xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision a36954f5)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
37 
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
41 #include "xfs_sb.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44 #include "xfs_log.h"
45 
46 static kmem_zone_t *xfs_buf_zone;
47 
48 #ifdef XFS_BUF_LOCK_TRACKING
49 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
50 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
51 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
52 #else
53 # define XB_SET_OWNER(bp)	do { } while (0)
54 # define XB_CLEAR_OWNER(bp)	do { } while (0)
55 # define XB_GET_OWNER(bp)	do { } while (0)
56 #endif
57 
58 #define xb_to_gfp(flags) \
59 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
60 
61 
62 static inline int
63 xfs_buf_is_vmapped(
64 	struct xfs_buf	*bp)
65 {
66 	/*
67 	 * Return true if the buffer is vmapped.
68 	 *
69 	 * b_addr is null if the buffer is not mapped, but the code is clever
70 	 * enough to know it doesn't have to map a single page, so the check has
71 	 * to be both for b_addr and bp->b_page_count > 1.
72 	 */
73 	return bp->b_addr && bp->b_page_count > 1;
74 }
75 
76 static inline int
77 xfs_buf_vmap_len(
78 	struct xfs_buf	*bp)
79 {
80 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
81 }
82 
83 /*
84  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
85  * this buffer. The count is incremented once per buffer (per hold cycle)
86  * because the corresponding decrement is deferred to buffer release. Buffers
87  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
88  * tracking adds unnecessary overhead. This is used for sychronization purposes
89  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
90  * in-flight buffers.
91  *
92  * Buffers that are never released (e.g., superblock, iclog buffers) must set
93  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
94  * never reaches zero and unmount hangs indefinitely.
95  */
96 static inline void
97 xfs_buf_ioacct_inc(
98 	struct xfs_buf	*bp)
99 {
100 	if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
101 		return;
102 
103 	ASSERT(bp->b_flags & XBF_ASYNC);
104 	bp->b_flags |= _XBF_IN_FLIGHT;
105 	percpu_counter_inc(&bp->b_target->bt_io_count);
106 }
107 
108 /*
109  * Clear the in-flight state on a buffer about to be released to the LRU or
110  * freed and unaccount from the buftarg.
111  */
112 static inline void
113 xfs_buf_ioacct_dec(
114 	struct xfs_buf	*bp)
115 {
116 	if (!(bp->b_flags & _XBF_IN_FLIGHT))
117 		return;
118 
119 	bp->b_flags &= ~_XBF_IN_FLIGHT;
120 	percpu_counter_dec(&bp->b_target->bt_io_count);
121 }
122 
123 /*
124  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
125  * b_lru_ref count so that the buffer is freed immediately when the buffer
126  * reference count falls to zero. If the buffer is already on the LRU, we need
127  * to remove the reference that LRU holds on the buffer.
128  *
129  * This prevents build-up of stale buffers on the LRU.
130  */
131 void
132 xfs_buf_stale(
133 	struct xfs_buf	*bp)
134 {
135 	ASSERT(xfs_buf_islocked(bp));
136 
137 	bp->b_flags |= XBF_STALE;
138 
139 	/*
140 	 * Clear the delwri status so that a delwri queue walker will not
141 	 * flush this buffer to disk now that it is stale. The delwri queue has
142 	 * a reference to the buffer, so this is safe to do.
143 	 */
144 	bp->b_flags &= ~_XBF_DELWRI_Q;
145 
146 	/*
147 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
148 	 * could reset b_flags. There is no guarantee that the buffer is
149 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
150 	 * status now to preserve accounting consistency.
151 	 */
152 	xfs_buf_ioacct_dec(bp);
153 
154 	spin_lock(&bp->b_lock);
155 	atomic_set(&bp->b_lru_ref, 0);
156 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
157 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
158 		atomic_dec(&bp->b_hold);
159 
160 	ASSERT(atomic_read(&bp->b_hold) >= 1);
161 	spin_unlock(&bp->b_lock);
162 }
163 
164 static int
165 xfs_buf_get_maps(
166 	struct xfs_buf		*bp,
167 	int			map_count)
168 {
169 	ASSERT(bp->b_maps == NULL);
170 	bp->b_map_count = map_count;
171 
172 	if (map_count == 1) {
173 		bp->b_maps = &bp->__b_map;
174 		return 0;
175 	}
176 
177 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
178 				KM_NOFS);
179 	if (!bp->b_maps)
180 		return -ENOMEM;
181 	return 0;
182 }
183 
184 /*
185  *	Frees b_pages if it was allocated.
