xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision c1d45424)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_sb.h"
38 #include "xfs_log.h"
39 #include "xfs_ag.h"
40 #include "xfs_mount.h"
41 #include "xfs_trace.h"
42 
43 static kmem_zone_t *xfs_buf_zone;
44 
45 static struct workqueue_struct *xfslogd_workqueue;
46 
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp)	do { } while (0)
53 # define XB_CLEAR_OWNER(bp)	do { } while (0)
54 # define XB_GET_OWNER(bp)	do { } while (0)
55 #endif
56 
57 #define xb_to_gfp(flags) \
58 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59 
60 
61 static inline int
62 xfs_buf_is_vmapped(
63 	struct xfs_buf	*bp)
64 {
65 	/*
66 	 * Return true if the buffer is vmapped.
67 	 *
68 	 * b_addr is null if the buffer is not mapped, but the code is clever
69 	 * enough to know it doesn't have to map a single page, so the check has
70 	 * to be both for b_addr and bp->b_page_count > 1.
71 	 */
72 	return bp->b_addr && bp->b_page_count > 1;
73 }
74 
75 static inline int
76 xfs_buf_vmap_len(
77 	struct xfs_buf	*bp)
78 {
79 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81 
82 /*
83  * xfs_buf_lru_add - add a buffer to the LRU.
84  *
85  * The LRU takes a new reference to the buffer so that it will only be freed
86  * once the shrinker takes the buffer off the LRU.
87  */
88 STATIC void
89 xfs_buf_lru_add(
90 	struct xfs_buf	*bp)
91 {
92 	struct xfs_buftarg *btp = bp->b_target;
93 
94 	spin_lock(&btp->bt_lru_lock);
95 	if (list_empty(&bp->b_lru)) {
96 		atomic_inc(&bp->b_hold);
97 		list_add_tail(&bp->b_lru, &btp->bt_lru);
98 		btp->bt_lru_nr++;
99 		bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
100 	}
101 	spin_unlock(&btp->bt_lru_lock);
102 }
103 
104 /*
105  * xfs_buf_lru_del - remove a buffer from the LRU
106  *
107  * The unlocked check is safe here because it only occurs when there are not
108  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
109  * to optimise the shrinker removing the buffer from the LRU and calling
110  * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
111  * bt_lru_lock.
112  */
113 STATIC void
114 xfs_buf_lru_del(
115 	struct xfs_buf	*bp)
116 {
117 	struct xfs_buftarg *btp = bp->b_target;
118 
119 	if (list_empty(&bp->b_lru))
120 		return;
121 
122 	spin_lock(&btp->bt_lru_lock);
123 	if (!list_empty(&bp->b_lru)) {
124 		list_del_init(&bp->b_lru);
125 		btp->bt_lru_nr--;
126 	}
127 	spin_unlock(&btp->bt_lru_lock);
128 }
129 
130 /*
131  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132  * b_lru_ref count so that the buffer is freed immediately when the buffer
133  * reference count falls to zero. If the buffer is already on the LRU, we need
134  * to remove the reference that LRU holds on the buffer.
135  *
136  * This prevents build-up of stale buffers on the LRU.
137  */
138 void
139 xfs_buf_stale(
140 	struct xfs_buf	*bp)
141 {
142 	ASSERT(xfs_buf_islocked(bp));
143 
144 	bp->b_flags |= XBF_STALE;
145 
146 	/*
147 	 * Clear the delwri status so that a delwri queue walker will not
148 	 * flush this buffer to disk now that it is stale. The delwri queue has
149 	 * a reference to the buffer, so this is safe to do.
150 	 */
151 	bp->b_flags &= ~_XBF_DELWRI_Q;
152 
153 	atomic_set(&(bp)->b_lru_ref, 0);
154 	if (!list_empty(&bp->b_lru)) {
155 		struct xfs_buftarg *btp = bp->b_target;
156 
157 		spin_lock(&btp->bt_lru_lock);
158 		if (!list_empty(&bp->b_lru) &&
159 		    !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
160 			list_del_init(&bp->b_lru);
161 			btp->bt_lru_nr--;
162 			atomic_dec(&bp->b_hold);
163 		}
164 		spin_unlock(&btp->bt_lru_lock);
165 	}
166 	ASSERT(atomic_read(&bp->b_hold) >= 1);
167 }
168 
169 static int
170 xfs_buf_get_maps(
171 	struct xfs_buf		*bp,
172 	int			map_count)
173 {
174 	ASSERT(bp->b_maps == NULL);
175 	bp->b_map_count = map_count;
176 
177 	if (map_count == 1) {
178 		bp->b_maps = &bp->__b_map;
179 		return 0;
180 	}
181 
182 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
183 				KM_NOFS);
184 	if (!bp->b_maps)
185 		return ENOMEM;
186 	return 0;
187 }
188 
189 /*
190  *	Frees b_pages if it was allocated.
191  */
192 static void
193 xfs_buf_free_maps(
194 	struct xfs_buf	*bp)
195 {
196 	if (bp->b_maps != &bp->__b_map) {
197 		kmem_free(bp->b_maps);
198 		bp->b_maps = NULL;
199 	}
200 }
201 
202 struct xfs_buf *
203 _xfs_buf_alloc(
204 	struct xfs_buftarg	*target,
205 	struct xfs_buf_map	*map,
206 	int			nmaps,
207 	xfs_buf_flags_t		flags)
208 {
209 	struct xfs_buf		*bp;
210 	int			error;
211 	int			i;
212 
213 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
214 	if (unlikely(!bp))
215 		return NULL;
216 
217 	/*
218 	 * We don't want certain flags to appear in b_flags unless they are
219 	 * specifically set by later operations on the buffer.
220 	 */
221 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
222 
223 	atomic_set(&bp->b_hold, 1);
224 	atomic_set(&bp->b_lru_ref, 1);
225 	init_completion(&bp->b_iowait);
226 	INIT_LIST_HEAD(&bp->b_lru);
227 	INIT_LIST_HEAD(&bp->b_list);
228 	RB_CLEAR_NODE(&bp->b_rbnode);
229 	sema_init(&bp->b_sema, 0); /* held, no waiters */
230 	XB_SET_OWNER(bp);
231 	bp->b_target = target;
232 	bp->b_flags = flags;
233 
234 	/*
235 	 * Set length and io_length to the same value initially.
236 	 * I/O routines should use io_length, which will be the same in
237 	 * most cases but may be reset (e.g. XFS recovery).
238 	 */
239 	error = xfs_buf_get_maps(bp, nmaps);
240 	if (error)  {
241 		kmem_zone_free(xfs_buf_zone, bp);
242 		return NULL;
243 	}
244 
245 	bp->b_bn = map[0].bm_bn;
246 	bp->b_length = 0;
247 	for (i = 0; i < nmaps; i++) {
248 		bp->b_maps[i].bm_bn = map[i].bm_bn;
249 		bp->b_maps[i].bm_len = map[i].bm_len;
250 		bp->b_length += map[i].bm_len;
251 	}
252 	bp->b_io_length = bp->b_length;
253 
254 	atomic_set(&bp->b_pin_count, 0);
255 	init_waitqueue_head(&bp->b_waiters);
256 
257 	XFS_STATS_INC(xb_create);
258 	trace_xfs_buf_init(bp, _RET_IP_);
259 
260 	return bp;
261 }
262 
263 /*
264  *	Allocate a page array capable of holding a specified number
265  *	of pages, and point the page buf at it.
