1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include <linux/backing-dev.h> 8 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_trace.h" 16 #include "xfs_log.h" 17 #include "xfs_log_recover.h" 18 #include "xfs_trans.h" 19 #include "xfs_buf_item.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 23 static kmem_zone_t *xfs_buf_zone; 24 25 #define xb_to_gfp(flags) \ 26 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 27 28 /* 29 * Locking orders 30 * 31 * xfs_buf_ioacct_inc: 32 * xfs_buf_ioacct_dec: 33 * b_sema (caller holds) 34 * b_lock 35 * 36 * xfs_buf_stale: 37 * b_sema (caller holds) 38 * b_lock 39 * lru_lock 40 * 41 * xfs_buf_rele: 42 * b_lock 43 * pag_buf_lock 44 * lru_lock 45 * 46 * xfs_buftarg_drain_rele 47 * lru_lock 48 * b_lock (trylock due to inversion) 49 * 50 * xfs_buftarg_isolate 51 * lru_lock 52 * b_lock (trylock due to inversion) 53 */ 54 55 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait); 56 57 static inline int 58 xfs_buf_submit( 59 struct xfs_buf *bp) 60 { 61 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC)); 62 } 63 64 static inline int 65 xfs_buf_is_vmapped( 66 struct xfs_buf *bp) 67 { 68 /* 69 * Return true if the buffer is vmapped. 70 * 71 * b_addr is null if the buffer is not mapped, but the code is clever 72 * enough to know it doesn't have to map a single page, so the check has 73 * to be both for b_addr and bp->b_page_count > 1. 74 */ 75 return bp->b_addr && bp->b_page_count > 1; 76 } 77 78 static inline int 79 xfs_buf_vmap_len( 80 struct xfs_buf *bp) 81 { 82 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 83 } 84 85 /* 86 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 87 * this buffer. The count is incremented once per buffer (per hold cycle) 88 * because the corresponding decrement is deferred to buffer release. Buffers 89 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 90 * tracking adds unnecessary overhead. This is used for sychronization purposes 91 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of 92 * in-flight buffers. 93 * 94 * Buffers that are never released (e.g., superblock, iclog buffers) must set 95 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 96 * never reaches zero and unmount hangs indefinitely. 97 */ 98 static inline void 99 xfs_buf_ioacct_inc( 100 struct xfs_buf *bp) 101 { 102 if (bp->b_flags & XBF_NO_IOACCT) 103 return; 104 105 ASSERT(bp->b_flags & XBF_ASYNC); 106 spin_lock(&bp->b_lock); 107 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { 108 bp->b_state |= XFS_BSTATE_IN_FLIGHT; 109 percpu_counter_inc(&bp->b_target->bt_io_count); 110 } 111 spin_unlock(&bp->b_lock); 112 } 113 114 /* 115 * Clear the in-flight state on a buffer about to be released to the LRU or 116 * freed and unaccount from the buftarg. 117 */ 118 static inline void 119 __xfs_buf_ioacct_dec( 120 struct xfs_buf *bp) 121 { 122 lockdep_assert_held(&bp->b_lock); 123 124 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { 125 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; 126 percpu_counter_dec(&bp->b_target->bt_io_count); 127 } 128 } 129 130 static inline void 131 xfs_buf_ioacct_dec( 132 struct xfs_buf *bp) 133 { 134 spin_lock(&bp->b_lock); 135 __xfs_buf_ioacct_dec(bp); 136 spin_unlock(&bp->b_lock); 137 } 138 139 /* 140 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 141 * b_lru_ref count so that the buffer is freed immediately when the buffer 142 * reference count falls to zero. If the buffer is already on the LRU, we need 143 * to remove the reference that LRU holds on the buffer. 144 * 145 * This prevents build-up of stale buffers on the LRU. 146 */ 147 void 148 xfs_buf_stale( 149 struct xfs_buf *bp) 150 { 151 ASSERT(xfs_buf_islocked(bp)); 152 153 bp->b_flags |= XBF_STALE; 154 155 /* 156 * Clear the delwri status so that a delwri queue walker will not 157 * flush this buffer to disk now that it is stale. The delwri queue has 158 * a reference to the buffer, so this is safe to do. 159 */ 160 bp->b_flags &= ~_XBF_DELWRI_Q; 161 162 /* 163 * Once the buffer is marked stale and unlocked, a subsequent lookup 164 * could reset b_flags. There is no guarantee that the buffer is 165 * unaccounted (released to LRU) before that occurs. Drop in-flight 166 * status now to preserve accounting consistency. 167 */ 168 spin_lock(&bp->b_lock); 169 __xfs_buf_ioacct_dec(bp); 170 171 atomic_set(&bp->b_lru_ref, 0); 172 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 173 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 174 atomic_dec(&bp->b_hold); 175 176 ASSERT(atomic_read(&bp->b_hold) >= 1); 177 spin_unlock(&bp->b_lock); 178 } 179 180 static int 181 xfs_buf_get_maps( 182 struct xfs_buf *bp, 183 int map_count) 184 { 185 ASSERT(bp->b_maps == NULL); 186 bp->b_map_count = map_count; 187 188 if (map_count == 1) { 189 bp->b_maps = &bp->__b_map; 190 return 0; 191 } 192 193 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 194 KM_NOFS); 195 if (!bp->b_maps) 196 return -ENOMEM; 197 return 0; 198 } 199 200 /* 201 * Frees b_pages if it was allocated. 202 */ 203 static void 204 xfs_buf_free_maps( 205 struct xfs_buf *bp) 206 { 207 if (bp->b_maps != &bp->__b_map) { 208 kmem_free(bp->b_maps); 209 bp->b_maps = NULL; 210 } 211 } 212 213 static int 214 _xfs_buf_alloc( 215 struct xfs_buftarg *target, 216 struct xfs_buf_map *map, 217 int nmaps, 218 xfs_buf_flags_t flags, 219 struct xfs_buf **bpp) 220 { 221 struct xfs_buf *bp; 222 int error; 223 int i; 224 225 *bpp = NULL; 226 bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL); 227 228 /* 229 * We don't want certain flags to appear in b_flags unless they are 230 * specifically set by later operations on the buffer. 231 */ 232 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 233 234 atomic_set(&bp->b_hold, 1); 235 atomic_set(&bp->b_lru_ref, 1); 236 init_completion(&bp->b_iowait); 237 INIT_LIST_HEAD(&bp->b_lru); 238 INIT_LIST_HEAD(&bp->b_list); 239 INIT_LIST_HEAD(&bp->b_li_list); 240 sema_init(&bp->b_sema, 0); /* held, no waiters */ 241 spin_lock_init(&bp->b_lock); 242 bp->b_target = target; 243 bp->b_mount = target->bt_mount; 244 bp->b_flags = flags; 245 246 /* 247 * Set length and io_length to the same value initially. 248 * I/O routines should use io_length, which will be the same in 249 * most cases but may be reset (e.g. XFS recovery). 250 */ 251 error = xfs_buf_get_maps(bp, nmaps); 252 if (error) { 253 kmem_cache_free(xfs_buf_zone, bp); 254 return error; 255 } 256 257 bp->b_bn = map[0].bm_bn; 258 bp->b_length = 0; 259 for (i = 0; i < nmaps; i++) { 260 bp->b_maps[i].bm_bn = map[i].bm_bn; 261 bp->b_maps[i].bm_len = map[i].bm_len; 262 bp->b_length += map[i].bm_len; 263 } 264 265 atomic_set(&bp->b_pin_count, 0); 266 init_waitqueue_head(&bp->b_waiters); 267 268 XFS_STATS_INC(bp->b_mount, xb_create); 269 trace_xfs_buf_init(bp, _RET_IP_); 270 271 *bpp = bp; 272 return 0; 273 } 274 275 /* 276 * Allocate a page array capable of holding a specified number 277 * of pages, and point the page buf at it. 278 */ 279 STATIC int 280 _xfs_buf_get_pages( 281 struct xfs_buf *bp, 282 int page_count) 283 { 284 /* Make sure that we have a page list */ 285 if (bp->b_pages == NULL) { 286 bp->b_page_count = page_count; 287 if (page_count <= XB_PAGES) { 288 bp->b_pages = bp->b_page_array; 289 } else { 290 bp->b_pages = kmem_alloc(sizeof(struct page *) * 291 page_count, KM_NOFS); 292 if (bp->b_pages == NULL) 293 return -ENOMEM; 294 } 295 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 296 } 297 return 0; 298 } 299 300 /* 301 * Frees b_pages if it was allocated. 302 */ 303 STATIC void 304 _xfs_buf_free_pages( 305 struct xfs_buf *bp) 306 { 307 if (bp->b_pages != bp->b_page_array) { 308 kmem_free(bp->b_pages); 309 bp->b_pages = NULL; 310 } 311 } 312 313 /* 314 * Releases the specified buffer. 315 * 316 * The modification state of any associated pages is left unchanged. 