xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision a86854d0)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
37 
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
41 #include "xfs_sb.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44 #include "xfs_log.h"
45 #include "xfs_errortag.h"
46 #include "xfs_error.h"
47 
48 static kmem_zone_t *xfs_buf_zone;
49 
50 #ifdef XFS_BUF_LOCK_TRACKING
51 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
52 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
53 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
54 #else
55 # define XB_SET_OWNER(bp)	do { } while (0)
56 # define XB_CLEAR_OWNER(bp)	do { } while (0)
57 # define XB_GET_OWNER(bp)	do { } while (0)
58 #endif
59 
60 #define xb_to_gfp(flags) \
61 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
62 
63 
64 static inline int
65 xfs_buf_is_vmapped(
66 	struct xfs_buf	*bp)
67 {
68 	/*
69 	 * Return true if the buffer is vmapped.
70 	 *
71 	 * b_addr is null if the buffer is not mapped, but the code is clever
72 	 * enough to know it doesn't have to map a single page, so the check has
73 	 * to be both for b_addr and bp->b_page_count > 1.
74 	 */
75 	return bp->b_addr && bp->b_page_count > 1;
76 }
77 
78 static inline int
79 xfs_buf_vmap_len(
80 	struct xfs_buf	*bp)
81 {
82 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83 }
84 
85 /*
86  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
87  * this buffer. The count is incremented once per buffer (per hold cycle)
88  * because the corresponding decrement is deferred to buffer release. Buffers
89  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
90  * tracking adds unnecessary overhead. This is used for sychronization purposes
91  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
92  * in-flight buffers.
93  *
94  * Buffers that are never released (e.g., superblock, iclog buffers) must set
95  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
96  * never reaches zero and unmount hangs indefinitely.
97  */
98 static inline void
99 xfs_buf_ioacct_inc(
100 	struct xfs_buf	*bp)
101 {
102 	if (bp->b_flags & XBF_NO_IOACCT)
103 		return;
104 
105 	ASSERT(bp->b_flags & XBF_ASYNC);
106 	spin_lock(&bp->b_lock);
107 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
108 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
109 		percpu_counter_inc(&bp->b_target->bt_io_count);
110 	}
111 	spin_unlock(&bp->b_lock);
112 }
113 
114 /*
115  * Clear the in-flight state on a buffer about to be released to the LRU or
116  * freed and unaccount from the buftarg.
117  */
118 static inline void
119 __xfs_buf_ioacct_dec(
120 	struct xfs_buf	*bp)
121 {
122 	lockdep_assert_held(&bp->b_lock);
123 
124 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
125 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
126 		percpu_counter_dec(&bp->b_target->bt_io_count);
127 	}
128 }
129 
130 static inline void
131 xfs_buf_ioacct_dec(
132 	struct xfs_buf	*bp)
133 {
134 	spin_lock(&bp->b_lock);
135 	__xfs_buf_ioacct_dec(bp);
136 	spin_unlock(&bp->b_lock);
137 }
138 
139 /*
140  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
141  * b_lru_ref count so that the buffer is freed immediately when the buffer
142  * reference count falls to zero. If the buffer is already on the LRU, we need
143  * to remove the reference that LRU holds on the buffer.
144  *
145  * This prevents build-up of stale buffers on the LRU.
146  */
147 void
148 xfs_buf_stale(
149 	struct xfs_buf	*bp)
150 {
151 	ASSERT(xfs_buf_islocked(bp));
152 
153 	bp->b_flags |= XBF_STALE;
154 
155 	/*
156 	 * Clear the delwri status so that a delwri queue walker will not
157 	 * flush this buffer to disk now that it is stale. The delwri queue has
158 	 * a reference to the buffer, so this is safe to do.
159 	 */
160 	bp->b_flags &= ~_XBF_DELWRI_Q;
161 
162 	/*
163 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
164 	 * could reset b_flags. There is no guarantee that the buffer is
165 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
166 	 * status now to preserve accounting consistency.
167 	 */
168 	spin_lock(&bp->b_lock);
169 	__xfs_buf_ioacct_dec(bp);
170 
171 	atomic_set(&bp->b_lru_ref, 0);
172 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
173 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
174 		atomic_dec(&bp->b_hold);
175 
176 	ASSERT(atomic_read(&bp->b_hold) >= 1);
177 	spin_unlock(&bp->b_lock);
178 }
179 
180 static int
181 xfs_buf_get_maps(
182 	struct xfs_buf		*bp,
183 	int			map_count)
184 {
185 	ASSERT(bp->b_maps == NULL);
186 	bp->b_map_count = map_count;
187 
188 	if (map_count == 1) {
189 		bp->b_maps = &bp->__b_map;
190 		return 0;
191 	}
192 
193 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
194 				KM_NOFS);
195 	if (!bp->b_maps)
196 		return -ENOMEM;
197 	return 0;
198 }
199 
200 /*
201  *	Frees b_pages if it was allocated.
202  */
203 static void
204 xfs_buf_free_maps(
205 	struct xfs_buf	*bp)
206 {
207 	if (bp->b_maps != &bp->__b_map) {
208 		kmem_free(bp->b_maps);
209 		bp->b_maps = NULL;
210 	}
211 }
212 
213 struct xfs_buf *
214 _xfs_buf_alloc(
215 	struct xfs_buftarg	*target,
216 	struct xfs_buf_map	*map,
217 	int			nmaps,
218 	xfs_buf_flags_t		flags)
219 {
220 	struct xfs_buf		*bp;
221 	int			error;
222 	int			i;
223 
224 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
225 	if (unlikely(!bp))
226 		return NULL;
227 
228 	/*
229 	 * We don't want certain flags to appear in b_flags unless they are
230 	 * specifically set by later operations on the buffer.
231 	 */
232 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
233 
234 	atomic_set(&bp->b_hold, 1);
235 	atomic_set(&bp->b_lru_ref, 1);
236 	init_completion(&bp->b_iowait);
237 	INIT_LIST_HEAD(&bp->b_lru);
238 	INIT_LIST_HEAD(&bp->b_list);
239 	INIT_LIST_HEAD(&bp->b_li_list);
240 	sema_init(&bp->b_sema, 0); /* held, no waiters */
241 	spin_lock_init(&bp->b_lock);
242 	XB_SET_OWNER(bp);
243 	bp->b_target = target;
244 	bp->b_flags = flags;
245 
246 	/*
247 	 * Set length and io_length to the same value initially.
248 	 * I/O routines should use io_length, which will be the same in
249 	 * most cases but may be reset (e.g. XFS recovery).
250 	 */
251 	error = xfs_buf_get_maps(bp, nmaps);
252 	if (error)  {
253 		kmem_zone_free(xfs_buf_zone, bp);
254 		return NULL;
255 	}
256 
257 	bp->b_bn = map[0].bm_bn;
258 	bp->b_length = 0;
259 	for (i = 0; i < nmaps; i++) {
260 		bp->b_maps[i].bm_bn = map[i].bm_bn;
261 		bp->b_maps[i].bm_len = map[i].bm_len;
262 		bp->b_length += map[i].bm_len;
263 	}
264 	bp->b_io_length = bp->b_length;
265 
266 	atomic_set(&bp->b_pin_count, 0);
267 	init_waitqueue_head(&bp->b_waiters);
268 
269 	XFS_STATS_INC(target->bt_mount, xb_create);
270 	trace_xfs_buf_init(bp, _RET_IP_);
271 
272 	return bp;
273 }
274 
275 /*
276  *	Allocate a page array capable of holding a specified number
277  *	of pages, and point the page buf at it.
278  */
279 STATIC int
280 _xfs_buf_get_pages(
281 	xfs_buf_t		*bp,
282 	int			page_count)
283 {
284 	/* Make sure that we have a page list */
285 	if (bp->b_pages == NULL) {
286 		bp->b_page_count = page_count;
287 		if (page_count <= XB_PAGES) {
288 			bp->b_pages = bp->b_page_array;
289 		} else {
290 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
291 						 page_count, KM_NOFS);
292 			if (bp->b_pages == NULL)
293 				return -ENOMEM;
294 		}
295 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
296 	}
297 	return 0;
298 }
299 
300 /*
301  *	Frees b_pages if it was allocated.
302  */
303 STATIC void
304 _xfs_buf_free_pages(
305 	xfs_buf_t	*bp)
306 {
307 	if (bp->b_pages != bp->b_page_array) {
308 		kmem_free(bp->b_pages);
309 		bp->b_pages = NULL;
310 	}
311 }
312 
313 /*
314  *	Releases the specified buffer.
315  *
316  * 	The modification state of any associated pages is left unchanged.