266  */
267 STATIC int
268 _xfs_buf_get_pages(
269 	xfs_buf_t		*bp,
270 	int			page_count,
271 	xfs_buf_flags_t		flags)
272 {
273 	/* Make sure that we have a page list */
274 	if (bp->b_pages == NULL) {
275 		bp->b_page_count = page_count;
276 		if (page_count <= XB_PAGES) {
277 			bp->b_pages = bp->b_page_array;
278 		} else {
279 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
280 						 page_count, KM_NOFS);
281 			if (bp->b_pages == NULL)
282 				return -ENOMEM;
283 		}
284 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
285 	}
286 	return 0;
287 }
288 
289 /*
290  *	Frees b_pages if it was allocated.
291  */
292 STATIC void
293 _xfs_buf_free_pages(
294 	xfs_buf_t	*bp)
295 {
296 	if (bp->b_pages != bp->b_page_array) {
297 		kmem_free(bp->b_pages);
298 		bp->b_pages = NULL;
299 	}
300 }
301 
302 /*
303  *	Releases the specified buffer.
304  *
305  * 	The modification state of any associated pages is left unchanged.
306  * 	The buffer most not be on any hash - use xfs_buf_rele instead for
307  * 	hashed and refcounted buffers
308  */
309 void
310 xfs_buf_free(
311 	xfs_buf_t		*bp)
312 {
313 	trace_xfs_buf_free(bp, _RET_IP_);
314 
315 	ASSERT(list_empty(&bp->b_lru));
316 
317 	if (bp->b_flags & _XBF_PAGES) {
318 		uint		i;
319 
320 		if (xfs_buf_is_vmapped(bp))
321 			vm_unmap_ram(bp->b_addr - bp->b_offset,
322 					bp->b_page_count);
323 
324 		for (i = 0; i < bp->b_page_count; i++) {
325 			struct page	*page = bp->b_pages[i];
326 
327 			__free_page(page);
328 		}
329 	} else if (bp->b_flags & _XBF_KMEM)
330 		kmem_free(bp->b_addr);
331 	_xfs_buf_free_pages(bp);
332 	xfs_buf_free_maps(bp);
333 	kmem_zone_free(xfs_buf_zone, bp);
334 }
335 
336 /*
337  * Allocates all the pages for buffer in question and builds it's page list.
338  */
339 STATIC int
340 xfs_buf_allocate_memory(
341 	xfs_buf_t		*bp,
342 	uint			flags)
343 {
344 	size_t			size;
345 	size_t			nbytes, offset;
346 	gfp_t			gfp_mask = xb_to_gfp(flags);
347 	unsigned short		page_count, i;
348 	xfs_off_t		start, end;
349 	int			error;
350 
351 	/*
352 	 * for buffers that are contained within a single page, just allocate
353 	 * the memory from the heap - there's no need for the complexity of
354 	 * page arrays to keep allocation down to order 0.
355 	 */
356 	size = BBTOB(bp->b_length);
357 	if (size < PAGE_SIZE) {
358 		bp->b_addr = kmem_alloc(size, KM_NOFS);
359 		if (!bp->b_addr) {
360 			/* low memory - use alloc_page loop instead */
361 			goto use_alloc_page;
362 		}
363 
364 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
365 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
366 			/* b_addr spans two pages - use alloc_page instead */
367 			kmem_free(bp->b_addr);
368 			bp->b_addr = NULL;
369 			goto use_alloc_page;
370 		}
371 		bp->b_offset = offset_in_page(bp->b_addr);
372 		bp->b_pages = bp->b_page_array;
373 		bp->b_pages[0] = virt_to_page(bp->b_addr);
374 		bp->b_page_count = 1;
375 		bp->b_flags |= _XBF_KMEM;
376 		return 0;
377 	}
378 
379 use_alloc_page:
380 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
381 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
382 								>> PAGE_SHIFT;
383 	page_count = end - start;
384 	error = _xfs_buf_get_pages(bp, page_count, flags);
385 	if (unlikely(error))
386 		return error;
387 
388 	offset = bp->b_offset;
389 	bp->b_flags |= _XBF_PAGES;
390 
391 	for (i = 0; i < bp->b_page_count; i++) {
392 		struct page	*page;
393 		uint		retries = 0;
394 retry:
395 		page = alloc_page(gfp_mask);
396 		if (unlikely(page == NULL)) {
397 			if (flags & XBF_READ_AHEAD) {
398 				bp->b_page_count = i;
399 				error = ENOMEM;
400 				goto out_free_pages;
401 			}
402 
403 			/*
404 			 * This could deadlock.
405 			 *
406 			 * But until all the XFS lowlevel code is revamped to
407 			 * handle buffer allocation failures we can't do much.
408 			 */
409 			if (!(++retries % 100))
410 				xfs_err(NULL,
411 		"possible memory allocation deadlock in %s (mode:0x%x)",
412 					__func__, gfp_mask);
413 
414 			XFS_STATS_INC(xb_page_retries);
415 			congestion_wait(BLK_RW_ASYNC, HZ/50);
416 			goto retry;
417 		}
418 
419 		XFS_STATS_INC(xb_page_found);
420 
421 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
422 		size -= nbytes;
423 		bp->b_pages[i] = page;
424 		offset = 0;
425 	}
426 	return 0;
427 
428 out_free_pages:
429 	for (i = 0; i < bp->b_page_count; i++)
430 		__free_page(bp->b_pages[i]);
431 	return error;
432 }
433 
434 /*
435  *	Map buffer into kernel address-space if necessary.
436  */
437 STATIC int
438 _xfs_buf_map_pages(
439 	xfs_buf_t		*bp,
440 	uint			flags)
441 {
442 	ASSERT(bp->b_flags & _XBF_PAGES);
443 	if (bp->b_page_count == 1) {
444 		/* A single page buffer is always mappable */
445 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
446 	} else if (flags & XBF_UNMAPPED) {
447 		bp->b_addr = NULL;
448 	} else {
449 		int retried = 0;
450 
451 		do {
452 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
453 						-1, PAGE_KERNEL);
454 			if (bp->b_addr)
455 				break;
456 			vm_unmap_aliases();
457 		} while (retried++ <= 1);
458 
459 		if (!bp->b_addr)
460 			return -ENOMEM;
461 		bp->b_addr += bp->b_offset;
462 	}
463 
464 	return 0;
465 }
466 
467 /*
468  *	Finding and Reading Buffers
469  */
470 
471 /*
472  *	Look up, and creates if absent, a lockable buffer for
473  *	a given range of an inode.  The buffer is returned
474  *	locked.	No I/O is implied by this call.
475  */
476 xfs_buf_t *
477 _xfs_buf_find(
478 	struct xfs_buftarg	*btp,
479 	struct xfs_buf_map	*map,
480 	int			nmaps,
481 	xfs_buf_flags_t		flags,
482 	xfs_buf_t		*new_bp)
483 {
484 	size_t			numbytes;
485 	struct xfs_perag	*pag;
486 	struct rb_node		**rbp;
487 	struct rb_node		*parent;
488 	xfs_buf_t		*bp;
489 	xfs_daddr_t		blkno = map[0].bm_bn;
490 	xfs_daddr_t		eofs;
491 	int			numblks = 0;
492 	int			i;
493 
494 	for (i = 0; i < nmaps; i++)
495 		numblks += map[i].bm_len;
496 	numbytes = BBTOB(numblks);
497 
498 	/* Check for IOs smaller than the sector size / not sector aligned */
499 	ASSERT(!(numbytes < (1 << btp->bt_sshift)));
500 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
501 
502 	/*
503 	 * Corrupted block numbers can get through to here, unfortunately, so we
504 	 * have to check that the buffer falls within the filesystem bounds.
