xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision ba61bb17)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
24 
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
28 #include "xfs_sb.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34 
35 static kmem_zone_t *xfs_buf_zone;
36 
37 #ifdef XFS_BUF_LOCK_TRACKING
38 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
39 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
40 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
41 #else
42 # define XB_SET_OWNER(bp)	do { } while (0)
43 # define XB_CLEAR_OWNER(bp)	do { } while (0)
44 # define XB_GET_OWNER(bp)	do { } while (0)
45 #endif
46 
47 #define xb_to_gfp(flags) \
48 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
49 
50 
51 static inline int
52 xfs_buf_is_vmapped(
53 	struct xfs_buf	*bp)
54 {
55 	/*
56 	 * Return true if the buffer is vmapped.
57 	 *
58 	 * b_addr is null if the buffer is not mapped, but the code is clever
59 	 * enough to know it doesn't have to map a single page, so the check has
60 	 * to be both for b_addr and bp->b_page_count > 1.
61 	 */
62 	return bp->b_addr && bp->b_page_count > 1;
63 }
64 
65 static inline int
66 xfs_buf_vmap_len(
67 	struct xfs_buf	*bp)
68 {
69 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
70 }
71 
72 /*
73  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
74  * this buffer. The count is incremented once per buffer (per hold cycle)
75  * because the corresponding decrement is deferred to buffer release. Buffers
76  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
77  * tracking adds unnecessary overhead. This is used for sychronization purposes
78  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
79  * in-flight buffers.
80  *
81  * Buffers that are never released (e.g., superblock, iclog buffers) must set
82  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
83  * never reaches zero and unmount hangs indefinitely.
84  */
85 static inline void
86 xfs_buf_ioacct_inc(
87 	struct xfs_buf	*bp)
88 {
89 	if (bp->b_flags & XBF_NO_IOACCT)
90 		return;
91 
92 	ASSERT(bp->b_flags & XBF_ASYNC);
93 	spin_lock(&bp->b_lock);
94 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
95 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
96 		percpu_counter_inc(&bp->b_target->bt_io_count);
97 	}
98 	spin_unlock(&bp->b_lock);
99 }
100 
101 /*
102  * Clear the in-flight state on a buffer about to be released to the LRU or
103  * freed and unaccount from the buftarg.
104  */
105 static inline void
106 __xfs_buf_ioacct_dec(
107 	struct xfs_buf	*bp)
108 {
109 	lockdep_assert_held(&bp->b_lock);
110 
111 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
112 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
113 		percpu_counter_dec(&bp->b_target->bt_io_count);
114 	}
115 }
116 
117 static inline void
118 xfs_buf_ioacct_dec(
119 	struct xfs_buf	*bp)
120 {
121 	spin_lock(&bp->b_lock);
122 	__xfs_buf_ioacct_dec(bp);
123 	spin_unlock(&bp->b_lock);
124 }
125 
126 /*
127  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
128  * b_lru_ref count so that the buffer is freed immediately when the buffer
129  * reference count falls to zero. If the buffer is already on the LRU, we need
130  * to remove the reference that LRU holds on the buffer.
131  *
132  * This prevents build-up of stale buffers on the LRU.
133  */
134 void
135 xfs_buf_stale(
136 	struct xfs_buf	*bp)
137 {
138 	ASSERT(xfs_buf_islocked(bp));
139 
140 	bp->b_flags |= XBF_STALE;
141 
142 	/*
143 	 * Clear the delwri status so that a delwri queue walker will not
144 	 * flush this buffer to disk now that it is stale. The delwri queue has
145 	 * a reference to the buffer, so this is safe to do.
146 	 */
147 	bp->b_flags &= ~_XBF_DELWRI_Q;
148 
149 	/*
150 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
151 	 * could reset b_flags. There is no guarantee that the buffer is
152 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
153 	 * status now to preserve accounting consistency.
154 	 */
155 	spin_lock(&bp->b_lock);
156 	__xfs_buf_ioacct_dec(bp);
157 
158 	atomic_set(&bp->b_lru_ref, 0);
159 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
160 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
161 		atomic_dec(&bp->b_hold);
162 
163 	ASSERT(atomic_read(&bp->b_hold) >= 1);
164 	spin_unlock(&bp->b_lock);
165 }
166 
167 static int
168 xfs_buf_get_maps(
169 	struct xfs_buf		*bp,
170 	int			map_count)
171 {
172 	ASSERT(bp->b_maps == NULL);
173 	bp->b_map_count = map_count;
174 
175 	if (map_count == 1) {
176 		bp->b_maps = &bp->__b_map;
177 		return 0;
178 	}
179 
180 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
181 				KM_NOFS);
182 	if (!bp->b_maps)
183 		return -ENOMEM;
184 	return 0;
185 }
186 
187 /*
188  *	Frees b_pages if it was allocated.
189  */
190 static void
191 xfs_buf_free_maps(
192 	struct xfs_buf	*bp)
193 {
194 	if (bp->b_maps != &bp->__b_map) {
195 		kmem_free(bp->b_maps);
196 		bp->b_maps = NULL;
197 	}
198 }
199 
200 struct xfs_buf *
201 _xfs_buf_alloc(
202 	struct xfs_buftarg	*target,
203 	struct xfs_buf_map	*map,
204 	int			nmaps,
205 	xfs_buf_flags_t		flags)
206 {
207 	struct xfs_buf		*bp;
208 	int			error;
209 	int			i;
210 
211 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
212 	if (unlikely(!bp))
213 		return NULL;
214 
215 	/*
216 	 * We don't want certain flags to appear in b_flags unless they are
217 	 * specifically set by later operations on the buffer.
218 	 */
219 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
220 
221 	atomic_set(&bp->b_hold, 1);
222 	atomic_set(&bp->b_lru_ref, 1);
223 	init_completion(&bp->b_iowait);
224 	INIT_LIST_HEAD(&bp->b_lru);
225 	INIT_LIST_HEAD(&bp->b_list);
226 	INIT_LIST_HEAD(&bp->b_li_list);
227 	sema_init(&bp->b_sema, 0); /* held, no waiters */
228 	spin_lock_init(&bp->b_lock);
229 	XB_SET_OWNER(bp);
230 	bp->b_target = target;
231 	bp->b_flags = flags;
232 
233 	/*
234 	 * Set length and io_length to the same value initially.
235 	 * I/O routines should use io_length, which will be the same in
236 	 * most cases but may be reset (e.g. XFS recovery).
237 	 */
238 	error = xfs_buf_get_maps(bp, nmaps);
239 	if (error)  {
240 		kmem_zone_free(xfs_buf_zone, bp);
241 		return NULL;
242 	}
243 
244 	bp->b_bn = map[0].bm_bn;
245 	bp->b_length = 0;
246 	for (i = 0; i < nmaps; i++) {
247 		bp->b_maps[i].bm_bn = map[i].bm_bn;
248 		bp->b_maps[i].bm_len = map[i].bm_len;
249 		bp->b_length += map[i].bm_len;
250 	}
251 	bp->b_io_length = bp->b_length;
252 
253 	atomic_set(&bp->b_pin_count, 0);
254 	init_waitqueue_head(&bp->b_waiters);
255 
256 	XFS_STATS_INC(target->bt_mount, xb_create);
257 	trace_xfs_buf_init(bp, _RET_IP_);
258 
259 	return bp;
260 }
261 
262 /*
263  *	Allocate a page array capable of holding a specified number
264  *	of pages, and point the page buf at it.
265  */
266 STATIC int
267 _xfs_buf_get_pages(
268 	xfs_buf_t		*bp,
269 	int			page_count)
270 {
271 	/* Make sure that we have a page list */
272 	if (bp->b_pages == NULL) {
273 		bp->b_page_count = page_count;
274 		if (page_count <= XB_PAGES) {
275 			bp->b_pages = bp->b_page_array;
276 		} else {
277 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
278 						 page_count, KM_NOFS);
279 			if (bp->b_pages == NULL)
280 				return -ENOMEM;
281 		}
282 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
283 	}
284 	return 0;
285 }
286 
287 /*
288  *	Frees b_pages if it was allocated.
289  */
290 STATIC void
291 _xfs_buf_free_pages(
292 	xfs_buf_t	*bp)
293 {
294 	if (bp->b_pages != bp->b_page_array) {
295 		kmem_free(bp->b_pages);
296 		bp->b_pages = NULL;
297 	}
298 }
299 
300 /*
301  *	Releases the specified buffer.
302  *
303  * 	The modification state of any associated pages is left unchanged.
