct xfs_buf_ops *ops)
697 {
698 	struct xfs_buf		*bp;
699 
700 	bp = xfs_buf_get_uncached(target, numblks, flags);
701 	if (!bp)
702 		return NULL;
703 
704 	/* set up the buffer for a read IO */
705 	ASSERT(bp->b_map_count == 1);
706 	bp->b_bn = daddr;
707 	bp->b_maps[0].bm_bn = daddr;
708 	bp->b_flags |= XBF_READ;
709 	bp->b_ops = ops;
710 
711 	if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
712 		xfs_buf_relse(bp);
713 		return NULL;
714 	}
715 	xfs_buf_iorequest(bp);
716 	xfs_buf_iowait(bp);
717 	return bp;
718 }
719 
720 /*
721  * Return a buffer allocated as an empty buffer and associated to external
722  * memory via xfs_buf_associate_memory() back to it's empty state.
723  */
724 void
725 xfs_buf_set_empty(
726 	struct xfs_buf		*bp,
727 	size_t			numblks)
728 {
729 	if (bp->b_pages)
730 		_xfs_buf_free_pages(bp);
731 
732 	bp->b_pages = NULL;
733 	bp->b_page_count = 0;
734 	bp->b_addr = NULL;
735 	bp->b_length = numblks;
736 	bp->b_io_length = numblks;
737 
738 	ASSERT(bp->b_map_count == 1);
739 	bp->b_bn = XFS_BUF_DADDR_NULL;
740 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
741 	bp->b_maps[0].bm_len = bp->b_length;
742 }
743 
744 static inline struct page *
745 mem_to_page(
746 	void			*addr)
747 {
748 	if ((!is_vmalloc_addr(addr))) {
749 		return virt_to_page(addr);
750 	} else {
751 		return vmalloc_to_page(addr);
752 	}
753 }
754 
755 int
756 xfs_buf_associate_memory(
757 	xfs_buf_t		*bp,
758 	void			*mem,
759 	size_t			len)
760 {
761 	int			rval;
762 	int			i = 0;
763 	unsigned long		pageaddr;
764 	unsigned long		offset;
765 	size_t			buflen;
766 	int			page_count;
767 
768 	pageaddr = (unsigned long)mem & PAGE_MASK;
769 	offset = (unsigned long)mem - pageaddr;
770 	buflen = PAGE_ALIGN(len + offset);
771 	page_count = buflen >> PAGE_SHIFT;
772 
773 	/* Free any previous set of page pointers */
774 	if (bp->b_pages)
775 		_xfs_buf_free_pages(bp);
776 
777 	bp->b_pages = NULL;
778 	bp->b_addr = mem;
779 
780 	rval = _xfs_buf_get_pages(bp, page_count);
781 	if (rval)
782 		return rval;
783 
784 	bp->b_offset = offset;
785 
786 	for (i = 0; i < bp->b_page_count; i++) {
787 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
788 		pageaddr += PAGE_SIZE;
789 	}
790 
791 	bp->b_io_length = BTOBB(len);
792 	bp->b_length = BTOBB(buflen);
793 
794 	return 0;
795 }
796 
797 xfs_buf_t *
798 xfs_buf_get_uncached(
799 	struct xfs_buftarg	*target,
800 	size_t			numblks,
801 	int			flags)
802 {
803 	unsigned long		page_count;
804 	int			error, i;
805 	struct xfs_buf		*bp;
806 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
807 
808 	bp = _xfs_buf_alloc(target, &map, 1, 0);
809 	if (unlikely(bp == NULL))
810 		goto fail;
811 
812 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
813 	error = _xfs_buf_get_pages(bp, page_count);
814 	if (error)
815 		goto fail_free_buf;
816 
817 	for (i = 0; i < page_count; i++) {
818 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
819 		if (!bp->b_pages[i])
820 			goto fail_free_mem;
821 	}
822 	bp->b_flags |= _XBF_PAGES;
823 
824 	error = _xfs_buf_map_pages(bp, 0);
825 	if (unlikely(error)) {
826 		xfs_warn(target->bt_mount,
827 			"%s: failed to map pages", __func__);
828 		goto fail_free_mem;
829 	}
830 
831 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
832 	return bp;
833 
834  fail_free_mem:
835 	while (--i >= 0)
836 		__free_page(bp->b_pages[i]);
837 	_xfs_buf_free_pages(bp);
838  fail_free_buf:
839 	xfs_buf_free_maps(bp);
840 	kmem_zone_free(xfs_buf_zone, bp);
841  fail:
842 	return NULL;
843 }
844 
845 /*
846  *	Increment reference count on buffer, to hold the buffer concurrently
847  *	with another thread which may release (free) the buffer asynchronously.
848  *	Must hold the buffer already to call this function.
