1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 37 #include "xfs_format.h" 38 #include "xfs_log_format.h" 39 #include "xfs_trans_resv.h" 40 #include "xfs_sb.h" 41 #include "xfs_mount.h" 42 #include "xfs_trace.h" 43 #include "xfs_log.h" 44 45 static kmem_zone_t *xfs_buf_zone; 46 47 #ifdef XFS_BUF_LOCK_TRACKING 48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 51 #else 52 # define XB_SET_OWNER(bp) do { } while (0) 53 # define XB_CLEAR_OWNER(bp) do { } while (0) 54 # define XB_GET_OWNER(bp) do { } while (0) 55 #endif 56 57 #define xb_to_gfp(flags) \ 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 59 60 61 static inline int 62 xfs_buf_is_vmapped( 63 struct xfs_buf *bp) 64 { 65 /* 66 * Return true if the buffer is vmapped. 67 * 68 * b_addr is null if the buffer is not mapped, but the code is clever 69 * enough to know it doesn't have to map a single page, so the check has 70 * to be both for b_addr and bp->b_page_count > 1. 71 */ 72 return bp->b_addr && bp->b_page_count > 1; 73 } 74 75 static inline int 76 xfs_buf_vmap_len( 77 struct xfs_buf *bp) 78 { 79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 80 } 81 82 /* 83 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 84 * b_lru_ref count so that the buffer is freed immediately when the buffer 85 * reference count falls to zero. If the buffer is already on the LRU, we need 86 * to remove the reference that LRU holds on the buffer. 87 * 88 * This prevents build-up of stale buffers on the LRU. 89 */ 90 void 91 xfs_buf_stale( 92 struct xfs_buf *bp) 93 { 94 ASSERT(xfs_buf_islocked(bp)); 95 96 bp->b_flags |= XBF_STALE; 97 98 /* 99 * Clear the delwri status so that a delwri queue walker will not 100 * flush this buffer to disk now that it is stale. The delwri queue has 101 * a reference to the buffer, so this is safe to do. 102 */ 103 bp->b_flags &= ~_XBF_DELWRI_Q; 104 105 spin_lock(&bp->b_lock); 106 atomic_set(&bp->b_lru_ref, 0); 107 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 108 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 109 atomic_dec(&bp->b_hold); 110 111 ASSERT(atomic_read(&bp->b_hold) >= 1); 112 spin_unlock(&bp->b_lock); 113 } 114 115 static int 116 xfs_buf_get_maps( 117 struct xfs_buf *bp, 118 int map_count) 119 { 120 ASSERT(bp->b_maps == NULL); 121 bp->b_map_count = map_count; 122 123 if (map_count == 1) { 124 bp->b_maps = &bp->__b_map; 125 return 0; 126 } 127 128 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 129 KM_NOFS); 130 if (!bp->b_maps) 131 return -ENOMEM; 132 return 0; 133 } 134 135 /* 136 * Frees b_pages if it was allocated. 137 */ 138 static void 139 xfs_buf_free_maps( 140 struct xfs_buf *bp) 141 { 142 if (bp->b_maps != &bp->__b_map) { 143 kmem_free(bp->b_maps); 144 bp->b_maps = NULL; 145 } 146 } 147 148 struct xfs_buf * 149 _xfs_buf_alloc( 150 struct xfs_buftarg *target, 151 struct xfs_buf_map *map, 152 int nmaps, 153 xfs_buf_flags_t flags) 154 { 155 struct xfs_buf *bp; 156 int error; 157 int i; 158 159 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 160 if (unlikely(!bp)) 161 return NULL; 162 163 /* 164 * We don't want certain flags to appear in b_flags unless they are 165 * specifically set by later operations on the buffer. 166 */ 167 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 168 169 atomic_set(&bp->b_hold, 1); 170 atomic_set(&bp->b_lru_ref, 1); 171 init_completion(&bp->b_iowait); 172 INIT_LIST_HEAD(&bp->b_lru); 173 INIT_LIST_HEAD(&bp->b_list); 174 RB_CLEAR_NODE(&bp->b_rbnode); 175 sema_init(&bp->b_sema, 0); /* held, no waiters */ 176 spin_lock_init(&bp->b_lock); 177 XB_SET_OWNER(bp); 178 bp->b_target = target; 179 bp->b_flags = flags; 180 181 /* 182 * Set length and io_length to the same value initially. 183 * I/O routines should use io_length, which will be the same in 184 * most cases but may be reset (e.g. XFS recovery). 185 */ 186 error = xfs_buf_get_maps(bp, nmaps); 187 if (error) { 188 kmem_zone_free(xfs_buf_zone, bp); 189 return NULL; 190 } 191 192 bp->b_bn = map[0].bm_bn; 193 bp->b_length = 0; 194 for (i = 0; i < nmaps; i++) { 195 bp->b_maps[i].bm_bn = map[i].bm_bn; 196 bp->b_maps[i].bm_len = map[i].bm_len; 197 bp->b_length += map[i].bm_len; 198 } 199 bp->b_io_length = bp->b_length; 200 201 atomic_set(&bp->b_pin_count, 0); 202 init_waitqueue_head(&bp->b_waiters); 203 204 XFS_STATS_INC(xb_create); 205 trace_xfs_buf_init(bp, _RET_IP_); 206 207 return bp; 208 } 209 210 /* 211 * Allocate a page array capable of holding a specified number 212 * of pages, and point the page buf at it. 213 */ 214 STATIC int 215 _xfs_buf_get_pages( 216 xfs_buf_t *bp, 217 int page_count) 218 { 219 /* Make sure that we have a page list */ 220 if (bp->b_pages == NULL) { 221 bp->b_page_count = page_count; 222 if (page_count <= XB_PAGES) { 223 bp->b_pages = bp->b_page_array; 224 } else { 225 bp->b_pages = kmem_alloc(sizeof(struct page *) * 226 page_count, KM_NOFS); 227 if (bp->b_pages == NULL) 228 return -ENOMEM; 229 } 230 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 231 } 232 return 0; 233 } 234 235 /* 236 * Frees b_pages if it was allocated. 237 */ 238 STATIC void 239 _xfs_buf_free_pages( 240 xfs_buf_t *bp) 241 { 242 if (bp->b_pages != bp->b_page_array) { 243 kmem_free(bp->b_pages); 244 bp->b_pages = NULL; 245 } 246 } 247 248 /* 249 * Releases the specified buffer. 250 * 251 * The modification state of any associated pages is left unchanged. 252 * The buffer must not be on any hash - use xfs_buf_rele instead for 253 * hashed and refcounted buffers 254 */ 255 void 256 xfs_buf_free( 257 xfs_buf_t *bp) 258 { 259 trace_xfs_buf_free(bp, _RET_IP_); 260 261 ASSERT(list_empty(&bp->b_lru)); 262 263 if (bp->b_flags & _XBF_PAGES) { 264 uint i; 265 266 if (xfs_buf_is_vmapped(bp)) 267 vm_unmap_ram(bp->b_addr - bp->b_offset, 268 bp->b_page_count); 269 270 for (i = 0; i < bp->b_page_count; i++) { 271 struct page *page = bp->b_pages[i]; 272 273 __free_page(page); 274 } 275 } else if (bp->b_flags & _XBF_KMEM) 276 kmem_free(bp->b_addr); 277 _xfs_buf_free_pages(bp); 278 xfs_buf_free_maps(bp); 279 kmem_zone_free(xfs_buf_zone, bp); 280 } 281 282 /* 283 * Allocates all the pages for buffer in question and builds it's page list. 284 */ 285 STATIC int 286 xfs_buf_allocate_memory( 287 xfs_buf_t *bp, 288 uint flags) 289 { 290 size_t size; 291 size_t nbytes, offset; 292 gfp_t gfp_mask = xb_to_gfp(flags); 293 unsigned short page_count, i; 294 xfs_off_t start, end; 295 int error; 296 297 /* 298 * for buffers that are contained within a single page, just allocate 299 * the memory from the heap - there's no need for the complexity of 300 * page arrays to keep allocation down to order 0. 