317  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
318  * 	hashed and refcounted buffers
319  */
320 void
321 xfs_buf_free(
322 	xfs_buf_t		*bp)
323 {
324 	trace_xfs_buf_free(bp, _RET_IP_);
325 
326 	ASSERT(list_empty(&bp->b_lru));
327 
328 	if (bp->b_flags & _XBF_PAGES) {
329 		uint		i;
330 
331 		if (xfs_buf_is_vmapped(bp))
332 			vm_unmap_ram(bp->b_addr - bp->b_offset,
333 					bp->b_page_count);
334 
335 		for (i = 0; i < bp->b_page_count; i++) {
336 			struct page	*page = bp->b_pages[i];
337 
338 			__free_page(page);
339 		}
340 	} else if (bp->b_flags & _XBF_KMEM)
341 		kmem_free(bp->b_addr);
342 	_xfs_buf_free_pages(bp);
343 	xfs_buf_free_maps(bp);
344 	kmem_zone_free(xfs_buf_zone, bp);
345 }
346 
347 /*
348  * Allocates all the pages for buffer in question and builds it's page list.
349  */
350 STATIC int
351 xfs_buf_allocate_memory(
352 	xfs_buf_t		*bp,
353 	uint			flags)
354 {
355 	size_t			size;
356 	size_t			nbytes, offset;
357 	gfp_t			gfp_mask = xb_to_gfp(flags);
358 	unsigned short		page_count, i;
359 	xfs_off_t		start, end;
360 	int			error;
361 
362 	/*
363 	 * for buffers that are contained within a single page, just allocate
364 	 * the memory from the heap - there's no need for the complexity of
365 	 * page arrays to keep allocation down to order 0.
366 	 */
367 	size = BBTOB(bp->b_length);
368 	if (size < PAGE_SIZE) {
369 		bp->b_addr = kmem_alloc(size, KM_NOFS);
370 		if (!bp->b_addr) {
371 			/* low memory - use alloc_page loop instead */
372 			goto use_alloc_page;
373 		}
374 
375 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
376 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
377 			/* b_addr spans two pages - use alloc_page instead */
378 			kmem_free(bp->b_addr);
379 			bp->b_addr = NULL;
380 			goto use_alloc_page;
381 		}
382 		bp->b_offset = offset_in_page(bp->b_addr);
383 		bp->b_pages = bp->b_page_array;
384 		bp->b_pages[0] = virt_to_page(bp->b_addr);
385 		bp->b_page_count = 1;
386 		bp->b_flags |= _XBF_KMEM;
387 		return 0;
388 	}
389 
390 use_alloc_page:
391 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
392 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
393 								>> PAGE_SHIFT;
394 	page_count = end - start;
395 	error = _xfs_buf_get_pages(bp, page_count);
396 	if (unlikely(error))
397 		return error;
398 
399 	offset = bp->b_offset;
400 	bp->b_flags |= _XBF_PAGES;
401 
402 	for (i = 0; i < bp->b_page_count; i++) {
403 		struct page	*page;
404 		uint		retries = 0;
405 retry:
406 		page = alloc_page(gfp_mask);
407 		if (unlikely(page == NULL)) {
408 			if (flags & XBF_READ_AHEAD) {
409 				bp->b_page_count = i;
410 				error = -ENOMEM;
411 				goto out_free_pages;
412 			}
413 
414 			/*
415 			 * This could deadlock.
416 			 *
417 			 * But until all the XFS lowlevel code is revamped to
418 			 * handle buffer allocation failures we can't do much.
419 			 */
420 			if (!(++retries % 100))
421 				xfs_err(NULL,
422 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
423 					current->comm, current->pid,
424 					__func__, gfp_mask);
425 
426 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
427 			congestion_wait(BLK_RW_ASYNC, HZ/50);
428 			goto retry;
429 		}
430 
431 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
432 
433 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
434 		size -= nbytes;
435 		bp->b_pages[i] = page;
436 		offset = 0;
437 	}
438 	return 0;
439 
440 out_free_pages:
441 	for (i = 0; i < bp->b_page_count; i++)
442 		__free_page(bp->b_pages[i]);
443 	bp->b_flags &= ~_XBF_PAGES;
444 	return error;
445 }
446 
447 /*
448  *	Map buffer into kernel address-space if necessary.
449  */
450 STATIC int
451 _xfs_buf_map_pages(
452 	xfs_buf_t		*bp,
453 	uint			flags)
454 {
455 	ASSERT(bp->b_flags & _XBF_PAGES);
456 	if (bp->b_page_count == 1) {
457 		/* A single page buffer is always mappable */
458 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
459 	} else if (flags & XBF_UNMAPPED) {
460 		bp->b_addr = NULL;
461 	} else {
462 		int retried = 0;
463 		unsigned nofs_flag;
464 
465 		/*
466 		 * vm_map_ram() will allocate auxillary structures (e.g.
467 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
468 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
469 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
470 		 * memory reclaim re-entering the filesystem here and
471 		 * potentially deadlocking.
472 		 */
473 		nofs_flag = memalloc_nofs_save();
474 		do {
475 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
476 						-1, PAGE_KERNEL);
477 			if (bp->b_addr)
478 				break;
479 			vm_unmap_aliases();
480 		} while (retried++ <= 1);
481 		memalloc_nofs_restore(nofs_flag);
482 
483 		if (!bp->b_addr)
484 			return -ENOMEM;
485 		bp->b_addr += bp->b_offset;
486 	}
487 
488 	return 0;
489 }
490 
491 /*
492  *	Finding and Reading Buffers
493  */
494 static int
495 _xfs_buf_obj_cmp(
496 	struct rhashtable_compare_arg	*arg,
497 	const void			*obj)
498 {
499 	const struct xfs_buf_map	*map = arg->key;
500 	const struct xfs_buf		*bp = obj;
501 
502 	/*
503 	 * The key hashing in the lookup path depends on the key being the
504 	 * first element of the compare_arg, make sure to assert this.
505 	 */
506 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
507 
508 	if (bp->b_bn != map->bm_bn)
509 		return 1;
510 
511 	if (unlikely(bp->b_length != map->bm_len)) {
512 		/*
513 		 * found a block number match. If the range doesn't
514 		 * match, the only way this is allowed is if the buffer
515 		 * in the cache is stale and the transaction that made
516 		 * it stale has not yet committed. i.e. we are
517 		 * reallocating a busy extent. Skip this buffer and
518 		 * continue searching for an exact match.
519 		 */
520 		ASSERT(bp->b_flags & XBF_STALE);
521 		return 1;
522 	}
523 	return 0;
524 }
525 
526 static const struct rhashtable_params xfs_buf_hash_params = {
527 	.min_size		= 32,	/* empty AGs have minimal footprint */
528 	.nelem_hint		= 16,
529 	.key_len		= sizeof(xfs_daddr_t),
530 	.key_offset		= offsetof(struct xfs_buf, b_bn),
531 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
532 	.automatic_shrinking	= true,
533 	.obj_cmpfn		= _xfs_buf_obj_cmp,
534 };
535 
536 int
537 xfs_buf_hash_init(
538 	struct xfs_perag	*pag)
539 {
540 	spin_lock_init(&pag->pag_buf_lock);
541 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
542 }
543 
544 void
545 xfs_buf_hash_destroy(
546 	struct xfs_perag	*pag)
547 {
548 	rhashtable_destroy(&pag->pag_buf_hash);
549 }
550 
551 /*
552  * Look up a buffer in the buffer cache and return it referenced and locked
553  * in @found_bp.
554  *
555  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
556  * cache.
557  *
558  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
559  * -EAGAIN if we fail to lock it.
560  *
561  * Return values are:
562  *	-EFSCORRUPTED if have been supplied with an invalid address
563  *	-EAGAIN on trylock failure
564  *	-ENOENT if we fail to find a match and @new_bp was NULL
565  *	0, with @found_bp:
566  *		- @new_bp if we inserted it into the cache
567  *		- the buffer we found and locked.
568  */
569 static int
570 xfs_buf_find(
571 	struct xfs_buftarg	*btp,
572 	struct xfs_buf_map	*map,
573 	int			nmaps,
574 	xfs_buf_flags_t		flags,
575 	struct xfs_buf		*new_bp,
576 	struct xfs_buf		**found_bp)
577 {
578 	struct xfs_perag	*pag;
579 	xfs_buf_t		*bp;
580 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
581 	xfs_daddr_t		eofs;
582 	int			i;
583 
584 	*found_bp = NULL;
585 
586 	for (i = 0; i < nmaps; i++)
587 		cmap.bm_len += map[i].bm_len;
588 
589 	/* Check for IOs smaller than the sector size / not sector aligned */
590 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
591 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
592 
593 	/*
594 	 * Corrupted block numbers can get through to here, unfortunately, so we
595 	 * have to check that the buffer falls within the filesystem bounds.