304  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
305  * 	hashed and refcounted buffers
306  */
307 void
308 xfs_buf_free(
309 	xfs_buf_t		*bp)
310 {
311 	trace_xfs_buf_free(bp, _RET_IP_);
312 
313 	ASSERT(list_empty(&bp->b_lru));
314 
315 	if (bp->b_flags & _XBF_PAGES) {
316 		uint		i;
317 
318 		if (xfs_buf_is_vmapped(bp))
319 			vm_unmap_ram(bp->b_addr - bp->b_offset,
320 					bp->b_page_count);
321 
322 		for (i = 0; i < bp->b_page_count; i++) {
323 			struct page	*page = bp->b_pages[i];
324 
325 			__free_page(page);
326 		}
327 	} else if (bp->b_flags & _XBF_KMEM)
328 		kmem_free(bp->b_addr);
329 	_xfs_buf_free_pages(bp);
330 	xfs_buf_free_maps(bp);
331 	kmem_zone_free(xfs_buf_zone, bp);
332 }
333 
334 /*
335  * Allocates all the pages for buffer in question and builds it's page list.
336  */
337 STATIC int
338 xfs_buf_allocate_memory(
339 	xfs_buf_t		*bp,
340 	uint			flags)
341 {
342 	size_t			size;
343 	size_t			nbytes, offset;
344 	gfp_t			gfp_mask = xb_to_gfp(flags);
345 	unsigned short		page_count, i;
346 	xfs_off_t		start, end;
347 	int			error;
348 
349 	/*
350 	 * for buffers that are contained within a single page, just allocate
351 	 * the memory from the heap - there's no need for the complexity of
352 	 * page arrays to keep allocation down to order 0.
353 	 */
354 	size = BBTOB(bp->b_length);
355 	if (size < PAGE_SIZE) {
356 		bp->b_addr = kmem_alloc(size, KM_NOFS);
357 		if (!bp->b_addr) {
358 			/* low memory - use alloc_page loop instead */
359 			goto use_alloc_page;
360 		}
361 
362 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
363 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
364 			/* b_addr spans two pages - use alloc_page instead */
365 			kmem_free(bp->b_addr);
366 			bp->b_addr = NULL;
367 			goto use_alloc_page;
368 		}
369 		bp->b_offset = offset_in_page(bp->b_addr);
370 		bp->b_pages = bp->b_page_array;
371 		bp->b_pages[0] = virt_to_page(bp->b_addr);
372 		bp->b_page_count = 1;
373 		bp->b_flags |= _XBF_KMEM;
374 		return 0;
375 	}
376 
377 use_alloc_page:
378 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
379 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
380 								>> PAGE_SHIFT;
381 	page_count = end - start;
382 	error = _xfs_buf_get_pages(bp, page_count);
383 	if (unlikely(error))
384 		return error;
385 
386 	offset = bp->b_offset;
387 	bp->b_flags |= _XBF_PAGES;
388 
389 	for (i = 0; i < bp->b_page_count; i++) {
390 		struct page	*page;
391 		uint		retries = 0;
392 retry:
393 		page = alloc_page(gfp_mask);
394 		if (unlikely(page == NULL)) {
395 			if (flags & XBF_READ_AHEAD) {
396 				bp->b_page_count = i;
397 				error = -ENOMEM;
398 				goto out_free_pages;
399 			}
400 
401 			/*
402 			 * This could deadlock.
403 			 *
404 			 * But until all the XFS lowlevel code is revamped to
405 			 * handle buffer allocation failures we can't do much.
406 			 */
407 			if (!(++retries % 100))
408 				xfs_err(NULL,
409 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
410 					current->comm, current->pid,
411 					__func__, gfp_mask);
412 
413 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
414 			congestion_wait(BLK_RW_ASYNC, HZ/50);
415 			goto retry;
416 		}
417 
418 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
419 
420 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
421 		size -= nbytes;
422 		bp->b_pages[i] = page;
423 		offset = 0;
424 	}
425 	return 0;
426 
427 out_free_pages:
428 	for (i = 0; i < bp->b_page_count; i++)
429 		__free_page(bp->b_pages[i]);
430 	bp->b_flags &= ~_XBF_PAGES;
431 	return error;
432 }
433 
434 /*
435  *	Map buffer into kernel address-space if necessary.
436  */
437 STATIC int
438 _xfs_buf_map_pages(
439 	xfs_buf_t		*bp,
440 	uint			flags)
441 {
442 	ASSERT(bp->b_flags & _XBF_PAGES);
443 	if (bp->b_page_count == 1) {
444 		/* A single page buffer is always mappable */
445 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
446 	} else if (flags & XBF_UNMAPPED) {
447 		bp->b_addr = NULL;
448 	} else {
449 		int retried = 0;
450 		unsigned nofs_flag;
451 
452 		/*
453 		 * vm_map_ram() will allocate auxillary structures (e.g.
454 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
455 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
456 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
457 		 * memory reclaim re-entering the filesystem here and
458 		 * potentially deadlocking.
459 		 */
460 		nofs_flag = memalloc_nofs_save();
461 		do {
462 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
463 						-1, PAGE_KERNEL);
464 			if (bp->b_addr)
465 				break;
466 			vm_unmap_aliases();
467 		} while (retried++ <= 1);
468 		memalloc_nofs_restore(nofs_flag);
469 
470 		if (!bp->b_addr)
471 			return -ENOMEM;
472 		bp->b_addr += bp->b_offset;
473 	}
474 
475 	return 0;
476 }
477 
478 /*
479  *	Finding and Reading Buffers
480  */
481 static int
482 _xfs_buf_obj_cmp(
483 	struct rhashtable_compare_arg	*arg,
484 	const void			*obj)
485 {
486 	const struct xfs_buf_map	*map = arg->key;
487 	const struct xfs_buf		*bp = obj;
488 
489 	/*
490 	 * The key hashing in the lookup path depends on the key being the
491 	 * first element of the compare_arg, make sure to assert this.
492 	 */
493 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
494 
495 	if (bp->b_bn != map->bm_bn)
496 		return 1;
497 
498 	if (unlikely(bp->b_length != map->bm_len)) {
499 		/*
500 		 * found a block number match. If the range doesn't
501 		 * match, the only way this is allowed is if the buffer
502 		 * in the cache is stale and the transaction that made
503 		 * it stale has not yet committed. i.e. we are
504 		 * reallocating a busy extent. Skip this buffer and
505 		 * continue searching for an exact match.
506 		 */
507 		ASSERT(bp->b_flags & XBF_STALE);
508 		return 1;
509 	}
510 	return 0;
511 }
512 
513 static const struct rhashtable_params xfs_buf_hash_params = {
514 	.min_size		= 32,	/* empty AGs have minimal footprint */
515 	.nelem_hint		= 16,
516 	.key_len		= sizeof(xfs_daddr_t),
517 	.key_offset		= offsetof(struct xfs_buf, b_bn),
518 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
519 	.automatic_shrinking	= true,
520 	.obj_cmpfn		= _xfs_buf_obj_cmp,
521 };
522 
523 int
524 xfs_buf_hash_init(
525 	struct xfs_perag	*pag)
526 {
527 	spin_lock_init(&pag->pag_buf_lock);
528 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
529 }
530 
531 void
532 xfs_buf_hash_destroy(
533 	struct xfs_perag	*pag)
534 {
535 	rhashtable_destroy(&pag->pag_buf_hash);
536 }
537 
538 /*
539  * Look up a buffer in the buffer cache and return it referenced and locked
540  * in @found_bp.
541  *
542  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
543  * cache.
544  *
545  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
546  * -EAGAIN if we fail to lock it.
547  *
548  * Return values are:
549  *	-EFSCORRUPTED if have been supplied with an invalid address
550  *	-EAGAIN on trylock failure
551  *	-ENOENT if we fail to find a match and @new_bp was NULL
552  *	0, with @found_bp:
553  *		- @new_bp if we inserted it into the cache
554  *		- the buffer we found and locked.
555  */
556 static int
557 xfs_buf_find(
558 	struct xfs_buftarg	*btp,
559 	struct xfs_buf_map	*map,
560 	int			nmaps,
561 	xfs_buf_flags_t		flags,
562 	struct xfs_buf		*new_bp,
563 	struct xfs_buf		**found_bp)
564 {
565 	struct xfs_perag	*pag;
566 	xfs_buf_t		*bp;
567 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
568 	xfs_daddr_t		eofs;
569 	int			i;
570 
571 	*found_bp = NULL;
572 
573 	for (i = 0; i < nmaps; i++)
574 		cmap.bm_len += map[i].bm_len;
575 
576 	/* Check for IOs smaller than the sector size / not sector aligned */
577 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
578 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
579 
580 	/*
581 	 * Corrupted block numbers can get through to here, unfortunately, so we
582 	 * have to check that the buffer falls within the filesystem bounds.