301 */ 302 size = BBTOB(bp->b_length); 303 if (size < PAGE_SIZE) { 304 bp->b_addr = kmem_alloc(size, KM_NOFS); 305 if (!bp->b_addr) { 306 /* low memory - use alloc_page loop instead */ 307 goto use_alloc_page; 308 } 309 310 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 311 ((unsigned long)bp->b_addr & PAGE_MASK)) { 312 /* b_addr spans two pages - use alloc_page instead */ 313 kmem_free(bp->b_addr); 314 bp->b_addr = NULL; 315 goto use_alloc_page; 316 } 317 bp->b_offset = offset_in_page(bp->b_addr); 318 bp->b_pages = bp->b_page_array; 319 bp->b_pages[0] = virt_to_page(bp->b_addr); 320 bp->b_page_count = 1; 321 bp->b_flags |= _XBF_KMEM; 322 return 0; 323 } 324 325 use_alloc_page: 326 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 327 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 328 >> PAGE_SHIFT; 329 page_count = end - start; 330 error = _xfs_buf_get_pages(bp, page_count); 331 if (unlikely(error)) 332 return error; 333 334 offset = bp->b_offset; 335 bp->b_flags |= _XBF_PAGES; 336 337 for (i = 0; i < bp->b_page_count; i++) { 338 struct page *page; 339 uint retries = 0; 340 retry: 341 page = alloc_page(gfp_mask); 342 if (unlikely(page == NULL)) { 343 if (flags & XBF_READ_AHEAD) { 344 bp->b_page_count = i; 345 error = -ENOMEM; 346 goto out_free_pages; 347 } 348 349 /* 350 * This could deadlock. 351 * 352 * But until all the XFS lowlevel code is revamped to 353 * handle buffer allocation failures we can't do much. 354 */ 355 if (!(++retries % 100)) 356 xfs_err(NULL, 357 "possible memory allocation deadlock in %s (mode:0x%x)", 358 __func__, gfp_mask); 359 360 XFS_STATS_INC(xb_page_retries); 361 congestion_wait(BLK_RW_ASYNC, HZ/50); 362 goto retry; 363 } 364 365 XFS_STATS_INC(xb_page_found); 366 367 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 368 size -= nbytes; 369 bp->b_pages[i] = page; 370 offset = 0; 371 } 372 return 0; 373 374 out_free_pages: 375 for (i = 0; i < bp->b_page_count; i++) 376 __free_page(bp->b_pages[i]); 377 return error; 378 } 379 380 /* 381 * Map buffer into kernel address-space if necessary. 382 */ 383 STATIC int 384 _xfs_buf_map_pages( 385 xfs_buf_t *bp, 386 uint flags) 387 { 388 ASSERT(bp->b_flags & _XBF_PAGES); 389 if (bp->b_page_count == 1) { 390 /* A single page buffer is always mappable */ 391 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 392 } else if (flags & XBF_UNMAPPED) { 393 bp->b_addr = NULL; 394 } else { 395 int retried = 0; 396 unsigned noio_flag; 397 398 /* 399 * vm_map_ram() will allocate auxillary structures (e.g. 400 * pagetables) with GFP_KERNEL, yet we are likely to be under 401 * GFP_NOFS context here. Hence we need to tell memory reclaim 402 * that we are in such a context via PF_MEMALLOC_NOIO to prevent 403 * memory reclaim re-entering the filesystem here and 404 * potentially deadlocking. 405 */ 406 noio_flag = memalloc_noio_save(); 407 do { 408 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 409 -1, PAGE_KERNEL); 410 if (bp->b_addr) 411 break; 412 vm_unmap_aliases(); 413 } while (retried++ <= 1); 414 memalloc_noio_restore(noio_flag); 415 416 if (!bp->b_addr) 417 return -ENOMEM; 418 bp->b_addr += bp->b_offset; 419 } 420 421 return 0; 422 } 423 424 /* 425 * Finding and Reading Buffers 426 */ 427 428 /* 429 * Look up, and creates if absent, a lockable buffer for 430 * a given range of an inode. The buffer is returned 431 * locked. No I/O is implied by this call. 432 */ 433 xfs_buf_t * 434 _xfs_buf_find( 435 struct xfs_buftarg *btp, 436 struct xfs_buf_map *map, 437 int nmaps, 438 xfs_buf_flags_t flags, 439 xfs_buf_t *new_bp) 440 { 441 struct xfs_perag *pag; 442 struct rb_node **rbp; 443 struct rb_node *parent; 444 xfs_buf_t *bp; 445 xfs_daddr_t blkno = map[0].bm_bn; 446 xfs_daddr_t eofs; 447 int numblks = 0; 448 int i; 449 450 for (i = 0; i < nmaps; i++) 451 numblks += map[i].bm_len; 452 453 /* Check for IOs smaller than the sector size / not sector aligned */ 454 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize)); 455 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask)); 456 457 /* 458 * Corrupted block numbers can get through to here, unfortunately, so we 459 * have to check that the buffer falls within the filesystem bounds. 460 */ 461 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 462 if (blkno < 0 || blkno >= eofs) { 463 /* 464 * XXX (dgc): we should really be returning -EFSCORRUPTED here, 465 * but none of the higher level infrastructure supports 466 * returning a specific error on buffer lookup failures. 467 */ 468 xfs_alert(btp->bt_mount, 469 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ", 470 __func__, blkno, eofs); 471 WARN_ON(1); 472 return NULL; 473 } 474 475 /* get tree root */ 476 pag = xfs_perag_get(btp->bt_mount, 477 xfs_daddr_to_agno(btp->bt_mount, blkno)); 478 479 /* walk tree */ 480 spin_lock(&pag->pag_buf_lock); 481 rbp = &pag->pag_buf_tree.rb_node; 482 parent = NULL; 483 bp = NULL; 484 while (*rbp) { 485 parent = *rbp; 486 bp = rb_entry(parent, struct xfs_buf, b_rbnode); 487 488 if (blkno < bp->b_bn) 489 rbp = &(*rbp)->rb_left; 490 else if (blkno > bp->b_bn) 491 rbp = &(*rbp)->rb_right; 492 else { 493 /* 494 * found a block number match. If the range doesn't 495 * match, the only way this is allowed is if the buffer 496 * in the cache is stale and the transaction that made 497 * it stale has not yet committed. i.e. we are 498 * reallocating a busy extent. Skip this buffer and 499 * continue searching to the right for an exact match. 