596 	 */
597 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
598 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
599 		xfs_alert(btp->bt_mount,
600 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
601 			  __func__, cmap.bm_bn, eofs);
602 		WARN_ON(1);
603 		return -EFSCORRUPTED;
604 	}
605 
606 	pag = xfs_perag_get(btp->bt_mount,
607 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
608 
609 	spin_lock(&pag->pag_buf_lock);
610 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
611 				    xfs_buf_hash_params);
612 	if (bp) {
613 		atomic_inc(&bp->b_hold);
614 		goto found;
615 	}
616 
617 	/* No match found */
618 	if (!new_bp) {
619 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
620 		spin_unlock(&pag->pag_buf_lock);
621 		xfs_perag_put(pag);
622 		return -ENOENT;
623 	}
624 
625 	/* the buffer keeps the perag reference until it is freed */
626 	new_bp->b_pag = pag;
627 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
628 			       xfs_buf_hash_params);
629 	spin_unlock(&pag->pag_buf_lock);
630 	*found_bp = new_bp;
631 	return 0;
632 
633 found:
634 	spin_unlock(&pag->pag_buf_lock);
635 	xfs_perag_put(pag);
636 
637 	if (!xfs_buf_trylock(bp)) {
638 		if (flags & XBF_TRYLOCK) {
639 			xfs_buf_rele(bp);
640 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
641 			return -EAGAIN;
642 		}
643 		xfs_buf_lock(bp);
644 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
645 	}
646 
647 	/*
648 	 * if the buffer is stale, clear all the external state associated with
649 	 * it. We need to keep flags such as how we allocated the buffer memory
650 	 * intact here.
651 	 */
652 	if (bp->b_flags & XBF_STALE) {
653 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
654 		ASSERT(bp->b_iodone == NULL);
655 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
656 		bp->b_ops = NULL;
657 	}
658 
659 	trace_xfs_buf_find(bp, flags, _RET_IP_);
660 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
661 	*found_bp = bp;
662 	return 0;
663 }
664 
665 struct xfs_buf *
666 xfs_buf_incore(
667 	struct xfs_buftarg	*target,
668 	xfs_daddr_t		blkno,
669 	size_t			numblks,
670 	xfs_buf_flags_t		flags)
671 {
672 	struct xfs_buf		*bp;
673 	int			error;
674 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
675 
676 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
677 	if (error)
678 		return NULL;
679 	return bp;
680 }
681 
682 /*
683  * Assembles a buffer covering the specified range. The code is optimised for
684  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
685  * more hits than misses.
686  */
687 struct xfs_buf *
688 xfs_buf_get_map(
689 	struct xfs_buftarg	*target,
690 	struct xfs_buf_map	*map,
691 	int			nmaps,
692 	xfs_buf_flags_t		flags)
693 {
694 	struct xfs_buf		*bp;
695 	struct xfs_buf		*new_bp;
696 	int			error = 0;
697 
698 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
699 
700 	switch (error) {
701 	case 0:
702 		/* cache hit */
703 		goto found;
704 	case -EAGAIN:
705 		/* cache hit, trylock failure, caller handles failure */
706 		ASSERT(flags & XBF_TRYLOCK);
707 		return NULL;
708 	case -ENOENT:
709 		/* cache miss, go for insert */
710 		break;
711 	case -EFSCORRUPTED:
712 	default:
713 		/*
714 		 * None of the higher layers understand failure types
715 		 * yet, so return NULL to signal a fatal lookup error.
716 		 */
717 		return NULL;
718 	}
719 
720 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
721 	if (unlikely(!new_bp))
722 		return NULL;
723 
724 	error = xfs_buf_allocate_memory(new_bp, flags);
725 	if (error) {
726 		xfs_buf_free(new_bp);
727 		return NULL;
728 	}
729 
730 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
731 	if (error) {
732 		xfs_buf_free(new_bp);
733 		return NULL;
734 	}
735 
736 	if (bp != new_bp)
737 		xfs_buf_free(new_bp);
738 
739 found:
740 	if (!bp->b_addr) {
741 		error = _xfs_buf_map_pages(bp, flags);
742 		if (unlikely(error)) {
743 			xfs_warn(target->bt_mount,
744 				"%s: failed to map pagesn", __func__);
745 			xfs_buf_relse(bp);
746 			return NULL;
747 		}
748 	}
749 
750 	/*
751 	 * Clear b_error if this is a lookup from a caller that doesn't expect
752 	 * valid data to be found in the buffer.
753 	 */
754 	if (!(flags & XBF_READ))
755 		xfs_buf_ioerror(bp, 0);
756 
757 	XFS_STATS_INC(target->bt_mount, xb_get);
758 	trace_xfs_buf_get(bp, flags, _RET_IP_);
759 	return bp;
760 }
761 
762 STATIC int
763 _xfs_buf_read(
764 	xfs_buf_t		*bp,
765 	xfs_buf_flags_t		flags)
766 {
767 	ASSERT(!(flags & XBF_WRITE));
768 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
769 
770 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
771 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
772 
773 	if (flags & XBF_ASYNC) {
774 		xfs_buf_submit(bp);
775 		return 0;
776 	}
777 	return xfs_buf_submit_wait(bp);
778 }
779 
780 xfs_buf_t *
781 xfs_buf_read_map(
782 	struct xfs_buftarg	*target,
783 	struct xfs_buf_map	*map,
784 	int			nmaps,
785 	xfs_buf_flags_t		flags,
786 	const struct xfs_buf_ops *ops)
787 {
788 	struct xfs_buf		*bp;
789 
790 	flags |= XBF_READ;
791 
792 	bp = xfs_buf_get_map(target, map, nmaps, flags);
793 	if (bp) {
794 		trace_xfs_buf_read(bp, flags, _RET_IP_);
795 
796 		if (!(bp->b_flags & XBF_DONE)) {
797 			XFS_STATS_INC(target->bt_mount, xb_get_read);
798 			bp->b_ops = ops;
799 			_xfs_buf_read(bp, flags);
800 		} else if (flags & XBF_ASYNC) {
801 			/*
802 			 * Read ahead call which is already satisfied,
803 			 * drop the buffer
804 			 */
805 			xfs_buf_relse(bp);
806 			return NULL;
807 		} else {
808 			/* We do not want read in the flags */
809 			bp->b_flags &= ~XBF_READ;
810 		}
811 	}
812 
813 	return bp;
814 }
815 
816 /*
817  *	If we are not low on memory then do the readahead in a deadlock
818  *	safe manner.
819  */
820 void
821 xfs_buf_readahead_map(
822 	struct xfs_buftarg	*target,
823 	struct xfs_buf_map	*map,
824 	int			nmaps,
825 	const struct xfs_buf_ops *ops)
826 {
827 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
828 		return;
829 
830 	xfs_buf_read_map(target, map, nmaps,
831 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
832 }
833 
834 /*
835  * Read an uncached buffer from disk. Allocates and returns a locked
836  * buffer containing the disk contents or nothing.
837  */
838 int
839 xfs_buf_read_uncached(
840 	struct xfs_buftarg	*target,
841 	xfs_daddr_t		daddr,
842 	size_t			numblks,
843 	int			flags,
844 	struct xfs_buf		**bpp,
845 	const struct xfs_buf_ops *ops)
846 {
847 	struct xfs_buf		*bp;
848 
849 	*bpp = NULL;
850 
851 	bp = xfs_buf_get_uncached(target, numblks, flags);
852 	if (!bp)
853 		return -ENOMEM;
854 
855 	/* set up the buffer for a read IO */
856 	ASSERT(bp->b_map_count == 1);
857 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
858 	bp->b_maps[0].bm_bn = daddr;
859 	bp->b_flags |= XBF_READ;
860 	bp->b_ops = ops;
861 
862 	xfs_buf_submit_wait(bp);
863 	if (bp->b_error) {
864 		int	error = bp->b_error;
865 		xfs_buf_relse(bp);
866 		return error;
867 	}
868 
869 	*bpp = bp;
870 	return 0;
871 }
872 
873 /*
874  * Return a buffer allocated as an empty buffer and associated to external
875  * memory via xfs_buf_associate_memory() back to it's empty state.