505 	 */
506 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
507 	if (blkno >= eofs) {
508 		/*
509 		 * XXX (dgc): we should really be returning EFSCORRUPTED here,
510 		 * but none of the higher level infrastructure supports
511 		 * returning a specific error on buffer lookup failures.
512 		 */
513 		xfs_alert(btp->bt_mount,
514 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
515 			  __func__, blkno, eofs);
516 		WARN_ON(1);
517 		return NULL;
518 	}
519 
520 	/* get tree root */
521 	pag = xfs_perag_get(btp->bt_mount,
522 				xfs_daddr_to_agno(btp->bt_mount, blkno));
523 
524 	/* walk tree */
525 	spin_lock(&pag->pag_buf_lock);
526 	rbp = &pag->pag_buf_tree.rb_node;
527 	parent = NULL;
528 	bp = NULL;
529 	while (*rbp) {
530 		parent = *rbp;
531 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
532 
533 		if (blkno < bp->b_bn)
534 			rbp = &(*rbp)->rb_left;
535 		else if (blkno > bp->b_bn)
536 			rbp = &(*rbp)->rb_right;
537 		else {
538 			/*
539 			 * found a block number match. If the range doesn't
540 			 * match, the only way this is allowed is if the buffer
541 			 * in the cache is stale and the transaction that made
542 			 * it stale has not yet committed. i.e. we are
543 			 * reallocating a busy extent. Skip this buffer and
544 			 * continue searching to the right for an exact match.
545 			 */
546 			if (bp->b_length != numblks) {
547 				ASSERT(bp->b_flags & XBF_STALE);
548 				rbp = &(*rbp)->rb_right;
549 				continue;
550 			}
551 			atomic_inc(&bp->b_hold);
552 			goto found;
553 		}
554 	}
555 
556 	/* No match found */
557 	if (new_bp) {
558 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
559 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
560 		/* the buffer keeps the perag reference until it is freed */
561 		new_bp->b_pag = pag;
562 		spin_unlock(&pag->pag_buf_lock);
563 	} else {
564 		XFS_STATS_INC(xb_miss_locked);
565 		spin_unlock(&pag->pag_buf_lock);
566 		xfs_perag_put(pag);
567 	}
568 	return new_bp;
569 
570 found:
571 	spin_unlock(&pag->pag_buf_lock);
572 	xfs_perag_put(pag);
573 
574 	if (!xfs_buf_trylock(bp)) {
575 		if (flags & XBF_TRYLOCK) {
576 			xfs_buf_rele(bp);
577 			XFS_STATS_INC(xb_busy_locked);
578 			return NULL;
579 		}
580 		xfs_buf_lock(bp);
581 		XFS_STATS_INC(xb_get_locked_waited);
582 	}
583 
584 	/*
585 	 * if the buffer is stale, clear all the external state associated with
586 	 * it. We need to keep flags such as how we allocated the buffer memory
587 	 * intact here.
588 	 */
589 	if (bp->b_flags & XBF_STALE) {
590 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
591 		ASSERT(bp->b_iodone == NULL);
592 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
593 		bp->b_ops = NULL;
594 	}
595 
596 	trace_xfs_buf_find(bp, flags, _RET_IP_);
597 	XFS_STATS_INC(xb_get_locked);
598 	return bp;
599 }
600 
601 /*
602  * Assembles a buffer covering the specified range. The code is optimised for
603  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
604  * more hits than misses.
605  */
606 struct xfs_buf *
607 xfs_buf_get_map(
608 	struct xfs_buftarg	*target,
609 	struct xfs_buf_map	*map,
610 	int			nmaps,
611 	xfs_buf_flags_t		flags)
612 {
613 	struct xfs_buf		*bp;
614 	struct xfs_buf		*new_bp;
615 	int			error = 0;
616 
617 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
618 	if (likely(bp))
619 		goto found;
620 
621 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
622 	if (unlikely(!new_bp))
623 		return NULL;
624 
625 	error = xfs_buf_allocate_memory(new_bp, flags);
626 	if (error) {
627 		xfs_buf_free(new_bp);
628 		return NULL;
629 	}
630 
631 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
632 	if (!bp) {
633 		xfs_buf_free(new_bp);
634 		return NULL;
635 	}
636 
637 	if (bp != new_bp)
638 		xfs_buf_free(new_bp);
639 
640 found:
641 	if (!bp->b_addr) {
642 		error = _xfs_buf_map_pages(bp, flags);
643 		if (unlikely(error)) {
644 			xfs_warn(target->bt_mount,
645 				"%s: failed to map pages\n", __func__);
646 			xfs_buf_relse(bp);
647 			return NULL;
648 		}
649 	}
650 
651 	XFS_STATS_INC(xb_get);
652 	trace_xfs_buf_get(bp, flags, _RET_IP_);
653 	return bp;
654 }
655 
656 STATIC int
657 _xfs_buf_read(
658 	xfs_buf_t		*bp,
659 	xfs_buf_flags_t		flags)
660 {
661 	ASSERT(!(flags & XBF_WRITE));
662 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
663 
664 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
665 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
666 
667 	xfs_buf_iorequest(bp);
668 	if (flags & XBF_ASYNC)
669 		return 0;
670 	return xfs_buf_iowait(bp);
671 }
672 
673 xfs_buf_t *
674 xfs_buf_read_map(
675 	struct xfs_buftarg	*target,
676 	struct xfs_buf_map	*map,
677 	int			nmaps,
678 	xfs_buf_flags_t		flags,
679 	const struct xfs_buf_ops *ops)
680 {
681 	struct xfs_buf		*bp;
682 
683 	flags |= XBF_READ;
684 
685 	bp = xfs_buf_get_map(target, map, nmaps, flags);
686 	if (bp) {
687 		trace_xfs_buf_read(bp, flags, _RET_IP_);
688 
689 		if (!XFS_BUF_ISDONE(bp)) {
690 			XFS_STATS_INC(xb_get_read);
691 			bp->b_ops = ops;
692 			_xfs_buf_read(bp, flags);
693 		} else if (flags & XBF_ASYNC) {
694 			/*
695 			 * Read ahead call which is already satisfied,
696 			 * drop the buffer
697 			 */
698 			xfs_buf_relse(bp);
699 			return NULL;
700 		} else {
701 			/* We do not want read in the flags */
702 			bp->b_flags &= ~XBF_READ;
703 		}
704 	}
705 
706 	return bp;
707 }
708 
709 /*
710  *	If we are not low on memory then do the readahead in a deadlock
711  *	safe manner.
712  */
713 void
714 xfs_buf_readahead_map(
715 	struct xfs_buftarg	*target,
716 	struct xfs_buf_map	*map,
717 	int			nmaps,
718 	const struct xfs_buf_ops *ops)
719 {
720 	if (bdi_read_congested(target->bt_bdi))
721 		return;
722 
723 	xfs_buf_read_map(target, map, nmaps,
724 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
725 }
726 
727 /*
728  * Read an uncached buffer from disk. Allocates and returns a locked
729  * buffer containing the disk contents or nothing.