317 * The buffer must not be on any hash - use xfs_buf_rele instead for 318 * hashed and refcounted buffers 319 */ 320 static void 321 xfs_buf_free( 322 struct xfs_buf *bp) 323 { 324 trace_xfs_buf_free(bp, _RET_IP_); 325 326 ASSERT(list_empty(&bp->b_lru)); 327 328 if (bp->b_flags & _XBF_PAGES) { 329 uint i; 330 331 if (xfs_buf_is_vmapped(bp)) 332 vm_unmap_ram(bp->b_addr - bp->b_offset, 333 bp->b_page_count); 334 335 for (i = 0; i < bp->b_page_count; i++) { 336 struct page *page = bp->b_pages[i]; 337 338 __free_page(page); 339 } 340 if (current->reclaim_state) 341 current->reclaim_state->reclaimed_slab += 342 bp->b_page_count; 343 } else if (bp->b_flags & _XBF_KMEM) 344 kmem_free(bp->b_addr); 345 _xfs_buf_free_pages(bp); 346 xfs_buf_free_maps(bp); 347 kmem_cache_free(xfs_buf_zone, bp); 348 } 349 350 /* 351 * Allocates all the pages for buffer in question and builds it's page list. 352 */ 353 STATIC int 354 xfs_buf_allocate_memory( 355 struct xfs_buf *bp, 356 uint flags) 357 { 358 size_t size; 359 size_t nbytes, offset; 360 gfp_t gfp_mask = xb_to_gfp(flags); 361 unsigned short page_count, i; 362 xfs_off_t start, end; 363 int error; 364 xfs_km_flags_t kmflag_mask = 0; 365 366 /* 367 * assure zeroed buffer for non-read cases. 368 */ 369 if (!(flags & XBF_READ)) { 370 kmflag_mask |= KM_ZERO; 371 gfp_mask |= __GFP_ZERO; 372 } 373 374 /* 375 * for buffers that are contained within a single page, just allocate 376 * the memory from the heap - there's no need for the complexity of 377 * page arrays to keep allocation down to order 0. 378 */ 379 size = BBTOB(bp->b_length); 380 if (size < PAGE_SIZE) { 381 int align_mask = xfs_buftarg_dma_alignment(bp->b_target); 382 bp->b_addr = kmem_alloc_io(size, align_mask, 383 KM_NOFS | kmflag_mask); 384 if (!bp->b_addr) { 385 /* low memory - use alloc_page loop instead */ 386 goto use_alloc_page; 387 } 388 389 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 390 ((unsigned long)bp->b_addr & PAGE_MASK)) { 391 /* b_addr spans two pages - use alloc_page instead */ 392 kmem_free(bp->b_addr); 393 bp->b_addr = NULL; 394 goto use_alloc_page; 395 } 396 bp->b_offset = offset_in_page(bp->b_addr); 397 bp->b_pages = bp->b_page_array; 398 bp->b_pages[0] = kmem_to_page(bp->b_addr); 399 bp->b_page_count = 1; 400 bp->b_flags |= _XBF_KMEM; 401 return 0; 402 } 403 404 use_alloc_page: 405 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 406 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 407 >> PAGE_SHIFT; 408 page_count = end - start; 409 error = _xfs_buf_get_pages(bp, page_count); 410 if (unlikely(error)) 411 return error; 412 413 offset = bp->b_offset; 414 bp->b_flags |= _XBF_PAGES; 415 416 for (i = 0; i < bp->b_page_count; i++) { 417 struct page *page; 418 uint retries = 0; 419 retry: 420 page = alloc_page(gfp_mask); 421 if (unlikely(page == NULL)) { 422 if (flags & XBF_READ_AHEAD) { 423 bp->b_page_count = i; 424 error = -ENOMEM; 425 goto out_free_pages; 426 } 427 428 /* 429 * This could deadlock. 430 * 431 * But until all the XFS lowlevel code is revamped to 432 * handle buffer allocation failures we can't do much. 433 */ 434 if (!(++retries % 100)) 435 xfs_err(NULL, 436 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", 437 current->comm, current->pid, 438 __func__, gfp_mask); 439 440 XFS_STATS_INC(bp->b_mount, xb_page_retries); 441 congestion_wait(BLK_RW_ASYNC, HZ/50); 442 goto retry; 443 } 444 445 XFS_STATS_INC(bp->b_mount, xb_page_found); 446 447 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 448 size -= nbytes; 449 bp->b_pages[i] = page; 450 offset = 0; 451 } 452 return 0; 453 454 out_free_pages: 455 for (i = 0; i < bp->b_page_count; i++) 456 __free_page(bp->b_pages[i]); 457 bp->b_flags &= ~_XBF_PAGES; 458 return error; 459 } 460 461 /* 462 * Map buffer into kernel address-space if necessary. 463 */ 464 STATIC int 465 _xfs_buf_map_pages( 466 struct xfs_buf *bp, 467 uint flags) 468 { 469 ASSERT(bp->b_flags & _XBF_PAGES); 470 if (bp->b_page_count == 1) { 471 /* A single page buffer is always mappable */ 472 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 473 } else if (flags & XBF_UNMAPPED) { 474 bp->b_addr = NULL; 475 } else { 476 int retried = 0; 477 unsigned nofs_flag; 478 479 /* 480 * vm_map_ram() will allocate auxiliary structures (e.g. 481 * pagetables) with GFP_KERNEL, yet we are likely to be under 482 * GFP_NOFS context here. Hence we need to tell memory reclaim 483 * that we are in such a context via PF_MEMALLOC_NOFS to prevent 484 * memory reclaim re-entering the filesystem here and 485 * potentially deadlocking. 486 */ 487 nofs_flag = memalloc_nofs_save(); 488 do { 489 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 490 -1); 491 if (bp->b_addr) 492 break; 493 vm_unmap_aliases(); 494 } while (retried++ <= 1); 495 memalloc_nofs_restore(nofs_flag); 496 497 if (!bp->b_addr) 498 return -ENOMEM; 499 bp->b_addr += bp->b_offset; 500 } 501 502 return 0; 503 } 504 505 /* 506 * Finding and Reading Buffers 507 */ 508 static int 509 _xfs_buf_obj_cmp( 510 struct rhashtable_compare_arg *arg, 511 const void *obj) 512 { 513 const struct xfs_buf_map *map = arg->key; 514 const struct xfs_buf *bp = obj; 515 516 /* 517 * The key hashing in the lookup path depends on the key being the 518 * first element of the compare_arg, make sure to assert this. 519 */ 520 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 521 522 if (bp->b_bn != map->bm_bn) 523 return 1; 524 525 if (unlikely(bp->b_length != map->bm_len)) { 526 /* 527 * found a block number match. If the range doesn't 528 * match, the only way this is allowed is if the buffer 529 * in the cache is stale and the transaction that made 530 * it stale has not yet committed. i.e. we are 531 * reallocating a busy extent. Skip this buffer and 532 * continue searching for an exact match. 533 */ 534 ASSERT(bp->b_flags & XBF_STALE); 535 return 1; 536 } 537 return 0; 538 } 539 540 static const struct rhashtable_params xfs_buf_hash_params = { 541 .min_size = 32, /* empty AGs have minimal footprint */ 542 .nelem_hint = 16, 543 .key_len = sizeof(xfs_daddr_t), 544 .key_offset = offsetof(struct xfs_buf, b_bn), 545 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 546 .automatic_shrinking = true, 547 .obj_cmpfn = _xfs_buf_obj_cmp, 548 }; 549 550 int 551 xfs_buf_hash_init( 552 struct xfs_perag *pag) 553 { 554 spin_lock_init(&pag->pag_buf_lock); 555 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); 556 } 557 558 void 559 xfs_buf_hash_destroy( 560 struct xfs_perag *pag) 561 { 562 rhashtable_destroy(&pag->pag_buf_hash); 563 } 564 565 /* 566 * Look up a buffer in the buffer cache and return it referenced and locked 567 * in @found_bp. 568 * 569 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the 570 * cache. 571 * 572 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return 573 * -EAGAIN if we fail to lock it. 574 * 575 * Return values are: 576 * -EFSCORRUPTED if have been supplied with an invalid address 577 * -EAGAIN on trylock failure 578 * -ENOENT if we fail to find a match and @new_bp was NULL 579 * 0, with @found_bp: 580 * - @new_bp if we inserted it into the cache 581 * - the buffer we found and locked. 582 */ 583 static int 584 xfs_buf_find( 585 struct xfs_buftarg *btp, 586 struct xfs_buf_map *map, 587 int nmaps, 588 xfs_buf_flags_t flags, 589 struct xfs_buf *new_bp, 590 struct xfs_buf **found_bp) 591 { 592 struct xfs_perag *pag; 593 struct xfs_buf *bp; 594 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 595 xfs_daddr_t eofs; 596 int i; 597 598 *found_bp = NULL; 599 600 for (i = 0; i < nmaps; i++) 601 cmap.bm_len += map[i].bm_len; 602 603 /* Check for IOs smaller than the sector size / not sector aligned */ 604 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize)); 605 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 606 607 /* 608 * Corrupted block numbers can get through to here, unfortunately, so we 609 * have to check that the buffer falls within the filesystem bounds. 