583 	 */
584 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
585 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
586 		xfs_alert(btp->bt_mount,
587 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
588 			  __func__, cmap.bm_bn, eofs);
589 		WARN_ON(1);
590 		return -EFSCORRUPTED;
591 	}
592 
593 	pag = xfs_perag_get(btp->bt_mount,
594 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
595 
596 	spin_lock(&pag->pag_buf_lock);
597 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
598 				    xfs_buf_hash_params);
599 	if (bp) {
600 		atomic_inc(&bp->b_hold);
601 		goto found;
602 	}
603 
604 	/* No match found */
605 	if (!new_bp) {
606 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
607 		spin_unlock(&pag->pag_buf_lock);
608 		xfs_perag_put(pag);
609 		return -ENOENT;
610 	}
611 
612 	/* the buffer keeps the perag reference until it is freed */
613 	new_bp->b_pag = pag;
614 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
615 			       xfs_buf_hash_params);
616 	spin_unlock(&pag->pag_buf_lock);
617 	*found_bp = new_bp;
618 	return 0;
619 
620 found:
621 	spin_unlock(&pag->pag_buf_lock);
622 	xfs_perag_put(pag);
623 
624 	if (!xfs_buf_trylock(bp)) {
625 		if (flags & XBF_TRYLOCK) {
626 			xfs_buf_rele(bp);
627 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
628 			return -EAGAIN;
629 		}
630 		xfs_buf_lock(bp);
631 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
632 	}
633 
634 	/*
635 	 * if the buffer is stale, clear all the external state associated with
636 	 * it. We need to keep flags such as how we allocated the buffer memory
637 	 * intact here.
638 	 */
639 	if (bp->b_flags & XBF_STALE) {
640 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
641 		ASSERT(bp->b_iodone == NULL);
642 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
643 		bp->b_ops = NULL;
644 	}
645 
646 	trace_xfs_buf_find(bp, flags, _RET_IP_);
647 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
648 	*found_bp = bp;
649 	return 0;
650 }
651 
652 struct xfs_buf *
653 xfs_buf_incore(
654 	struct xfs_buftarg	*target,
655 	xfs_daddr_t		blkno,
656 	size_t			numblks,
657 	xfs_buf_flags_t		flags)
658 {
659 	struct xfs_buf		*bp;
660 	int			error;
661 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
662 
663 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
664 	if (error)
665 		return NULL;
666 	return bp;
667 }
668 
669 /*
670  * Assembles a buffer covering the specified range. The code is optimised for
671  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
672  * more hits than misses.
673  */
674 struct xfs_buf *
675 xfs_buf_get_map(
676 	struct xfs_buftarg	*target,
677 	struct xfs_buf_map	*map,
678 	int			nmaps,
679 	xfs_buf_flags_t		flags)
680 {
681 	struct xfs_buf		*bp;
682 	struct xfs_buf		*new_bp;
683 	int			error = 0;
684 
685 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
686 
687 	switch (error) {
688 	case 0:
689 		/* cache hit */
690 		goto found;
691 	case -EAGAIN:
692 		/* cache hit, trylock failure, caller handles failure */
693 		ASSERT(flags & XBF_TRYLOCK);
694 		return NULL;
695 	case -ENOENT:
696 		/* cache miss, go for insert */
697 		break;
698 	case -EFSCORRUPTED:
699 	default:
700 		/*
701 		 * None of the higher layers understand failure types
702 		 * yet, so return NULL to signal a fatal lookup error.
703 		 */
704 		return NULL;
705 	}
706 
707 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
708 	if (unlikely(!new_bp))
709 		return NULL;
710 
711 	error = xfs_buf_allocate_memory(new_bp, flags);
712 	if (error) {
713 		xfs_buf_free(new_bp);
714 		return NULL;
715 	}
716 
717 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
718 	if (error) {
719 		xfs_buf_free(new_bp);
720 		return NULL;
721 	}
722 
723 	if (bp != new_bp)
724 		xfs_buf_free(new_bp);
725 
726 found:
727 	if (!bp->b_addr) {
728 		error = _xfs_buf_map_pages(bp, flags);
729 		if (unlikely(error)) {
730 			xfs_warn(target->bt_mount,
731 				"%s: failed to map pagesn", __func__);
732 			xfs_buf_relse(bp);
733 			return NULL;
734 		}
735 	}
736 
737 	/*
738 	 * Clear b_error if this is a lookup from a caller that doesn't expect
739 	 * valid data to be found in the buffer.
740 	 */
741 	if (!(flags & XBF_READ))
742 		xfs_buf_ioerror(bp, 0);
743 
744 	XFS_STATS_INC(target->bt_mount, xb_get);
745 	trace_xfs_buf_get(bp, flags, _RET_IP_);
746 	return bp;
747 }
748 
749 STATIC int
750 _xfs_buf_read(
751 	xfs_buf_t		*bp,
752 	xfs_buf_flags_t		flags)
753 {
754 	ASSERT(!(flags & XBF_WRITE));
755 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
756 
757 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
758 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
759 
760 	if (flags & XBF_ASYNC) {
761 		xfs_buf_submit(bp);
762 		return 0;
763 	}
764 	return xfs_buf_submit_wait(bp);
765 }
766 
767 xfs_buf_t *
768 xfs_buf_read_map(
769 	struct xfs_buftarg	*target,
770 	struct xfs_buf_map	*map,
771 	int			nmaps,
772 	xfs_buf_flags_t		flags,
773 	const struct xfs_buf_ops *ops)
774 {
775 	struct xfs_buf		*bp;
776 
777 	flags |= XBF_READ;
778 
779 	bp = xfs_buf_get_map(target, map, nmaps, flags);
780 	if (bp) {
781 		trace_xfs_buf_read(bp, flags, _RET_IP_);
782 
783 		if (!(bp->b_flags & XBF_DONE)) {
784 			XFS_STATS_INC(target->bt_mount, xb_get_read);
785 			bp->b_ops = ops;
786 			_xfs_buf_read(bp, flags);
787 		} else if (flags & XBF_ASYNC) {
788 			/*
789 			 * Read ahead call which is already satisfied,
790 			 * drop the buffer
791 			 */
792 			xfs_buf_relse(bp);
793 			return NULL;
794 		} else {
795 			/* We do not want read in the flags */
796 			bp->b_flags &= ~XBF_READ;
797 		}
798 	}
799 
800 	return bp;
801 }
802 
803 /*
804  *	If we are not low on memory then do the readahead in a deadlock
805  *	safe manner.
806  */
807 void
808 xfs_buf_readahead_map(
809 	struct xfs_buftarg	*target,
810 	struct xfs_buf_map	*map,
811 	int			nmaps,
812 	const struct xfs_buf_ops *ops)
813 {
814 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
815 		return;
816 
817 	xfs_buf_read_map(target, map, nmaps,
818 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
819 }
820 
821 /*
822  * Read an uncached buffer from disk. Allocates and returns a locked
823  * buffer containing the disk contents or nothing.
824  */
825 int
826 xfs_buf_read_uncached(
827 	struct xfs_buftarg	*target,
828 	xfs_daddr_t		daddr,
829 	size_t			numblks,
830 	int			flags,
831 	struct xfs_buf		**bpp,
832 	const struct xfs_buf_ops *ops)
833 {
834 	struct xfs_buf		*bp;
835 
836 	*bpp = NULL;
837 
838 	bp = xfs_buf_get_uncached(target, numblks, flags);
839 	if (!bp)
840 		return -ENOMEM;
841 
842 	/* set up the buffer for a read IO */
843 	ASSERT(bp->b_map_count == 1);
844 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
845 	bp->b_maps[0].bm_bn = daddr;
846 	bp->b_flags |= XBF_READ;
847 	bp->b_ops = ops;
848 
849 	xfs_buf_submit_wait(bp);
850 	if (bp->b_error) {
851 		int	error = bp->b_error;
852 		xfs_buf_relse(bp);
853 		return error;
854 	}
855 
856 	*bpp = bp;
857 	return 0;
858 }
859 
860 /*
861  * Return a buffer allocated as an empty buffer and associated to external
862  * memory via xfs_buf_associate_memory() back to it's empty state.