730  */
731 struct xfs_buf *
732 xfs_buf_read_uncached(
733 	struct xfs_buftarg	*target,
734 	xfs_daddr_t		daddr,
735 	size_t			numblks,
736 	int			flags,
737 	const struct xfs_buf_ops *ops)
738 {
739 	struct xfs_buf		*bp;
740 
741 	bp = xfs_buf_get_uncached(target, numblks, flags);
742 	if (!bp)
743 		return NULL;
744 
745 	/* set up the buffer for a read IO */
746 	ASSERT(bp->b_map_count == 1);
747 	bp->b_bn = daddr;
748 	bp->b_maps[0].bm_bn = daddr;
749 	bp->b_flags |= XBF_READ;
750 	bp->b_ops = ops;
751 
752 	xfsbdstrat(target->bt_mount, bp);
753 	xfs_buf_iowait(bp);
754 	return bp;
755 }
756 
757 /*
758  * Return a buffer allocated as an empty buffer and associated to external
759  * memory via xfs_buf_associate_memory() back to it's empty state.
760  */
761 void
762 xfs_buf_set_empty(
763 	struct xfs_buf		*bp,
764 	size_t			numblks)
765 {
766 	if (bp->b_pages)
767 		_xfs_buf_free_pages(bp);
768 
769 	bp->b_pages = NULL;
770 	bp->b_page_count = 0;
771 	bp->b_addr = NULL;
772 	bp->b_length = numblks;
773 	bp->b_io_length = numblks;
774 
775 	ASSERT(bp->b_map_count == 1);
776 	bp->b_bn = XFS_BUF_DADDR_NULL;
777 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
778 	bp->b_maps[0].bm_len = bp->b_length;
779 }
780 
781 static inline struct page *
782 mem_to_page(
783 	void			*addr)
784 {
785 	if ((!is_vmalloc_addr(addr))) {
786 		return virt_to_page(addr);
787 	} else {
788 		return vmalloc_to_page(addr);
789 	}
790 }
791 
792 int
793 xfs_buf_associate_memory(
794 	xfs_buf_t		*bp,
795 	void			*mem,
796 	size_t			len)
797 {
798 	int			rval;
799 	int			i = 0;
800 	unsigned long		pageaddr;
801 	unsigned long		offset;
802 	size_t			buflen;
803 	int			page_count;
804 
805 	pageaddr = (unsigned long)mem & PAGE_MASK;
806 	offset = (unsigned long)mem - pageaddr;
807 	buflen = PAGE_ALIGN(len + offset);
808 	page_count = buflen >> PAGE_SHIFT;
809 
810 	/* Free any previous set of page pointers */
811 	if (bp->b_pages)
812 		_xfs_buf_free_pages(bp);
813 
814 	bp->b_pages = NULL;
815 	bp->b_addr = mem;
816 
817 	rval = _xfs_buf_get_pages(bp, page_count, 0);
818 	if (rval)
819 		return rval;
820 
821 	bp->b_offset = offset;
822 
823 	for (i = 0; i < bp->b_page_count; i++) {
824 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
825 		pageaddr += PAGE_SIZE;
826 	}
827 
828 	bp->b_io_length = BTOBB(len);
829 	bp->b_length = BTOBB(buflen);
830 
831 	return 0;
832 }
833 
834 xfs_buf_t *
835 xfs_buf_get_uncached(
836 	struct xfs_buftarg	*target,
837 	size_t			numblks,
838 	int			flags)
839 {
840 	unsigned long		page_count;
841 	int			error, i;
842 	struct xfs_buf		*bp;
843 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
844 
845 	bp = _xfs_buf_alloc(target, &map, 1, 0);
846 	if (unlikely(bp == NULL))
847 		goto fail;
848 
849 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
850 	error = _xfs_buf_get_pages(bp, page_count, 0);
851 	if (error)
852 		goto fail_free_buf;
853 
854 	for (i = 0; i < page_count; i++) {
855 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
856 		if (!bp->b_pages[i])
857 			goto fail_free_mem;
858 	}
859 	bp->b_flags |= _XBF_PAGES;
860 
861 	error = _xfs_buf_map_pages(bp, 0);
862 	if (unlikely(error)) {
863 		xfs_warn(target->bt_mount,
864 			"%s: failed to map pages\n", __func__);
865 		goto fail_free_mem;
866 	}
867 
868 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
869 	return bp;
870 
871  fail_free_mem:
872 	while (--i >= 0)
873 		__free_page(bp->b_pages[i]);
874 	_xfs_buf_free_pages(bp);
875  fail_free_buf:
876 	xfs_buf_free_maps(bp);
877 	kmem_zone_free(xfs_buf_zone, bp);
878  fail:
879 	return NULL;
880 }
881 
882 /*
883  *	Increment reference count on buffer, to hold the buffer concurrently
884  *	with another thread which may release (free) the buffer asynchronously.
885  *	Must hold the buffer already to call this function.
886  */
887 void
888 xfs_buf_hold(
889 	xfs_buf_t		*bp)
890 {
891 	trace_xfs_buf_hold(bp, _RET_IP_);
892 	atomic_inc(&bp->b_hold);
893 }
894 
895 /*
896  *	Releases a hold on the specified buffer.  If the
897  *	the hold count is 1, calls xfs_buf_free.
898  */
899 void
900 xfs_buf_rele(
901 	xfs_buf_t		*bp)
902 {
903 	struct xfs_perag	*pag = bp->b_pag;
904 
905 	trace_xfs_buf_rele(bp, _RET_IP_);
906 
907 	if (!pag) {
908 		ASSERT(list_empty(&bp->b_lru));
909 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
910 		if (atomic_dec_and_test(&bp->b_hold))
911 			xfs_buf_free(bp);
912 		return;
913 	}
914 
915 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
916 
917 	ASSERT(atomic_read(&bp->b_hold) > 0);
918 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
919 		if (!(bp->b_flags & XBF_STALE) &&
920 			   atomic_read(&bp->b_lru_ref)) {
921 			xfs_buf_lru_add(bp);
922 			spin_unlock(&pag->pag_buf_lock);
923 		} else {
924 			xfs_buf_lru_del(bp);
925 			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
926 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
927 			spin_unlock(&pag->pag_buf_lock);
928 			xfs_perag_put(pag);
929 			xfs_buf_free(bp);
930 		}
931 	}
932 }
933 
934 
935 /*
936  *	Lock a buffer object, if it is not already locked.
937  *
938  *	If we come across a stale, pinned, locked buffer, we know that we are
939  *	being asked to lock a buffer that has been reallocated. Because it is
940  *	pinned, we know that the log has not been pushed to disk and hence it
941  *	will still be locked.  Rather than continuing to have trylock attempts
942  *	fail until someone else pushes the log, push it ourselves before
943  *	returning.  This means that the xfsaild will not get stuck trying
944  *	to push on stale inode buffers.
945  */
946 int
947 xfs_buf_trylock(
948 	struct xfs_buf		*bp)
949 {
950 	int			locked;
951 
952 	locked = down_trylock(&bp->b_sema) == 0;
953 	if (locked)
954 		XB_SET_OWNER(bp);
955 
956 	trace_xfs_buf_trylock(bp, _RET_IP_);
957 	return locked;
958 }
959 
960 /*
961  *	Lock a buffer object.