186  */
187 static void
188 xfs_buf_free_maps(
189 	struct xfs_buf	*bp)
190 {
191 	if (bp->b_maps != &bp->__b_map) {
192 		kmem_free(bp->b_maps);
193 		bp->b_maps = NULL;
194 	}
195 }
196 
197 struct xfs_buf *
198 _xfs_buf_alloc(
199 	struct xfs_buftarg	*target,
200 	struct xfs_buf_map	*map,
201 	int			nmaps,
202 	xfs_buf_flags_t		flags)
203 {
204 	struct xfs_buf		*bp;
205 	int			error;
206 	int			i;
207 
208 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
209 	if (unlikely(!bp))
210 		return NULL;
211 
212 	/*
213 	 * We don't want certain flags to appear in b_flags unless they are
214 	 * specifically set by later operations on the buffer.
215 	 */
216 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
217 
218 	atomic_set(&bp->b_hold, 1);
219 	atomic_set(&bp->b_lru_ref, 1);
220 	init_completion(&bp->b_iowait);
221 	INIT_LIST_HEAD(&bp->b_lru);
222 	INIT_LIST_HEAD(&bp->b_list);
223 	sema_init(&bp->b_sema, 0); /* held, no waiters */
224 	spin_lock_init(&bp->b_lock);
225 	XB_SET_OWNER(bp);
226 	bp->b_target = target;
227 	bp->b_flags = flags;
228 
229 	/*
230 	 * Set length and io_length to the same value initially.
231 	 * I/O routines should use io_length, which will be the same in
232 	 * most cases but may be reset (e.g. XFS recovery).
233 	 */
234 	error = xfs_buf_get_maps(bp, nmaps);
235 	if (error)  {
236 		kmem_zone_free(xfs_buf_zone, bp);
237 		return NULL;
238 	}
239 
240 	bp->b_bn = map[0].bm_bn;
241 	bp->b_length = 0;
242 	for (i = 0; i < nmaps; i++) {
243 		bp->b_maps[i].bm_bn = map[i].bm_bn;
244 		bp->b_maps[i].bm_len = map[i].bm_len;
245 		bp->b_length += map[i].bm_len;
246 	}
247 	bp->b_io_length = bp->b_length;
248 
249 	atomic_set(&bp->b_pin_count, 0);
250 	init_waitqueue_head(&bp->b_waiters);
251 
252 	XFS_STATS_INC(target->bt_mount, xb_create);
253 	trace_xfs_buf_init(bp, _RET_IP_);
254 
255 	return bp;
256 }
257 
258 /*
259  *	Allocate a page array capable of holding a specified number
260  *	of pages, and point the page buf at it.
261  */
262 STATIC int
263 _xfs_buf_get_pages(
264 	xfs_buf_t		*bp,
265 	int			page_count)
266 {
267 	/* Make sure that we have a page list */
268 	if (bp->b_pages == NULL) {
269 		bp->b_page_count = page_count;
270 		if (page_count <= XB_PAGES) {
271 			bp->b_pages = bp->b_page_array;
272 		} else {
273 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
274 						 page_count, KM_NOFS);
275 			if (bp->b_pages == NULL)
276 				return -ENOMEM;
277 		}
278 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
279 	}
280 	return 0;
281 }
282 
283 /*
284  *	Frees b_pages if it was allocated.
285  */
286 STATIC void
287 _xfs_buf_free_pages(
288 	xfs_buf_t	*bp)
289 {
290 	if (bp->b_pages != bp->b_page_array) {
291 		kmem_free(bp->b_pages);
292 		bp->b_pages = NULL;
293 	}
294 }
295 
296 /*
297  *	Releases the specified buffer.
298  *
299  * 	The modification state of any associated pages is left unchanged.
300  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
301  * 	hashed and refcounted buffers
302  */
303 void
304 xfs_buf_free(
305 	xfs_buf_t		*bp)
306 {
307 	trace_xfs_buf_free(bp, _RET_IP_);
308 
309 	ASSERT(list_empty(&bp->b_lru));
310 
311 	if (bp->b_flags & _XBF_PAGES) {
312 		uint		i;
313 
314 		if (xfs_buf_is_vmapped(bp))
315 			vm_unmap_ram(bp->b_addr - bp->b_offset,
316 					bp->b_page_count);
317 
318 		for (i = 0; i < bp->b_page_count; i++) {
319 			struct page	*page = bp->b_pages[i];
320 
321 			__free_page(page);
322 		}
323 	} else if (bp->b_flags & _XBF_KMEM)
324 		kmem_free(bp->b_addr);
325 	_xfs_buf_free_pages(bp);
326 	xfs_buf_free_maps(bp);
327 	kmem_zone_free(xfs_buf_zone, bp);
328 }
329 
330 /*
331  * Allocates all the pages for buffer in question and builds it's page list.