610 */ 611 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 612 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) { 613 xfs_alert(btp->bt_mount, 614 "%s: daddr 0x%llx out of range, EOFS 0x%llx", 615 __func__, cmap.bm_bn, eofs); 616 WARN_ON(1); 617 return -EFSCORRUPTED; 618 } 619 620 pag = xfs_perag_get(btp->bt_mount, 621 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); 622 623 spin_lock(&pag->pag_buf_lock); 624 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap, 625 xfs_buf_hash_params); 626 if (bp) { 627 atomic_inc(&bp->b_hold); 628 goto found; 629 } 630 631 /* No match found */ 632 if (!new_bp) { 633 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 634 spin_unlock(&pag->pag_buf_lock); 635 xfs_perag_put(pag); 636 return -ENOENT; 637 } 638 639 /* the buffer keeps the perag reference until it is freed */ 640 new_bp->b_pag = pag; 641 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head, 642 xfs_buf_hash_params); 643 spin_unlock(&pag->pag_buf_lock); 644 *found_bp = new_bp; 645 return 0; 646 647 found: 648 spin_unlock(&pag->pag_buf_lock); 649 xfs_perag_put(pag); 650 651 if (!xfs_buf_trylock(bp)) { 652 if (flags & XBF_TRYLOCK) { 653 xfs_buf_rele(bp); 654 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 655 return -EAGAIN; 656 } 657 xfs_buf_lock(bp); 658 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 659 } 660 661 /* 662 * if the buffer is stale, clear all the external state associated with 663 * it. We need to keep flags such as how we allocated the buffer memory 664 * intact here. 665 */ 666 if (bp->b_flags & XBF_STALE) { 667 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 668 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 669 bp->b_ops = NULL; 670 } 671 672 trace_xfs_buf_find(bp, flags, _RET_IP_); 673 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 674 *found_bp = bp; 675 return 0; 676 } 677 678 struct xfs_buf * 679 xfs_buf_incore( 680 struct xfs_buftarg *target, 681 xfs_daddr_t blkno, 682 size_t numblks, 683 xfs_buf_flags_t flags) 684 { 685 struct xfs_buf *bp; 686 int error; 687 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks); 688 689 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp); 690 if (error) 691 return NULL; 692 return bp; 693 } 694 695 /* 696 * Assembles a buffer covering the specified range. The code is optimised for 697 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 698 * more hits than misses. 699 */ 700 int 701 xfs_buf_get_map( 702 struct xfs_buftarg *target, 703 struct xfs_buf_map *map, 704 int nmaps, 705 xfs_buf_flags_t flags, 706 struct xfs_buf **bpp) 707 { 708 struct xfs_buf *bp; 709 struct xfs_buf *new_bp; 710 int error = 0; 711 712 *bpp = NULL; 713 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp); 714 if (!error) 715 goto found; 716 if (error != -ENOENT) 717 return error; 718 719 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp); 720 if (error) 721 return error; 722 723 error = xfs_buf_allocate_memory(new_bp, flags); 724 if (error) { 725 xfs_buf_free(new_bp); 726 return error; 727 } 728 729 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp); 730 if (error) { 731 xfs_buf_free(new_bp); 732 return error; 733 } 734 735 if (bp != new_bp) 736 xfs_buf_free(new_bp); 737 738 found: 739 if (!bp->b_addr) { 740 error = _xfs_buf_map_pages(bp, flags); 741 if (unlikely(error)) { 742 xfs_warn_ratelimited(target->bt_mount, 743 "%s: failed to map %u pages", __func__, 744 bp->b_page_count); 745 xfs_buf_relse(bp); 746 return error; 747 } 748 } 749 750 /* 751 * Clear b_error if this is a lookup from a caller that doesn't expect 752 * valid data to be found in the buffer. 753 */ 754 if (!(flags & XBF_READ)) 755 xfs_buf_ioerror(bp, 0); 756 757 XFS_STATS_INC(target->bt_mount, xb_get); 758 trace_xfs_buf_get(bp, flags, _RET_IP_); 759 *bpp = bp; 760 return 0; 761 } 762 763 int 764 _xfs_buf_read( 765 struct xfs_buf *bp, 766 xfs_buf_flags_t flags) 767 { 768 ASSERT(!(flags & XBF_WRITE)); 769 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 770 771 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE); 772 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 773 774 return xfs_buf_submit(bp); 775 } 776 777 /* 778 * Reverify a buffer found in cache without an attached ->b_ops. 779 * 780 * If the caller passed an ops structure and the buffer doesn't have ops 781 * assigned, set the ops and use it to verify the contents. If verification 782 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is 783 * already in XBF_DONE state on entry. 784 * 785 * Under normal operations, every in-core buffer is verified on read I/O 786 * completion. There are two scenarios that can lead to in-core buffers without 787 * an assigned ->b_ops. The first is during log recovery of buffers on a V4 788 * filesystem, though these buffers are purged at the end of recovery. The 789 * other is online repair, which intentionally reads with a NULL buffer ops to 790 * run several verifiers across an in-core buffer in order to establish buffer 791 * type. If repair can't establish that, the buffer will be left in memory 792 * with NULL buffer ops. 793 */ 794 int 795 xfs_buf_reverify( 796 struct xfs_buf *bp, 797 const struct xfs_buf_ops *ops) 798 { 799 ASSERT(bp->b_flags & XBF_DONE); 800 ASSERT(bp->b_error == 0); 801 802 if (!ops || bp->b_ops) 803 return 0; 804 805 bp->b_ops = ops; 806 bp->b_ops->verify_read(bp); 807 if (bp->b_error) 808 bp->b_flags &= ~XBF_DONE; 809 return bp->b_error; 810 } 811 812 int 813 xfs_buf_read_map( 814 struct xfs_buftarg *target, 815 struct xfs_buf_map *map, 816 int nmaps, 817 xfs_buf_flags_t flags, 818 struct xfs_buf **bpp, 819 const struct xfs_buf_ops *ops, 820 xfs_failaddr_t fa) 821 { 822 struct xfs_buf *bp; 823 int error; 824 825 flags |= XBF_READ; 826 *bpp = NULL; 827 828 error = xfs_buf_get_map(target, map, nmaps, flags, &bp); 829 if (error) 830 return error; 831 832 trace_xfs_buf_read(bp, flags, _RET_IP_); 833 834 if (!(bp->b_flags & XBF_DONE)) { 835 /* Initiate the buffer read and wait. */ 836 XFS_STATS_INC(target->bt_mount, xb_get_read); 837 bp->b_ops = ops; 838 error = _xfs_buf_read(bp, flags); 839 840 /* Readahead iodone already dropped the buffer, so exit. */ 841 if (flags & XBF_ASYNC) 842 return 0; 843 } else { 844 /* Buffer already read; all we need to do is check it. */ 845 error = xfs_buf_reverify(bp, ops); 846 847 /* Readahead already finished; drop the buffer and exit. */ 848 if (flags & XBF_ASYNC) { 849 xfs_buf_relse(bp); 850 return 0; 851 } 852 853 /* We do not want read in the flags */ 854 bp->b_flags &= ~XBF_READ; 855 ASSERT(bp->b_ops != NULL || ops == NULL); 856 } 857 858 /* 859 * If we've had a read error, then the contents of the buffer are 860 * invalid and should not be used. To ensure that a followup read tries 861 * to pull the buffer from disk again, we clear the XBF_DONE flag and 862 * mark the buffer stale. This ensures that anyone who has a current 863 * reference to the buffer will interpret it's contents correctly and 864 * future cache lookups will also treat it as an empty, uninitialised 865 * buffer. 866 */ 867 if (error) { 868 if (!XFS_FORCED_SHUTDOWN(target->bt_mount)) 869 xfs_buf_ioerror_alert(bp, fa); 870 871 bp->b_flags &= ~XBF_DONE; 872 xfs_buf_stale(bp); 873 xfs_buf_relse(bp); 874 875 /* bad CRC means corrupted metadata */ 876 if (error == -EFSBADCRC) 877 error = -EFSCORRUPTED; 878 return error; 879 } 880 881 *bpp = bp; 882 return 0; 883 } 884 885 /* 886 * If we are not low on memory then do the readahead in a deadlock 887 * safe manner. 888 */ 889 void 890 xfs_buf_readahead_map( 891 struct xfs_buftarg *target, 892 struct xfs_buf_map *map, 893 int nmaps, 894 const struct xfs_buf_ops *ops) 895 { 896 struct xfs_buf *bp; 897 898 if (bdi_read_congested(target->bt_bdev->bd_bdi)) 899 return; 900 901 xfs_buf_read_map(target, map, nmaps, 902 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops, 903 __this_address); 904 } 905 906 /* 907 * Read an uncached buffer from disk. Allocates and returns a locked 908 * buffer containing the disk contents or nothing. 