876  */
877 void
878 xfs_buf_set_empty(
879 	struct xfs_buf		*bp,
880 	size_t			numblks)
881 {
882 	if (bp->b_pages)
883 		_xfs_buf_free_pages(bp);
884 
885 	bp->b_pages = NULL;
886 	bp->b_page_count = 0;
887 	bp->b_addr = NULL;
888 	bp->b_length = numblks;
889 	bp->b_io_length = numblks;
890 
891 	ASSERT(bp->b_map_count == 1);
892 	bp->b_bn = XFS_BUF_DADDR_NULL;
893 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
894 	bp->b_maps[0].bm_len = bp->b_length;
895 }
896 
897 static inline struct page *
898 mem_to_page(
899 	void			*addr)
900 {
901 	if ((!is_vmalloc_addr(addr))) {
902 		return virt_to_page(addr);
903 	} else {
904 		return vmalloc_to_page(addr);
905 	}
906 }
907 
908 int
909 xfs_buf_associate_memory(
910 	xfs_buf_t		*bp,
911 	void			*mem,
912 	size_t			len)
913 {
914 	int			rval;
915 	int			i = 0;
916 	unsigned long		pageaddr;
917 	unsigned long		offset;
918 	size_t			buflen;
919 	int			page_count;
920 
921 	pageaddr = (unsigned long)mem & PAGE_MASK;
922 	offset = (unsigned long)mem - pageaddr;
923 	buflen = PAGE_ALIGN(len + offset);
924 	page_count = buflen >> PAGE_SHIFT;
925 
926 	/* Free any previous set of page pointers */
927 	if (bp->b_pages)
928 		_xfs_buf_free_pages(bp);
929 
930 	bp->b_pages = NULL;
931 	bp->b_addr = mem;
932 
933 	rval = _xfs_buf_get_pages(bp, page_count);
934 	if (rval)
935 		return rval;
936 
937 	bp->b_offset = offset;
938 
939 	for (i = 0; i < bp->b_page_count; i++) {
940 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
941 		pageaddr += PAGE_SIZE;
942 	}
943 
944 	bp->b_io_length = BTOBB(len);
945 	bp->b_length = BTOBB(buflen);
946 
947 	return 0;
948 }
949 
950 xfs_buf_t *
951 xfs_buf_get_uncached(
952 	struct xfs_buftarg	*target,
953 	size_t			numblks,
954 	int			flags)
955 {
956 	unsigned long		page_count;
957 	int			error, i;
958 	struct xfs_buf		*bp;
959 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
960 
961 	/* flags might contain irrelevant bits, pass only what we care about */
962 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
963 	if (unlikely(bp == NULL))
964 		goto fail;
965 
966 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
967 	error = _xfs_buf_get_pages(bp, page_count);
968 	if (error)
969 		goto fail_free_buf;
970 
971 	for (i = 0; i < page_count; i++) {
972 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
973 		if (!bp->b_pages[i])
974 			goto fail_free_mem;
975 	}
976 	bp->b_flags |= _XBF_PAGES;
977 
978 	error = _xfs_buf_map_pages(bp, 0);
979 	if (unlikely(error)) {
980 		xfs_warn(target->bt_mount,
981 			"%s: failed to map pages", __func__);
982 		goto fail_free_mem;
983 	}
984 
985 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
986 	return bp;
987 
988  fail_free_mem:
989 	while (--i >= 0)
990 		__free_page(bp->b_pages[i]);
991 	_xfs_buf_free_pages(bp);
992  fail_free_buf:
993 	xfs_buf_free_maps(bp);
994 	kmem_zone_free(xfs_buf_zone, bp);
995  fail:
996 	return NULL;
997 }
998 
999 /*
1000  *	Increment reference count on buffer, to hold the buffer concurrently
1001  *	with another thread which may release (free) the buffer asynchronously.
1002  *	Must hold the buffer already to call this function.
1003  */
1004 void
1005 xfs_buf_hold(
1006 	xfs_buf_t		*bp)
1007 {
1008 	trace_xfs_buf_hold(bp, _RET_IP_);
1009 	atomic_inc(&bp->b_hold);
1010 }
1011 
1012 /*
1013  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1014  * placed on LRU or freed (depending on b_lru_ref).
1015  */
1016 void
1017 xfs_buf_rele(
1018 	xfs_buf_t		*bp)
1019 {
1020 	struct xfs_perag	*pag = bp->b_pag;
1021 	bool			release;
1022 	bool			freebuf = false;
1023 
1024 	trace_xfs_buf_rele(bp, _RET_IP_);
1025 
1026 	if (!pag) {
1027 		ASSERT(list_empty(&bp->b_lru));
1028 		if (atomic_dec_and_test(&bp->b_hold)) {
1029 			xfs_buf_ioacct_dec(bp);
1030 			xfs_buf_free(bp);
1031 		}
1032 		return;
1033 	}
1034 
1035 	ASSERT(atomic_read(&bp->b_hold) > 0);
1036 
1037 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1038 	spin_lock(&bp->b_lock);
1039 	if (!release) {
1040 		/*
1041 		 * Drop the in-flight state if the buffer is already on the LRU
1042 		 * and it holds the only reference. This is racy because we
1043 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1044 		 * ensures the decrement occurs only once per-buf.
1045 		 */
1046 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1047 			__xfs_buf_ioacct_dec(bp);
1048 		goto out_unlock;
1049 	}
1050 
1051 	/* the last reference has been dropped ... */
1052 	__xfs_buf_ioacct_dec(bp);
1053 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1054 		/*
1055 		 * If the buffer is added to the LRU take a new reference to the
1056 		 * buffer for the LRU and clear the (now stale) dispose list
1057 		 * state flag
1058 		 */
1059 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1060 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1061 			atomic_inc(&bp->b_hold);
1062 		}
1063 		spin_unlock(&pag->pag_buf_lock);
1064 	} else {
1065 		/*
1066 		 * most of the time buffers will already be removed from the
1067 		 * LRU, so optimise that case by checking for the
1068 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1069 		 * was on was the disposal list
1070 		 */
1071 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1072 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1073 		} else {
1074 			ASSERT(list_empty(&bp->b_lru));
1075 		}
1076 
1077 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1078 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1079 				       xfs_buf_hash_params);
1080 		spin_unlock(&pag->pag_buf_lock);
1081 		xfs_perag_put(pag);
1082 		freebuf = true;
1083 	}
1084 
1085 out_unlock:
1086 	spin_unlock(&bp->b_lock);
1087 
1088 	if (freebuf)
1089 		xfs_buf_free(bp);
1090 }
1091 
1092 
1093 /*
1094  *	Lock a buffer object, if it is not already locked.
1095  *
1096  *	If we come across a stale, pinned, locked buffer, we know that we are
1097  *	being asked to lock a buffer that has been reallocated. Because it is
1098  *	pinned, we know that the log has not been pushed to disk and hence it
1099  *	will still be locked.  Rather than continuing to have trylock attempts
1100  *	fail until someone else pushes the log, push it ourselves before
1101  *	returning.  This means that the xfsaild will not get stuck trying
1102  *	to push on stale inode buffers.
1103  */
1104 int
1105 xfs_buf_trylock(
1106 	struct xfs_buf		*bp)
1107 {
1108 	int			locked;
1109 
1110 	locked = down_trylock(&bp->b_sema) == 0;
1111 	if (locked) {
1112 		XB_SET_OWNER(bp);
1113 		trace_xfs_buf_trylock(bp, _RET_IP_);
1114 	} else {
1115 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1116 	}
1117 	return locked;
1118 }
1119 
1120 /*
1121  *	Lock a buffer object.
1122  *
1123  *	If we come across a stale, pinned, locked buffer, we know that we
1124  *	are being asked to lock a buffer that has been reallocated. Because
1125  *	it is pinned, we know that the log has not been pushed to disk and
1126  *	hence it will still be locked. Rather than sleeping until someone
1127  *	else pushes the log, push it ourselves before trying to get the lock.