500 */ 501 if (bp->b_length != numblks) { 502 ASSERT(bp->b_flags & XBF_STALE); 503 rbp = &(*rbp)->rb_right; 504 continue; 505 } 506 atomic_inc(&bp->b_hold); 507 goto found; 508 } 509 } 510 511 /* No match found */ 512 if (new_bp) { 513 rb_link_node(&new_bp->b_rbnode, parent, rbp); 514 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); 515 /* the buffer keeps the perag reference until it is freed */ 516 new_bp->b_pag = pag; 517 spin_unlock(&pag->pag_buf_lock); 518 } else { 519 XFS_STATS_INC(xb_miss_locked); 520 spin_unlock(&pag->pag_buf_lock); 521 xfs_perag_put(pag); 522 } 523 return new_bp; 524 525 found: 526 spin_unlock(&pag->pag_buf_lock); 527 xfs_perag_put(pag); 528 529 if (!xfs_buf_trylock(bp)) { 530 if (flags & XBF_TRYLOCK) { 531 xfs_buf_rele(bp); 532 XFS_STATS_INC(xb_busy_locked); 533 return NULL; 534 } 535 xfs_buf_lock(bp); 536 XFS_STATS_INC(xb_get_locked_waited); 537 } 538 539 /* 540 * if the buffer is stale, clear all the external state associated with 541 * it. We need to keep flags such as how we allocated the buffer memory 542 * intact here. 543 */ 544 if (bp->b_flags & XBF_STALE) { 545 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 546 ASSERT(bp->b_iodone == NULL); 547 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 548 bp->b_ops = NULL; 549 } 550 551 trace_xfs_buf_find(bp, flags, _RET_IP_); 552 XFS_STATS_INC(xb_get_locked); 553 return bp; 554 } 555 556 /* 557 * Assembles a buffer covering the specified range. The code is optimised for 558 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 559 * more hits than misses. 560 */ 561 struct xfs_buf * 562 xfs_buf_get_map( 563 struct xfs_buftarg *target, 564 struct xfs_buf_map *map, 565 int nmaps, 566 xfs_buf_flags_t flags) 567 { 568 struct xfs_buf *bp; 569 struct xfs_buf *new_bp; 570 int error = 0; 571 572 bp = _xfs_buf_find(target, map, nmaps, flags, NULL); 573 if (likely(bp)) 574 goto found; 575 576 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 577 if (unlikely(!new_bp)) 578 return NULL; 579 580 error = xfs_buf_allocate_memory(new_bp, flags); 581 if (error) { 582 xfs_buf_free(new_bp); 583 return NULL; 584 } 585 586 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); 587 if (!bp) { 588 xfs_buf_free(new_bp); 589 return NULL; 590 } 591 592 if (bp != new_bp) 593 xfs_buf_free(new_bp); 594 595 found: 596 if (!bp->b_addr) { 597 error = _xfs_buf_map_pages(bp, flags); 598 if (unlikely(error)) { 599 xfs_warn(target->bt_mount, 600 "%s: failed to map pagesn", __func__); 601 xfs_buf_relse(bp); 602 return NULL; 603 } 604 } 605 606 XFS_STATS_INC(xb_get); 607 trace_xfs_buf_get(bp, flags, _RET_IP_); 608 return bp; 609 } 610 611 STATIC int 612 _xfs_buf_read( 613 xfs_buf_t *bp, 614 xfs_buf_flags_t flags) 615 { 616 ASSERT(!(flags & XBF_WRITE)); 617 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 618 619 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 620 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 621 622 if (flags & XBF_ASYNC) { 623 xfs_buf_submit(bp); 624 return 0; 625 } 626 return xfs_buf_submit_wait(bp); 627 } 628 629 xfs_buf_t * 630 xfs_buf_read_map( 631 struct xfs_buftarg *target, 632 struct xfs_buf_map *map, 633 int nmaps, 634 xfs_buf_flags_t flags, 635 const struct xfs_buf_ops *ops) 636 { 637 struct xfs_buf *bp; 638 639 flags |= XBF_READ; 640 641 bp = xfs_buf_get_map(target, map, nmaps, flags); 642 if (bp) { 643 trace_xfs_buf_read(bp, flags, _RET_IP_); 644 645 if (!XFS_BUF_ISDONE(bp)) { 646 XFS_STATS_INC(xb_get_read); 647 bp->b_ops = ops; 648 _xfs_buf_read(bp, flags); 649 } else if (flags & XBF_ASYNC) { 650 /* 651 * Read ahead call which is already satisfied, 652 * drop the buffer 653 */ 654 xfs_buf_relse(bp); 655 return NULL; 656 } else { 657 /* We do not want read in the flags */ 658 bp->b_flags &= ~XBF_READ; 659 } 660 } 661 662 return bp; 663 } 664 665 /* 666 * If we are not low on memory then do the readahead in a deadlock 667 * safe manner. 668 */ 669 void 670 xfs_buf_readahead_map( 671 struct xfs_buftarg *target, 672 struct xfs_buf_map *map, 673 int nmaps, 674 const struct xfs_buf_ops *ops) 675 { 676 if (bdi_read_congested(target->bt_bdi)) 677 return; 678 679 xfs_buf_read_map(target, map, nmaps, 680 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 681 } 682 683 /* 684 * Read an uncached buffer from disk. Allocates and returns a locked 685 * buffer containing the disk contents or nothing. 686 */ 687 int 688 xfs_buf_read_uncached( 689 struct xfs_buftarg *target, 690 xfs_daddr_t daddr, 691 size_t numblks, 692 int flags, 693 struct xfs_buf **bpp, 694 const struct xfs_buf_ops *ops) 695 { 696 struct xfs_buf *bp; 697 698 *bpp = NULL; 699 700 bp = xfs_buf_get_uncached(target, numblks, flags); 701 if (!bp) 702 return -ENOMEM; 703 704 /* set up the buffer for a read IO */ 705 ASSERT(bp->b_map_count == 1); 706 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 707 bp->b_maps[0].bm_bn = daddr; 708 bp->b_flags |= XBF_READ; 709 bp->b_ops = ops; 710 711 xfs_buf_submit_wait(bp); 712 if (bp->b_error) { 713 int error = bp->b_error; 714 xfs_buf_relse(bp); 715 return error; 716 } 717 718 *bpp = bp; 719 return 0; 720 } 721 722 /* 723 * Return a buffer allocated as an empty buffer and associated to external 724 * memory via xfs_buf_associate_memory() back to it's empty state. 