909 */ 910 int 911 xfs_buf_read_uncached( 912 struct xfs_buftarg *target, 913 xfs_daddr_t daddr, 914 size_t numblks, 915 int flags, 916 struct xfs_buf **bpp, 917 const struct xfs_buf_ops *ops) 918 { 919 struct xfs_buf *bp; 920 int error; 921 922 *bpp = NULL; 923 924 error = xfs_buf_get_uncached(target, numblks, flags, &bp); 925 if (error) 926 return error; 927 928 /* set up the buffer for a read IO */ 929 ASSERT(bp->b_map_count == 1); 930 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 931 bp->b_maps[0].bm_bn = daddr; 932 bp->b_flags |= XBF_READ; 933 bp->b_ops = ops; 934 935 xfs_buf_submit(bp); 936 if (bp->b_error) { 937 error = bp->b_error; 938 xfs_buf_relse(bp); 939 return error; 940 } 941 942 *bpp = bp; 943 return 0; 944 } 945 946 int 947 xfs_buf_get_uncached( 948 struct xfs_buftarg *target, 949 size_t numblks, 950 int flags, 951 struct xfs_buf **bpp) 952 { 953 unsigned long page_count; 954 int error, i; 955 struct xfs_buf *bp; 956 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 957 958 *bpp = NULL; 959 960 /* flags might contain irrelevant bits, pass only what we care about */ 961 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp); 962 if (error) 963 goto fail; 964 965 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 966 error = _xfs_buf_get_pages(bp, page_count); 967 if (error) 968 goto fail_free_buf; 969 970 for (i = 0; i < page_count; i++) { 971 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 972 if (!bp->b_pages[i]) { 973 error = -ENOMEM; 974 goto fail_free_mem; 975 } 976 } 977 bp->b_flags |= _XBF_PAGES; 978 979 error = _xfs_buf_map_pages(bp, 0); 980 if (unlikely(error)) { 981 xfs_warn(target->bt_mount, 982 "%s: failed to map pages", __func__); 983 goto fail_free_mem; 984 } 985 986 trace_xfs_buf_get_uncached(bp, _RET_IP_); 987 *bpp = bp; 988 return 0; 989 990 fail_free_mem: 991 while (--i >= 0) 992 __free_page(bp->b_pages[i]); 993 _xfs_buf_free_pages(bp); 994 fail_free_buf: 995 xfs_buf_free_maps(bp); 996 kmem_cache_free(xfs_buf_zone, bp); 997 fail: 998 return error; 999 } 1000 1001 /* 1002 * Increment reference count on buffer, to hold the buffer concurrently 1003 * with another thread which may release (free) the buffer asynchronously. 1004 * Must hold the buffer already to call this function. 1005 */ 1006 void 1007 xfs_buf_hold( 1008 struct xfs_buf *bp) 1009 { 1010 trace_xfs_buf_hold(bp, _RET_IP_); 1011 atomic_inc(&bp->b_hold); 1012 } 1013 1014 /* 1015 * Release a hold on the specified buffer. If the hold count is 1, the buffer is 1016 * placed on LRU or freed (depending on b_lru_ref). 1017 */ 1018 void 1019 xfs_buf_rele( 1020 struct xfs_buf *bp) 1021 { 1022 struct xfs_perag *pag = bp->b_pag; 1023 bool release; 1024 bool freebuf = false; 1025 1026 trace_xfs_buf_rele(bp, _RET_IP_); 1027 1028 if (!pag) { 1029 ASSERT(list_empty(&bp->b_lru)); 1030 if (atomic_dec_and_test(&bp->b_hold)) { 1031 xfs_buf_ioacct_dec(bp); 1032 xfs_buf_free(bp); 1033 } 1034 return; 1035 } 1036 1037 ASSERT(atomic_read(&bp->b_hold) > 0); 1038 1039 /* 1040 * We grab the b_lock here first to serialise racing xfs_buf_rele() 1041 * calls. The pag_buf_lock being taken on the last reference only 1042 * serialises against racing lookups in xfs_buf_find(). IOWs, the second 1043 * to last reference we drop here is not serialised against the last 1044 * reference until we take bp->b_lock. Hence if we don't grab b_lock 1045 * first, the last "release" reference can win the race to the lock and 1046 * free the buffer before the second-to-last reference is processed, 1047 * leading to a use-after-free scenario. 1048 */ 1049 spin_lock(&bp->b_lock); 1050 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); 1051 if (!release) { 1052 /* 1053 * Drop the in-flight state if the buffer is already on the LRU 1054 * and it holds the only reference. This is racy because we 1055 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 1056 * ensures the decrement occurs only once per-buf. 1057 */ 1058 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 1059 __xfs_buf_ioacct_dec(bp); 1060 goto out_unlock; 1061 } 1062 1063 /* the last reference has been dropped ... */ 1064 __xfs_buf_ioacct_dec(bp); 1065 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 1066 /* 1067 * If the buffer is added to the LRU take a new reference to the 1068 * buffer for the LRU and clear the (now stale) dispose list 1069 * state flag 1070 */ 1071 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 1072 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1073 atomic_inc(&bp->b_hold); 1074 } 1075 spin_unlock(&pag->pag_buf_lock); 1076 } else { 1077 /* 1078 * most of the time buffers will already be removed from the 1079 * LRU, so optimise that case by checking for the 1080 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1081 * was on was the disposal list 1082 */ 1083 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1084 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 1085 } else { 1086 ASSERT(list_empty(&bp->b_lru)); 1087 } 1088 1089 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1090 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, 1091 xfs_buf_hash_params); 1092 spin_unlock(&pag->pag_buf_lock); 1093 xfs_perag_put(pag); 1094 freebuf = true; 1095 } 1096 1097 out_unlock: 1098 spin_unlock(&bp->b_lock); 1099 1100 if (freebuf) 1101 xfs_buf_free(bp); 1102 } 1103 1104 1105 /* 1106 * Lock a buffer object, if it is not already locked. 1107 * 1108 * If we come across a stale, pinned, locked buffer, we know that we are 1109 * being asked to lock a buffer that has been reallocated. Because it is 1110 * pinned, we know that the log has not been pushed to disk and hence it 1111 * will still be locked. Rather than continuing to have trylock attempts 1112 * fail until someone else pushes the log, push it ourselves before 1113 * returning. This means that the xfsaild will not get stuck trying 1114 * to push on stale inode buffers. 1115 */ 1116 int 1117 xfs_buf_trylock( 1118 struct xfs_buf *bp) 1119 { 1120 int locked; 1121 1122 locked = down_trylock(&bp->b_sema) == 0; 1123 if (locked) 1124 trace_xfs_buf_trylock(bp, _RET_IP_); 1125 else 1126 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1127 return locked; 1128 } 1129 1130 /* 1131 * Lock a buffer object. 1132 * 1133 * If we come across a stale, pinned, locked buffer, we know that we 1134 * are being asked to lock a buffer that has been reallocated. Because 1135 * it is pinned, we know that the log has not been pushed to disk and 1136 * hence it will still be locked. Rather than sleeping until someone 1137 * else pushes the log, push it ourselves before trying to get the lock. 1138 */ 1139 void 1140 xfs_buf_lock( 1141 struct xfs_buf *bp) 1142 { 1143 trace_xfs_buf_lock(bp, _RET_IP_); 1144 1145 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1146 xfs_log_force(bp->b_mount, 0); 1147 down(&bp->b_sema); 1148 1149 trace_xfs_buf_lock_done(bp, _RET_IP_); 1150 } 1151 1152 void 1153 xfs_buf_unlock( 1154 struct xfs_buf *bp) 1155 { 1156 ASSERT(xfs_buf_islocked(bp)); 1157 1158 up(&bp->b_sema); 1159 trace_xfs_buf_unlock(bp, _RET_IP_); 1160 } 1161 1162 STATIC void 1163 xfs_buf_wait_unpin( 1164 struct xfs_buf *bp) 1165 { 1166 DECLARE_WAITQUEUE (wait, current); 1167 1168 if (atomic_read(&bp->b_pin_count) == 0) 1169 return; 1170 1171 add_wait_queue(&bp->b_waiters, &wait); 1172 for (;;) { 1173 set_current_state(TASK_UNINTERRUPTIBLE); 1174 if (atomic_read(&bp->b_pin_count) == 0) 1175 break; 1176 io_schedule(); 1177 } 1178 remove_wait_queue(&bp->b_waiters, &wait); 1179 set_current_state(TASK_RUNNING); 1180 } 1181 1182 static void 1183 xfs_buf_ioerror_alert_ratelimited( 1184 struct xfs_buf *bp) 1185 { 1186 static unsigned long lasttime; 1187 static struct xfs_buftarg *lasttarg; 1188 1189 if (bp->b_target != lasttarg || 1190 time_after(jiffies, (lasttime + 5*HZ))) { 1191 lasttime = jiffies; 1192 xfs_buf_ioerror_alert(bp, __this_address); 1193 } 1194 lasttarg = bp->b_target; 1195 } 1196 1197 /* 1198 * Account for this latest trip around the retry handler, and decide if 1199 * we've failed enough times to constitute a permanent failure. 1200 */ 1201 static bool 1202 xfs_buf_ioerror_permanent( 1203 struct xfs_buf *bp, 1204 struct xfs_error_cfg *cfg) 1205 { 1206 struct xfs_mount *mp = bp->b_mount; 1207 1208 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER && 1209 ++bp->b_retries > cfg->max_retries) 1210 return true; 1211 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1212 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time)) 1213 return true; 1214 1215 /* At unmount we may treat errors differently */ 1216 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount) 1217 return true; 1218 1219 return false; 1220 } 1221 1222 /* 1223 * On a sync write or shutdown we just want to stale the buffer and let the 1224 * caller handle the error in bp->b_error appropriately. 1225 * 1226 * If the write was asynchronous then no one will be looking for the error. If 1227 * this is the first failure of this type, clear the error state and write the 1228 * buffer out again. This means we always retry an async write failure at least 1229 * once, but we also need to set the buffer up to behave correctly now for 1230 * repeated failures. 