962  *
963  *	If we come across a stale, pinned, locked buffer, we know that we
964  *	are being asked to lock a buffer that has been reallocated. Because
965  *	it is pinned, we know that the log has not been pushed to disk and
966  *	hence it will still be locked. Rather than sleeping until someone
967  *	else pushes the log, push it ourselves before trying to get the lock.
968  */
969 void
970 xfs_buf_lock(
971 	struct xfs_buf		*bp)
972 {
973 	trace_xfs_buf_lock(bp, _RET_IP_);
974 
975 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
976 		xfs_log_force(bp->b_target->bt_mount, 0);
977 	down(&bp->b_sema);
978 	XB_SET_OWNER(bp);
979 
980 	trace_xfs_buf_lock_done(bp, _RET_IP_);
981 }
982 
983 void
984 xfs_buf_unlock(
985 	struct xfs_buf		*bp)
986 {
987 	XB_CLEAR_OWNER(bp);
988 	up(&bp->b_sema);
989 
990 	trace_xfs_buf_unlock(bp, _RET_IP_);
991 }
992 
993 STATIC void
994 xfs_buf_wait_unpin(
995 	xfs_buf_t		*bp)
996 {
997 	DECLARE_WAITQUEUE	(wait, current);
998 
999 	if (atomic_read(&bp->b_pin_count) == 0)
1000 		return;
1001 
1002 	add_wait_queue(&bp->b_waiters, &wait);
1003 	for (;;) {
1004 		set_current_state(TASK_UNINTERRUPTIBLE);
1005 		if (atomic_read(&bp->b_pin_count) == 0)
1006 			break;
1007 		io_schedule();
1008 	}
1009 	remove_wait_queue(&bp->b_waiters, &wait);
1010 	set_current_state(TASK_RUNNING);
1011 }
1012 
1013 /*
1014  *	Buffer Utility Routines
1015  */
1016 
1017 STATIC void
1018 xfs_buf_iodone_work(
1019 	struct work_struct	*work)
1020 {
1021 	struct xfs_buf		*bp =
1022 		container_of(work, xfs_buf_t, b_iodone_work);
1023 	bool			read = !!(bp->b_flags & XBF_READ);
1024 
1025 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1026 
1027 	/* only validate buffers that were read without errors */
1028 	if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
1029 		bp->b_ops->verify_read(bp);
1030 
1031 	if (bp->b_iodone)
1032 		(*(bp->b_iodone))(bp);
1033 	else if (bp->b_flags & XBF_ASYNC)
1034 		xfs_buf_relse(bp);
1035 	else {
1036 		ASSERT(read && bp->b_ops);
1037 		complete(&bp->b_iowait);
1038 	}
1039 }
1040 
1041 void
1042 xfs_buf_ioend(
1043 	struct xfs_buf	*bp,
1044 	int		schedule)
1045 {
1046 	bool		read = !!(bp->b_flags & XBF_READ);
1047 
1048 	trace_xfs_buf_iodone(bp, _RET_IP_);
1049 
1050 	if (bp->b_error == 0)
1051 		bp->b_flags |= XBF_DONE;
1052 
1053 	if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1054 		if (schedule) {
1055 			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1056 			queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1057 		} else {
1058 			xfs_buf_iodone_work(&bp->b_iodone_work);
1059 		}
1060 	} else {
1061 		bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1062 		complete(&bp->b_iowait);
1063 	}
1064 }
1065 
1066 void
1067 xfs_buf_ioerror(
1068 	xfs_buf_t		*bp,
1069 	int			error)
1070 {
1071 	ASSERT(error >= 0 && error <= 0xffff);
1072 	bp->b_error = (unsigned short)error;
1073 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1074 }
1075 
1076 void
1077 xfs_buf_ioerror_alert(
1078 	struct xfs_buf		*bp,
1079 	const char		*func)
1080 {
1081 	xfs_alert(bp->b_target->bt_mount,
1082 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1083 		(__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1084 }
1085 
1086 /*
1087  * Called when we want to stop a buffer from getting written or read.
1088  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1089  * so that the proper iodone callbacks get called.
1090  */
1091 STATIC int
1092 xfs_bioerror(
1093 	xfs_buf_t *bp)
1094 {
1095 #ifdef XFSERRORDEBUG
1096 	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1097 #endif
1098 
1099 	/*
1100 	 * No need to wait until the buffer is unpinned, we aren't flushing it.
1101 	 */
1102 	xfs_buf_ioerror(bp, EIO);
1103 
1104 	/*
1105 	 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1106 	 */
1107 	XFS_BUF_UNREAD(bp);
1108 	XFS_BUF_UNDONE(bp);
1109 	xfs_buf_stale(bp);
1110 
1111 	xfs_buf_ioend(bp, 0);
1112 
1113 	return EIO;
1114 }
1115 
1116 /*
1117  * Same as xfs_bioerror, except that we are releasing the buffer
1118  * here ourselves, and avoiding the xfs_buf_ioend call.
1119  * This is meant for userdata errors; metadata bufs come with
1120  * iodone functions attached, so that we can track down errors.
1121  */
1122 STATIC int
1123 xfs_bioerror_relse(
1124 	struct xfs_buf	*bp)
1125 {
1126 	int64_t		fl = bp->b_flags;
1127 	/*
1128 	 * No need to wait until the buffer is unpinned.
1129 	 * We aren't flushing it.
1130 	 *
1131 	 * chunkhold expects B_DONE to be set, whether
1132 	 * we actually finish the I/O or not. We don't want to
1133 	 * change that interface.
1134 	 */
1135 	XFS_BUF_UNREAD(bp);
1136 	XFS_BUF_DONE(bp);
1137 	xfs_buf_stale(bp);
1138 	bp->b_iodone = NULL;
1139 	if (!(fl & XBF_ASYNC)) {
1140 		/*
1141 		 * Mark b_error and B_ERROR _both_.
1142 		 * Lot's of chunkcache code assumes that.
1143 		 * There's no reason to mark error for
1144 		 * ASYNC buffers.
1145 		 */
1146 		xfs_buf_ioerror(bp, EIO);
1147 		complete(&bp->b_iowait);
1148 	} else {
1149 		xfs_buf_relse(bp);
1150 	}
1151 
1152 	return EIO;
1153 }
1154 
1155 STATIC int
1156 xfs_bdstrat_cb(
1157 	struct xfs_buf	*bp)
1158 {
1159 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1160 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1161 		/*
1162 		 * Metadata write that didn't get logged but
1163 		 * written delayed anyway. These aren't associated
1164 		 * with a transaction, and can be ignored.
1165 		 */
1166 		if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1167 			return xfs_bioerror_relse(bp);
1168 		else
1169 			return xfs_bioerror(bp);
1170 	}
1171 
1172 	xfs_buf_iorequest(bp);
1173 	return 0;
1174 }
1175 
1176 int
1177 xfs_bwrite(
1178 	struct xfs_buf		*bp)
1179 {
1180 	int			error;
1181 
1182 	ASSERT(xfs_buf_islocked(bp));
1183 
1184 	bp->b_flags |= XBF_WRITE;
1185 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1186 
1187 	xfs_bdstrat_cb(bp);
1188 
1189 	error = xfs_buf_iowait(bp);
1190 	if (error) {
1191 		xfs_force_shutdown(bp->b_target->bt_mount,
1192 				   SHUTDOWN_META_IO_ERROR);
1193 	}
1194 	return error;
1195 }
1196 
1197 /*
1198  * Wrapper around bdstrat so that we can stop data from going to disk in case
1199  * we are shutting down the filesystem.  Typically user data goes thru this
1200  * path; one of the exceptions is the superblock.