725 */ 726 void 727 xfs_buf_set_empty( 728 struct xfs_buf *bp, 729 size_t numblks) 730 { 731 if (bp->b_pages) 732 _xfs_buf_free_pages(bp); 733 734 bp->b_pages = NULL; 735 bp->b_page_count = 0; 736 bp->b_addr = NULL; 737 bp->b_length = numblks; 738 bp->b_io_length = numblks; 739 740 ASSERT(bp->b_map_count == 1); 741 bp->b_bn = XFS_BUF_DADDR_NULL; 742 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 743 bp->b_maps[0].bm_len = bp->b_length; 744 } 745 746 static inline struct page * 747 mem_to_page( 748 void *addr) 749 { 750 if ((!is_vmalloc_addr(addr))) { 751 return virt_to_page(addr); 752 } else { 753 return vmalloc_to_page(addr); 754 } 755 } 756 757 int 758 xfs_buf_associate_memory( 759 xfs_buf_t *bp, 760 void *mem, 761 size_t len) 762 { 763 int rval; 764 int i = 0; 765 unsigned long pageaddr; 766 unsigned long offset; 767 size_t buflen; 768 int page_count; 769 770 pageaddr = (unsigned long)mem & PAGE_MASK; 771 offset = (unsigned long)mem - pageaddr; 772 buflen = PAGE_ALIGN(len + offset); 773 page_count = buflen >> PAGE_SHIFT; 774 775 /* Free any previous set of page pointers */ 776 if (bp->b_pages) 777 _xfs_buf_free_pages(bp); 778 779 bp->b_pages = NULL; 780 bp->b_addr = mem; 781 782 rval = _xfs_buf_get_pages(bp, page_count); 783 if (rval) 784 return rval; 785 786 bp->b_offset = offset; 787 788 for (i = 0; i < bp->b_page_count; i++) { 789 bp->b_pages[i] = mem_to_page((void *)pageaddr); 790 pageaddr += PAGE_SIZE; 791 } 792 793 bp->b_io_length = BTOBB(len); 794 bp->b_length = BTOBB(buflen); 795 796 return 0; 797 } 798 799 xfs_buf_t * 800 xfs_buf_get_uncached( 801 struct xfs_buftarg *target, 802 size_t numblks, 803 int flags) 804 { 805 unsigned long page_count; 806 int error, i; 807 struct xfs_buf *bp; 808 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 809 810 bp = _xfs_buf_alloc(target, &map, 1, 0); 811 if (unlikely(bp == NULL)) 812 goto fail; 813 814 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 815 error = _xfs_buf_get_pages(bp, page_count); 816 if (error) 817 goto fail_free_buf; 818 819 for (i = 0; i < page_count; i++) { 820 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 821 if (!bp->b_pages[i]) 822 goto fail_free_mem; 823 } 824 bp->b_flags |= _XBF_PAGES; 825 826 error = _xfs_buf_map_pages(bp, 0); 827 if (unlikely(error)) { 828 xfs_warn(target->bt_mount, 829 "%s: failed to map pages", __func__); 830 goto fail_free_mem; 831 } 832 833 trace_xfs_buf_get_uncached(bp, _RET_IP_); 834 return bp; 835 836 fail_free_mem: 837 while (--i >= 0) 838 __free_page(bp->b_pages[i]); 839 _xfs_buf_free_pages(bp); 840 fail_free_buf: 841 xfs_buf_free_maps(bp); 842 kmem_zone_free(xfs_buf_zone, bp); 843 fail: 844 return NULL; 845 } 846 847 /* 848 * Increment reference count on buffer, to hold the buffer concurrently 849 * with another thread which may release (free) the buffer asynchronously. 850 * Must hold the buffer already to call this function. 851 */ 852 void 853 xfs_buf_hold( 854 xfs_buf_t *bp) 855 { 856 trace_xfs_buf_hold(bp, _RET_IP_); 857 atomic_inc(&bp->b_hold); 858 } 859 860 /* 861 * Releases a hold on the specified buffer. If the 862 * the hold count is 1, calls xfs_buf_free. 863 */ 864 void 865 xfs_buf_rele( 866 xfs_buf_t *bp) 867 { 868 struct xfs_perag *pag = bp->b_pag; 869 870 trace_xfs_buf_rele(bp, _RET_IP_); 871 872 if (!pag) { 873 ASSERT(list_empty(&bp->b_lru)); 874 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); 875 if (atomic_dec_and_test(&bp->b_hold)) 876 xfs_buf_free(bp); 877 return; 878 } 879 880 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); 881 882 ASSERT(atomic_read(&bp->b_hold) > 0); 883 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { 884 spin_lock(&bp->b_lock); 885 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 886 /* 887 * If the buffer is added to the LRU take a new 888 * reference to the buffer for the LRU and clear the 889 * (now stale) dispose list state flag 890 */ 891 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 892 bp->b_state &= ~XFS_BSTATE_DISPOSE; 893 atomic_inc(&bp->b_hold); 894 } 895 spin_unlock(&bp->b_lock); 896 spin_unlock(&pag->pag_buf_lock); 897 } else { 898 /* 899 * most of the time buffers will already be removed from 900 * the LRU, so optimise that case by checking for the 901 * XFS_BSTATE_DISPOSE flag indicating the last list the 902 * buffer was on was the disposal list 903 */ 904 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 905 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 906 } else { 907 ASSERT(list_empty(&bp->b_lru)); 908 } 909 spin_unlock(&bp->b_lock); 910 911 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 912 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); 913 spin_unlock(&pag->pag_buf_lock); 914 xfs_perag_put(pag); 915 xfs_buf_free(bp); 916 } 917 } 918 } 919 920 921 /* 922 * Lock a buffer object, if it is not already locked. 923 * 924 * If we come across a stale, pinned, locked buffer, we know that we are 925 * being asked to lock a buffer that has been reallocated. Because it is 926 * pinned, we know that the log has not been pushed to disk and hence it 927 * will still be locked. Rather than continuing to have trylock attempts 928 * fail until someone else pushes the log, push it ourselves before 929 * returning. This means that the xfsaild will not get stuck trying 930 * to push on stale inode buffers. 931 */ 932 int 933 xfs_buf_trylock( 934 struct xfs_buf *bp) 935 { 936 int locked; 937 938 locked = down_trylock(&bp->b_sema) == 0; 939 if (locked) 940 XB_SET_OWNER(bp); 941 942 trace_xfs_buf_trylock(bp, _RET_IP_); 943 return locked; 944 } 945 946 /* 947 * Lock a buffer object. 948 * 949 * If we come across a stale, pinned, locked buffer, we know that we 950 * are being asked to lock a buffer that has been reallocated. Because 951 * it is pinned, we know that the log has not been pushed to disk and 952 * hence it will still be locked. Rather than sleeping until someone 953 * else pushes the log, push it ourselves before trying to get the lock. 954 */ 955 void 956 xfs_buf_lock( 957 struct xfs_buf *bp) 958 { 959 trace_xfs_buf_lock(bp, _RET_IP_); 960 961 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 962 xfs_log_force(bp->b_target->bt_mount, 0); 963 down(&bp->b_sema); 964 XB_SET_OWNER(bp); 965 966 trace_xfs_buf_lock_done(bp, _RET_IP_); 967 } 968 969 void 970 xfs_buf_unlock( 971 struct xfs_buf *bp) 972 { 973 XB_CLEAR_OWNER(bp); 974 up(&bp->b_sema); 975 976 trace_xfs_buf_unlock(bp, _RET_IP_); 977 } 978 979 STATIC void 980 xfs_buf_wait_unpin( 981 xfs_buf_t *bp) 982 { 983 DECLARE_WAITQUEUE (wait, current); 984 985 if (atomic_read(&bp->b_pin_count) == 0) 986 return; 987 988 add_wait_queue(&bp->b_waiters, &wait); 989 for (;;) { 990 set_current_state(TASK_UNINTERRUPTIBLE); 991 if (atomic_read(&bp->b_pin_count) == 0) 992 break; 993 io_schedule(); 994 } 995 remove_wait_queue(&bp->b_waiters, &wait); 996 set_current_state(TASK_RUNNING); 997 } 998 999 /* 1000 * Buffer Utility Routines 1001 */ 1002 1003 void 1004 xfs_buf_ioend( 1005 struct xfs_buf *bp) 1006 { 1007 bool read = bp->b_flags & XBF_READ; 1008 1009 trace_xfs_buf_iodone(bp, _RET_IP_); 1010 1011 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1012 1013 /* 1014 * Pull in IO completion errors now. We are guaranteed to be running 1015 * single threaded, so we don't need the lock to read b_io_error. 