849  */
850 void
851 xfs_buf_hold(
852 	xfs_buf_t		*bp)
853 {
854 	trace_xfs_buf_hold(bp, _RET_IP_);
855 	atomic_inc(&bp->b_hold);
856 }
857 
858 /*
859  *	Releases a hold on the specified buffer.  If the
860  *	the hold count is 1, calls xfs_buf_free.
861  */
862 void
863 xfs_buf_rele(
864 	xfs_buf_t		*bp)
865 {
866 	struct xfs_perag	*pag = bp->b_pag;
867 
868 	trace_xfs_buf_rele(bp, _RET_IP_);
869 
870 	if (!pag) {
871 		ASSERT(list_empty(&bp->b_lru));
872 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
873 		if (atomic_dec_and_test(&bp->b_hold))
874 			xfs_buf_free(bp);
875 		return;
876 	}
877 
878 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
879 
880 	ASSERT(atomic_read(&bp->b_hold) > 0);
881 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
882 		spin_lock(&bp->b_lock);
883 		if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
884 			/*
885 			 * If the buffer is added to the LRU take a new
886 			 * reference to the buffer for the LRU and clear the
887 			 * (now stale) dispose list state flag
888 			 */
889 			if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
890 				bp->b_state &= ~XFS_BSTATE_DISPOSE;
891 				atomic_inc(&bp->b_hold);
892 			}
893 			spin_unlock(&bp->b_lock);
894 			spin_unlock(&pag->pag_buf_lock);
895 		} else {
896 			/*
897 			 * most of the time buffers will already be removed from
898 			 * the LRU, so optimise that case by checking for the
899 			 * XFS_BSTATE_DISPOSE flag indicating the last list the
900 			 * buffer was on was the disposal list
901 			 */
902 			if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
903 				list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
904 			} else {
905 				ASSERT(list_empty(&bp->b_lru));
906 			}
907 			spin_unlock(&bp->b_lock);
908 
909 			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
910 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
911 			spin_unlock(&pag->pag_buf_lock);
912 			xfs_perag_put(pag);
913 			xfs_buf_free(bp);
914 		}
915 	}
916 }
917 
918 
919 /*
920  *	Lock a buffer object, if it is not already locked.
921  *
922  *	If we come across a stale, pinned, locked buffer, we know that we are
923  *	being asked to lock a buffer that has been reallocated. Because it is
924  *	pinned, we know that the log has not been pushed to disk and hence it
925  *	will still be locked.  Rather than continuing to have trylock attempts
926  *	fail until someone else pushes the log, push it ourselves before
927  *	returning.  This means that the xfsaild will not get stuck trying
928  *	to push on stale inode buffers.
929  */
930 int
931 xfs_buf_trylock(
932 	struct xfs_buf		*bp)
933 {
934 	int			locked;
935 
936 	locked = down_trylock(&bp->b_sema) == 0;
937 	if (locked)
938 		XB_SET_OWNER(bp);
939 
940 	trace_xfs_buf_trylock(bp, _RET_IP_);
941 	return locked;
942 }
943 
944 /*
945  *	Lock a buffer object.
946  *
947  *	If we come across a stale, pinned, locked buffer, we know that we
948  *	are being asked to lock a buffer that has been reallocated. Because
949  *	it is pinned, we know that the log has not been pushed to disk and
950  *	hence it will still be locked. Rather than sleeping until someone
951  *	else pushes the log, push it ourselves before trying to get the lock.