1201  */
1202 void
1203 xfsbdstrat(
1204 	struct xfs_mount	*mp,
1205 	struct xfs_buf		*bp)
1206 {
1207 	if (XFS_FORCED_SHUTDOWN(mp)) {
1208 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1209 		xfs_bioerror_relse(bp);
1210 		return;
1211 	}
1212 
1213 	xfs_buf_iorequest(bp);
1214 }
1215 
1216 STATIC void
1217 _xfs_buf_ioend(
1218 	xfs_buf_t		*bp,
1219 	int			schedule)
1220 {
1221 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1222 		xfs_buf_ioend(bp, schedule);
1223 }
1224 
1225 STATIC void
1226 xfs_buf_bio_end_io(
1227 	struct bio		*bio,
1228 	int			error)
1229 {
1230 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1231 
1232 	/*
1233 	 * don't overwrite existing errors - otherwise we can lose errors on
1234 	 * buffers that require multiple bios to complete.
1235 	 */
1236 	if (!bp->b_error)
1237 		xfs_buf_ioerror(bp, -error);
1238 
1239 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1240 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1241 
1242 	_xfs_buf_ioend(bp, 1);
1243 	bio_put(bio);
1244 }
1245 
1246 static void
1247 xfs_buf_ioapply_map(
1248 	struct xfs_buf	*bp,
1249 	int		map,
1250 	int		*buf_offset,
1251 	int		*count,
1252 	int		rw)
1253 {
1254 	int		page_index;
1255 	int		total_nr_pages = bp->b_page_count;
1256 	int		nr_pages;
1257 	struct bio	*bio;
1258 	sector_t	sector =  bp->b_maps[map].bm_bn;
1259 	int		size;
1260 	int		offset;
1261 
1262 	total_nr_pages = bp->b_page_count;
1263 
1264 	/* skip the pages in the buffer before the start offset */
1265 	page_index = 0;
1266 	offset = *buf_offset;
1267 	while (offset >= PAGE_SIZE) {
1268 		page_index++;
1269 		offset -= PAGE_SIZE;
1270 	}
1271 
1272 	/*
1273 	 * Limit the IO size to the length of the current vector, and update the
1274 	 * remaining IO count for the next time around.
1275 	 */
1276 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1277 	*count -= size;
1278 	*buf_offset += size;
1279 
1280 next_chunk:
1281 	atomic_inc(&bp->b_io_remaining);
1282 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1283 	if (nr_pages > total_nr_pages)
1284 		nr_pages = total_nr_pages;
1285 
1286 	bio = bio_alloc(GFP_NOIO, nr_pages);
1287 	bio->bi_bdev = bp->b_target->bt_bdev;
1288 	bio->bi_sector = sector;
1289 	bio->bi_end_io = xfs_buf_bio_end_io;
1290 	bio->bi_private = bp;
1291 
1292 
1293 	for (; size && nr_pages; nr_pages--, page_index++) {
1294 		int	rbytes, nbytes = PAGE_SIZE - offset;
1295 
1296 		if (nbytes > size)
1297 			nbytes = size;
1298 
1299 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1300 				      offset);
1301 		if (rbytes < nbytes)
1302 			break;
1303 
1304 		offset = 0;
1305 		sector += BTOBB(nbytes);
1306 		size -= nbytes;
1307 		total_nr_pages--;
1308 	}
1309 
1310 	if (likely(bio->bi_size)) {
1311 		if (xfs_buf_is_vmapped(bp)) {
1312 			flush_kernel_vmap_range(bp->b_addr,
1313 						xfs_buf_vmap_len(bp));
1314 		}
1315 		submit_bio(rw, bio);
1316 		if (size)
1317 			goto next_chunk;
1318 	} else {
1319 		/*
1320 		 * This is guaranteed not to be the last io reference count
1321 		 * because the caller (xfs_buf_iorequest) holds a count itself.
1322 		 */
1323 		atomic_dec(&bp->b_io_remaining);
1324 		xfs_buf_ioerror(bp, EIO);
1325 		bio_put(bio);
1326 	}
1327 
1328 }
1329 
1330 STATIC void
1331 _xfs_buf_ioapply(
1332 	struct xfs_buf	*bp)
1333 {
1334 	struct blk_plug	plug;
1335 	int		rw;
1336 	int		offset;
1337 	int		size;
1338 	int		i;
1339 
1340 	/*
1341 	 * Make sure we capture only current IO errors rather than stale errors
1342 	 * left over from previous use of the buffer (e.g. failed readahead).
1343 	 */
1344 	bp->b_error = 0;
1345 
1346 	if (bp->b_flags & XBF_WRITE) {
1347 		if (bp->b_flags & XBF_SYNCIO)
1348 			rw = WRITE_SYNC;
1349 		else
1350 			rw = WRITE;
1351 		if (bp->b_flags & XBF_FUA)
1352 			rw |= REQ_FUA;
1353 		if (bp->b_flags & XBF_FLUSH)
1354 			rw |= REQ_FLUSH;
1355 
1356 		/*
1357 		 * Run the write verifier callback function if it exists. If
1358 		 * this function fails it will mark the buffer with an error and
1359 		 * the IO should not be dispatched.
1360 		 */
1361 		if (bp->b_ops) {
1362 			bp->b_ops->verify_write(bp);
1363 			if (bp->b_error) {
1364 				xfs_force_shutdown(bp->b_target->bt_mount,
1365 						   SHUTDOWN_CORRUPT_INCORE);
1366 				return;
1367 			}
1368 		}
1369 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1370 		rw = READA;
1371 	} else {
1372 		rw = READ;
1373 	}
1374 
1375 	/* we only use the buffer cache for meta-data */
1376 	rw |= REQ_META;
1377 
1378 	/*
1379 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1380 	 * into the buffer and the desired IO size before we start -
1381 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1382 	 * subsequent call.
1383 	 */
1384 	offset = bp->b_offset;
1385 	size = BBTOB(bp->b_io_length);
1386 	blk_start_plug(&plug);
1387 	for (i = 0; i < bp->b_map_count; i++) {
1388 		xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1389 		if (bp->b_error)
1390 			break;
1391 		if (size <= 0)
1392 			break;	/* all done */
1393 	}
1394 	blk_finish_plug(&plug);
1395 }
1396 
1397 void
1398 xfs_buf_iorequest(
1399 	xfs_buf_t		*bp)
1400 {
1401 	trace_xfs_buf_iorequest(bp, _RET_IP_);
1402 
1403 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1404 
1405 	if (bp->b_flags & XBF_WRITE)
1406 		xfs_buf_wait_unpin(bp);
1407 	xfs_buf_hold(bp);
1408 
1409 	/* Set the count to 1 initially, this will stop an I/O
1410 	 * completion callout which happens before we have started
1411 	 * all the I/O from calling xfs_buf_ioend too early.