863  */
864 void
865 xfs_buf_set_empty(
866 	struct xfs_buf		*bp,
867 	size_t			numblks)
868 {
869 	if (bp->b_pages)
870 		_xfs_buf_free_pages(bp);
871 
872 	bp->b_pages = NULL;
873 	bp->b_page_count = 0;
874 	bp->b_addr = NULL;
875 	bp->b_length = numblks;
876 	bp->b_io_length = numblks;
877 
878 	ASSERT(bp->b_map_count == 1);
879 	bp->b_bn = XFS_BUF_DADDR_NULL;
880 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
881 	bp->b_maps[0].bm_len = bp->b_length;
882 }
883 
884 static inline struct page *
885 mem_to_page(
886 	void			*addr)
887 {
888 	if ((!is_vmalloc_addr(addr))) {
889 		return virt_to_page(addr);
890 	} else {
891 		return vmalloc_to_page(addr);
892 	}
893 }
894 
895 int
896 xfs_buf_associate_memory(
897 	xfs_buf_t		*bp,
898 	void			*mem,
899 	size_t			len)
900 {
901 	int			rval;
902 	int			i = 0;
903 	unsigned long		pageaddr;
904 	unsigned long		offset;
905 	size_t			buflen;
906 	int			page_count;
907 
908 	pageaddr = (unsigned long)mem & PAGE_MASK;
909 	offset = (unsigned long)mem - pageaddr;
910 	buflen = PAGE_ALIGN(len + offset);
911 	page_count = buflen >> PAGE_SHIFT;
912 
913 	/* Free any previous set of page pointers */
914 	if (bp->b_pages)
915 		_xfs_buf_free_pages(bp);
916 
917 	bp->b_pages = NULL;
918 	bp->b_addr = mem;
919 
920 	rval = _xfs_buf_get_pages(bp, page_count);
921 	if (rval)
922 		return rval;
923 
924 	bp->b_offset = offset;
925 
926 	for (i = 0; i < bp->b_page_count; i++) {
927 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
928 		pageaddr += PAGE_SIZE;
929 	}
930 
931 	bp->b_io_length = BTOBB(len);
932 	bp->b_length = BTOBB(buflen);
933 
934 	return 0;
935 }
936 
937 xfs_buf_t *
938 xfs_buf_get_uncached(
939 	struct xfs_buftarg	*target,
940 	size_t			numblks,
941 	int			flags)
942 {
943 	unsigned long		page_count;
944 	int			error, i;
945 	struct xfs_buf		*bp;
946 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
947 
948 	/* flags might contain irrelevant bits, pass only what we care about */
949 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
950 	if (unlikely(bp == NULL))
951 		goto fail;
952 
953 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
954 	error = _xfs_buf_get_pages(bp, page_count);
955 	if (error)
956 		goto fail_free_buf;
957 
958 	for (i = 0; i < page_count; i++) {
959 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
960 		if (!bp->b_pages[i])
961 			goto fail_free_mem;
962 	}
963 	bp->b_flags |= _XBF_PAGES;
964 
965 	error = _xfs_buf_map_pages(bp, 0);
966 	if (unlikely(error)) {
967 		xfs_warn(target->bt_mount,
968 			"%s: failed to map pages", __func__);
969 		goto fail_free_mem;
970 	}
971 
972 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
973 	return bp;
974 
975  fail_free_mem:
976 	while (--i >= 0)
977 		__free_page(bp->b_pages[i]);
978 	_xfs_buf_free_pages(bp);
979  fail_free_buf:
980 	xfs_buf_free_maps(bp);
981 	kmem_zone_free(xfs_buf_zone, bp);
982  fail:
983 	return NULL;
984 }
985 
986 /*
987  *	Increment reference count on buffer, to hold the buffer concurrently
988  *	with another thread which may release (free) the buffer asynchronously.
989  *	Must hold the buffer already to call this function.
990  */
991 void
992 xfs_buf_hold(
993 	xfs_buf_t		*bp)
994 {
995 	trace_xfs_buf_hold(bp, _RET_IP_);
996 	atomic_inc(&bp->b_hold);
997 }
998 
999 /*
1000  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1001  * placed on LRU or freed (depending on b_lru_ref).
1002  */
1003 void
1004 xfs_buf_rele(
1005 	xfs_buf_t		*bp)
1006 {
1007 	struct xfs_perag	*pag = bp->b_pag;
1008 	bool			release;
1009 	bool			freebuf = false;
1010 
1011 	trace_xfs_buf_rele(bp, _RET_IP_);
1012 
1013 	if (!pag) {
1014 		ASSERT(list_empty(&bp->b_lru));
1015 		if (atomic_dec_and_test(&bp->b_hold)) {
1016 			xfs_buf_ioacct_dec(bp);
1017 			xfs_buf_free(bp);
1018 		}
1019 		return;
1020 	}
1021 
1022 	ASSERT(atomic_read(&bp->b_hold) > 0);
1023 
1024 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1025 	spin_lock(&bp->b_lock);
1026 	if (!release) {
1027 		/*
1028 		 * Drop the in-flight state if the buffer is already on the LRU
1029 		 * and it holds the only reference. This is racy because we
1030 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1031 		 * ensures the decrement occurs only once per-buf.
1032 		 */
1033 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1034 			__xfs_buf_ioacct_dec(bp);
1035 		goto out_unlock;
1036 	}
1037 
1038 	/* the last reference has been dropped ... */
1039 	__xfs_buf_ioacct_dec(bp);
1040 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1041 		/*
1042 		 * If the buffer is added to the LRU take a new reference to the
1043 		 * buffer for the LRU and clear the (now stale) dispose list
1044 		 * state flag
1045 		 */
1046 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1047 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1048 			atomic_inc(&bp->b_hold);
1049 		}
1050 		spin_unlock(&pag->pag_buf_lock);
1051 	} else {
1052 		/*
1053 		 * most of the time buffers will already be removed from the
1054 		 * LRU, so optimise that case by checking for the
1055 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1056 		 * was on was the disposal list
1057 		 */
1058 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1059 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1060 		} else {
1061 			ASSERT(list_empty(&bp->b_lru));
1062 		}
1063 
1064 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1065 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1066 				       xfs_buf_hash_params);
1067 		spin_unlock(&pag->pag_buf_lock);
1068 		xfs_perag_put(pag);
1069 		freebuf = true;
1070 	}
1071 
1072 out_unlock:
1073 	spin_unlock(&bp->b_lock);
1074 
1075 	if (freebuf)
1076 		xfs_buf_free(bp);
1077 }
1078 
1079 
1080 /*
1081  *	Lock a buffer object, if it is not already locked.
1082  *
1083  *	If we come across a stale, pinned, locked buffer, we know that we are
1084  *	being asked to lock a buffer that has been reallocated. Because it is
1085  *	pinned, we know that the log has not been pushed to disk and hence it
1086  *	will still be locked.  Rather than continuing to have trylock attempts
1087  *	fail until someone else pushes the log, push it ourselves before
1088  *	returning.  This means that the xfsaild will not get stuck trying
1089  *	to push on stale inode buffers.
1090  */
1091 int
1092 xfs_buf_trylock(
1093 	struct xfs_buf		*bp)
1094 {
1095 	int			locked;
1096 
1097 	locked = down_trylock(&bp->b_sema) == 0;
1098 	if (locked) {
1099 		XB_SET_OWNER(bp);
1100 		trace_xfs_buf_trylock(bp, _RET_IP_);
1101 	} else {
1102 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1103 	}
1104 	return locked;
1105 }
1106 
1107 /*
1108  *	Lock a buffer object.
1109  *
1110  *	If we come across a stale, pinned, locked buffer, we know that we
1111  *	are being asked to lock a buffer that has been reallocated. Because
1112  *	it is pinned, we know that the log has not been pushed to disk and
1113  *	hence it will still be locked. Rather than sleeping until someone
1114  *	else pushes the log, push it ourselves before trying to get the lock.