1128  */
1129 void
1130 xfs_buf_lock(
1131 	struct xfs_buf		*bp)
1132 {
1133 	trace_xfs_buf_lock(bp, _RET_IP_);
1134 
1135 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1136 		xfs_log_force(bp->b_target->bt_mount, 0);
1137 	down(&bp->b_sema);
1138 	XB_SET_OWNER(bp);
1139 
1140 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1141 }
1142 
1143 void
1144 xfs_buf_unlock(
1145 	struct xfs_buf		*bp)
1146 {
1147 	ASSERT(xfs_buf_islocked(bp));
1148 
1149 	XB_CLEAR_OWNER(bp);
1150 	up(&bp->b_sema);
1151 
1152 	trace_xfs_buf_unlock(bp, _RET_IP_);
1153 }
1154 
1155 STATIC void
1156 xfs_buf_wait_unpin(
1157 	xfs_buf_t		*bp)
1158 {
1159 	DECLARE_WAITQUEUE	(wait, current);
1160 
1161 	if (atomic_read(&bp->b_pin_count) == 0)
1162 		return;
1163 
1164 	add_wait_queue(&bp->b_waiters, &wait);
1165 	for (;;) {
1166 		set_current_state(TASK_UNINTERRUPTIBLE);
1167 		if (atomic_read(&bp->b_pin_count) == 0)
1168 			break;
1169 		io_schedule();
1170 	}
1171 	remove_wait_queue(&bp->b_waiters, &wait);
1172 	set_current_state(TASK_RUNNING);
1173 }
1174 
1175 /*
1176  *	Buffer Utility Routines
1177  */
1178 
1179 void
1180 xfs_buf_ioend(
1181 	struct xfs_buf	*bp)
1182 {
1183 	bool		read = bp->b_flags & XBF_READ;
1184 
1185 	trace_xfs_buf_iodone(bp, _RET_IP_);
1186 
1187 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1188 
1189 	/*
1190 	 * Pull in IO completion errors now. We are guaranteed to be running
1191 	 * single threaded, so we don't need the lock to read b_io_error.
1192 	 */
1193 	if (!bp->b_error && bp->b_io_error)
1194 		xfs_buf_ioerror(bp, bp->b_io_error);
1195 
1196 	/* Only validate buffers that were read without errors */
1197 	if (read && !bp->b_error && bp->b_ops) {
1198 		ASSERT(!bp->b_iodone);
1199 		bp->b_ops->verify_read(bp);
1200 	}
1201 
1202 	if (!bp->b_error)
1203 		bp->b_flags |= XBF_DONE;
1204 
1205 	if (bp->b_iodone)
1206 		(*(bp->b_iodone))(bp);
1207 	else if (bp->b_flags & XBF_ASYNC)
1208 		xfs_buf_relse(bp);
1209 	else
1210 		complete(&bp->b_iowait);
1211 }
1212 
1213 static void
1214 xfs_buf_ioend_work(
1215 	struct work_struct	*work)
1216 {
1217 	struct xfs_buf		*bp =
1218 		container_of(work, xfs_buf_t, b_ioend_work);
1219 
1220 	xfs_buf_ioend(bp);
1221 }
1222 
1223 static void
1224 xfs_buf_ioend_async(
1225 	struct xfs_buf	*bp)
1226 {
1227 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1228 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1229 }
1230 
1231 void
1232 __xfs_buf_ioerror(
1233 	xfs_buf_t		*bp,
1234 	int			error,
1235 	xfs_failaddr_t		failaddr)
1236 {
1237 	ASSERT(error <= 0 && error >= -1000);
1238 	bp->b_error = error;
1239 	trace_xfs_buf_ioerror(bp, error, failaddr);
1240 }
1241 
1242 void
1243 xfs_buf_ioerror_alert(
1244 	struct xfs_buf		*bp,
1245 	const char		*func)
1246 {
1247 	xfs_alert(bp->b_target->bt_mount,
1248 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1249 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1250 			-bp->b_error);
1251 }
1252 
1253 int
1254 xfs_bwrite(
1255 	struct xfs_buf		*bp)
1256 {
1257 	int			error;
1258 
1259 	ASSERT(xfs_buf_islocked(bp));
1260 
1261 	bp->b_flags |= XBF_WRITE;
1262 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1263 			 XBF_WRITE_FAIL | XBF_DONE);
1264 
1265 	error = xfs_buf_submit_wait(bp);
1266 	if (error) {
1267 		xfs_force_shutdown(bp->b_target->bt_mount,
1268 				   SHUTDOWN_META_IO_ERROR);
1269 	}
1270 	return error;
1271 }
1272 
1273 static void
1274 xfs_buf_bio_end_io(
1275 	struct bio		*bio)
1276 {
1277 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1278 
1279 	/*
1280 	 * don't overwrite existing errors - otherwise we can lose errors on
1281 	 * buffers that require multiple bios to complete.
1282 	 */
1283 	if (bio->bi_status) {
1284 		int error = blk_status_to_errno(bio->bi_status);
1285 
1286 		cmpxchg(&bp->b_io_error, 0, error);
1287 	}
1288 
1289 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1290 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1291 
1292 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1293 		xfs_buf_ioend_async(bp);
1294 	bio_put(bio);
1295 }
1296 
1297 static void
1298 xfs_buf_ioapply_map(
1299 	struct xfs_buf	*bp,
1300 	int		map,
1301 	int		*buf_offset,
1302 	int		*count,
1303 	int		op,
1304 	int		op_flags)
1305 {
1306 	int		page_index;
1307 	int		total_nr_pages = bp->b_page_count;
1308 	int		nr_pages;
1309 	struct bio	*bio;
1310 	sector_t	sector =  bp->b_maps[map].bm_bn;
1311 	int		size;
1312 	int		offset;
1313 
1314 	/* skip the pages in the buffer before the start offset */
1315 	page_index = 0;
1316 	offset = *buf_offset;
1317 	while (offset >= PAGE_SIZE) {
1318 		page_index++;
1319 		offset -= PAGE_SIZE;
1320 	}
1321 
1322 	/*
1323 	 * Limit the IO size to the length of the current vector, and update the
1324 	 * remaining IO count for the next time around.
1325 	 */
1326 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1327 	*count -= size;
1328 	*buf_offset += size;
1329 
1330 next_chunk:
1331 	atomic_inc(&bp->b_io_remaining);
1332 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1333 
1334 	bio = bio_alloc(GFP_NOIO, nr_pages);
1335 	bio_set_dev(bio, bp->b_target->bt_bdev);
1336 	bio->bi_iter.bi_sector = sector;
1337 	bio->bi_end_io = xfs_buf_bio_end_io;
1338 	bio->bi_private = bp;
1339 	bio_set_op_attrs(bio, op, op_flags);
1340 
1341 	for (; size && nr_pages; nr_pages--, page_index++) {
1342 		int	rbytes, nbytes = PAGE_SIZE - offset;
1343 
1344 		if (nbytes > size)
1345 			nbytes = size;
1346 
1347 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1348 				      offset);
1349 		if (rbytes < nbytes)
1350 			break;
1351 
1352 		offset = 0;
1353 		sector += BTOBB(nbytes);
1354 		size -= nbytes;
1355 		total_nr_pages--;
1356 	}
1357 
1358 	if (likely(bio->bi_iter.bi_size)) {
1359 		if (xfs_buf_is_vmapped(bp)) {
1360 			flush_kernel_vmap_range(bp->b_addr,
1361 						xfs_buf_vmap_len(bp));
1362 		}
1363 		submit_bio(bio);
1364 		if (size)
1365 			goto next_chunk;
1366 	} else {
1367 		/*
1368 		 * This is guaranteed not to be the last io reference count
1369 		 * because the caller (xfs_buf_submit) holds a count itself.
1370 		 */
1371 		atomic_dec(&bp->b_io_remaining);
1372 		xfs_buf_ioerror(bp, -EIO);
1373 		bio_put(bio);
1374 	}
1375 
1376 }
1377 
1378 STATIC void
1379 _xfs_buf_ioapply(
1380 	struct xfs_buf	*bp)
1381 {
1382 	struct blk_plug	plug;
1383 	int		op;
1384 	int		op_flags = 0;
1385 	int		offset;
1386 	int		size;
1387 	int		i;
1388 
1389 	/*
1390 	 * Make sure we capture only current IO errors rather than stale errors
1391 	 * left over from previous use of the buffer (e.g. failed readahead).
1392 	 */
1393 	bp->b_error = 0;
1394 
1395 	/*
1396 	 * Initialize the I/O completion workqueue if we haven't yet or the
1397 	 * submitter has not opted to specify a custom one.
1398 	 */
1399 	if (!bp->b_ioend_wq)
1400 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1401 
1402 	if (bp->b_flags & XBF_WRITE) {
1403 		op = REQ_OP_WRITE;
1404 		if (bp->b_flags & XBF_SYNCIO)
1405 			op_flags = REQ_SYNC;
1406 		if (bp->b_flags & XBF_FUA)
1407 			op_flags |= REQ_FUA;
1408 		if (bp->b_flags & XBF_FLUSH)
1409 			op_flags |= REQ_PREFLUSH;
1410 
1411 		/*
1412 		 * Run the write verifier callback function if it exists. If
1413 		 * this function fails it will mark the buffer with an error and
1414 		 * the IO should not be dispatched.