952  */
953 void
954 xfs_buf_lock(
955 	struct xfs_buf		*bp)
956 {
957 	trace_xfs_buf_lock(bp, _RET_IP_);
958 
959 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
960 		xfs_log_force(bp->b_target->bt_mount, 0);
961 	down(&bp->b_sema);
962 	XB_SET_OWNER(bp);
963 
964 	trace_xfs_buf_lock_done(bp, _RET_IP_);
965 }
966 
967 void
968 xfs_buf_unlock(
969 	struct xfs_buf		*bp)
970 {
971 	XB_CLEAR_OWNER(bp);
972 	up(&bp->b_sema);
973 
974 	trace_xfs_buf_unlock(bp, _RET_IP_);
975 }
976 
977 STATIC void
978 xfs_buf_wait_unpin(
979 	xfs_buf_t		*bp)
980 {
981 	DECLARE_WAITQUEUE	(wait, current);
982 
983 	if (atomic_read(&bp->b_pin_count) == 0)
984 		return;
985 
986 	add_wait_queue(&bp->b_waiters, &wait);
987 	for (;;) {
988 		set_current_state(TASK_UNINTERRUPTIBLE);
989 		if (atomic_read(&bp->b_pin_count) == 0)
990 			break;
991 		io_schedule();
992 	}
993 	remove_wait_queue(&bp->b_waiters, &wait);
994 	set_current_state(TASK_RUNNING);
995 }
996 
997 /*
998  *	Buffer Utility Routines
999  */
1000 
1001 STATIC void
1002 xfs_buf_iodone_work(
1003 	struct work_struct	*work)
1004 {
1005 	struct xfs_buf		*bp =
1006 		container_of(work, xfs_buf_t, b_iodone_work);
1007 	bool			read = !!(bp->b_flags & XBF_READ);
1008 
1009 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1010 
1011 	/* only validate buffers that were read without errors */
1012 	if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1013 		bp->b_ops->verify_read(bp);
1014 
1015 	if (bp->b_iodone)
1016 		(*(bp->b_iodone))(bp);
1017 	else if (bp->b_flags & XBF_ASYNC)
1018 		xfs_buf_relse(bp);
1019 	else {
1020 		ASSERT(read && bp->b_ops);
1021 		complete(&bp->b_iowait);
1022 	}
1023 }
1024 
1025 void
1026 xfs_buf_ioend(
1027 	struct xfs_buf	*bp,
1028 	int		schedule)
1029 {
1030 	bool		read = !!(bp->b_flags & XBF_READ);
1031 
1032 	trace_xfs_buf_iodone(bp, _RET_IP_);
1033 
1034 	if (bp->b_error == 0)
1035 		bp->b_flags |= XBF_DONE;
1036 
1037 	if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1038 		if (schedule) {
1039 			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1040 			queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1041 		} else {
1042 			xfs_buf_iodone_work(&bp->b_iodone_work);
1043 		}
1044 	} else {
1045 		bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1046 		complete(&bp->b_iowait);
1047 	}
1048 }
1049 
1050 void
1051 xfs_buf_ioerror(
1052 	xfs_buf_t		*bp,
1053 	int			error)
1054 {
1055 	ASSERT(error >= 0 && error <= 0xffff);
1056 	bp->b_error = (unsigned short)error;
1057 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1058 }
1059 
1060 void
1061 xfs_buf_ioerror_alert(
1062 	struct xfs_buf		*bp,
1063 	const char		*func)
1064 {
1065 	xfs_alert(bp->b_target->bt_mount,
1066 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1067 		(__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1068 }
1069 
1070 /*
1071  * Called when we want to stop a buffer from getting written or read.
1072  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1073  * so that the proper iodone callbacks get called.
1074  */
1075 STATIC int
1076 xfs_bioerror(
1077 	xfs_buf_t *bp)
1078 {
1079 #ifdef XFSERRORDEBUG
1080 	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1081 #endif
1082 
1083 	/*
1084 	 * No need to wait until the buffer is unpinned, we aren't flushing it.
1085 	 */
1086 	xfs_buf_ioerror(bp, EIO);
1087 
1088 	/*
1089 	 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1090 	 */
1091 	XFS_BUF_UNREAD(bp);
1092 	XFS_BUF_UNDONE(bp);
1093 	xfs_buf_stale(bp);
1094 
1095 	xfs_buf_ioend(bp, 0);
1096 
1097 	return EIO;
1098 }
1099 
1100 /*
1101  * Same as xfs_bioerror, except that we are releasing the buffer
1102  * here ourselves, and avoiding the xfs_buf_ioend call.
1103  * This is meant for userdata errors; metadata bufs come with
1104  * iodone functions attached, so that we can track down errors.
1105  */
1106 int
1107 xfs_bioerror_relse(
1108 	struct xfs_buf	*bp)
1109 {
1110 	int64_t		fl = bp->b_flags;
1111 	/*
1112 	 * No need to wait until the buffer is unpinned.
1113 	 * We aren't flushing it.
1114 	 *
1115 	 * chunkhold expects B_DONE to be set, whether
1116 	 * we actually finish the I/O or not. We don't want to
1117 	 * change that interface.
1118 	 */
1119 	XFS_BUF_UNREAD(bp);
1120 	XFS_BUF_DONE(bp);
1121 	xfs_buf_stale(bp);
1122 	bp->b_iodone = NULL;
1123 	if (!(fl & XBF_ASYNC)) {
1124 		/*
1125 		 * Mark b_error and B_ERROR _both_.
1126 		 * Lot's of chunkcache code assumes that.
1127 		 * There's no reason to mark error for
1128 		 * ASYNC buffers.
1129 		 */
1130 		xfs_buf_ioerror(bp, EIO);
1131 		complete(&bp->b_iowait);
1132 	} else {
1133 		xfs_buf_relse(bp);
1134 	}
1135 
1136 	return EIO;
1137 }
1138 
1139 STATIC int
1140 xfs_bdstrat_cb(
1141 	struct xfs_buf	*bp)
1142 {
1143 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1144 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1145 		/*
1146 		 * Metadata write that didn't get logged but
1147 		 * written delayed anyway. These aren't associated
1148 		 * with a transaction, and can be ignored.