1115  */
1116 void
1117 xfs_buf_lock(
1118 	struct xfs_buf		*bp)
1119 {
1120 	trace_xfs_buf_lock(bp, _RET_IP_);
1121 
1122 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1123 		xfs_log_force(bp->b_target->bt_mount, 0);
1124 	down(&bp->b_sema);
1125 	XB_SET_OWNER(bp);
1126 
1127 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1128 }
1129 
1130 void
1131 xfs_buf_unlock(
1132 	struct xfs_buf		*bp)
1133 {
1134 	ASSERT(xfs_buf_islocked(bp));
1135 
1136 	XB_CLEAR_OWNER(bp);
1137 	up(&bp->b_sema);
1138 
1139 	trace_xfs_buf_unlock(bp, _RET_IP_);
1140 }
1141 
1142 STATIC void
1143 xfs_buf_wait_unpin(
1144 	xfs_buf_t		*bp)
1145 {
1146 	DECLARE_WAITQUEUE	(wait, current);
1147 
1148 	if (atomic_read(&bp->b_pin_count) == 0)
1149 		return;
1150 
1151 	add_wait_queue(&bp->b_waiters, &wait);
1152 	for (;;) {
1153 		set_current_state(TASK_UNINTERRUPTIBLE);
1154 		if (atomic_read(&bp->b_pin_count) == 0)
1155 			break;
1156 		io_schedule();
1157 	}
1158 	remove_wait_queue(&bp->b_waiters, &wait);
1159 	set_current_state(TASK_RUNNING);
1160 }
1161 
1162 /*
1163  *	Buffer Utility Routines
1164  */
1165 
1166 void
1167 xfs_buf_ioend(
1168 	struct xfs_buf	*bp)
1169 {
1170 	bool		read = bp->b_flags & XBF_READ;
1171 
1172 	trace_xfs_buf_iodone(bp, _RET_IP_);
1173 
1174 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1175 
1176 	/*
1177 	 * Pull in IO completion errors now. We are guaranteed to be running
1178 	 * single threaded, so we don't need the lock to read b_io_error.
1179 	 */
1180 	if (!bp->b_error && bp->b_io_error)
1181 		xfs_buf_ioerror(bp, bp->b_io_error);
1182 
1183 	/* Only validate buffers that were read without errors */
1184 	if (read && !bp->b_error && bp->b_ops) {
1185 		ASSERT(!bp->b_iodone);
1186 		bp->b_ops->verify_read(bp);
1187 	}
1188 
1189 	if (!bp->b_error)
1190 		bp->b_flags |= XBF_DONE;
1191 
1192 	if (bp->b_iodone)
1193 		(*(bp->b_iodone))(bp);
1194 	else if (bp->b_flags & XBF_ASYNC)
1195 		xfs_buf_relse(bp);
1196 	else
1197 		complete(&bp->b_iowait);
1198 }
1199 
1200 static void
1201 xfs_buf_ioend_work(
1202 	struct work_struct	*work)
1203 {
1204 	struct xfs_buf		*bp =
1205 		container_of(work, xfs_buf_t, b_ioend_work);
1206 
1207 	xfs_buf_ioend(bp);
1208 }
1209 
1210 static void
1211 xfs_buf_ioend_async(
1212 	struct xfs_buf	*bp)
1213 {
1214 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1215 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1216 }
1217 
1218 void
1219 __xfs_buf_ioerror(
1220 	xfs_buf_t		*bp,
1221 	int			error,
1222 	xfs_failaddr_t		failaddr)
1223 {
1224 	ASSERT(error <= 0 && error >= -1000);
1225 	bp->b_error = error;
1226 	trace_xfs_buf_ioerror(bp, error, failaddr);
1227 }
1228 
1229 void
1230 xfs_buf_ioerror_alert(
1231 	struct xfs_buf		*bp,
1232 	const char		*func)
1233 {
1234 	xfs_alert(bp->b_target->bt_mount,
1235 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1236 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1237 			-bp->b_error);
1238 }
1239 
1240 int
1241 xfs_bwrite(
1242 	struct xfs_buf		*bp)
1243 {
1244 	int			error;
1245 
1246 	ASSERT(xfs_buf_islocked(bp));
1247 
1248 	bp->b_flags |= XBF_WRITE;
1249 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1250 			 XBF_WRITE_FAIL | XBF_DONE);
1251 
1252 	error = xfs_buf_submit_wait(bp);
1253 	if (error) {
1254 		xfs_force_shutdown(bp->b_target->bt_mount,
1255 				   SHUTDOWN_META_IO_ERROR);
1256 	}
1257 	return error;
1258 }
1259 
1260 static void
1261 xfs_buf_bio_end_io(
1262 	struct bio		*bio)
1263 {
1264 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1265 
1266 	/*
1267 	 * don't overwrite existing errors - otherwise we can lose errors on
1268 	 * buffers that require multiple bios to complete.
1269 	 */
1270 	if (bio->bi_status) {
1271 		int error = blk_status_to_errno(bio->bi_status);
1272 
1273 		cmpxchg(&bp->b_io_error, 0, error);
1274 	}
1275 
1276 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1277 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1278 
1279 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1280 		xfs_buf_ioend_async(bp);
1281 	bio_put(bio);
1282 }
1283 
1284 static void
1285 xfs_buf_ioapply_map(
1286 	struct xfs_buf	*bp,
1287 	int		map,
1288 	int		*buf_offset,
1289 	int		*count,
1290 	int		op,
1291 	int		op_flags)
1292 {
1293 	int		page_index;
1294 	int		total_nr_pages = bp->b_page_count;
1295 	int		nr_pages;
1296 	struct bio	*bio;
1297 	sector_t	sector =  bp->b_maps[map].bm_bn;
1298 	int		size;
1299 	int		offset;
1300 
1301 	/* skip the pages in the buffer before the start offset */
1302 	page_index = 0;
1303 	offset = *buf_offset;
1304 	while (offset >= PAGE_SIZE) {
1305 		page_index++;
1306 		offset -= PAGE_SIZE;
1307 	}
1308 
1309 	/*
1310 	 * Limit the IO size to the length of the current vector, and update the
1311 	 * remaining IO count for the next time around.
1312 	 */
1313 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1314 	*count -= size;
1315 	*buf_offset += size;
1316 
1317 next_chunk:
1318 	atomic_inc(&bp->b_io_remaining);
1319 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1320 
1321 	bio = bio_alloc(GFP_NOIO, nr_pages);
1322 	bio_set_dev(bio, bp->b_target->bt_bdev);
1323 	bio->bi_iter.bi_sector = sector;
1324 	bio->bi_end_io = xfs_buf_bio_end_io;
1325 	bio->bi_private = bp;
1326 	bio_set_op_attrs(bio, op, op_flags);
1327 
1328 	for (; size && nr_pages; nr_pages--, page_index++) {
1329 		int	rbytes, nbytes = PAGE_SIZE - offset;
1330 
1331 		if (nbytes > size)
1332 			nbytes = size;
1333 
1334 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1335 				      offset);
1336 		if (rbytes < nbytes)
1337 			break;
1338 
1339 		offset = 0;
1340 		sector += BTOBB(nbytes);
1341 		size -= nbytes;
1342 		total_nr_pages--;
1343 	}
1344 
1345 	if (likely(bio->bi_iter.bi_size)) {
1346 		if (xfs_buf_is_vmapped(bp)) {
1347 			flush_kernel_vmap_range(bp->b_addr,
1348 						xfs_buf_vmap_len(bp));
1349 		}
1350 		submit_bio(bio);
1351 		if (size)
1352 			goto next_chunk;
1353 	} else {
1354 		/*
1355 		 * This is guaranteed not to be the last io reference count
1356 		 * because the caller (xfs_buf_submit) holds a count itself.
1357 		 */
1358 		atomic_dec(&bp->b_io_remaining);
1359 		xfs_buf_ioerror(bp, -EIO);
1360 		bio_put(bio);
1361 	}
1362 
1363 }
1364 
1365 STATIC void
1366 _xfs_buf_ioapply(
1367 	struct xfs_buf	*bp)
1368 {
1369 	struct blk_plug	plug;
1370 	int		op;
1371 	int		op_flags = 0;
1372 	int		offset;
1373 	int		size;
1374 	int		i;
1375 
1376 	/*
1377 	 * Make sure we capture only current IO errors rather than stale errors
1378 	 * left over from previous use of the buffer (e.g. failed readahead).
1379 	 */
1380 	bp->b_error = 0;
1381 
1382 	/*
1383 	 * Initialize the I/O completion workqueue if we haven't yet or the
1384 	 * submitter has not opted to specify a custom one.
1385 	 */
1386 	if (!bp->b_ioend_wq)
1387 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1388 
1389 	if (bp->b_flags & XBF_WRITE) {
1390 		op = REQ_OP_WRITE;
1391 		if (bp->b_flags & XBF_SYNCIO)
1392 			op_flags = REQ_SYNC;
1393 		if (bp->b_flags & XBF_FUA)
1394 			op_flags |= REQ_FUA;
1395 		if (bp->b_flags & XBF_FLUSH)
1396 			op_flags |= REQ_PREFLUSH;
1397 
1398 		/*
1399 		 * Run the write verifier callback function if it exists. If
1400 		 * this function fails it will mark the buffer with an error and
1401 		 * the IO should not be dispatched.