1231 * 1232 * If we get repeated async write failures, then we take action according to the 1233 * error configuration we have been set up to use. 1234 * 1235 * Returns true if this function took care of error handling and the caller must 1236 * not touch the buffer again. Return false if the caller should proceed with 1237 * normal I/O completion handling. 1238 */ 1239 static bool 1240 xfs_buf_ioend_handle_error( 1241 struct xfs_buf *bp) 1242 { 1243 struct xfs_mount *mp = bp->b_mount; 1244 struct xfs_error_cfg *cfg; 1245 1246 /* 1247 * If we've already decided to shutdown the filesystem because of I/O 1248 * errors, there's no point in giving this a retry. 1249 */ 1250 if (XFS_FORCED_SHUTDOWN(mp)) 1251 goto out_stale; 1252 1253 xfs_buf_ioerror_alert_ratelimited(bp); 1254 1255 /* 1256 * We're not going to bother about retrying this during recovery. 1257 * One strike! 1258 */ 1259 if (bp->b_flags & _XBF_LOGRECOVERY) { 1260 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1261 return false; 1262 } 1263 1264 /* 1265 * Synchronous writes will have callers process the error. 1266 */ 1267 if (!(bp->b_flags & XBF_ASYNC)) 1268 goto out_stale; 1269 1270 trace_xfs_buf_iodone_async(bp, _RET_IP_); 1271 1272 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error); 1273 if (bp->b_last_error != bp->b_error || 1274 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) { 1275 bp->b_last_error = bp->b_error; 1276 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1277 !bp->b_first_retry_time) 1278 bp->b_first_retry_time = jiffies; 1279 goto resubmit; 1280 } 1281 1282 /* 1283 * Permanent error - we need to trigger a shutdown if we haven't already 1284 * to indicate that inconsistency will result from this action. 1285 */ 1286 if (xfs_buf_ioerror_permanent(bp, cfg)) { 1287 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1288 goto out_stale; 1289 } 1290 1291 /* Still considered a transient error. Caller will schedule retries. */ 1292 if (bp->b_flags & _XBF_INODES) 1293 xfs_buf_inode_io_fail(bp); 1294 else if (bp->b_flags & _XBF_DQUOTS) 1295 xfs_buf_dquot_io_fail(bp); 1296 else 1297 ASSERT(list_empty(&bp->b_li_list)); 1298 xfs_buf_ioerror(bp, 0); 1299 xfs_buf_relse(bp); 1300 return true; 1301 1302 resubmit: 1303 xfs_buf_ioerror(bp, 0); 1304 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL); 1305 xfs_buf_submit(bp); 1306 return true; 1307 out_stale: 1308 xfs_buf_stale(bp); 1309 bp->b_flags |= XBF_DONE; 1310 bp->b_flags &= ~XBF_WRITE; 1311 trace_xfs_buf_error_relse(bp, _RET_IP_); 1312 return false; 1313 } 1314 1315 static void 1316 xfs_buf_ioend( 1317 struct xfs_buf *bp) 1318 { 1319 trace_xfs_buf_iodone(bp, _RET_IP_); 1320 1321 /* 1322 * Pull in IO completion errors now. We are guaranteed to be running 1323 * single threaded, so we don't need the lock to read b_io_error. 1324 */ 1325 if (!bp->b_error && bp->b_io_error) 1326 xfs_buf_ioerror(bp, bp->b_io_error); 1327 1328 if (bp->b_flags & XBF_READ) { 1329 if (!bp->b_error && bp->b_ops) 1330 bp->b_ops->verify_read(bp); 1331 if (!bp->b_error) 1332 bp->b_flags |= XBF_DONE; 1333 } else { 1334 if (!bp->b_error) { 1335 bp->b_flags &= ~XBF_WRITE_FAIL; 1336 bp->b_flags |= XBF_DONE; 1337 } 1338 1339 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp)) 1340 return; 1341 1342 /* clear the retry state */ 1343 bp->b_last_error = 0; 1344 bp->b_retries = 0; 1345 bp->b_first_retry_time = 0; 1346 1347 /* 1348 * Note that for things like remote attribute buffers, there may 1349 * not be a buffer log item here, so processing the buffer log 1350 * item must remain optional. 1351 */ 1352 if (bp->b_log_item) 1353 xfs_buf_item_done(bp); 1354 1355 if (bp->b_flags & _XBF_INODES) 1356 xfs_buf_inode_iodone(bp); 1357 else if (bp->b_flags & _XBF_DQUOTS) 1358 xfs_buf_dquot_iodone(bp); 1359 1360 } 1361 1362 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD | 1363 _XBF_LOGRECOVERY); 1364 1365 if (bp->b_flags & XBF_ASYNC) 1366 xfs_buf_relse(bp); 1367 else 1368 complete(&bp->b_iowait); 1369 } 1370 1371 static void 1372 xfs_buf_ioend_work( 1373 struct work_struct *work) 1374 { 1375 struct xfs_buf *bp = 1376 container_of(work, struct xfs_buf, b_ioend_work); 1377 1378 xfs_buf_ioend(bp); 1379 } 1380 1381 static void 1382 xfs_buf_ioend_async( 1383 struct xfs_buf *bp) 1384 { 1385 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1386 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); 1387 } 1388 1389 void 1390 __xfs_buf_ioerror( 1391 struct xfs_buf *bp, 1392 int error, 1393 xfs_failaddr_t failaddr) 1394 { 1395 ASSERT(error <= 0 && error >= -1000); 1396 bp->b_error = error; 1397 trace_xfs_buf_ioerror(bp, error, failaddr); 1398 } 1399 1400 void 1401 xfs_buf_ioerror_alert( 1402 struct xfs_buf *bp, 1403 xfs_failaddr_t func) 1404 { 1405 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error", 1406 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d", 1407 func, (uint64_t)XFS_BUF_ADDR(bp), 1408 bp->b_length, -bp->b_error); 1409 } 1410 1411 /* 1412 * To simulate an I/O failure, the buffer must be locked and held with at least 1413 * three references. The LRU reference is dropped by the stale call. The buf 1414 * item reference is dropped via ioend processing. The third reference is owned 1415 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC. 1416 */ 1417 void 1418 xfs_buf_ioend_fail( 1419 struct xfs_buf *bp) 1420 { 1421 bp->b_flags &= ~XBF_DONE; 1422 xfs_buf_stale(bp); 1423 xfs_buf_ioerror(bp, -EIO); 1424 xfs_buf_ioend(bp); 1425 } 1426 1427 int 1428 xfs_bwrite( 1429 struct xfs_buf *bp) 1430 { 1431 int error; 1432 1433 ASSERT(xfs_buf_islocked(bp)); 1434 1435 bp->b_flags |= XBF_WRITE; 1436 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1437 XBF_DONE); 1438 1439 error = xfs_buf_submit(bp); 1440 if (error) 1441 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 1442 return error; 1443 } 1444 1445 static void 1446 xfs_buf_bio_end_io( 1447 struct bio *bio) 1448 { 1449 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1450 1451 if (!bio->bi_status && 1452 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) && 1453 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR)) 1454 bio->bi_status = BLK_STS_IOERR; 1455 1456 /* 1457 * don't overwrite existing errors - otherwise we can lose errors on 1458 * buffers that require multiple bios to complete. 1459 */ 1460 if (bio->bi_status) { 1461 int error = blk_status_to_errno(bio->bi_status); 1462 1463 cmpxchg(&bp->b_io_error, 0, error); 1464 } 1465 1466 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1467 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1468 1469 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1470 xfs_buf_ioend_async(bp); 1471 bio_put(bio); 1472 } 1473 1474 static void 1475 xfs_buf_ioapply_map( 1476 struct xfs_buf *bp, 1477 int map, 1478 int *buf_offset, 1479 int *count, 1480 int op) 1481 { 1482 int page_index; 1483 unsigned int total_nr_pages = bp->b_page_count; 1484 int nr_pages; 1485 struct bio *bio; 1486 sector_t sector = bp->b_maps[map].bm_bn; 1487 int size; 1488 int offset; 1489 1490 /* skip the pages in the buffer before the start offset */ 1491 page_index = 0; 1492 offset = *buf_offset; 1493 while (offset >= PAGE_SIZE) { 1494 page_index++; 1495 offset -= PAGE_SIZE; 1496 } 1497 1498 /* 1499 * Limit the IO size to the length of the current vector, and update the 1500 * remaining IO count for the next time around. 1501 */ 1502 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1503 *count -= size; 1504 *buf_offset += size; 1505 1506 next_chunk: 1507 atomic_inc(&bp->b_io_remaining); 1508 nr_pages = bio_max_segs(total_nr_pages); 1509 1510 bio = bio_alloc(GFP_NOIO, nr_pages); 1511 bio_set_dev(bio, bp->b_target->bt_bdev); 1512 bio->bi_iter.bi_sector = sector; 1513 bio->bi_end_io = xfs_buf_bio_end_io; 1514 bio->bi_private = bp; 1515 bio->bi_opf = op; 1516 1517 for (; size && nr_pages; nr_pages--, page_index++) { 1518 int rbytes, nbytes = PAGE_SIZE - offset; 1519 1520 if (nbytes > size) 1521 nbytes = size; 1522 1523 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1524 offset); 1525 if (rbytes < nbytes) 1526 break; 1527 1528 offset = 0; 1529 sector += BTOBB(nbytes); 1530 size -= nbytes; 1531 total_nr_pages--; 1532 } 1533 1534 if (likely(bio->bi_iter.bi_size)) { 1535 if (xfs_buf_is_vmapped(bp)) { 1536 flush_kernel_vmap_range(bp->b_addr, 1537 xfs_buf_vmap_len(bp)); 1538 } 1539 submit_bio(bio); 1540 if (size) 1541 goto next_chunk; 1542 } else { 1543 /* 1544 * This is guaranteed not to be the last io reference count 1545 * because the caller (xfs_buf_submit) holds a count itself. 