1412 	 */
1413 	atomic_set(&bp->b_io_remaining, 1);
1414 	_xfs_buf_ioapply(bp);
1415 	_xfs_buf_ioend(bp, 1);
1416 
1417 	xfs_buf_rele(bp);
1418 }
1419 
1420 /*
1421  * Waits for I/O to complete on the buffer supplied.  It returns immediately if
1422  * no I/O is pending or there is already a pending error on the buffer.  It
1423  * returns the I/O error code, if any, or 0 if there was no error.
1424  */
1425 int
1426 xfs_buf_iowait(
1427 	xfs_buf_t		*bp)
1428 {
1429 	trace_xfs_buf_iowait(bp, _RET_IP_);
1430 
1431 	if (!bp->b_error)
1432 		wait_for_completion(&bp->b_iowait);
1433 
1434 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1435 	return bp->b_error;
1436 }
1437 
1438 xfs_caddr_t
1439 xfs_buf_offset(
1440 	xfs_buf_t		*bp,
1441 	size_t			offset)
1442 {
1443 	struct page		*page;
1444 
1445 	if (bp->b_addr)
1446 		return bp->b_addr + offset;
1447 
1448 	offset += bp->b_offset;
1449 	page = bp->b_pages[offset >> PAGE_SHIFT];
1450 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1451 }
1452 
1453 /*
1454  *	Move data into or out of a buffer.
1455  */
1456 void
1457 xfs_buf_iomove(
1458 	xfs_buf_t		*bp,	/* buffer to process		*/
1459 	size_t			boff,	/* starting buffer offset	*/
1460 	size_t			bsize,	/* length to copy		*/
1461 	void			*data,	/* data address			*/
1462 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1463 {
1464 	size_t			bend;
1465 
1466 	bend = boff + bsize;
1467 	while (boff < bend) {
1468 		struct page	*page;
1469 		int		page_index, page_offset, csize;
1470 
1471 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1472 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1473 		page = bp->b_pages[page_index];
1474 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1475 				      BBTOB(bp->b_io_length) - boff);
1476 
1477 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1478 
1479 		switch (mode) {
1480 		case XBRW_ZERO:
1481 			memset(page_address(page) + page_offset, 0, csize);
1482 			break;
1483 		case XBRW_READ:
1484 			memcpy(data, page_address(page) + page_offset, csize);
1485 			break;
1486 		case XBRW_WRITE:
1487 			memcpy(page_address(page) + page_offset, data, csize);
1488 		}
1489 
1490 		boff += csize;
1491 		data += csize;
1492 	}
1493 }
1494 
1495 /*
1496  *	Handling of buffer targets (buftargs).
1497  */
1498 
1499 /*
1500  * Wait for any bufs with callbacks that have been submitted but have not yet
1501  * returned. These buffers will have an elevated hold count, so wait on those
1502  * while freeing all the buffers only held by the LRU.
1503  */
1504 void
1505 xfs_wait_buftarg(
1506 	struct xfs_buftarg	*btp)
1507 {
1508 	struct xfs_buf		*bp;
1509 
1510 restart:
1511 	spin_lock(&btp->bt_lru_lock);
1512 	while (!list_empty(&btp->bt_lru)) {
1513 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1514 		if (atomic_read(&bp->b_hold) > 1) {
1515 			trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1516 			list_move_tail(&bp->b_lru, &btp->bt_lru);
1517 			spin_unlock(&btp->bt_lru_lock);
1518 			delay(100);
1519 			goto restart;
1520 		}
1521 		/*
1522 		 * clear the LRU reference count so the buffer doesn't get
1523 		 * ignored in xfs_buf_rele().
1524 		 */
1525 		atomic_set(&bp->b_lru_ref, 0);
1526 		spin_unlock(&btp->bt_lru_lock);
1527 		xfs_buf_rele(bp);
1528 		spin_lock(&btp->bt_lru_lock);
1529 	}
1530 	spin_unlock(&btp->bt_lru_lock);
1531 }
1532 
1533 int
1534 xfs_buftarg_shrink(
1535 	struct shrinker		*shrink,
1536 	struct shrink_control	*sc)
1537 {
1538 	struct xfs_buftarg	*btp = container_of(shrink,
1539 					struct xfs_buftarg, bt_shrinker);
1540 	struct xfs_buf		*bp;
1541 	int nr_to_scan = sc->nr_to_scan;
1542 	LIST_HEAD(dispose);
1543 
1544 	if (!nr_to_scan)
1545 		return btp->bt_lru_nr;
1546 
1547 	spin_lock(&btp->bt_lru_lock);
1548 	while (!list_empty(&btp->bt_lru)) {
1549 		if (nr_to_scan-- <= 0)
1550 			break;
1551 
1552 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1553 
1554 		/*
1555 		 * Decrement the b_lru_ref count unless the value is already
1556 		 * zero. If the value is already zero, we need to reclaim the
1557 		 * buffer, otherwise it gets another trip through the LRU.
1558 		 */
1559 		if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1560 			list_move_tail(&bp->b_lru, &btp->bt_lru);
1561 			continue;
1562 		}
1563 
1564 		/*
1565 		 * remove the buffer from the LRU now to avoid needing another
1566 		 * lock round trip inside xfs_buf_rele().
1567 		 */
1568 		list_move(&bp->b_lru, &dispose);
1569 		btp->bt_lru_nr--;
1570 		bp->b_lru_flags |= _XBF_LRU_DISPOSE;
1571 	}
1572 	spin_unlock(&btp->bt_lru_lock);
1573 
1574 	while (!list_empty(&dispose)) {
1575 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1576 		list_del_init(&bp->b_lru);
1577 		xfs_buf_rele(bp);
1578 	}
1579 
1580 	return btp->bt_lru_nr;
1581 }
1582 
1583 void
1584 xfs_free_buftarg(
1585 	struct xfs_mount	*mp,
1586 	struct xfs_buftarg	*btp)
1587 {
1588 	unregister_shrinker(&btp->bt_shrinker);
1589 
1590 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1591 		xfs_blkdev_issue_flush(btp);
1592 
1593 	kmem_free(btp);
1594 }
1595 
1596 STATIC int
1597 xfs_setsize_buftarg_flags(
1598 	xfs_buftarg_t		*btp,
1599 	unsigned int		blocksize,
1600 	unsigned int		sectorsize,
1601 	int			verbose)
1602 {
1603 	btp->bt_bsize = blocksize;
1604 	btp->bt_sshift = ffs(sectorsize) - 1;
1605 	btp->bt_smask = sectorsize - 1;
1606 
1607 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1608 		char name[BDEVNAME_SIZE];
1609 
1610 		bdevname(btp->bt_bdev, name);
1611 
1612 		xfs_warn(btp->bt_mount,
1613 			"Cannot set_blocksize to %u on device %s\n",
1614 			sectorsize, name);
1615 		return EINVAL;
1616 	}
1617 
1618 	return 0;
1619 }
1620 
1621 /*
1622  *	When allocating the initial buffer target we have not yet
1623  *	read in the superblock, so don't know what sized sectors
1624  *	are being used is at this early stage.  Play safe.