1415 		 */
1416 		if (bp->b_ops) {
1417 			bp->b_ops->verify_write(bp);
1418 			if (bp->b_error) {
1419 				xfs_force_shutdown(bp->b_target->bt_mount,
1420 						   SHUTDOWN_CORRUPT_INCORE);
1421 				return;
1422 			}
1423 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1424 			struct xfs_mount *mp = bp->b_target->bt_mount;
1425 
1426 			/*
1427 			 * non-crc filesystems don't attach verifiers during
1428 			 * log recovery, so don't warn for such filesystems.
1429 			 */
1430 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1431 				xfs_warn(mp,
1432 					"%s: no buf ops on daddr 0x%llx len %d",
1433 					__func__, bp->b_bn, bp->b_length);
1434 				xfs_hex_dump(bp->b_addr,
1435 						XFS_CORRUPTION_DUMP_LEN);
1436 				dump_stack();
1437 			}
1438 		}
1439 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1440 		op = REQ_OP_READ;
1441 		op_flags = REQ_RAHEAD;
1442 	} else {
1443 		op = REQ_OP_READ;
1444 	}
1445 
1446 	/* we only use the buffer cache for meta-data */
1447 	op_flags |= REQ_META;
1448 
1449 	/*
1450 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1451 	 * into the buffer and the desired IO size before we start -
1452 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1453 	 * subsequent call.
1454 	 */
1455 	offset = bp->b_offset;
1456 	size = BBTOB(bp->b_io_length);
1457 	blk_start_plug(&plug);
1458 	for (i = 0; i < bp->b_map_count; i++) {
1459 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1460 		if (bp->b_error)
1461 			break;
1462 		if (size <= 0)
1463 			break;	/* all done */
1464 	}
1465 	blk_finish_plug(&plug);
1466 }
1467 
1468 /*
1469  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1470  * the current reference to the IO. It is not safe to reference the buffer after
1471  * a call to this function unless the caller holds an additional reference
1472  * itself.
1473  */
1474 void
1475 xfs_buf_submit(
1476 	struct xfs_buf	*bp)
1477 {
1478 	trace_xfs_buf_submit(bp, _RET_IP_);
1479 
1480 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1481 	ASSERT(bp->b_flags & XBF_ASYNC);
1482 
1483 	/* on shutdown we stale and complete the buffer immediately */
1484 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1485 		xfs_buf_ioerror(bp, -EIO);
1486 		bp->b_flags &= ~XBF_DONE;
1487 		xfs_buf_stale(bp);
1488 		xfs_buf_ioend(bp);
1489 		return;
1490 	}
1491 
1492 	if (bp->b_flags & XBF_WRITE)
1493 		xfs_buf_wait_unpin(bp);
1494 
1495 	/* clear the internal error state to avoid spurious errors */
1496 	bp->b_io_error = 0;
1497 
1498 	/*
1499 	 * The caller's reference is released during I/O completion.
1500 	 * This occurs some time after the last b_io_remaining reference is
1501 	 * released, so after we drop our Io reference we have to have some
1502 	 * other reference to ensure the buffer doesn't go away from underneath
1503 	 * us. Take a direct reference to ensure we have safe access to the
1504 	 * buffer until we are finished with it.
1505 	 */
1506 	xfs_buf_hold(bp);
1507 
1508 	/*
1509 	 * Set the count to 1 initially, this will stop an I/O completion
1510 	 * callout which happens before we have started all the I/O from calling
1511 	 * xfs_buf_ioend too early.
1512 	 */
1513 	atomic_set(&bp->b_io_remaining, 1);
1514 	xfs_buf_ioacct_inc(bp);
1515 	_xfs_buf_ioapply(bp);
1516 
1517 	/*
1518 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1519 	 * reference we took above. If we drop it to zero, run completion so
1520 	 * that we don't return to the caller with completion still pending.
1521 	 */
1522 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1523 		if (bp->b_error)
1524 			xfs_buf_ioend(bp);
1525 		else
1526 			xfs_buf_ioend_async(bp);
1527 	}
1528 
1529 	xfs_buf_rele(bp);
1530 	/* Note: it is not safe to reference bp now we've dropped our ref */
1531 }
1532 
1533 /*
1534  * Synchronous buffer IO submission path, read or write.
1535  */
1536 int
1537 xfs_buf_submit_wait(
1538 	struct xfs_buf	*bp)
1539 {
1540 	int		error;
1541 
1542 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1543 
1544 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1545 
1546 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1547 		xfs_buf_ioerror(bp, -EIO);
1548 		xfs_buf_stale(bp);
1549 		bp->b_flags &= ~XBF_DONE;
1550 		return -EIO;
1551 	}
1552 
1553 	if (bp->b_flags & XBF_WRITE)
1554 		xfs_buf_wait_unpin(bp);
1555 
1556 	/* clear the internal error state to avoid spurious errors */
1557 	bp->b_io_error = 0;
1558 
1559 	/*
1560 	 * For synchronous IO, the IO does not inherit the submitters reference
1561 	 * count, nor the buffer lock. Hence we cannot release the reference we
1562 	 * are about to take until we've waited for all IO completion to occur,
1563 	 * including any xfs_buf_ioend_async() work that may be pending.
1564 	 */
1565 	xfs_buf_hold(bp);
1566 
1567 	/*
1568 	 * Set the count to 1 initially, this will stop an I/O completion
1569 	 * callout which happens before we have started all the I/O from calling
1570 	 * xfs_buf_ioend too early.
1571 	 */
1572 	atomic_set(&bp->b_io_remaining, 1);
1573 	_xfs_buf_ioapply(bp);
1574 
1575 	/*
1576 	 * make sure we run completion synchronously if it raced with us and is
1577 	 * already complete.
1578 	 */
1579 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1580 		xfs_buf_ioend(bp);
1581 
1582 	/* wait for completion before gathering the error from the buffer */
1583 	trace_xfs_buf_iowait(bp, _RET_IP_);
1584 	wait_for_completion(&bp->b_iowait);
1585 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1586 	error = bp->b_error;
1587 
1588 	/*
1589 	 * all done now, we can release the hold that keeps the buffer
1590 	 * referenced for the entire IO.
1591 	 */
1592 	xfs_buf_rele(bp);
1593 	return error;
1594 }
1595 
1596 void *
1597 xfs_buf_offset(
1598 	struct xfs_buf		*bp,
1599 	size_t			offset)
1600 {
1601 	struct page		*page;
1602 
1603 	if (bp->b_addr)
1604 		return bp->b_addr + offset;
1605 
1606 	offset += bp->b_offset;
1607 	page = bp->b_pages[offset >> PAGE_SHIFT];
1608 	return page_address(page) + (offset & (PAGE_SIZE-1));
1609 }
1610 
1611 /*
1612  *	Move data into or out of a buffer.
1613  */
1614 void
1615 xfs_buf_iomove(
1616 	xfs_buf_t		*bp,	/* buffer to process		*/
1617 	size_t			boff,	/* starting buffer offset	*/
1618 	size_t			bsize,	/* length to copy		*/
1619 	void			*data,	/* data address			*/
1620 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1621 {
1622 	size_t			bend;
1623 
1624 	bend = boff + bsize;
1625 	while (boff < bend) {
1626 		struct page	*page;
1627 		int		page_index, page_offset, csize;
1628 
1629 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1630 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1631 		page = bp->b_pages[page_index];
1632 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1633 				      BBTOB(bp->b_io_length) - boff);
1634 
1635 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1636 
1637 		switch (mode) {
1638 		case XBRW_ZERO:
1639 			memset(page_address(page) + page_offset, 0, csize);
1640 			break;
1641 		case XBRW_READ:
1642 			memcpy(data, page_address(page) + page_offset, csize);
1643 			break;
1644 		case XBRW_WRITE:
1645 			memcpy(page_address(page) + page_offset, data, csize);
1646 		}
1647 
1648 		boff += csize;
1649 		data += csize;
1650 	}
1651 }
1652 
1653 /*
1654  *	Handling of buffer targets (buftargs).
1655  */
1656 
1657 /*
1658  * Wait for any bufs with callbacks that have been submitted but have not yet
1659  * returned. These buffers will have an elevated hold count, so wait on those
1660  * while freeing all the buffers only held by the LRU.
1661  */
1662 static enum lru_status
1663 xfs_buftarg_wait_rele(
1664 	struct list_head	*item,
1665 	struct list_lru_one	*lru,
1666 	spinlock_t		*lru_lock,
1667 	void			*arg)
1668 
1669 {
1670 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1671 	struct list_head	*dispose = arg;
1672 
1673 	if (atomic_read(&bp->b_hold) > 1) {
1674 		/* need to wait, so skip it this pass */
1675 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1676 		return LRU_SKIP;
1677 	}
1678 	if (!spin_trylock(&bp->b_lock))
1679 		return LRU_SKIP;
1680 
1681 	/*
1682 	 * clear the LRU reference count so the buffer doesn't get
1683 	 * ignored in xfs_buf_rele().