1149 		 */
1150 		if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1151 			return xfs_bioerror_relse(bp);
1152 		else
1153 			return xfs_bioerror(bp);
1154 	}
1155 
1156 	xfs_buf_iorequest(bp);
1157 	return 0;
1158 }
1159 
1160 int
1161 xfs_bwrite(
1162 	struct xfs_buf		*bp)
1163 {
1164 	int			error;
1165 
1166 	ASSERT(xfs_buf_islocked(bp));
1167 
1168 	bp->b_flags |= XBF_WRITE;
1169 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
1170 
1171 	xfs_bdstrat_cb(bp);
1172 
1173 	error = xfs_buf_iowait(bp);
1174 	if (error) {
1175 		xfs_force_shutdown(bp->b_target->bt_mount,
1176 				   SHUTDOWN_META_IO_ERROR);
1177 	}
1178 	return error;
1179 }
1180 
1181 STATIC void
1182 _xfs_buf_ioend(
1183 	xfs_buf_t		*bp,
1184 	int			schedule)
1185 {
1186 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1187 		xfs_buf_ioend(bp, schedule);
1188 }
1189 
1190 STATIC void
1191 xfs_buf_bio_end_io(
1192 	struct bio		*bio,
1193 	int			error)
1194 {
1195 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1196 
1197 	/*
1198 	 * don't overwrite existing errors - otherwise we can lose errors on
1199 	 * buffers that require multiple bios to complete.
1200 	 */
1201 	if (!bp->b_error)
1202 		xfs_buf_ioerror(bp, -error);
1203 
1204 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1205 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1206 
1207 	_xfs_buf_ioend(bp, 1);
1208 	bio_put(bio);
1209 }
1210 
1211 static void
1212 xfs_buf_ioapply_map(
1213 	struct xfs_buf	*bp,
1214 	int		map,
1215 	int		*buf_offset,
1216 	int		*count,
1217 	int		rw)
1218 {
1219 	int		page_index;
1220 	int		total_nr_pages = bp->b_page_count;
1221 	int		nr_pages;
1222 	struct bio	*bio;
1223 	sector_t	sector =  bp->b_maps[map].bm_bn;
1224 	int		size;
1225 	int		offset;
1226 
1227 	total_nr_pages = bp->b_page_count;
1228 
1229 	/* skip the pages in the buffer before the start offset */
1230 	page_index = 0;
1231 	offset = *buf_offset;
1232 	while (offset >= PAGE_SIZE) {
1233 		page_index++;
1234 		offset -= PAGE_SIZE;
1235 	}
1236 
1237 	/*
1238 	 * Limit the IO size to the length of the current vector, and update the
1239 	 * remaining IO count for the next time around.
1240 	 */
1241 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1242 	*count -= size;
1243 	*buf_offset += size;
1244 
1245 next_chunk:
1246 	atomic_inc(&bp->b_io_remaining);
1247 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1248 	if (nr_pages > total_nr_pages)
1249 		nr_pages = total_nr_pages;
1250 
1251 	bio = bio_alloc(GFP_NOIO, nr_pages);
1252 	bio->bi_bdev = bp->b_target->bt_bdev;
1253 	bio->bi_iter.bi_sector = sector;
1254 	bio->bi_end_io = xfs_buf_bio_end_io;
1255 	bio->bi_private = bp;
1256 
1257 
1258 	for (; size && nr_pages; nr_pages--, page_index++) {
1259 		int	rbytes, nbytes = PAGE_SIZE - offset;
1260 
1261 		if (nbytes > size)
1262 			nbytes = size;
1263 
1264 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1265 				      offset);
1266 		if (rbytes < nbytes)
1267 			break;
1268 
1269 		offset = 0;
1270 		sector += BTOBB(nbytes);
1271 		size -= nbytes;
1272 		total_nr_pages--;
1273 	}
1274 
1275 	if (likely(bio->bi_iter.bi_size)) {
1276 		if (xfs_buf_is_vmapped(bp)) {
1277 			flush_kernel_vmap_range(bp->b_addr,
1278 						xfs_buf_vmap_len(bp));
1279 		}
1280 		submit_bio(rw, bio);
1281 		if (size)
1282 			goto next_chunk;
1283 	} else {
1284 		/*
1285 		 * This is guaranteed not to be the last io reference count
1286 		 * because the caller (xfs_buf_iorequest) holds a count itself.