1016 */ 1017 if (!bp->b_error && bp->b_io_error) 1018 xfs_buf_ioerror(bp, bp->b_io_error); 1019 1020 /* Only validate buffers that were read without errors */ 1021 if (read && !bp->b_error && bp->b_ops) { 1022 ASSERT(!bp->b_iodone); 1023 bp->b_ops->verify_read(bp); 1024 } 1025 1026 if (!bp->b_error) 1027 bp->b_flags |= XBF_DONE; 1028 1029 if (bp->b_iodone) 1030 (*(bp->b_iodone))(bp); 1031 else if (bp->b_flags & XBF_ASYNC) 1032 xfs_buf_relse(bp); 1033 else 1034 complete(&bp->b_iowait); 1035 } 1036 1037 static void 1038 xfs_buf_ioend_work( 1039 struct work_struct *work) 1040 { 1041 struct xfs_buf *bp = 1042 container_of(work, xfs_buf_t, b_ioend_work); 1043 1044 xfs_buf_ioend(bp); 1045 } 1046 1047 void 1048 xfs_buf_ioend_async( 1049 struct xfs_buf *bp) 1050 { 1051 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1052 queue_work(bp->b_ioend_wq, &bp->b_ioend_work); 1053 } 1054 1055 void 1056 xfs_buf_ioerror( 1057 xfs_buf_t *bp, 1058 int error) 1059 { 1060 ASSERT(error <= 0 && error >= -1000); 1061 bp->b_error = error; 1062 trace_xfs_buf_ioerror(bp, error, _RET_IP_); 1063 } 1064 1065 void 1066 xfs_buf_ioerror_alert( 1067 struct xfs_buf *bp, 1068 const char *func) 1069 { 1070 xfs_alert(bp->b_target->bt_mount, 1071 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d", 1072 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length); 1073 } 1074 1075 int 1076 xfs_bwrite( 1077 struct xfs_buf *bp) 1078 { 1079 int error; 1080 1081 ASSERT(xfs_buf_islocked(bp)); 1082 1083 bp->b_flags |= XBF_WRITE; 1084 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1085 XBF_WRITE_FAIL | XBF_DONE); 1086 1087 error = xfs_buf_submit_wait(bp); 1088 if (error) { 1089 xfs_force_shutdown(bp->b_target->bt_mount, 1090 SHUTDOWN_META_IO_ERROR); 1091 } 1092 return error; 1093 } 1094 1095 STATIC void 1096 xfs_buf_bio_end_io( 1097 struct bio *bio) 1098 { 1099 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private; 1100 1101 /* 1102 * don't overwrite existing errors - otherwise we can lose errors on 1103 * buffers that require multiple bios to complete. 1104 */ 1105 if (bio->bi_error) { 1106 spin_lock(&bp->b_lock); 1107 if (!bp->b_io_error) 1108 bp->b_io_error = bio->bi_error; 1109 spin_unlock(&bp->b_lock); 1110 } 1111 1112 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1113 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1114 1115 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1116 xfs_buf_ioend_async(bp); 1117 bio_put(bio); 1118 } 1119 1120 static void 1121 xfs_buf_ioapply_map( 1122 struct xfs_buf *bp, 1123 int map, 1124 int *buf_offset, 1125 int *count, 1126 int rw) 1127 { 1128 int page_index; 1129 int total_nr_pages = bp->b_page_count; 1130 int nr_pages; 1131 struct bio *bio; 1132 sector_t sector = bp->b_maps[map].bm_bn; 1133 int size; 1134 int offset; 1135 1136 total_nr_pages = bp->b_page_count; 1137 1138 /* skip the pages in the buffer before the start offset */ 1139 page_index = 0; 1140 offset = *buf_offset; 1141 while (offset >= PAGE_SIZE) { 1142 page_index++; 1143 offset -= PAGE_SIZE; 1144 } 1145 1146 /* 1147 * Limit the IO size to the length of the current vector, and update the 1148 * remaining IO count for the next time around. 1149 */ 1150 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1151 *count -= size; 1152 *buf_offset += size; 1153 1154 next_chunk: 1155 atomic_inc(&bp->b_io_remaining); 1156 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); 1157 if (nr_pages > total_nr_pages) 1158 nr_pages = total_nr_pages; 1159 1160 bio = bio_alloc(GFP_NOIO, nr_pages); 1161 bio->bi_bdev = bp->b_target->bt_bdev; 1162 bio->bi_iter.bi_sector = sector; 1163 bio->bi_end_io = xfs_buf_bio_end_io; 1164 bio->bi_private = bp; 1165 1166 1167 for (; size && nr_pages; nr_pages--, page_index++) { 1168 int rbytes, nbytes = PAGE_SIZE - offset; 1169 1170 if (nbytes > size) 1171 nbytes = size; 1172 1173 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1174 offset); 1175 if (rbytes < nbytes) 1176 break; 1177 1178 offset = 0; 1179 sector += BTOBB(nbytes); 1180 size -= nbytes; 1181 total_nr_pages--; 1182 } 1183 1184 if (likely(bio->bi_iter.bi_size)) { 1185 if (xfs_buf_is_vmapped(bp)) { 1186 flush_kernel_vmap_range(bp->b_addr, 1187 xfs_buf_vmap_len(bp)); 1188 } 1189 submit_bio(rw, bio); 1190 if (size) 1191 goto next_chunk; 1192 } else { 1193 /* 1194 * This is guaranteed not to be the last io reference count 1195 * because the caller (xfs_buf_submit) holds a count itself. 1196 */ 1197 atomic_dec(&bp->b_io_remaining); 1198 xfs_buf_ioerror(bp, -EIO); 1199 bio_put(bio); 1200 } 1201 1202 } 1203 1204 STATIC void 1205 _xfs_buf_ioapply( 1206 struct xfs_buf *bp) 1207 { 1208 struct blk_plug plug; 1209 int rw; 1210 int offset; 1211 int size; 1212 int i; 1213 1214 /* 1215 * Make sure we capture only current IO errors rather than stale errors 1216 * left over from previous use of the buffer (e.g. failed readahead). 1217 */ 1218 bp->b_error = 0; 1219 1220 /* 1221 * Initialize the I/O completion workqueue if we haven't yet or the 1222 * submitter has not opted to specify a custom one. 1223 */ 1224 if (!bp->b_ioend_wq) 1225 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue; 1226 1227 if (bp->b_flags & XBF_WRITE) { 1228 if (bp->b_flags & XBF_SYNCIO) 1229 rw = WRITE_SYNC; 1230 else 1231 rw = WRITE; 1232 if (bp->b_flags & XBF_FUA) 1233 rw |= REQ_FUA; 1234 if (bp->b_flags & XBF_FLUSH) 1235 rw |= REQ_FLUSH; 1236 1237 /* 1238 * Run the write verifier callback function if it exists. If 1239 * this function fails it will mark the buffer with an error and 1240 * the IO should not be dispatched. 