1684 	 */
1685 	atomic_set(&bp->b_lru_ref, 0);
1686 	bp->b_state |= XFS_BSTATE_DISPOSE;
1687 	list_lru_isolate_move(lru, item, dispose);
1688 	spin_unlock(&bp->b_lock);
1689 	return LRU_REMOVED;
1690 }
1691 
1692 void
1693 xfs_wait_buftarg(
1694 	struct xfs_buftarg	*btp)
1695 {
1696 	LIST_HEAD(dispose);
1697 	int loop = 0;
1698 
1699 	/*
1700 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1701 	 * released. This is critical as new buffers do not make the LRU until
1702 	 * they are released.
1703 	 *
1704 	 * Next, flush the buffer workqueue to ensure all completion processing
1705 	 * has finished. Just waiting on buffer locks is not sufficient for
1706 	 * async IO as the reference count held over IO is not released until
1707 	 * after the buffer lock is dropped. Hence we need to ensure here that
1708 	 * all reference counts have been dropped before we start walking the
1709 	 * LRU list.
1710 	 */
1711 	while (percpu_counter_sum(&btp->bt_io_count))
1712 		delay(100);
1713 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1714 
1715 	/* loop until there is nothing left on the lru list. */
1716 	while (list_lru_count(&btp->bt_lru)) {
1717 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1718 			      &dispose, LONG_MAX);
1719 
1720 		while (!list_empty(&dispose)) {
1721 			struct xfs_buf *bp;
1722 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1723 			list_del_init(&bp->b_lru);
1724 			if (bp->b_flags & XBF_WRITE_FAIL) {
1725 				xfs_alert(btp->bt_mount,
1726 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1727 					(long long)bp->b_bn);
1728 				xfs_alert(btp->bt_mount,
1729 "Please run xfs_repair to determine the extent of the problem.");
1730 			}
1731 			xfs_buf_rele(bp);
1732 		}
1733 		if (loop++ != 0)
1734 			delay(100);
1735 	}
1736 }
1737 
1738 static enum lru_status
1739 xfs_buftarg_isolate(
1740 	struct list_head	*item,
1741 	struct list_lru_one	*lru,
1742 	spinlock_t		*lru_lock,
1743 	void			*arg)
1744 {
1745 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1746 	struct list_head	*dispose = arg;
1747 
1748 	/*
1749 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1750 	 * If we fail to get the lock, just skip it.
1751 	 */
1752 	if (!spin_trylock(&bp->b_lock))
1753 		return LRU_SKIP;
1754 	/*
1755 	 * Decrement the b_lru_ref count unless the value is already
1756 	 * zero. If the value is already zero, we need to reclaim the
1757 	 * buffer, otherwise it gets another trip through the LRU.
1758 	 */
1759 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1760 		spin_unlock(&bp->b_lock);
1761 		return LRU_ROTATE;
1762 	}
1763 
1764 	bp->b_state |= XFS_BSTATE_DISPOSE;
1765 	list_lru_isolate_move(lru, item, dispose);
1766 	spin_unlock(&bp->b_lock);
1767 	return LRU_REMOVED;
1768 }
1769 
1770 static unsigned long
1771 xfs_buftarg_shrink_scan(
1772 	struct shrinker		*shrink,
1773 	struct shrink_control	*sc)
1774 {
1775 	struct xfs_buftarg	*btp = container_of(shrink,
1776 					struct xfs_buftarg, bt_shrinker);
1777 	LIST_HEAD(dispose);
1778 	unsigned long		freed;
1779 
1780 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1781 				     xfs_buftarg_isolate, &dispose);
1782 
1783 	while (!list_empty(&dispose)) {
1784 		struct xfs_buf *bp;
1785 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1786 		list_del_init(&bp->b_lru);
1787 		xfs_buf_rele(bp);
1788 	}
1789 
1790 	return freed;
1791 }
1792 
1793 static unsigned long
1794 xfs_buftarg_shrink_count(
1795 	struct shrinker		*shrink,
1796 	struct shrink_control	*sc)
1797 {
1798 	struct xfs_buftarg	*btp = container_of(shrink,
1799 					struct xfs_buftarg, bt_shrinker);
1800 	return list_lru_shrink_count(&btp->bt_lru, sc);
1801 }
1802 
1803 void
1804 xfs_free_buftarg(
1805 	struct xfs_buftarg	*btp)
1806 {
1807 	unregister_shrinker(&btp->bt_shrinker);
1808 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1809 	percpu_counter_destroy(&btp->bt_io_count);
1810 	list_lru_destroy(&btp->bt_lru);
1811 
1812 	xfs_blkdev_issue_flush(btp);
1813 
1814 	kmem_free(btp);
1815 }
1816 
1817 int
1818 xfs_setsize_buftarg(
1819 	xfs_buftarg_t		*btp,
1820 	unsigned int		sectorsize)
1821 {
1822 	/* Set up metadata sector size info */
1823 	btp->bt_meta_sectorsize = sectorsize;
1824 	btp->bt_meta_sectormask = sectorsize - 1;
1825 
1826 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1827 		xfs_warn(btp->bt_mount,
1828 			"Cannot set_blocksize to %u on device %pg",
1829 			sectorsize, btp->bt_bdev);
1830 		return -EINVAL;
1831 	}
1832 
1833 	/* Set up device logical sector size mask */
1834 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1835 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1836 
1837 	return 0;
1838 }
1839 
1840 /*
1841  * When allocating the initial buffer target we have not yet
1842  * read in the superblock, so don't know what sized sectors
1843  * are being used at this early stage.  Play safe.
1844  */
1845 STATIC int
1846 xfs_setsize_buftarg_early(
1847 	xfs_buftarg_t		*btp,
1848 	struct block_device	*bdev)
1849 {
1850 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1851 }
1852 
1853 xfs_buftarg_t *
1854 xfs_alloc_buftarg(
1855 	struct xfs_mount	*mp,
1856 	struct block_device	*bdev,
1857 	struct dax_device	*dax_dev)
1858 {
1859 	xfs_buftarg_t		*btp;
1860 
1861 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1862 
1863 	btp->bt_mount = mp;
1864 	btp->bt_dev =  bdev->bd_dev;
1865 	btp->bt_bdev = bdev;
1866 	btp->bt_daxdev = dax_dev;
1867 
1868 	if (xfs_setsize_buftarg_early(btp, bdev))
1869 		goto error_free;
1870 
1871 	if (list_lru_init(&btp->bt_lru))
1872 		goto error_free;
1873 
1874 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1875 		goto error_lru;
1876 
1877 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1878 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1879 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1880 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1881 	if (register_shrinker(&btp->bt_shrinker))
1882 		goto error_pcpu;
1883 	return btp;
1884 
1885 error_pcpu:
1886 	percpu_counter_destroy(&btp->bt_io_count);
1887 error_lru:
1888 	list_lru_destroy(&btp->bt_lru);
1889 error_free:
1890 	kmem_free(btp);
1891 	return NULL;
1892 }
1893 
1894 /*
1895  * Cancel a delayed write list.
1896  *
1897  * Remove each buffer from the list, clear the delwri queue flag and drop the
1898  * associated buffer reference.
1899  */
1900 void
1901 xfs_buf_delwri_cancel(
1902 	struct list_head	*list)
1903 {
1904 	struct xfs_buf		*bp;
1905 
1906 	while (!list_empty(list)) {
1907 		bp = list_first_entry(list, struct xfs_buf, b_list);
1908 
1909 		xfs_buf_lock(bp);
1910 		bp->b_flags &= ~_XBF_DELWRI_Q;
1911 		list_del_init(&bp->b_list);
1912 		xfs_buf_relse(bp);
1913 	}
1914 }
1915 
1916 /*
1917  * Add a buffer to the delayed write list.
1918  *
1919  * This queues a buffer for writeout if it hasn't already been.  Note that
1920  * neither this routine nor the buffer list submission functions perform
1921  * any internal synchronization.  It is expected that the lists are thread-local
1922  * to the callers.
1923  *
1924  * Returns true if we queued up the buffer, or false if it already had
1925  * been on the buffer list.