1287 		 */
1288 		atomic_dec(&bp->b_io_remaining);
1289 		xfs_buf_ioerror(bp, EIO);
1290 		bio_put(bio);
1291 	}
1292 
1293 }
1294 
1295 STATIC void
1296 _xfs_buf_ioapply(
1297 	struct xfs_buf	*bp)
1298 {
1299 	struct blk_plug	plug;
1300 	int		rw;
1301 	int		offset;
1302 	int		size;
1303 	int		i;
1304 
1305 	/*
1306 	 * Make sure we capture only current IO errors rather than stale errors
1307 	 * left over from previous use of the buffer (e.g. failed readahead).
1308 	 */
1309 	bp->b_error = 0;
1310 
1311 	if (bp->b_flags & XBF_WRITE) {
1312 		if (bp->b_flags & XBF_SYNCIO)
1313 			rw = WRITE_SYNC;
1314 		else
1315 			rw = WRITE;
1316 		if (bp->b_flags & XBF_FUA)
1317 			rw |= REQ_FUA;
1318 		if (bp->b_flags & XBF_FLUSH)
1319 			rw |= REQ_FLUSH;
1320 
1321 		/*
1322 		 * Run the write verifier callback function if it exists. If
1323 		 * this function fails it will mark the buffer with an error and
1324 		 * the IO should not be dispatched.
1325 		 */
1326 		if (bp->b_ops) {
1327 			bp->b_ops->verify_write(bp);
1328 			if (bp->b_error) {
1329 				xfs_force_shutdown(bp->b_target->bt_mount,
1330 						   SHUTDOWN_CORRUPT_INCORE);
1331 				return;
1332 			}
1333 		}
1334 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1335 		rw = READA;
1336 	} else {
1337 		rw = READ;
1338 	}
1339 
1340 	/* we only use the buffer cache for meta-data */
1341 	rw |= REQ_META;
1342 
1343 	/*
1344 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1345 	 * into the buffer and the desired IO size before we start -
1346 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1347 	 * subsequent call.
1348 	 */
1349 	offset = bp->b_offset;
1350 	size = BBTOB(bp->b_io_length);
1351 	blk_start_plug(&plug);
1352 	for (i = 0; i < bp->b_map_count; i++) {
1353 		xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1354 		if (bp->b_error)
1355 			break;
1356 		if (size <= 0)
1357 			break;	/* all done */
1358 	}
1359 	blk_finish_plug(&plug);
1360 }
1361 
1362 void
1363 xfs_buf_iorequest(
1364 	xfs_buf_t		*bp)
1365 {
1366 	trace_xfs_buf_iorequest(bp, _RET_IP_);
1367 
1368 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1369 
1370 	if (bp->b_flags & XBF_WRITE)
1371 		xfs_buf_wait_unpin(bp);
1372 	xfs_buf_hold(bp);
1373 
1374 	/*
1375 	 * Set the count to 1 initially, this will stop an I/O
1376 	 * completion callout which happens before we have started
1377 	 * all the I/O from calling xfs_buf_ioend too early.
1378 	 */
1379 	atomic_set(&bp->b_io_remaining, 1);
1380 	_xfs_buf_ioapply(bp);
1381 	/*
1382 	 * If _xfs_buf_ioapply failed, we'll get back here with
1383 	 * only the reference we took above.  _xfs_buf_ioend will
1384 	 * drop it to zero, so we'd better not queue it for later,
1385 	 * or we'll free it before it's done.
1386 	 */
1387 	_xfs_buf_ioend(bp, bp->b_error ? 0 : 1);
1388 
1389 	xfs_buf_rele(bp);
1390 }
1391 
1392 /*
1393  * Waits for I/O to complete on the buffer supplied.  It returns immediately if
1394  * no I/O is pending or there is already a pending error on the buffer, in which
1395  * case nothing will ever complete.  It returns the I/O error code, if any, or
1396  * 0 if there was no error.
1397  */
1398 int
1399 xfs_buf_iowait(
1400 	xfs_buf_t		*bp)
1401 {
1402 	trace_xfs_buf_iowait(bp, _RET_IP_);
1403 
1404 	if (!bp->b_error)
1405 		wait_for_completion(&bp->b_iowait);
1406 
1407 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1408 	return bp->b_error;
1409 }
1410 
1411 xfs_caddr_t
1412 xfs_buf_offset(
1413 	xfs_buf_t		*bp,
1414 	size_t			offset)
1415 {
1416 	struct page		*page;
1417 
1418 	if (bp->b_addr)
1419 		return bp->b_addr + offset;
1420 
1421 	offset += bp->b_offset;
1422 	page = bp->b_pages[offset >> PAGE_SHIFT];
1423 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1424 }
1425 
1426 /*
1427  *	Move data into or out of a buffer.