1402 		 */
1403 		if (bp->b_ops) {
1404 			bp->b_ops->verify_write(bp);
1405 			if (bp->b_error) {
1406 				xfs_force_shutdown(bp->b_target->bt_mount,
1407 						   SHUTDOWN_CORRUPT_INCORE);
1408 				return;
1409 			}
1410 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1411 			struct xfs_mount *mp = bp->b_target->bt_mount;
1412 
1413 			/*
1414 			 * non-crc filesystems don't attach verifiers during
1415 			 * log recovery, so don't warn for such filesystems.
1416 			 */
1417 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1418 				xfs_warn(mp,
1419 					"%s: no buf ops on daddr 0x%llx len %d",
1420 					__func__, bp->b_bn, bp->b_length);
1421 				xfs_hex_dump(bp->b_addr,
1422 						XFS_CORRUPTION_DUMP_LEN);
1423 				dump_stack();
1424 			}
1425 		}
1426 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1427 		op = REQ_OP_READ;
1428 		op_flags = REQ_RAHEAD;
1429 	} else {
1430 		op = REQ_OP_READ;
1431 	}
1432 
1433 	/* we only use the buffer cache for meta-data */
1434 	op_flags |= REQ_META;
1435 
1436 	/*
1437 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1438 	 * into the buffer and the desired IO size before we start -
1439 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1440 	 * subsequent call.
1441 	 */
1442 	offset = bp->b_offset;
1443 	size = BBTOB(bp->b_io_length);
1444 	blk_start_plug(&plug);
1445 	for (i = 0; i < bp->b_map_count; i++) {
1446 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1447 		if (bp->b_error)
1448 			break;
1449 		if (size <= 0)
1450 			break;	/* all done */
1451 	}
1452 	blk_finish_plug(&plug);
1453 }
1454 
1455 /*
1456  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1457  * the current reference to the IO. It is not safe to reference the buffer after
1458  * a call to this function unless the caller holds an additional reference
1459  * itself.
1460  */
1461 void
1462 xfs_buf_submit(
1463 	struct xfs_buf	*bp)
1464 {
1465 	trace_xfs_buf_submit(bp, _RET_IP_);
1466 
1467 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1468 	ASSERT(bp->b_flags & XBF_ASYNC);
1469 
1470 	/* on shutdown we stale and complete the buffer immediately */
1471 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1472 		xfs_buf_ioerror(bp, -EIO);
1473 		bp->b_flags &= ~XBF_DONE;
1474 		xfs_buf_stale(bp);
1475 		xfs_buf_ioend(bp);
1476 		return;
1477 	}
1478 
1479 	if (bp->b_flags & XBF_WRITE)
1480 		xfs_buf_wait_unpin(bp);
1481 
1482 	/* clear the internal error state to avoid spurious errors */
1483 	bp->b_io_error = 0;
1484 
1485 	/*
1486 	 * The caller's reference is released during I/O completion.
1487 	 * This occurs some time after the last b_io_remaining reference is
1488 	 * released, so after we drop our Io reference we have to have some
1489 	 * other reference to ensure the buffer doesn't go away from underneath
1490 	 * us. Take a direct reference to ensure we have safe access to the
1491 	 * buffer until we are finished with it.
1492 	 */
1493 	xfs_buf_hold(bp);
1494 
1495 	/*
1496 	 * Set the count to 1 initially, this will stop an I/O completion
1497 	 * callout which happens before we have started all the I/O from calling
1498 	 * xfs_buf_ioend too early.
1499 	 */
1500 	atomic_set(&bp->b_io_remaining, 1);
1501 	xfs_buf_ioacct_inc(bp);
1502 	_xfs_buf_ioapply(bp);
1503 
1504 	/*
1505 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1506 	 * reference we took above. If we drop it to zero, run completion so
1507 	 * that we don't return to the caller with completion still pending.
1508 	 */
1509 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1510 		if (bp->b_error)
1511 			xfs_buf_ioend(bp);
1512 		else
1513 			xfs_buf_ioend_async(bp);
1514 	}
1515 
1516 	xfs_buf_rele(bp);
1517 	/* Note: it is not safe to reference bp now we've dropped our ref */
1518 }
1519 
1520 /*
1521  * Synchronous buffer IO submission path, read or write.
1522  */
1523 int
1524 xfs_buf_submit_wait(
1525 	struct xfs_buf	*bp)
1526 {
1527 	int		error;
1528 
1529 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1530 
1531 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1532 
1533 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1534 		xfs_buf_ioerror(bp, -EIO);
1535 		xfs_buf_stale(bp);
1536 		bp->b_flags &= ~XBF_DONE;
1537 		return -EIO;
1538 	}
1539 
1540 	if (bp->b_flags & XBF_WRITE)
1541 		xfs_buf_wait_unpin(bp);
1542 
1543 	/* clear the internal error state to avoid spurious errors */
1544 	bp->b_io_error = 0;
1545 
1546 	/*
1547 	 * For synchronous IO, the IO does not inherit the submitters reference
1548 	 * count, nor the buffer lock. Hence we cannot release the reference we
1549 	 * are about to take until we've waited for all IO completion to occur,
1550 	 * including any xfs_buf_ioend_async() work that may be pending.
1551 	 */
1552 	xfs_buf_hold(bp);
1553 
1554 	/*
1555 	 * Set the count to 1 initially, this will stop an I/O completion
1556 	 * callout which happens before we have started all the I/O from calling
1557 	 * xfs_buf_ioend too early.
1558 	 */
1559 	atomic_set(&bp->b_io_remaining, 1);
1560 	_xfs_buf_ioapply(bp);
1561 
1562 	/*
1563 	 * make sure we run completion synchronously if it raced with us and is
1564 	 * already complete.
1565 	 */
1566 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1567 		xfs_buf_ioend(bp);
1568 
1569 	/* wait for completion before gathering the error from the buffer */
1570 	trace_xfs_buf_iowait(bp, _RET_IP_);
1571 	wait_for_completion(&bp->b_iowait);
1572 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1573 	error = bp->b_error;
1574 
1575 	/*
1576 	 * all done now, we can release the hold that keeps the buffer
1577 	 * referenced for the entire IO.
1578 	 */
1579 	xfs_buf_rele(bp);
1580 	return error;
1581 }
1582 
1583 void *
1584 xfs_buf_offset(
1585 	struct xfs_buf		*bp,
1586 	size_t			offset)
1587 {
1588 	struct page		*page;
1589 
1590 	if (bp->b_addr)
1591 		return bp->b_addr + offset;
1592 
1593 	offset += bp->b_offset;
1594 	page = bp->b_pages[offset >> PAGE_SHIFT];
1595 	return page_address(page) + (offset & (PAGE_SIZE-1));
1596 }
1597 
1598 /*
1599  *	Move data into or out of a buffer.
1600  */
1601 void
1602 xfs_buf_iomove(
1603 	xfs_buf_t		*bp,	/* buffer to process		*/
1604 	size_t			boff,	/* starting buffer offset	*/
1605 	size_t			bsize,	/* length to copy		*/
1606 	void			*data,	/* data address			*/
1607 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1608 {
1609 	size_t			bend;
1610 
1611 	bend = boff + bsize;
1612 	while (boff < bend) {
1613 		struct page	*page;
1614 		int		page_index, page_offset, csize;
1615 
1616 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1617 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1618 		page = bp->b_pages[page_index];
1619 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1620 				      BBTOB(bp->b_io_length) - boff);
1621 
1622 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1623 
1624 		switch (mode) {
1625 		case XBRW_ZERO:
1626 			memset(page_address(page) + page_offset, 0, csize);
1627 			break;
1628 		case XBRW_READ:
1629 			memcpy(data, page_address(page) + page_offset, csize);
1630 			break;
1631 		case XBRW_WRITE:
1632 			memcpy(page_address(page) + page_offset, data, csize);
1633 		}
1634 
1635 		boff += csize;
1636 		data += csize;
1637 	}
1638 }
1639 
1640 /*
1641  *	Handling of buffer targets (buftargs).
1642  */
1643 
1644 /*
1645  * Wait for any bufs with callbacks that have been submitted but have not yet
1646  * returned. These buffers will have an elevated hold count, so wait on those
1647  * while freeing all the buffers only held by the LRU.
1648  */
1649 static enum lru_status
1650 xfs_buftarg_wait_rele(
1651 	struct list_head	*item,
1652 	struct list_lru_one	*lru,
1653 	spinlock_t		*lru_lock,
1654 	void			*arg)
1655 
1656 {
1657 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1658 	struct list_head	*dispose = arg;
1659 
1660 	if (atomic_read(&bp->b_hold) > 1) {
1661 		/* need to wait, so skip it this pass */
1662 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1663 		return LRU_SKIP;
1664 	}
1665 	if (!spin_trylock(&bp->b_lock))
1666 		return LRU_SKIP;
1667 
1668 	/*
1669 	 * clear the LRU reference count so the buffer doesn't get
1670 	 * ignored in xfs_buf_rele().