1926  */
1927 bool
1928 xfs_buf_delwri_queue(
1929 	struct xfs_buf		*bp,
1930 	struct list_head	*list)
1931 {
1932 	ASSERT(xfs_buf_islocked(bp));
1933 	ASSERT(!(bp->b_flags & XBF_READ));
1934 
1935 	/*
1936 	 * If the buffer is already marked delwri it already is queued up
1937 	 * by someone else for imediate writeout.  Just ignore it in that
1938 	 * case.
1939 	 */
1940 	if (bp->b_flags & _XBF_DELWRI_Q) {
1941 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1942 		return false;
1943 	}
1944 
1945 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1946 
1947 	/*
1948 	 * If a buffer gets written out synchronously or marked stale while it
1949 	 * is on a delwri list we lazily remove it. To do this, the other party
1950 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1951 	 * It remains referenced and on the list.  In a rare corner case it
1952 	 * might get readded to a delwri list after the synchronous writeout, in
1953 	 * which case we need just need to re-add the flag here.
1954 	 */
1955 	bp->b_flags |= _XBF_DELWRI_Q;
1956 	if (list_empty(&bp->b_list)) {
1957 		atomic_inc(&bp->b_hold);
1958 		list_add_tail(&bp->b_list, list);
1959 	}
1960 
1961 	return true;
1962 }
1963 
1964 /*
1965  * Compare function is more complex than it needs to be because
1966  * the return value is only 32 bits and we are doing comparisons
1967  * on 64 bit values
1968  */
1969 static int
1970 xfs_buf_cmp(
1971 	void		*priv,
1972 	struct list_head *a,
1973 	struct list_head *b)
1974 {
1975 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1976 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1977 	xfs_daddr_t		diff;
1978 
1979 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1980 	if (diff < 0)
1981 		return -1;
1982 	if (diff > 0)
1983 		return 1;
1984 	return 0;
1985 }
1986 
1987 /*
1988  * submit buffers for write.
1989  *
1990  * When we have a large buffer list, we do not want to hold all the buffers
1991  * locked while we block on the request queue waiting for IO dispatch. To avoid
1992  * this problem, we lock and submit buffers in groups of 50, thereby minimising
1993  * the lock hold times for lists which may contain thousands of objects.
1994  *
1995  * To do this, we sort the buffer list before we walk the list to lock and
1996  * submit buffers, and we plug and unplug around each group of buffers we
1997  * submit.
1998  */
1999 static int
2000 xfs_buf_delwri_submit_buffers(
2001 	struct list_head	*buffer_list,
2002 	struct list_head	*wait_list)
2003 {
2004 	struct xfs_buf		*bp, *n;
2005 	LIST_HEAD		(submit_list);
2006 	int			pinned = 0;
2007 	struct blk_plug		plug;
2008 
2009 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2010 
2011 	blk_start_plug(&plug);
2012 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2013 		if (!wait_list) {
2014 			if (xfs_buf_ispinned(bp)) {
2015 				pinned++;
2016 				continue;
2017 			}
2018 			if (!xfs_buf_trylock(bp))
2019 				continue;
2020 		} else {
2021 			xfs_buf_lock(bp);
2022 		}
2023 
2024 		/*
2025 		 * Someone else might have written the buffer synchronously or
2026 		 * marked it stale in the meantime.  In that case only the
2027 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2028 		 * reference and remove it from the list here.
2029 		 */
2030 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2031 			list_del_init(&bp->b_list);
2032 			xfs_buf_relse(bp);
2033 			continue;
2034 		}
2035 
2036 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2037 
2038 		/*
2039 		 * We do all IO submission async. This means if we need
2040 		 * to wait for IO completion we need to take an extra
2041 		 * reference so the buffer is still valid on the other
2042 		 * side. We need to move the buffer onto the io_list
2043 		 * at this point so the caller can still access it.
2044 		 */
2045 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
2046 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
2047 		if (wait_list) {
2048 			xfs_buf_hold(bp);
2049 			list_move_tail(&bp->b_list, wait_list);
2050 		} else
2051 			list_del_init(&bp->b_list);
2052 
2053 		xfs_buf_submit(bp);
2054 	}
2055 	blk_finish_plug(&plug);
2056 
2057 	return pinned;
2058 }
2059 
2060 /*
2061  * Write out a buffer list asynchronously.
2062  *
2063  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2064  * out and not wait for I/O completion on any of the buffers.  This interface
2065  * is only safely useable for callers that can track I/O completion by higher
2066  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2067  * function.
2068  */
2069 int
2070 xfs_buf_delwri_submit_nowait(
2071 	struct list_head	*buffer_list)
2072 {
2073 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2074 }
2075 
2076 /*
2077  * Write out a buffer list synchronously.
2078  *
2079  * This will take the @buffer_list, write all buffers out and wait for I/O
2080  * completion on all of the buffers. @buffer_list is consumed by the function,
2081  * so callers must have some other way of tracking buffers if they require such
2082  * functionality.
2083  */
2084 int
2085 xfs_buf_delwri_submit(
2086 	struct list_head	*buffer_list)
2087 {
2088 	LIST_HEAD		(wait_list);
2089 	int			error = 0, error2;
2090 	struct xfs_buf		*bp;
2091 
2092 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2093 
2094 	/* Wait for IO to complete. */
2095 	while (!list_empty(&wait_list)) {
2096 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2097 
2098 		list_del_init(&bp->b_list);
2099 
2100 		/* locking the buffer will wait for async IO completion. */
2101 		xfs_buf_lock(bp);
2102 		error2 = bp->b_error;
2103 		xfs_buf_relse(bp);
2104 		if (!error)
2105 			error = error2;
2106 	}
2107 
2108 	return error;
2109 }
2110 
2111 /*
2112  * Push a single buffer on a delwri queue.
2113  *
2114  * The purpose of this function is to submit a single buffer of a delwri queue
2115  * and return with the buffer still on the original queue. The waiting delwri
2116  * buffer submission infrastructure guarantees transfer of the delwri queue
2117  * buffer reference to a temporary wait list. We reuse this infrastructure to
2118  * transfer the buffer back to the original queue.
2119  *
2120  * Note the buffer transitions from the queued state, to the submitted and wait
2121  * listed state and back to the queued state during this call. The buffer
2122  * locking and queue management logic between _delwri_pushbuf() and
2123  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2124  * before returning.
2125  */
2126 int
2127 xfs_buf_delwri_pushbuf(
2128 	struct xfs_buf		*bp,
2129 	struct list_head	*buffer_list)
2130 {
2131 	LIST_HEAD		(submit_list);
2132 	int			error;
2133 
2134 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2135 
2136 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2137 
2138 	/*
2139 	 * Isolate the buffer to a new local list so we can submit it for I/O
2140 	 * independently from the rest of the original list.
2141 	 */
2142 	xfs_buf_lock(bp);
2143 	list_move(&bp->b_list, &submit_list);
2144 	xfs_buf_unlock(bp);
2145 
2146 	/*
2147 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2148 	 * the buffer on the wait list with an associated reference. Rather than
2149 	 * bounce the buffer from a local wait list back to the original list
2150 	 * after I/O completion, reuse the original list as the wait list.
2151 	 */
2152 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2153 
2154 	/*
2155 	 * The buffer is now under I/O and wait listed as during typical delwri
2156 	 * submission. Lock the buffer to wait for I/O completion. Rather than
2157 	 * remove the buffer from the wait list and release the reference, we
2158 	 * want to return with the buffer queued to the original list. The
2159 	 * buffer already sits on the original list with a wait list reference,
2160 	 * however. If we let the queue inherit that wait list reference, all we
2161 	 * need to do is reset the DELWRI_Q flag.
2162 	 */
2163 	xfs_buf_lock(bp);
2164 	error = bp->b_error;
2165 	bp->b_flags |= _XBF_DELWRI_Q;
2166 	xfs_buf_unlock(bp);
2167 
2168 	return error;
2169 }
2170 
2171 int __init
2172 xfs_buf_init(void)
2173 {
2174 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2175 						KM_ZONE_HWALIGN, NULL);
2176 	if (!xfs_buf_zone)
2177 		goto out;
2178 
2179 	return 0;
2180 
2181  out:
2182 	return -ENOMEM;
2183 }
2184 
2185 void
2186 xfs_buf_terminate(void)
2187 {
2188 	kmem_zone_destroy(xfs_buf_zone);
2189 }
2190 
2191 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2192 {
2193 	/*
2194 	 * Set the lru reference count to 0 based on the error injection tag.
2195 	 * This allows userspace to disrupt buffer caching for debug/testing
2196 	 * purposes.
2197 	 */
2198 	if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2199 			   XFS_ERRTAG_BUF_LRU_REF))
2200 		lru_ref = 0;
2201 
2202 	atomic_set(&bp->b_lru_ref, lru_ref);
2203 }
2204