1428  */
1429 void
1430 xfs_buf_iomove(
1431 	xfs_buf_t		*bp,	/* buffer to process		*/
1432 	size_t			boff,	/* starting buffer offset	*/
1433 	size_t			bsize,	/* length to copy		*/
1434 	void			*data,	/* data address			*/
1435 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1436 {
1437 	size_t			bend;
1438 
1439 	bend = boff + bsize;
1440 	while (boff < bend) {
1441 		struct page	*page;
1442 		int		page_index, page_offset, csize;
1443 
1444 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1445 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1446 		page = bp->b_pages[page_index];
1447 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1448 				      BBTOB(bp->b_io_length) - boff);
1449 
1450 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1451 
1452 		switch (mode) {
1453 		case XBRW_ZERO:
1454 			memset(page_address(page) + page_offset, 0, csize);
1455 			break;
1456 		case XBRW_READ:
1457 			memcpy(data, page_address(page) + page_offset, csize);
1458 			break;
1459 		case XBRW_WRITE:
1460 			memcpy(page_address(page) + page_offset, data, csize);
1461 		}
1462 
1463 		boff += csize;
1464 		data += csize;
1465 	}
1466 }
1467 
1468 /*
1469  *	Handling of buffer targets (buftargs).
1470  */
1471 
1472 /*
1473  * Wait for any bufs with callbacks that have been submitted but have not yet
1474  * returned. These buffers will have an elevated hold count, so wait on those
1475  * while freeing all the buffers only held by the LRU.
1476  */
1477 static enum lru_status
1478 xfs_buftarg_wait_rele(
1479 	struct list_head	*item,
1480 	spinlock_t		*lru_lock,
1481 	void			*arg)
1482 
1483 {
1484 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1485 	struct list_head	*dispose = arg;
1486 
1487 	if (atomic_read(&bp->b_hold) > 1) {
1488 		/* need to wait, so skip it this pass */
1489 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1490 		return LRU_SKIP;
1491 	}
1492 	if (!spin_trylock(&bp->b_lock))
1493 		return LRU_SKIP;
1494 
1495 	/*
1496 	 * clear the LRU reference count so the buffer doesn't get
1497 	 * ignored in xfs_buf_rele().
1498 	 */
1499 	atomic_set(&bp->b_lru_ref, 0);
1500 	bp->b_state |= XFS_BSTATE_DISPOSE;
1501 	list_move(item, dispose);
1502 	spin_unlock(&bp->b_lock);
1503 	return LRU_REMOVED;
1504 }
1505 
1506 void
1507 xfs_wait_buftarg(
1508 	struct xfs_buftarg	*btp)
1509 {
1510 	LIST_HEAD(dispose);
1511 	int loop = 0;
1512 
1513 	/* loop until there is nothing left on the lru list. */
1514 	while (list_lru_count(&btp->bt_lru)) {
1515 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1516 			      &dispose, LONG_MAX);
1517 
1518 		while (!list_empty(&dispose)) {
1519 			struct xfs_buf *bp;
1520 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1521 			list_del_init(&bp->b_lru);
1522 			if (bp->b_flags & XBF_WRITE_FAIL) {
1523 				xfs_alert(btp->bt_mount,
1524 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1525 "Please run xfs_repair to determine the extent of the problem.",
1526 					(long long)bp->b_bn);
1527 			}
1528 			xfs_buf_rele(bp);
1529 		}
1530 		if (loop++ != 0)
1531 			delay(100);
1532 	}
1533 }
1534 
1535 static enum lru_status
1536 xfs_buftarg_isolate(
1537 	struct list_head	*item,
1538 	spinlock_t		*lru_lock,
1539 	void			*arg)
1540 {
1541 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1542 	struct list_head	*dispose = arg;
1543 
1544 	/*
1545 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1546 	 * If we fail to get the lock, just skip it.
1547 	 */
1548 	if (!spin_trylock(&bp->b_lock))
1549 		return LRU_SKIP;
1550 	/*
1551 	 * Decrement the b_lru_ref count unless the value is already
1552 	 * zero. If the value is already zero, we need to reclaim the
1553 	 * buffer, otherwise it gets another trip through the LRU.