1671 	 */
1672 	atomic_set(&bp->b_lru_ref, 0);
1673 	bp->b_state |= XFS_BSTATE_DISPOSE;
1674 	list_lru_isolate_move(lru, item, dispose);
1675 	spin_unlock(&bp->b_lock);
1676 	return LRU_REMOVED;
1677 }
1678 
1679 void
1680 xfs_wait_buftarg(
1681 	struct xfs_buftarg	*btp)
1682 {
1683 	LIST_HEAD(dispose);
1684 	int loop = 0;
1685 
1686 	/*
1687 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1688 	 * released. This is critical as new buffers do not make the LRU until
1689 	 * they are released.
1690 	 *
1691 	 * Next, flush the buffer workqueue to ensure all completion processing
1692 	 * has finished. Just waiting on buffer locks is not sufficient for
1693 	 * async IO as the reference count held over IO is not released until
1694 	 * after the buffer lock is dropped. Hence we need to ensure here that
1695 	 * all reference counts have been dropped before we start walking the
1696 	 * LRU list.
1697 	 */
1698 	while (percpu_counter_sum(&btp->bt_io_count))
1699 		delay(100);
1700 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1701 
1702 	/* loop until there is nothing left on the lru list. */
1703 	while (list_lru_count(&btp->bt_lru)) {
1704 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1705 			      &dispose, LONG_MAX);
1706 
1707 		while (!list_empty(&dispose)) {
1708 			struct xfs_buf *bp;
1709 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1710 			list_del_init(&bp->b_lru);
1711 			if (bp->b_flags & XBF_WRITE_FAIL) {
1712 				xfs_alert(btp->bt_mount,
1713 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1714 					(long long)bp->b_bn);
1715 				xfs_alert(btp->bt_mount,
1716 "Please run xfs_repair to determine the extent of the problem.");
1717 			}
1718 			xfs_buf_rele(bp);
1719 		}
1720 		if (loop++ != 0)
1721 			delay(100);
1722 	}
1723 }
1724 
1725 static enum lru_status
1726 xfs_buftarg_isolate(
1727 	struct list_head	*item,
1728 	struct list_lru_one	*lru,
1729 	spinlock_t		*lru_lock,
1730 	void			*arg)
1731 {
1732 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1733 	struct list_head	*dispose = arg;
1734 
1735 	/*
1736 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1737 	 * If we fail to get the lock, just skip it.
1738 	 */
1739 	if (!spin_trylock(&bp->b_lock))
1740 		return LRU_SKIP;
1741 	/*
1742 	 * Decrement the b_lru_ref count unless the value is already
1743 	 * zero. If the value is already zero, we need to reclaim the
1744 	 * buffer, otherwise it gets another trip through the LRU.
1745 	 */
1746 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1747 		spin_unlock(&bp->b_lock);
1748 		return LRU_ROTATE;
1749 	}
1750 
1751 	bp->b_state |= XFS_BSTATE_DISPOSE;
1752 	list_lru_isolate_move(lru, item, dispose);
1753 	spin_unlock(&bp->b_lock);
1754 	return LRU_REMOVED;
1755 }
1756 
1757 static unsigned long
1758 xfs_buftarg_shrink_scan(
1759 	struct shrinker		*shrink,
1760 	struct shrink_control	*sc)
1761 {
1762 	struct xfs_buftarg	*btp = container_of(shrink,
1763 					struct xfs_buftarg, bt_shrinker);
1764 	LIST_HEAD(dispose);
1765 	unsigned long		freed;
1766 
1767 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1768 				     xfs_buftarg_isolate, &dispose);
1769 
1770 	while (!list_empty(&dispose)) {
1771 		struct xfs_buf *bp;
1772 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1773 		list_del_init(&bp->b_lru);
1774 		xfs_buf_rele(bp);
1775 	}
1776 
1777 	return freed;
1778 }
1779 
1780 static unsigned long
1781 xfs_buftarg_shrink_count(
1782 	struct shrinker		*shrink,
1783 	struct shrink_control	*sc)
1784 {
1785 	struct xfs_buftarg	*btp = container_of(shrink,
1786 					struct xfs_buftarg, bt_shrinker);
1787 	return list_lru_shrink_count(&btp->bt_lru, sc);
1788 }
1789 
1790 void
1791 xfs_free_buftarg(
1792 	struct xfs_buftarg	*btp)
1793 {
1794 	unregister_shrinker(&btp->bt_shrinker);
1795 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1796 	percpu_counter_destroy(&btp->bt_io_count);
1797 	list_lru_destroy(&btp->bt_lru);
1798 
1799 	xfs_blkdev_issue_flush(btp);
1800 
1801 	kmem_free(btp);
1802 }
1803 
1804 int
1805 xfs_setsize_buftarg(
1806 	xfs_buftarg_t		*btp,
1807 	unsigned int		sectorsize)
1808 {
1809 	/* Set up metadata sector size info */
1810 	btp->bt_meta_sectorsize = sectorsize;
1811 	btp->bt_meta_sectormask = sectorsize - 1;
1812 
1813 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1814 		xfs_warn(btp->bt_mount,
1815 			"Cannot set_blocksize to %u on device %pg",
1816 			sectorsize, btp->bt_bdev);
1817 		return -EINVAL;
1818 	}
1819 
1820 	/* Set up device logical sector size mask */
1821 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1822 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1823 
1824 	return 0;
1825 }
1826 
1827 /*
1828  * When allocating the initial buffer target we have not yet
1829  * read in the superblock, so don't know what sized sectors
1830  * are being used at this early stage.  Play safe.
1831  */
1832 STATIC int
1833 xfs_setsize_buftarg_early(
1834 	xfs_buftarg_t		*btp,
1835 	struct block_device	*bdev)
1836 {
1837 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1838 }
1839 
1840 xfs_buftarg_t *
1841 xfs_alloc_buftarg(
1842 	struct xfs_mount	*mp,
1843 	struct block_device	*bdev,
1844 	struct dax_device	*dax_dev)
1845 {
1846 	xfs_buftarg_t		*btp;
1847 
1848 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1849 
1850 	btp->bt_mount = mp;
1851 	btp->bt_dev =  bdev->bd_dev;
1852 	btp->bt_bdev = bdev;
1853 	btp->bt_daxdev = dax_dev;
1854 
1855 	if (xfs_setsize_buftarg_early(btp, bdev))
1856 		goto error_free;
1857 
1858 	if (list_lru_init(&btp->bt_lru))
1859 		goto error_free;
1860 
1861 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1862 		goto error_lru;
1863 
1864 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1865 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1866 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1867 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1868 	if (register_shrinker(&btp->bt_shrinker))
1869 		goto error_pcpu;
1870 	return btp;
1871 
1872 error_pcpu:
1873 	percpu_counter_destroy(&btp->bt_io_count);
1874 error_lru:
1875 	list_lru_destroy(&btp->bt_lru);
1876 error_free:
1877 	kmem_free(btp);
1878 	return NULL;
1879 }
1880 
1881 /*
1882  * Cancel a delayed write list.
1883  *
1884  * Remove each buffer from the list, clear the delwri queue flag and drop the
1885  * associated buffer reference.
1886  */
1887 void
1888 xfs_buf_delwri_cancel(
1889 	struct list_head	*list)
1890 {
1891 	struct xfs_buf		*bp;
1892 
1893 	while (!list_empty(list)) {
1894 		bp = list_first_entry(list, struct xfs_buf, b_list);
1895 
1896 		xfs_buf_lock(bp);
1897 		bp->b_flags &= ~_XBF_DELWRI_Q;
1898 		list_del_init(&bp->b_list);
1899 		xfs_buf_relse(bp);
1900 	}
1901 }
1902 
1903 /*
1904  * Add a buffer to the delayed write list.
1905  *
1906  * This queues a buffer for writeout if it hasn't already been.  Note that
1907  * neither this routine nor the buffer list submission functions perform
1908  * any internal synchronization.  It is expected that the lists are thread-local
1909  * to the callers.
1910  *
1911  * Returns true if we queued up the buffer, or false if it already had
1912  * been on the buffer list.
1913  */
1914 bool
1915 xfs_buf_delwri_queue(
1916 	struct xfs_buf		*bp,
1917 	struct list_head	*list)
1918 {
1919 	ASSERT(xfs_buf_islocked(bp));
1920 	ASSERT(!(bp->b_flags & XBF_READ));
1921 
1922 	/*
1923 	 * If the buffer is already marked delwri it already is queued up
1924 	 * by someone else for imediate writeout.  Just ignore it in that
1925 	 * case.