1241 */ 1242 if (bp->b_ops) { 1243 bp->b_ops->verify_write(bp); 1244 if (bp->b_error) { 1245 xfs_force_shutdown(bp->b_target->bt_mount, 1246 SHUTDOWN_CORRUPT_INCORE); 1247 return; 1248 } 1249 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1250 struct xfs_mount *mp = bp->b_target->bt_mount; 1251 1252 /* 1253 * non-crc filesystems don't attach verifiers during 1254 * log recovery, so don't warn for such filesystems. 1255 */ 1256 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1257 xfs_warn(mp, 1258 "%s: no ops on block 0x%llx/0x%x", 1259 __func__, bp->b_bn, bp->b_length); 1260 xfs_hex_dump(bp->b_addr, 64); 1261 dump_stack(); 1262 } 1263 } 1264 } else if (bp->b_flags & XBF_READ_AHEAD) { 1265 rw = READA; 1266 } else { 1267 rw = READ; 1268 } 1269 1270 /* we only use the buffer cache for meta-data */ 1271 rw |= REQ_META; 1272 1273 /* 1274 * Walk all the vectors issuing IO on them. Set up the initial offset 1275 * into the buffer and the desired IO size before we start - 1276 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1277 * subsequent call. 1278 */ 1279 offset = bp->b_offset; 1280 size = BBTOB(bp->b_io_length); 1281 blk_start_plug(&plug); 1282 for (i = 0; i < bp->b_map_count; i++) { 1283 xfs_buf_ioapply_map(bp, i, &offset, &size, rw); 1284 if (bp->b_error) 1285 break; 1286 if (size <= 0) 1287 break; /* all done */ 1288 } 1289 blk_finish_plug(&plug); 1290 } 1291 1292 /* 1293 * Asynchronous IO submission path. This transfers the buffer lock ownership and 1294 * the current reference to the IO. It is not safe to reference the buffer after 1295 * a call to this function unless the caller holds an additional reference 1296 * itself. 1297 */ 1298 void 1299 xfs_buf_submit( 1300 struct xfs_buf *bp) 1301 { 1302 trace_xfs_buf_submit(bp, _RET_IP_); 1303 1304 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1305 ASSERT(bp->b_flags & XBF_ASYNC); 1306 1307 /* on shutdown we stale and complete the buffer immediately */ 1308 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1309 xfs_buf_ioerror(bp, -EIO); 1310 bp->b_flags &= ~XBF_DONE; 1311 xfs_buf_stale(bp); 1312 xfs_buf_ioend(bp); 1313 return; 1314 } 1315 1316 if (bp->b_flags & XBF_WRITE) 1317 xfs_buf_wait_unpin(bp); 1318 1319 /* clear the internal error state to avoid spurious errors */ 1320 bp->b_io_error = 0; 1321 1322 /* 1323 * The caller's reference is released during I/O completion. 1324 * This occurs some time after the last b_io_remaining reference is 1325 * released, so after we drop our Io reference we have to have some 1326 * other reference to ensure the buffer doesn't go away from underneath 1327 * us. Take a direct reference to ensure we have safe access to the 1328 * buffer until we are finished with it. 1329 */ 1330 xfs_buf_hold(bp); 1331 1332 /* 1333 * Set the count to 1 initially, this will stop an I/O completion 1334 * callout which happens before we have started all the I/O from calling 1335 * xfs_buf_ioend too early. 1336 */ 1337 atomic_set(&bp->b_io_remaining, 1); 1338 _xfs_buf_ioapply(bp); 1339 1340 /* 1341 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1342 * reference we took above. If we drop it to zero, run completion so 1343 * that we don't return to the caller with completion still pending. 1344 */ 1345 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1346 if (bp->b_error) 1347 xfs_buf_ioend(bp); 1348 else 1349 xfs_buf_ioend_async(bp); 1350 } 1351 1352 xfs_buf_rele(bp); 1353 /* Note: it is not safe to reference bp now we've dropped our ref */ 1354 } 1355 1356 /* 1357 * Synchronous buffer IO submission path, read or write. 1358 */ 1359 int 1360 xfs_buf_submit_wait( 1361 struct xfs_buf *bp) 1362 { 1363 int error; 1364 1365 trace_xfs_buf_submit_wait(bp, _RET_IP_); 1366 1367 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC))); 1368 1369 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1370 xfs_buf_ioerror(bp, -EIO); 1371 xfs_buf_stale(bp); 1372 bp->b_flags &= ~XBF_DONE; 1373 return -EIO; 1374 } 1375 1376 if (bp->b_flags & XBF_WRITE) 1377 xfs_buf_wait_unpin(bp); 1378 1379 /* clear the internal error state to avoid spurious errors */ 1380 bp->b_io_error = 0; 1381 1382 /* 1383 * For synchronous IO, the IO does not inherit the submitters reference 1384 * count, nor the buffer lock. Hence we cannot release the reference we 1385 * are about to take until we've waited for all IO completion to occur, 1386 * including any xfs_buf_ioend_async() work that may be pending. 1387 */ 1388 xfs_buf_hold(bp); 1389 1390 /* 1391 * Set the count to 1 initially, this will stop an I/O completion 1392 * callout which happens before we have started all the I/O from calling 1393 * xfs_buf_ioend too early. 1394 */ 1395 atomic_set(&bp->b_io_remaining, 1); 1396 _xfs_buf_ioapply(bp); 1397 1398 /* 1399 * make sure we run completion synchronously if it raced with us and is 1400 * already complete. 1401 */ 1402 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1403 xfs_buf_ioend(bp); 1404 1405 /* wait for completion before gathering the error from the buffer */ 1406 trace_xfs_buf_iowait(bp, _RET_IP_); 1407 wait_for_completion(&bp->b_iowait); 1408 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1409 error = bp->b_error; 1410 1411 /* 1412 * all done now, we can release the hold that keeps the buffer 1413 * referenced for the entire IO. 1414 */ 1415 xfs_buf_rele(bp); 1416 return error; 1417 } 1418 1419 void * 1420 xfs_buf_offset( 1421 struct xfs_buf *bp, 1422 size_t offset) 1423 { 1424 struct page *page; 1425 1426 if (bp->b_addr) 1427 return bp->b_addr + offset; 1428 1429 offset += bp->b_offset; 1430 page = bp->b_pages[offset >> PAGE_SHIFT]; 1431 return page_address(page) + (offset & (PAGE_SIZE-1)); 1432 } 1433 1434 /* 1435 * Move data into or out of a buffer. 