1554 	 */
1555 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1556 		spin_unlock(&bp->b_lock);
1557 		return LRU_ROTATE;
1558 	}
1559 
1560 	bp->b_state |= XFS_BSTATE_DISPOSE;
1561 	list_move(item, dispose);
1562 	spin_unlock(&bp->b_lock);
1563 	return LRU_REMOVED;
1564 }
1565 
1566 static unsigned long
1567 xfs_buftarg_shrink_scan(
1568 	struct shrinker		*shrink,
1569 	struct shrink_control	*sc)
1570 {
1571 	struct xfs_buftarg	*btp = container_of(shrink,
1572 					struct xfs_buftarg, bt_shrinker);
1573 	LIST_HEAD(dispose);
1574 	unsigned long		freed;
1575 	unsigned long		nr_to_scan = sc->nr_to_scan;
1576 
1577 	freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1578 				       &dispose, &nr_to_scan);
1579 
1580 	while (!list_empty(&dispose)) {
1581 		struct xfs_buf *bp;
1582 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1583 		list_del_init(&bp->b_lru);
1584 		xfs_buf_rele(bp);
1585 	}
1586 
1587 	return freed;
1588 }
1589 
1590 static unsigned long
1591 xfs_buftarg_shrink_count(
1592 	struct shrinker		*shrink,
1593 	struct shrink_control	*sc)
1594 {
1595 	struct xfs_buftarg	*btp = container_of(shrink,
1596 					struct xfs_buftarg, bt_shrinker);
1597 	return list_lru_count_node(&btp->bt_lru, sc->nid);
1598 }
1599 
1600 void
1601 xfs_free_buftarg(
1602 	struct xfs_mount	*mp,
1603 	struct xfs_buftarg	*btp)
1604 {
1605 	unregister_shrinker(&btp->bt_shrinker);
1606 	list_lru_destroy(&btp->bt_lru);
1607 
1608 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1609 		xfs_blkdev_issue_flush(btp);
1610 
1611 	kmem_free(btp);
1612 }
1613 
1614 int
1615 xfs_setsize_buftarg(
1616 	xfs_buftarg_t		*btp,
1617 	unsigned int		sectorsize)
1618 {
1619 	/* Set up metadata sector size info */
1620 	btp->bt_meta_sectorsize = sectorsize;
1621 	btp->bt_meta_sectormask = sectorsize - 1;
1622 
1623 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1624 		char name[BDEVNAME_SIZE];
1625 
1626 		bdevname(btp->bt_bdev, name);
1627 
1628 		xfs_warn(btp->bt_mount,
1629 			"Cannot set_blocksize to %u on device %s",
1630 			sectorsize, name);
1631 		return EINVAL;
1632 	}
1633 
1634 	/* Set up device logical sector size mask */
1635 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1636 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1637 
1638 	return 0;
1639 }
1640 
1641 /*
1642  * When allocating the initial buffer target we have not yet
1643  * read in the superblock, so don't know what sized sectors
1644  * are being used at this early stage.  Play safe.
1645  */
1646 STATIC int
1647 xfs_setsize_buftarg_early(
1648 	xfs_buftarg_t		*btp,
1649 	struct block_device	*bdev)
1650 {
1651 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1652 }
1653 
1654 xfs_buftarg_t *
1655 xfs_alloc_buftarg(
1656 	struct xfs_mount	*mp,
1657 	struct block_device	*bdev)
1658 {
1659 	xfs_buftarg_t		*btp;
1660 
1661 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1662 
1663 	btp->bt_mount = mp;
1664 	btp->bt_dev =  bdev->bd_dev;
1665 	btp->bt_bdev = bdev;
1666 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1667 	if (!btp->bt_bdi)
1668 		goto error;
1669 
1670 	if (xfs_setsize_buftarg_early(btp, bdev))
1671 		goto error;
1672 
1673 	if (list_lru_init(&btp->bt_lru))
1674 		goto error;
1675 
1676 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1677 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1678 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1679 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1680 	register_shrinker(&btp->bt_shrinker);
1681 	return btp;
1682 
1683 error:
1684 	kmem_free(btp);
1685 	return NULL;
1686 }
1687 
1688 /*
1689  * Add a buffer to the delayed write list.
1690  *
1691  * This queues a buffer for writeout if it hasn't already been.  Note that
1692  * neither this routine nor the buffer list submission functions perform
1693  * any internal synchronization.  It is expected that the lists are thread-local
1694  * to the callers.
1695  *
1696  * Returns true if we queued up the buffer, or false if it already had
1697  * been on the buffer list.
1698  */
1699 bool
1700 xfs_buf_delwri_queue(
1701 	struct xfs_buf		*bp,
1702 	struct list_head	*list)
1703 {
1704 	ASSERT(xfs_buf_islocked(bp));
1705 	ASSERT(!(bp->b_flags & XBF_READ));
1706 
1707 	/*
1708 	 * If the buffer is already marked delwri it already is queued up
1709 	 * by someone else for imediate writeout.  Just ignore it in that
1710 	 * case.
1711 	 */
1712 	if (bp->b_flags & _XBF_DELWRI_Q) {
1713 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1714 		return false;
1715 	}
1716 
1717 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1718 
1719 	/*
1720 	 * If a buffer gets written out synchronously or marked stale while it
1721 	 * is on a delwri list we lazily remove it. To do this, the other party
1722 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1723 	 * It remains referenced and on the list.  In a rare corner case it
1724 	 * might get readded to a delwri list after the synchronous writeout, in
1725 	 * which case we need just need to re-add the flag here.