1625  */
1626 STATIC int
1627 xfs_setsize_buftarg_early(
1628 	xfs_buftarg_t		*btp,
1629 	struct block_device	*bdev)
1630 {
1631 	return xfs_setsize_buftarg_flags(btp,
1632 			PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1633 }
1634 
1635 int
1636 xfs_setsize_buftarg(
1637 	xfs_buftarg_t		*btp,
1638 	unsigned int		blocksize,
1639 	unsigned int		sectorsize)
1640 {
1641 	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1642 }
1643 
1644 xfs_buftarg_t *
1645 xfs_alloc_buftarg(
1646 	struct xfs_mount	*mp,
1647 	struct block_device	*bdev,
1648 	int			external,
1649 	const char		*fsname)
1650 {
1651 	xfs_buftarg_t		*btp;
1652 
1653 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1654 
1655 	btp->bt_mount = mp;
1656 	btp->bt_dev =  bdev->bd_dev;
1657 	btp->bt_bdev = bdev;
1658 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1659 	if (!btp->bt_bdi)
1660 		goto error;
1661 
1662 	INIT_LIST_HEAD(&btp->bt_lru);
1663 	spin_lock_init(&btp->bt_lru_lock);
1664 	if (xfs_setsize_buftarg_early(btp, bdev))
1665 		goto error;
1666 	btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1667 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1668 	register_shrinker(&btp->bt_shrinker);
1669 	return btp;
1670 
1671 error:
1672 	kmem_free(btp);
1673 	return NULL;
1674 }
1675 
1676 /*
1677  * Add a buffer to the delayed write list.
1678  *
1679  * This queues a buffer for writeout if it hasn't already been.  Note that
1680  * neither this routine nor the buffer list submission functions perform
1681  * any internal synchronization.  It is expected that the lists are thread-local
1682  * to the callers.
1683  *
1684  * Returns true if we queued up the buffer, or false if it already had
1685  * been on the buffer list.
1686  */
1687 bool
1688 xfs_buf_delwri_queue(
1689 	struct xfs_buf		*bp,
1690 	struct list_head	*list)
1691 {
1692 	ASSERT(xfs_buf_islocked(bp));
1693 	ASSERT(!(bp->b_flags & XBF_READ));
1694 
1695 	/*
1696 	 * If the buffer is already marked delwri it already is queued up
1697 	 * by someone else for imediate writeout.  Just ignore it in that
1698 	 * case.
1699 	 */
1700 	if (bp->b_flags & _XBF_DELWRI_Q) {
1701 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1702 		return false;
1703 	}
1704 
1705 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1706 
1707 	/*
1708 	 * If a buffer gets written out synchronously or marked stale while it
1709 	 * is on a delwri list we lazily remove it. To do this, the other party
1710 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1711 	 * It remains referenced and on the list.  In a rare corner case it
1712 	 * might get readded to a delwri list after the synchronous writeout, in
1713 	 * which case we need just need to re-add the flag here.
1714 	 */
1715 	bp->b_flags |= _XBF_DELWRI_Q;
1716 	if (list_empty(&bp->b_list)) {
1717 		atomic_inc(&bp->b_hold);
1718 		list_add_tail(&bp->b_list, list);
1719 	}
1720 
1721 	return true;
1722 }
1723 
1724 /*
1725  * Compare function is more complex than it needs to be because
1726  * the return value is only 32 bits and we are doing comparisons
1727  * on 64 bit values
1728  */
1729 static int
1730 xfs_buf_cmp(
1731 	void		*priv,
1732 	struct list_head *a,
1733 	struct list_head *b)
1734 {
1735 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1736 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1737 	xfs_daddr_t		diff;
1738 
1739 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1740 	if (diff < 0)
1741 		return -1;
1742 	if (diff > 0)
1743 		return 1;
1744 	return 0;
1745 }
1746 
1747 static int
1748 __xfs_buf_delwri_submit(
1749 	struct list_head	*buffer_list,
1750 	struct list_head	*io_list,
1751 	bool			wait)
1752 {
1753 	struct blk_plug		plug;
1754 	struct xfs_buf		*bp, *n;
1755 	int			pinned = 0;
1756 
1757 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1758 		if (!wait) {
1759 			if (xfs_buf_ispinned(bp)) {
1760 				pinned++;
1761 				continue;
1762 			}
1763 			if (!xfs_buf_trylock(bp))
1764 				continue;
1765 		} else {
1766 			xfs_buf_lock(bp);
1767 		}
1768 
1769 		/*
1770 		 * Someone else might have written the buffer synchronously or
1771 		 * marked it stale in the meantime.  In that case only the
1772 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1773 		 * reference and remove it from the list here.
1774 		 */
1775 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1776 			list_del_init(&bp->b_list);
1777 			xfs_buf_relse(bp);
1778 			continue;
1779 		}
1780 
1781 		list_move_tail(&bp->b_list, io_list);
1782 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1783 	}
1784 
1785 	list_sort(NULL, io_list, xfs_buf_cmp);
1786 
1787 	blk_start_plug(&plug);
1788 	list_for_each_entry_safe(bp, n, io_list, b_list) {
1789 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1790 		bp->b_flags |= XBF_WRITE;
1791 
1792 		if (!wait) {
1793 			bp->b_flags |= XBF_ASYNC;
1794 			list_del_init(&bp->b_list);
1795 		}
1796 		xfs_bdstrat_cb(bp);
1797 	}
1798 	blk_finish_plug(&plug);
1799 
1800 	return pinned;
1801 }
1802 
1803 /*
1804  * Write out a buffer list asynchronously.
1805  *
1806  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1807  * out and not wait for I/O completion on any of the buffers.  This interface
1808  * is only safely useable for callers that can track I/O completion by higher
1809  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1810  * function.
1811  */
1812 int
1813 xfs_buf_delwri_submit_nowait(
1814 	struct list_head	*buffer_list)
1815 {
1816 	LIST_HEAD		(io_list);
1817 	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1818 }
1819 
1820 /*
1821  * Write out a buffer list synchronously.
1822  *
1823  * This will take the @buffer_list, write all buffers out and wait for I/O
1824  * completion on all of the buffers. @buffer_list is consumed by the function,
1825  * so callers must have some other way of tracking buffers if they require such
1826  * functionality.
1827  */
1828 int
1829 xfs_buf_delwri_submit(
1830 	struct list_head	*buffer_list)
1831 {
1832 	LIST_HEAD		(io_list);
1833 	int			error = 0, error2;
1834 	struct xfs_buf		*bp;
1835 
1836 	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
1837 
1838 	/* Wait for IO to complete. */
1839 	while (!list_empty(&io_list)) {
1840 		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1841 
1842 		list_del_init(&bp->b_list);
1843 		error2 = xfs_buf_iowait(bp);
1844 		xfs_buf_relse(bp);
1845 		if (!error)
1846 			error = error2;
1847 	}
1848 
1849 	return error;
1850 }
1851 
1852 int __init
1853 xfs_buf_init(void)
1854 {
1855 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1856 						KM_ZONE_HWALIGN, NULL);
1857 	if (!xfs_buf_zone)
1858 		goto out;
1859 
1860 	xfslogd_workqueue = alloc_workqueue("xfslogd",
1861 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1862 	if (!xfslogd_workqueue)
1863 		goto out_free_buf_zone;
1864 
1865 	return 0;
1866 
1867  out_free_buf_zone:
1868 	kmem_zone_destroy(xfs_buf_zone);
1869  out:
1870 	return -ENOMEM;
1871 }
1872 
1873 void
1874 xfs_buf_terminate(void)
1875 {
1876 	destroy_workqueue(xfslogd_workqueue);
1877 	kmem_zone_destroy(xfs_buf_zone);
1878 }
1879