1546 */ 1547 atomic_dec(&bp->b_io_remaining); 1548 xfs_buf_ioerror(bp, -EIO); 1549 bio_put(bio); 1550 } 1551 1552 } 1553 1554 STATIC void 1555 _xfs_buf_ioapply( 1556 struct xfs_buf *bp) 1557 { 1558 struct blk_plug plug; 1559 int op; 1560 int offset; 1561 int size; 1562 int i; 1563 1564 /* 1565 * Make sure we capture only current IO errors rather than stale errors 1566 * left over from previous use of the buffer (e.g. failed readahead). 1567 */ 1568 bp->b_error = 0; 1569 1570 if (bp->b_flags & XBF_WRITE) { 1571 op = REQ_OP_WRITE; 1572 1573 /* 1574 * Run the write verifier callback function if it exists. If 1575 * this function fails it will mark the buffer with an error and 1576 * the IO should not be dispatched. 1577 */ 1578 if (bp->b_ops) { 1579 bp->b_ops->verify_write(bp); 1580 if (bp->b_error) { 1581 xfs_force_shutdown(bp->b_mount, 1582 SHUTDOWN_CORRUPT_INCORE); 1583 return; 1584 } 1585 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1586 struct xfs_mount *mp = bp->b_mount; 1587 1588 /* 1589 * non-crc filesystems don't attach verifiers during 1590 * log recovery, so don't warn for such filesystems. 1591 */ 1592 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1593 xfs_warn(mp, 1594 "%s: no buf ops on daddr 0x%llx len %d", 1595 __func__, bp->b_bn, bp->b_length); 1596 xfs_hex_dump(bp->b_addr, 1597 XFS_CORRUPTION_DUMP_LEN); 1598 dump_stack(); 1599 } 1600 } 1601 } else { 1602 op = REQ_OP_READ; 1603 if (bp->b_flags & XBF_READ_AHEAD) 1604 op |= REQ_RAHEAD; 1605 } 1606 1607 /* we only use the buffer cache for meta-data */ 1608 op |= REQ_META; 1609 1610 /* 1611 * Walk all the vectors issuing IO on them. Set up the initial offset 1612 * into the buffer and the desired IO size before we start - 1613 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1614 * subsequent call. 1615 */ 1616 offset = bp->b_offset; 1617 size = BBTOB(bp->b_length); 1618 blk_start_plug(&plug); 1619 for (i = 0; i < bp->b_map_count; i++) { 1620 xfs_buf_ioapply_map(bp, i, &offset, &size, op); 1621 if (bp->b_error) 1622 break; 1623 if (size <= 0) 1624 break; /* all done */ 1625 } 1626 blk_finish_plug(&plug); 1627 } 1628 1629 /* 1630 * Wait for I/O completion of a sync buffer and return the I/O error code. 1631 */ 1632 static int 1633 xfs_buf_iowait( 1634 struct xfs_buf *bp) 1635 { 1636 ASSERT(!(bp->b_flags & XBF_ASYNC)); 1637 1638 trace_xfs_buf_iowait(bp, _RET_IP_); 1639 wait_for_completion(&bp->b_iowait); 1640 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1641 1642 return bp->b_error; 1643 } 1644 1645 /* 1646 * Buffer I/O submission path, read or write. Asynchronous submission transfers 1647 * the buffer lock ownership and the current reference to the IO. It is not 1648 * safe to reference the buffer after a call to this function unless the caller 1649 * holds an additional reference itself. 1650 */ 1651 static int 1652 __xfs_buf_submit( 1653 struct xfs_buf *bp, 1654 bool wait) 1655 { 1656 int error = 0; 1657 1658 trace_xfs_buf_submit(bp, _RET_IP_); 1659 1660 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1661 1662 /* on shutdown we stale and complete the buffer immediately */ 1663 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) { 1664 xfs_buf_ioend_fail(bp); 1665 return -EIO; 1666 } 1667 1668 /* 1669 * Grab a reference so the buffer does not go away underneath us. For 1670 * async buffers, I/O completion drops the callers reference, which 1671 * could occur before submission returns. 1672 */ 1673 xfs_buf_hold(bp); 1674 1675 if (bp->b_flags & XBF_WRITE) 1676 xfs_buf_wait_unpin(bp); 1677 1678 /* clear the internal error state to avoid spurious errors */ 1679 bp->b_io_error = 0; 1680 1681 /* 1682 * Set the count to 1 initially, this will stop an I/O completion 1683 * callout which happens before we have started all the I/O from calling 1684 * xfs_buf_ioend too early. 1685 */ 1686 atomic_set(&bp->b_io_remaining, 1); 1687 if (bp->b_flags & XBF_ASYNC) 1688 xfs_buf_ioacct_inc(bp); 1689 _xfs_buf_ioapply(bp); 1690 1691 /* 1692 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1693 * reference we took above. If we drop it to zero, run completion so 1694 * that we don't return to the caller with completion still pending. 1695 */ 1696 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1697 if (bp->b_error || !(bp->b_flags & XBF_ASYNC)) 1698 xfs_buf_ioend(bp); 1699 else 1700 xfs_buf_ioend_async(bp); 1701 } 1702 1703 if (wait) 1704 error = xfs_buf_iowait(bp); 1705 1706 /* 1707 * Release the hold that keeps the buffer referenced for the entire 1708 * I/O. Note that if the buffer is async, it is not safe to reference 1709 * after this release. 1710 */ 1711 xfs_buf_rele(bp); 1712 return error; 1713 } 1714 1715 void * 1716 xfs_buf_offset( 1717 struct xfs_buf *bp, 1718 size_t offset) 1719 { 1720 struct page *page; 1721 1722 if (bp->b_addr) 1723 return bp->b_addr + offset; 1724 1725 offset += bp->b_offset; 1726 page = bp->b_pages[offset >> PAGE_SHIFT]; 1727 return page_address(page) + (offset & (PAGE_SIZE-1)); 1728 } 1729 1730 void 1731 xfs_buf_zero( 1732 struct xfs_buf *bp, 1733 size_t boff, 1734 size_t bsize) 1735 { 1736 size_t bend; 1737 1738 bend = boff + bsize; 1739 while (boff < bend) { 1740 struct page *page; 1741 int page_index, page_offset, csize; 1742 1743 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1744 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1745 page = bp->b_pages[page_index]; 1746 csize = min_t(size_t, PAGE_SIZE - page_offset, 1747 BBTOB(bp->b_length) - boff); 1748 1749 ASSERT((csize + page_offset) <= PAGE_SIZE); 1750 1751 memset(page_address(page) + page_offset, 0, csize); 1752 1753 boff += csize; 1754 } 1755 } 1756 1757 /* 1758 * Log a message about and stale a buffer that a caller has decided is corrupt. 1759 * 1760 * This function should be called for the kinds of metadata corruption that 1761 * cannot be detect from a verifier, such as incorrect inter-block relationship 1762 * data. Do /not/ call this function from a verifier function. 1763 * 1764 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will 1765 * be marked stale, but b_error will not be set. The caller is responsible for 1766 * releasing the buffer or fixing it. 1767 */ 1768 void 1769 __xfs_buf_mark_corrupt( 1770 struct xfs_buf *bp, 1771 xfs_failaddr_t fa) 1772 { 1773 ASSERT(bp->b_flags & XBF_DONE); 1774 1775 xfs_buf_corruption_error(bp, fa); 1776 xfs_buf_stale(bp); 1777 } 1778 1779 /* 1780 * Handling of buffer targets (buftargs). 1781 */ 1782 1783 /* 1784 * Wait for any bufs with callbacks that have been submitted but have not yet 1785 * returned. These buffers will have an elevated hold count, so wait on those 1786 * while freeing all the buffers only held by the LRU. 1787 */ 1788 static enum lru_status 1789 xfs_buftarg_drain_rele( 1790 struct list_head *item, 1791 struct list_lru_one *lru, 1792 spinlock_t *lru_lock, 1793 void *arg) 1794 1795 { 1796 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1797 struct list_head *dispose = arg; 1798 1799 if (atomic_read(&bp->b_hold) > 1) { 1800 /* need to wait, so skip it this pass */ 1801 trace_xfs_buf_drain_buftarg(bp, _RET_IP_); 1802 return LRU_SKIP; 1803 } 1804 if (!spin_trylock(&bp->b_lock)) 1805 return LRU_SKIP; 1806 1807 /* 1808 * clear the LRU reference count so the buffer doesn't get 1809 * ignored in xfs_buf_rele(). 1810 */ 1811 atomic_set(&bp->b_lru_ref, 0); 1812 bp->b_state |= XFS_BSTATE_DISPOSE; 1813 list_lru_isolate_move(lru, item, dispose); 1814 spin_unlock(&bp->b_lock); 1815 return LRU_REMOVED; 1816 } 1817 1818 /* 1819 * Wait for outstanding I/O on the buftarg to complete. 1820 */ 1821 void 1822 xfs_buftarg_wait( 1823 struct xfs_buftarg *btp) 1824 { 1825 /* 1826 * First wait on the buftarg I/O count for all in-flight buffers to be 1827 * released. This is critical as new buffers do not make the LRU until 1828 * they are released. 