1436 */ 1437 void 1438 xfs_buf_iomove( 1439 xfs_buf_t *bp, /* buffer to process */ 1440 size_t boff, /* starting buffer offset */ 1441 size_t bsize, /* length to copy */ 1442 void *data, /* data address */ 1443 xfs_buf_rw_t mode) /* read/write/zero flag */ 1444 { 1445 size_t bend; 1446 1447 bend = boff + bsize; 1448 while (boff < bend) { 1449 struct page *page; 1450 int page_index, page_offset, csize; 1451 1452 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1453 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1454 page = bp->b_pages[page_index]; 1455 csize = min_t(size_t, PAGE_SIZE - page_offset, 1456 BBTOB(bp->b_io_length) - boff); 1457 1458 ASSERT((csize + page_offset) <= PAGE_SIZE); 1459 1460 switch (mode) { 1461 case XBRW_ZERO: 1462 memset(page_address(page) + page_offset, 0, csize); 1463 break; 1464 case XBRW_READ: 1465 memcpy(data, page_address(page) + page_offset, csize); 1466 break; 1467 case XBRW_WRITE: 1468 memcpy(page_address(page) + page_offset, data, csize); 1469 } 1470 1471 boff += csize; 1472 data += csize; 1473 } 1474 } 1475 1476 /* 1477 * Handling of buffer targets (buftargs). 1478 */ 1479 1480 /* 1481 * Wait for any bufs with callbacks that have been submitted but have not yet 1482 * returned. These buffers will have an elevated hold count, so wait on those 1483 * while freeing all the buffers only held by the LRU. 1484 */ 1485 static enum lru_status 1486 xfs_buftarg_wait_rele( 1487 struct list_head *item, 1488 struct list_lru_one *lru, 1489 spinlock_t *lru_lock, 1490 void *arg) 1491 1492 { 1493 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1494 struct list_head *dispose = arg; 1495 1496 if (atomic_read(&bp->b_hold) > 1) { 1497 /* need to wait, so skip it this pass */ 1498 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1499 return LRU_SKIP; 1500 } 1501 if (!spin_trylock(&bp->b_lock)) 1502 return LRU_SKIP; 1503 1504 /* 1505 * clear the LRU reference count so the buffer doesn't get 1506 * ignored in xfs_buf_rele(). 1507 */ 1508 atomic_set(&bp->b_lru_ref, 0); 1509 bp->b_state |= XFS_BSTATE_DISPOSE; 1510 list_lru_isolate_move(lru, item, dispose); 1511 spin_unlock(&bp->b_lock); 1512 return LRU_REMOVED; 1513 } 1514 1515 void 1516 xfs_wait_buftarg( 1517 struct xfs_buftarg *btp) 1518 { 1519 LIST_HEAD(dispose); 1520 int loop = 0; 1521 1522 /* loop until there is nothing left on the lru list. */ 1523 while (list_lru_count(&btp->bt_lru)) { 1524 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1525 &dispose, LONG_MAX); 1526 1527 while (!list_empty(&dispose)) { 1528 struct xfs_buf *bp; 1529 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1530 list_del_init(&bp->b_lru); 1531 if (bp->b_flags & XBF_WRITE_FAIL) { 1532 xfs_alert(btp->bt_mount, 1533 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!", 1534 (long long)bp->b_bn); 1535 xfs_alert(btp->bt_mount, 1536 "Please run xfs_repair to determine the extent of the problem."); 1537 } 1538 xfs_buf_rele(bp); 1539 } 1540 if (loop++ != 0) 1541 delay(100); 1542 } 1543 } 1544 1545 static enum lru_status 1546 xfs_buftarg_isolate( 1547 struct list_head *item, 1548 struct list_lru_one *lru, 1549 spinlock_t *lru_lock, 1550 void *arg) 1551 { 1552 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1553 struct list_head *dispose = arg; 1554 1555 /* 1556 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1557 * If we fail to get the lock, just skip it. 1558 */ 1559 if (!spin_trylock(&bp->b_lock)) 1560 return LRU_SKIP; 1561 /* 1562 * Decrement the b_lru_ref count unless the value is already 1563 * zero. If the value is already zero, we need to reclaim the 1564 * buffer, otherwise it gets another trip through the LRU. 1565 */ 1566 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1567 spin_unlock(&bp->b_lock); 1568 return LRU_ROTATE; 1569 } 1570 1571 bp->b_state |= XFS_BSTATE_DISPOSE; 1572 list_lru_isolate_move(lru, item, dispose); 1573 spin_unlock(&bp->b_lock); 1574 return LRU_REMOVED; 1575 } 1576 1577 static unsigned long 1578 xfs_buftarg_shrink_scan( 1579 struct shrinker *shrink, 1580 struct shrink_control *sc) 1581 { 1582 struct xfs_buftarg *btp = container_of(shrink, 1583 struct xfs_buftarg, bt_shrinker); 1584 LIST_HEAD(dispose); 1585 unsigned long freed; 1586 1587 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1588 xfs_buftarg_isolate, &dispose); 1589 1590 while (!list_empty(&dispose)) { 1591 struct xfs_buf *bp; 1592 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1593 list_del_init(&bp->b_lru); 1594 xfs_buf_rele(bp); 1595 } 1596 1597 return freed; 1598 } 1599 1600 static unsigned long 1601 xfs_buftarg_shrink_count( 1602 struct shrinker *shrink, 1603 struct shrink_control *sc) 1604 { 1605 struct xfs_buftarg *btp = container_of(shrink, 1606 struct xfs_buftarg, bt_shrinker); 1607 return list_lru_shrink_count(&btp->bt_lru, sc); 1608 } 1609 1610 void 1611 xfs_free_buftarg( 1612 struct xfs_mount *mp, 1613 struct xfs_buftarg *btp) 1614 { 1615 unregister_shrinker(&btp->bt_shrinker); 1616 list_lru_destroy(&btp->bt_lru); 1617 1618 if (mp->m_flags & XFS_MOUNT_BARRIER) 1619 xfs_blkdev_issue_flush(btp); 1620 1621 kmem_free(btp); 1622 } 1623 1624 int 1625 xfs_setsize_buftarg( 1626 xfs_buftarg_t *btp, 1627 unsigned int sectorsize) 1628 { 1629 /* Set up metadata sector size info */ 1630 btp->bt_meta_sectorsize = sectorsize; 1631 btp->bt_meta_sectormask = sectorsize - 1; 1632 1633 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1634 char name[BDEVNAME_SIZE]; 1635 1636 bdevname(btp->bt_bdev, name); 1637 1638 xfs_warn(btp->bt_mount, 1639 "Cannot set_blocksize to %u on device %s", 1640 sectorsize, name); 1641 return -EINVAL; 1642 } 1643 1644 /* Set up device logical sector size mask */ 1645 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1646 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1647 1648 return 0; 1649 } 1650 1651 /* 1652 * When allocating the initial buffer target we have not yet 1653 * read in the superblock, so don't know what sized sectors 1654 * are being used at this early stage. Play safe. 1655 */ 1656 STATIC int 1657 xfs_setsize_buftarg_early( 1658 xfs_buftarg_t *btp, 1659 struct block_device *bdev) 1660 { 1661 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1662 } 1663 1664 xfs_buftarg_t * 1665 xfs_alloc_buftarg( 1666 struct xfs_mount *mp, 1667 struct block_device *bdev) 1668 { 1669 xfs_buftarg_t *btp; 1670 1671 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); 1672 1673 btp->bt_mount = mp; 1674 btp->bt_dev = bdev->bd_dev; 1675 btp->bt_bdev = bdev; 1676 btp->bt_bdi = blk_get_backing_dev_info(bdev); 1677 1678 if (xfs_setsize_buftarg_early(btp, bdev)) 1679 goto error; 1680 1681 if (list_lru_init(&btp->bt_lru)) 1682 goto error; 1683 1684 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1685 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1686 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1687 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1688 register_shrinker(&btp->bt_shrinker); 1689 return btp; 1690 1691 error: 1692 kmem_free(btp); 1693 return NULL; 1694 } 1695 1696 /* 1697 * Add a buffer to the delayed write list. 1698 * 1699 * This queues a buffer for writeout if it hasn't already been. Note that 1700 * neither this routine nor the buffer list submission functions perform 1701 * any internal synchronization. It is expected that the lists are thread-local 1702 * to the callers. 