1926 	 */
1927 	if (bp->b_flags & _XBF_DELWRI_Q) {
1928 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1929 		return false;
1930 	}
1931 
1932 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1933 
1934 	/*
1935 	 * If a buffer gets written out synchronously or marked stale while it
1936 	 * is on a delwri list we lazily remove it. To do this, the other party
1937 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1938 	 * It remains referenced and on the list.  In a rare corner case it
1939 	 * might get readded to a delwri list after the synchronous writeout, in
1940 	 * which case we need just need to re-add the flag here.
1941 	 */
1942 	bp->b_flags |= _XBF_DELWRI_Q;
1943 	if (list_empty(&bp->b_list)) {
1944 		atomic_inc(&bp->b_hold);
1945 		list_add_tail(&bp->b_list, list);
1946 	}
1947 
1948 	return true;
1949 }
1950 
1951 /*
1952  * Compare function is more complex than it needs to be because
1953  * the return value is only 32 bits and we are doing comparisons
1954  * on 64 bit values
1955  */
1956 static int
1957 xfs_buf_cmp(
1958 	void		*priv,
1959 	struct list_head *a,
1960 	struct list_head *b)
1961 {
1962 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1963 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1964 	xfs_daddr_t		diff;
1965 
1966 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1967 	if (diff < 0)
1968 		return -1;
1969 	if (diff > 0)
1970 		return 1;
1971 	return 0;
1972 }
1973 
1974 /*
1975  * submit buffers for write.
1976  *
1977  * When we have a large buffer list, we do not want to hold all the buffers
1978  * locked while we block on the request queue waiting for IO dispatch. To avoid
1979  * this problem, we lock and submit buffers in groups of 50, thereby minimising
1980  * the lock hold times for lists which may contain thousands of objects.
1981  *
1982  * To do this, we sort the buffer list before we walk the list to lock and
1983  * submit buffers, and we plug and unplug around each group of buffers we
1984  * submit.
1985  */
1986 static int
1987 xfs_buf_delwri_submit_buffers(
1988 	struct list_head	*buffer_list,
1989 	struct list_head	*wait_list)
1990 {
1991 	struct xfs_buf		*bp, *n;
1992 	LIST_HEAD		(submit_list);
1993 	int			pinned = 0;
1994 	struct blk_plug		plug;
1995 
1996 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1997 
1998 	blk_start_plug(&plug);
1999 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2000 		if (!wait_list) {
2001 			if (xfs_buf_ispinned(bp)) {
2002 				pinned++;
2003 				continue;
2004 			}
2005 			if (!xfs_buf_trylock(bp))
2006 				continue;
2007 		} else {
2008 			xfs_buf_lock(bp);
2009 		}
2010 
2011 		/*
2012 		 * Someone else might have written the buffer synchronously or
2013 		 * marked it stale in the meantime.  In that case only the
2014 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2015 		 * reference and remove it from the list here.
2016 		 */
2017 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2018 			list_del_init(&bp->b_list);
2019 			xfs_buf_relse(bp);
2020 			continue;
2021 		}
2022 
2023 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2024 
2025 		/*
2026 		 * We do all IO submission async. This means if we need
2027 		 * to wait for IO completion we need to take an extra
2028 		 * reference so the buffer is still valid on the other
2029 		 * side. We need to move the buffer onto the io_list
2030 		 * at this point so the caller can still access it.
2031 		 */
2032 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
2033 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
2034 		if (wait_list) {
2035 			xfs_buf_hold(bp);
2036 			list_move_tail(&bp->b_list, wait_list);
2037 		} else
2038 			list_del_init(&bp->b_list);
2039 
2040 		xfs_buf_submit(bp);
2041 	}
2042 	blk_finish_plug(&plug);
2043 
2044 	return pinned;
2045 }
2046 
2047 /*
2048  * Write out a buffer list asynchronously.
2049  *
2050  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2051  * out and not wait for I/O completion on any of the buffers.  This interface
2052  * is only safely useable for callers that can track I/O completion by higher
2053  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2054  * function.
2055  */
2056 int
2057 xfs_buf_delwri_submit_nowait(
2058 	struct list_head	*buffer_list)
2059 {
2060 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2061 }
2062 
2063 /*
2064  * Write out a buffer list synchronously.
2065  *
2066  * This will take the @buffer_list, write all buffers out and wait for I/O
2067  * completion on all of the buffers. @buffer_list is consumed by the function,
2068  * so callers must have some other way of tracking buffers if they require such
2069  * functionality.
2070  */
2071 int
2072 xfs_buf_delwri_submit(
2073 	struct list_head	*buffer_list)
2074 {
2075 	LIST_HEAD		(wait_list);
2076 	int			error = 0, error2;
2077 	struct xfs_buf		*bp;
2078 
2079 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2080 
2081 	/* Wait for IO to complete. */
2082 	while (!list_empty(&wait_list)) {
2083 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2084 
2085 		list_del_init(&bp->b_list);
2086 
2087 		/* locking the buffer will wait for async IO completion. */
2088 		xfs_buf_lock(bp);
2089 		error2 = bp->b_error;
2090 		xfs_buf_relse(bp);
2091 		if (!error)
2092 			error = error2;
2093 	}
2094 
2095 	return error;
2096 }
2097 
2098 /*
2099  * Push a single buffer on a delwri queue.
2100  *
2101  * The purpose of this function is to submit a single buffer of a delwri queue
2102  * and return with the buffer still on the original queue. The waiting delwri
2103  * buffer submission infrastructure guarantees transfer of the delwri queue
2104  * buffer reference to a temporary wait list. We reuse this infrastructure to
2105  * transfer the buffer back to the original queue.
2106  *
2107  * Note the buffer transitions from the queued state, to the submitted and wait
2108  * listed state and back to the queued state during this call. The buffer
2109  * locking and queue management logic between _delwri_pushbuf() and
2110  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2111  * before returning.
2112  */
2113 int
2114 xfs_buf_delwri_pushbuf(
2115 	struct xfs_buf		*bp,
2116 	struct list_head	*buffer_list)
2117 {
2118 	LIST_HEAD		(submit_list);
2119 	int			error;
2120 
2121 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2122 
2123 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2124 
2125 	/*
2126 	 * Isolate the buffer to a new local list so we can submit it for I/O
2127 	 * independently from the rest of the original list.
2128 	 */
2129 	xfs_buf_lock(bp);
2130 	list_move(&bp->b_list, &submit_list);
2131 	xfs_buf_unlock(bp);
2132 
2133 	/*
2134 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2135 	 * the buffer on the wait list with an associated reference. Rather than
2136 	 * bounce the buffer from a local wait list back to the original list
2137 	 * after I/O completion, reuse the original list as the wait list.
2138 	 */
2139 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2140 
2141 	/*
2142 	 * The buffer is now under I/O and wait listed as during typical delwri
2143 	 * submission. Lock the buffer to wait for I/O completion. Rather than
2144 	 * remove the buffer from the wait list and release the reference, we
2145 	 * want to return with the buffer queued to the original list. The
2146 	 * buffer already sits on the original list with a wait list reference,
2147 	 * however. If we let the queue inherit that wait list reference, all we
2148 	 * need to do is reset the DELWRI_Q flag.
2149 	 */
2150 	xfs_buf_lock(bp);
2151 	error = bp->b_error;
2152 	bp->b_flags |= _XBF_DELWRI_Q;
2153 	xfs_buf_unlock(bp);
2154 
2155 	return error;
2156 }
2157 
2158 int __init
2159 xfs_buf_init(void)
2160 {
2161 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2162 						KM_ZONE_HWALIGN, NULL);
2163 	if (!xfs_buf_zone)
2164 		goto out;
2165 
2166 	return 0;
2167 
2168  out:
2169 	return -ENOMEM;
2170 }
2171 
2172 void
2173 xfs_buf_terminate(void)
2174 {
2175 	kmem_zone_destroy(xfs_buf_zone);
2176 }
2177 
2178 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2179 {
2180 	/*
2181 	 * Set the lru reference count to 0 based on the error injection tag.
2182 	 * This allows userspace to disrupt buffer caching for debug/testing
2183 	 * purposes.
2184 	 */
2185 	if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2186 			   XFS_ERRTAG_BUF_LRU_REF))
2187 		lru_ref = 0;
2188 
2189 	atomic_set(&bp->b_lru_ref, lru_ref);
2190 }
2191