1829 * 1830 * Next, flush the buffer workqueue to ensure all completion processing 1831 * has finished. Just waiting on buffer locks is not sufficient for 1832 * async IO as the reference count held over IO is not released until 1833 * after the buffer lock is dropped. Hence we need to ensure here that 1834 * all reference counts have been dropped before we start walking the 1835 * LRU list. 1836 */ 1837 while (percpu_counter_sum(&btp->bt_io_count)) 1838 delay(100); 1839 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1840 } 1841 1842 void 1843 xfs_buftarg_drain( 1844 struct xfs_buftarg *btp) 1845 { 1846 LIST_HEAD(dispose); 1847 int loop = 0; 1848 bool write_fail = false; 1849 1850 xfs_buftarg_wait(btp); 1851 1852 /* loop until there is nothing left on the lru list. */ 1853 while (list_lru_count(&btp->bt_lru)) { 1854 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele, 1855 &dispose, LONG_MAX); 1856 1857 while (!list_empty(&dispose)) { 1858 struct xfs_buf *bp; 1859 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1860 list_del_init(&bp->b_lru); 1861 if (bp->b_flags & XBF_WRITE_FAIL) { 1862 write_fail = true; 1863 xfs_buf_alert_ratelimited(bp, 1864 "XFS: Corruption Alert", 1865 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", 1866 (long long)bp->b_bn); 1867 } 1868 xfs_buf_rele(bp); 1869 } 1870 if (loop++ != 0) 1871 delay(100); 1872 } 1873 1874 /* 1875 * If one or more failed buffers were freed, that means dirty metadata 1876 * was thrown away. This should only ever happen after I/O completion 1877 * handling has elevated I/O error(s) to permanent failures and shuts 1878 * down the fs. 1879 */ 1880 if (write_fail) { 1881 ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount)); 1882 xfs_alert(btp->bt_mount, 1883 "Please run xfs_repair to determine the extent of the problem."); 1884 } 1885 } 1886 1887 static enum lru_status 1888 xfs_buftarg_isolate( 1889 struct list_head *item, 1890 struct list_lru_one *lru, 1891 spinlock_t *lru_lock, 1892 void *arg) 1893 { 1894 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1895 struct list_head *dispose = arg; 1896 1897 /* 1898 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1899 * If we fail to get the lock, just skip it. 1900 */ 1901 if (!spin_trylock(&bp->b_lock)) 1902 return LRU_SKIP; 1903 /* 1904 * Decrement the b_lru_ref count unless the value is already 1905 * zero. If the value is already zero, we need to reclaim the 1906 * buffer, otherwise it gets another trip through the LRU. 1907 */ 1908 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1909 spin_unlock(&bp->b_lock); 1910 return LRU_ROTATE; 1911 } 1912 1913 bp->b_state |= XFS_BSTATE_DISPOSE; 1914 list_lru_isolate_move(lru, item, dispose); 1915 spin_unlock(&bp->b_lock); 1916 return LRU_REMOVED; 1917 } 1918 1919 static unsigned long 1920 xfs_buftarg_shrink_scan( 1921 struct shrinker *shrink, 1922 struct shrink_control *sc) 1923 { 1924 struct xfs_buftarg *btp = container_of(shrink, 1925 struct xfs_buftarg, bt_shrinker); 1926 LIST_HEAD(dispose); 1927 unsigned long freed; 1928 1929 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1930 xfs_buftarg_isolate, &dispose); 1931 1932 while (!list_empty(&dispose)) { 1933 struct xfs_buf *bp; 1934 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1935 list_del_init(&bp->b_lru); 1936 xfs_buf_rele(bp); 1937 } 1938 1939 return freed; 1940 } 1941 1942 static unsigned long 1943 xfs_buftarg_shrink_count( 1944 struct shrinker *shrink, 1945 struct shrink_control *sc) 1946 { 1947 struct xfs_buftarg *btp = container_of(shrink, 1948 struct xfs_buftarg, bt_shrinker); 1949 return list_lru_shrink_count(&btp->bt_lru, sc); 1950 } 1951 1952 void 1953 xfs_free_buftarg( 1954 struct xfs_buftarg *btp) 1955 { 1956 unregister_shrinker(&btp->bt_shrinker); 1957 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1958 percpu_counter_destroy(&btp->bt_io_count); 1959 list_lru_destroy(&btp->bt_lru); 1960 1961 xfs_blkdev_issue_flush(btp); 1962 1963 kmem_free(btp); 1964 } 1965 1966 int 1967 xfs_setsize_buftarg( 1968 xfs_buftarg_t *btp, 1969 unsigned int sectorsize) 1970 { 1971 /* Set up metadata sector size info */ 1972 btp->bt_meta_sectorsize = sectorsize; 1973 btp->bt_meta_sectormask = sectorsize - 1; 1974 1975 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1976 xfs_warn(btp->bt_mount, 1977 "Cannot set_blocksize to %u on device %pg", 1978 sectorsize, btp->bt_bdev); 1979 return -EINVAL; 1980 } 1981 1982 /* Set up device logical sector size mask */ 1983 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1984 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1985 1986 return 0; 1987 } 1988 1989 /* 1990 * When allocating the initial buffer target we have not yet 1991 * read in the superblock, so don't know what sized sectors 1992 * are being used at this early stage. Play safe. 1993 */ 1994 STATIC int 1995 xfs_setsize_buftarg_early( 1996 xfs_buftarg_t *btp, 1997 struct block_device *bdev) 1998 { 1999 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 2000 } 2001 2002 xfs_buftarg_t * 2003 xfs_alloc_buftarg( 2004 struct xfs_mount *mp, 2005 struct block_device *bdev, 2006 struct dax_device *dax_dev) 2007 { 2008 xfs_buftarg_t *btp; 2009 2010 btp = kmem_zalloc(sizeof(*btp), KM_NOFS); 2011 2012 btp->bt_mount = mp; 2013 btp->bt_dev = bdev->bd_dev; 2014 btp->bt_bdev = bdev; 2015 btp->bt_daxdev = dax_dev; 2016 2017 /* 2018 * Buffer IO error rate limiting. Limit it to no more than 10 messages 2019 * per 30 seconds so as to not spam logs too much on repeated errors. 2020 */ 2021 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ, 2022 DEFAULT_RATELIMIT_BURST); 2023 2024 if (xfs_setsize_buftarg_early(btp, bdev)) 2025 goto error_free; 2026 2027 if (list_lru_init(&btp->bt_lru)) 2028 goto error_free; 2029 2030 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 2031 goto error_lru; 2032 2033 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 2034 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 2035 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 2036 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 2037 if (register_shrinker(&btp->bt_shrinker)) 2038 goto error_pcpu; 2039 return btp; 2040 2041 error_pcpu: 2042 percpu_counter_destroy(&btp->bt_io_count); 2043 error_lru: 2044 list_lru_destroy(&btp->bt_lru); 2045 error_free: 2046 kmem_free(btp); 2047 return NULL; 2048 } 2049 2050 /* 2051 * Cancel a delayed write list. 2052 * 2053 * Remove each buffer from the list, clear the delwri queue flag and drop the 2054 * associated buffer reference. 2055 */ 2056 void 2057 xfs_buf_delwri_cancel( 2058 struct list_head *list) 2059 { 2060 struct xfs_buf *bp; 2061 2062 while (!list_empty(list)) { 2063 bp = list_first_entry(list, struct xfs_buf, b_list); 2064 2065 xfs_buf_lock(bp); 2066 bp->b_flags &= ~_XBF_DELWRI_Q; 2067 list_del_init(&bp->b_list); 2068 xfs_buf_relse(bp); 2069 } 2070 } 2071 2072 /* 2073 * Add a buffer to the delayed write list. 2074 * 2075 * This queues a buffer for writeout if it hasn't already been. Note that 2076 * neither this routine nor the buffer list submission functions perform 2077 * any internal synchronization. It is expected that the lists are thread-local 2078 * to the callers. 2079 * 2080 * Returns true if we queued up the buffer, or false if it already had 2081 * been on the buffer list. 2082 */ 2083 bool 2084 xfs_buf_delwri_queue( 2085 struct xfs_buf *bp, 2086 struct list_head *list) 2087 { 2088 ASSERT(xfs_buf_islocked(bp)); 2089 ASSERT(!(bp->b_flags & XBF_READ)); 2090 2091 /* 2092 * If the buffer is already marked delwri it already is queued up 2093 * by someone else for imediate writeout. Just ignore it in that 2094 * case. 2095 */ 2096 if (bp->b_flags & _XBF_DELWRI_Q) { 2097 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 2098 return false; 2099 } 2100 2101 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 2102 2103 /* 2104 * If a buffer gets written out synchronously or marked stale while it 2105 * is on a delwri list we lazily remove it. To do this, the other party 2106 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 2107 * It remains referenced and on the list. In a rare corner case it 2108 * might get readded to a delwri list after the synchronous writeout, in 2109 * which case we need just need to re-add the flag here. 2110 */ 2111 bp->b_flags |= _XBF_DELWRI_Q; 2112 if (list_empty(&bp->b_list)) { 2113 atomic_inc(&bp->b_hold); 2114 list_add_tail(&bp->b_list, list); 2115 } 2116 2117 return true; 2118 } 2119 2120 /* 2121 * Compare function is more complex than it needs to be because 2122 * the return value is only 32 bits and we are doing comparisons 2123 * on 64 bit values 2124 */ 2125 static int 2126 xfs_buf_cmp( 2127 void *priv, 2128 const struct list_head *a, 2129 const struct list_head *b) 2130 { 2131 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 2132 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 2133 xfs_daddr_t diff; 2134 2135 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 2136 if (diff < 0) 2137 return -1; 2138 if (diff > 0) 2139 return 1; 2140 return 0; 2141 } 2142 2143 /* 2144 * Submit buffers for write. If wait_list is specified, the buffers are 2145 * submitted using sync I/O and placed on the wait list such that the caller can 2146 * iowait each buffer. Otherwise async I/O is used and the buffers are released 2147 * at I/O completion time. In either case, buffers remain locked until I/O 2148 * completes and the buffer is released from the queue. 