1703 * 1704 * Returns true if we queued up the buffer, or false if it already had 1705 * been on the buffer list. 1706 */ 1707 bool 1708 xfs_buf_delwri_queue( 1709 struct xfs_buf *bp, 1710 struct list_head *list) 1711 { 1712 ASSERT(xfs_buf_islocked(bp)); 1713 ASSERT(!(bp->b_flags & XBF_READ)); 1714 1715 /* 1716 * If the buffer is already marked delwri it already is queued up 1717 * by someone else for imediate writeout. Just ignore it in that 1718 * case. 1719 */ 1720 if (bp->b_flags & _XBF_DELWRI_Q) { 1721 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1722 return false; 1723 } 1724 1725 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1726 1727 /* 1728 * If a buffer gets written out synchronously or marked stale while it 1729 * is on a delwri list we lazily remove it. To do this, the other party 1730 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1731 * It remains referenced and on the list. In a rare corner case it 1732 * might get readded to a delwri list after the synchronous writeout, in 1733 * which case we need just need to re-add the flag here. 1734 */ 1735 bp->b_flags |= _XBF_DELWRI_Q; 1736 if (list_empty(&bp->b_list)) { 1737 atomic_inc(&bp->b_hold); 1738 list_add_tail(&bp->b_list, list); 1739 } 1740 1741 return true; 1742 } 1743 1744 /* 1745 * Compare function is more complex than it needs to be because 1746 * the return value is only 32 bits and we are doing comparisons 1747 * on 64 bit values 1748 */ 1749 static int 1750 xfs_buf_cmp( 1751 void *priv, 1752 struct list_head *a, 1753 struct list_head *b) 1754 { 1755 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1756 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1757 xfs_daddr_t diff; 1758 1759 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1760 if (diff < 0) 1761 return -1; 1762 if (diff > 0) 1763 return 1; 1764 return 0; 1765 } 1766 1767 static int 1768 __xfs_buf_delwri_submit( 1769 struct list_head *buffer_list, 1770 struct list_head *io_list, 1771 bool wait) 1772 { 1773 struct blk_plug plug; 1774 struct xfs_buf *bp, *n; 1775 int pinned = 0; 1776 1777 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1778 if (!wait) { 1779 if (xfs_buf_ispinned(bp)) { 1780 pinned++; 1781 continue; 1782 } 1783 if (!xfs_buf_trylock(bp)) 1784 continue; 1785 } else { 1786 xfs_buf_lock(bp); 1787 } 1788 1789 /* 1790 * Someone else might have written the buffer synchronously or 1791 * marked it stale in the meantime. In that case only the 1792 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1793 * reference and remove it from the list here. 1794 */ 1795 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1796 list_del_init(&bp->b_list); 1797 xfs_buf_relse(bp); 1798 continue; 1799 } 1800 1801 list_move_tail(&bp->b_list, io_list); 1802 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1803 } 1804 1805 list_sort(NULL, io_list, xfs_buf_cmp); 1806 1807 blk_start_plug(&plug); 1808 list_for_each_entry_safe(bp, n, io_list, b_list) { 1809 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL); 1810 bp->b_flags |= XBF_WRITE | XBF_ASYNC; 1811 1812 /* 1813 * we do all Io submission async. This means if we need to wait 1814 * for IO completion we need to take an extra reference so the 1815 * buffer is still valid on the other side. 1816 */ 1817 if (wait) 1818 xfs_buf_hold(bp); 1819 else 1820 list_del_init(&bp->b_list); 1821 1822 xfs_buf_submit(bp); 1823 } 1824 blk_finish_plug(&plug); 1825 1826 return pinned; 1827 } 1828 1829 /* 1830 * Write out a buffer list asynchronously. 1831 * 1832 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1833 * out and not wait for I/O completion on any of the buffers. This interface 1834 * is only safely useable for callers that can track I/O completion by higher 1835 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1836 * function. 1837 */ 1838 int 1839 xfs_buf_delwri_submit_nowait( 1840 struct list_head *buffer_list) 1841 { 1842 LIST_HEAD (io_list); 1843 return __xfs_buf_delwri_submit(buffer_list, &io_list, false); 1844 } 1845 1846 /* 1847 * Write out a buffer list synchronously. 1848 * 1849 * This will take the @buffer_list, write all buffers out and wait for I/O 1850 * completion on all of the buffers. @buffer_list is consumed by the function, 1851 * so callers must have some other way of tracking buffers if they require such 1852 * functionality. 1853 */ 1854 int 1855 xfs_buf_delwri_submit( 1856 struct list_head *buffer_list) 1857 { 1858 LIST_HEAD (io_list); 1859 int error = 0, error2; 1860 struct xfs_buf *bp; 1861 1862 __xfs_buf_delwri_submit(buffer_list, &io_list, true); 1863 1864 /* Wait for IO to complete. */ 1865 while (!list_empty(&io_list)) { 1866 bp = list_first_entry(&io_list, struct xfs_buf, b_list); 1867 1868 list_del_init(&bp->b_list); 1869 1870 /* locking the buffer will wait for async IO completion. */ 1871 xfs_buf_lock(bp); 1872 error2 = bp->b_error; 1873 xfs_buf_relse(bp); 1874 if (!error) 1875 error = error2; 1876 } 1877 1878 return error; 1879 } 1880 1881 int __init 1882 xfs_buf_init(void) 1883 { 1884 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 1885 KM_ZONE_HWALIGN, NULL); 1886 if (!xfs_buf_zone) 1887 goto out; 1888 1889 return 0; 1890 1891 out: 1892 return -ENOMEM; 1893 } 1894 1895 void 1896 xfs_buf_terminate(void) 1897 { 1898 kmem_zone_destroy(xfs_buf_zone); 1899 } 1900