1726 	 */
1727 	bp->b_flags |= _XBF_DELWRI_Q;
1728 	if (list_empty(&bp->b_list)) {
1729 		atomic_inc(&bp->b_hold);
1730 		list_add_tail(&bp->b_list, list);
1731 	}
1732 
1733 	return true;
1734 }
1735 
1736 /*
1737  * Compare function is more complex than it needs to be because
1738  * the return value is only 32 bits and we are doing comparisons
1739  * on 64 bit values
1740  */
1741 static int
1742 xfs_buf_cmp(
1743 	void		*priv,
1744 	struct list_head *a,
1745 	struct list_head *b)
1746 {
1747 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1748 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1749 	xfs_daddr_t		diff;
1750 
1751 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1752 	if (diff < 0)
1753 		return -1;
1754 	if (diff > 0)
1755 		return 1;
1756 	return 0;
1757 }
1758 
1759 static int
1760 __xfs_buf_delwri_submit(
1761 	struct list_head	*buffer_list,
1762 	struct list_head	*io_list,
1763 	bool			wait)
1764 {
1765 	struct blk_plug		plug;
1766 	struct xfs_buf		*bp, *n;
1767 	int			pinned = 0;
1768 
1769 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1770 		if (!wait) {
1771 			if (xfs_buf_ispinned(bp)) {
1772 				pinned++;
1773 				continue;
1774 			}
1775 			if (!xfs_buf_trylock(bp))
1776 				continue;
1777 		} else {
1778 			xfs_buf_lock(bp);
1779 		}
1780 
1781 		/*
1782 		 * Someone else might have written the buffer synchronously or
1783 		 * marked it stale in the meantime.  In that case only the
1784 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1785 		 * reference and remove it from the list here.
1786 		 */
1787 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1788 			list_del_init(&bp->b_list);
1789 			xfs_buf_relse(bp);
1790 			continue;
1791 		}
1792 
1793 		list_move_tail(&bp->b_list, io_list);
1794 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1795 	}
1796 
1797 	list_sort(NULL, io_list, xfs_buf_cmp);
1798 
1799 	blk_start_plug(&plug);
1800 	list_for_each_entry_safe(bp, n, io_list, b_list) {
1801 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1802 		bp->b_flags |= XBF_WRITE;
1803 
1804 		if (!wait) {
1805 			bp->b_flags |= XBF_ASYNC;
1806 			list_del_init(&bp->b_list);
1807 		}
1808 		xfs_bdstrat_cb(bp);
1809 	}
1810 	blk_finish_plug(&plug);
1811 
1812 	return pinned;
1813 }
1814 
1815 /*
1816  * Write out a buffer list asynchronously.
1817  *
1818  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1819  * out and not wait for I/O completion on any of the buffers.  This interface
1820  * is only safely useable for callers that can track I/O completion by higher
1821  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1822  * function.
1823  */
1824 int
1825 xfs_buf_delwri_submit_nowait(
1826 	struct list_head	*buffer_list)
1827 {
1828 	LIST_HEAD		(io_list);
1829 	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1830 }
1831 
1832 /*
1833  * Write out a buffer list synchronously.
1834  *
1835  * This will take the @buffer_list, write all buffers out and wait for I/O
1836  * completion on all of the buffers. @buffer_list is consumed by the function,
1837  * so callers must have some other way of tracking buffers if they require such
1838  * functionality.
1839  */
1840 int
1841 xfs_buf_delwri_submit(
1842 	struct list_head	*buffer_list)
1843 {
1844 	LIST_HEAD		(io_list);
1845 	int			error = 0, error2;
1846 	struct xfs_buf		*bp;
1847 
1848 	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
1849 
1850 	/* Wait for IO to complete. */
1851 	while (!list_empty(&io_list)) {
1852 		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1853 
1854 		list_del_init(&bp->b_list);
1855 		error2 = xfs_buf_iowait(bp);
1856 		xfs_buf_relse(bp);
1857 		if (!error)
1858 			error = error2;
1859 	}
1860 
1861 	return error;
1862 }
1863 
1864 int __init
1865 xfs_buf_init(void)
1866 {
1867 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1868 						KM_ZONE_HWALIGN, NULL);
1869 	if (!xfs_buf_zone)
1870 		goto out;
1871 
1872 	xfslogd_workqueue = alloc_workqueue("xfslogd",
1873 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1874 	if (!xfslogd_workqueue)
1875 		goto out_free_buf_zone;
1876 
1877 	return 0;
1878 
1879  out_free_buf_zone:
1880 	kmem_zone_destroy(xfs_buf_zone);
1881  out:
1882 	return -ENOMEM;
1883 }
1884 
1885 void
1886 xfs_buf_terminate(void)
1887 {
1888 	destroy_workqueue(xfslogd_workqueue);
1889 	kmem_zone_destroy(xfs_buf_zone);
1890 }
1891