2149 */ 2150 static int 2151 xfs_buf_delwri_submit_buffers( 2152 struct list_head *buffer_list, 2153 struct list_head *wait_list) 2154 { 2155 struct xfs_buf *bp, *n; 2156 int pinned = 0; 2157 struct blk_plug plug; 2158 2159 list_sort(NULL, buffer_list, xfs_buf_cmp); 2160 2161 blk_start_plug(&plug); 2162 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 2163 if (!wait_list) { 2164 if (xfs_buf_ispinned(bp)) { 2165 pinned++; 2166 continue; 2167 } 2168 if (!xfs_buf_trylock(bp)) 2169 continue; 2170 } else { 2171 xfs_buf_lock(bp); 2172 } 2173 2174 /* 2175 * Someone else might have written the buffer synchronously or 2176 * marked it stale in the meantime. In that case only the 2177 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 2178 * reference and remove it from the list here. 2179 */ 2180 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 2181 list_del_init(&bp->b_list); 2182 xfs_buf_relse(bp); 2183 continue; 2184 } 2185 2186 trace_xfs_buf_delwri_split(bp, _RET_IP_); 2187 2188 /* 2189 * If we have a wait list, each buffer (and associated delwri 2190 * queue reference) transfers to it and is submitted 2191 * synchronously. Otherwise, drop the buffer from the delwri 2192 * queue and submit async. 2193 */ 2194 bp->b_flags &= ~_XBF_DELWRI_Q; 2195 bp->b_flags |= XBF_WRITE; 2196 if (wait_list) { 2197 bp->b_flags &= ~XBF_ASYNC; 2198 list_move_tail(&bp->b_list, wait_list); 2199 } else { 2200 bp->b_flags |= XBF_ASYNC; 2201 list_del_init(&bp->b_list); 2202 } 2203 __xfs_buf_submit(bp, false); 2204 } 2205 blk_finish_plug(&plug); 2206 2207 return pinned; 2208 } 2209 2210 /* 2211 * Write out a buffer list asynchronously. 2212 * 2213 * This will take the @buffer_list, write all non-locked and non-pinned buffers 2214 * out and not wait for I/O completion on any of the buffers. This interface 2215 * is only safely useable for callers that can track I/O completion by higher 2216 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 2217 * function. 2218 * 2219 * Note: this function will skip buffers it would block on, and in doing so 2220 * leaves them on @buffer_list so they can be retried on a later pass. As such, 2221 * it is up to the caller to ensure that the buffer list is fully submitted or 2222 * cancelled appropriately when they are finished with the list. Failure to 2223 * cancel or resubmit the list until it is empty will result in leaked buffers 2224 * at unmount time. 2225 */ 2226 int 2227 xfs_buf_delwri_submit_nowait( 2228 struct list_head *buffer_list) 2229 { 2230 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 2231 } 2232 2233 /* 2234 * Write out a buffer list synchronously. 2235 * 2236 * This will take the @buffer_list, write all buffers out and wait for I/O 2237 * completion on all of the buffers. @buffer_list is consumed by the function, 2238 * so callers must have some other way of tracking buffers if they require such 2239 * functionality. 2240 */ 2241 int 2242 xfs_buf_delwri_submit( 2243 struct list_head *buffer_list) 2244 { 2245 LIST_HEAD (wait_list); 2246 int error = 0, error2; 2247 struct xfs_buf *bp; 2248 2249 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 2250 2251 /* Wait for IO to complete. */ 2252 while (!list_empty(&wait_list)) { 2253 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 2254 2255 list_del_init(&bp->b_list); 2256 2257 /* 2258 * Wait on the locked buffer, check for errors and unlock and 2259 * release the delwri queue reference. 2260 */ 2261 error2 = xfs_buf_iowait(bp); 2262 xfs_buf_relse(bp); 2263 if (!error) 2264 error = error2; 2265 } 2266 2267 return error; 2268 } 2269 2270 /* 2271 * Push a single buffer on a delwri queue. 2272 * 2273 * The purpose of this function is to submit a single buffer of a delwri queue 2274 * and return with the buffer still on the original queue. The waiting delwri 2275 * buffer submission infrastructure guarantees transfer of the delwri queue 2276 * buffer reference to a temporary wait list. We reuse this infrastructure to 2277 * transfer the buffer back to the original queue. 2278 * 2279 * Note the buffer transitions from the queued state, to the submitted and wait 2280 * listed state and back to the queued state during this call. The buffer 2281 * locking and queue management logic between _delwri_pushbuf() and 2282 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2283 * before returning. 2284 */ 2285 int 2286 xfs_buf_delwri_pushbuf( 2287 struct xfs_buf *bp, 2288 struct list_head *buffer_list) 2289 { 2290 LIST_HEAD (submit_list); 2291 int error; 2292 2293 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2294 2295 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2296 2297 /* 2298 * Isolate the buffer to a new local list so we can submit it for I/O 2299 * independently from the rest of the original list. 2300 */ 2301 xfs_buf_lock(bp); 2302 list_move(&bp->b_list, &submit_list); 2303 xfs_buf_unlock(bp); 2304 2305 /* 2306 * Delwri submission clears the DELWRI_Q buffer flag and returns with 2307 * the buffer on the wait list with the original reference. Rather than 2308 * bounce the buffer from a local wait list back to the original list 2309 * after I/O completion, reuse the original list as the wait list. 2310 */ 2311 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); 2312 2313 /* 2314 * The buffer is now locked, under I/O and wait listed on the original 2315 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and 2316 * return with the buffer unlocked and on the original queue. 2317 */ 2318 error = xfs_buf_iowait(bp); 2319 bp->b_flags |= _XBF_DELWRI_Q; 2320 xfs_buf_unlock(bp); 2321 2322 return error; 2323 } 2324 2325 int __init 2326 xfs_buf_init(void) 2327 { 2328 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0, 2329 SLAB_HWCACHE_ALIGN | 2330 SLAB_RECLAIM_ACCOUNT | 2331 SLAB_MEM_SPREAD, 2332 NULL); 2333 if (!xfs_buf_zone) 2334 goto out; 2335 2336 return 0; 2337 2338 out: 2339 return -ENOMEM; 2340 } 2341 2342 void 2343 xfs_buf_terminate(void) 2344 { 2345 kmem_cache_destroy(xfs_buf_zone); 2346 } 2347 2348 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) 2349 { 2350 /* 2351 * Set the lru reference count to 0 based on the error injection tag. 2352 * This allows userspace to disrupt buffer caching for debug/testing 2353 * purposes. 2354 */ 2355 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) 2356 lru_ref = 0; 2357 2358 atomic_set(&bp->b_lru_ref, lru_ref); 2359 } 2360 2361 /* 2362 * Verify an on-disk magic value against the magic value specified in the 2363 * verifier structure. The verifier magic is in disk byte order so the caller is 2364 * expected to pass the value directly from disk. 2365 */ 2366 bool 2367 xfs_verify_magic( 2368 struct xfs_buf *bp, 2369 __be32 dmagic) 2370 { 2371 struct xfs_mount *mp = bp->b_mount; 2372 int idx; 2373 2374 idx = xfs_sb_version_hascrc(&mp->m_sb); 2375 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])) 2376 return false; 2377 return dmagic == bp->b_ops->magic[idx]; 2378 } 2379 /* 2380 * Verify an on-disk magic value against the magic value specified in the 2381 * verifier structure. The verifier magic is in disk byte order so the caller is 2382 * expected to pass the value directly from disk. 2383 */ 2384 bool 2385 xfs_verify_magic16( 2386 struct xfs_buf *bp, 2387 __be16 dmagic) 2388 { 2389 struct xfs_mount *mp = bp->b_mount; 2390 int idx; 2391 2392 idx = xfs_sb_version_hascrc(&mp->m_sb); 2393 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])) 2394 return false; 2395 return dmagic == bp->b_ops->magic16[idx]; 2396 } 2397