332  */
333 STATIC int
334 xfs_buf_allocate_memory(
335 	xfs_buf_t		*bp,
336 	uint			flags)
337 {
338 	size_t			size;
339 	size_t			nbytes, offset;
340 	gfp_t			gfp_mask = xb_to_gfp(flags);
341 	unsigned short		page_count, i;
342 	xfs_off_t		start, end;
343 	int			error;
344 
345 	/*
346 	 * for buffers that are contained within a single page, just allocate
347 	 * the memory from the heap - there's no need for the complexity of
348 	 * page arrays to keep allocation down to order 0.
349 	 */
350 	size = BBTOB(bp->b_length);
351 	if (size < PAGE_SIZE) {
352 		bp->b_addr = kmem_alloc(size, KM_NOFS);
353 		if (!bp->b_addr) {
354 			/* low memory - use alloc_page loop instead */
355 			goto use_alloc_page;
356 		}
357 
358 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
359 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
360 			/* b_addr spans two pages - use alloc_page instead */
361 			kmem_free(bp->b_addr);
362 			bp->b_addr = NULL;
363 			goto use_alloc_page;
364 		}
365 		bp->b_offset = offset_in_page(bp->b_addr);
366 		bp->b_pages = bp->b_page_array;
367 		bp->b_pages[0] = virt_to_page(bp->b_addr);
368 		bp->b_page_count = 1;
369 		bp->b_flags |= _XBF_KMEM;
370 		return 0;
371 	}
372 
373 use_alloc_page:
374 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
375 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
376 								>> PAGE_SHIFT;
377 	page_count = end - start;
378 	error = _xfs_buf_get_pages(bp, page_count);
379 	if (unlikely(error))
380 		return error;
381 
382 	offset = bp->b_offset;
383 	bp->b_flags |= _XBF_PAGES;
384 
385 	for (i = 0; i < bp->b_page_count; i++) {
386 		struct page	*page;
387 		uint		retries = 0;
388 retry:
389 		page = alloc_page(gfp_mask);
390 		if (unlikely(page == NULL)) {
391 			if (flags & XBF_READ_AHEAD) {
392 				bp->b_page_count = i;
393 				error = -ENOMEM;
394 				goto out_free_pages;
395 			}
396 
397 			/*
398 			 * This could deadlock.
399 			 *
400 			 * But until all the XFS lowlevel code is revamped to
401 			 * handle buffer allocation failures we can't do much.
402 			 */
403 			if (!(++retries % 100))
404 				xfs_err(NULL,
405 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
406 					current->comm, current->pid,
407 					__func__, gfp_mask);
408 
409 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
410 			congestion_wait(BLK_RW_ASYNC, HZ/50);
411 			goto retry;
412 		}
413 
414 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
415 
416 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
417 		size -= nbytes;
418 		bp->b_pages[i] = page;
419 		offset = 0;
420 	}
421 	return 0;
422 
423 out_free_pages:
424 	for (i = 0; i < bp->b_page_count; i++)
425 		__free_page(bp->b_pages[i]);
426 	bp->b_flags &= ~_XBF_PAGES;
427 	return error;
428 }
429 
430 /*
431  *	Map buffer into kernel address-space if necessary.
432  */
433 STATIC int
434 _xfs_buf_map_pages(
435 	xfs_buf_t		*bp,
436 	uint			flags)
437 {
438 	ASSERT(bp->b_flags & _XBF_PAGES);
439 	if (bp->b_page_count == 1) {
440 		/* A single page buffer is always mappable */
441 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
442 	} else if (flags & XBF_UNMAPPED) {
443 		bp->b_addr = NULL;
444 	} else {
445 		int retried = 0;
446 		unsigned nofs_flag;
447 
448 		/*
449 		 * vm_map_ram() will allocate auxillary structures (e.g.
450 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
451 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
452 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
453 		 * memory reclaim re-entering the filesystem here and
454 		 * potentially deadlocking.
455 		 */
456 		nofs_flag = memalloc_nofs_save();
457 		do {
458 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
459 						-1, PAGE_KERNEL);
460 			if (bp->b_addr)
461 				break;
462 			vm_unmap_aliases();
463 		} while (retried++ <= 1);
464 		memalloc_nofs_restore(nofs_flag);
465 
466 		if (!bp->b_addr)
467 			return -ENOMEM;
468 		bp->b_addr += bp->b_offset;
469 	}
470 
471 	return 0;
472 }
473 
474 /*
475  *	Finding and Reading Buffers
476  */
477 static int
478 _xfs_buf_obj_cmp(
479 	struct rhashtable_compare_arg	*arg,
480 	const void			*obj)
481 {
482 	const struct xfs_buf_map	*map = arg->key;
483 	const struct xfs_buf		*bp = obj;
484 
485 	/*
486 	 * The key hashing in the lookup path depends on the key being the
487 	 * first element of the compare_arg, make sure to assert this.
488 	 */
489 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
490 
491 	if (bp->b_bn != map->bm_bn)
492 		return 1;
493 
494 	if (unlikely(bp->b_length != map->bm_len)) {
495 		/*
496 		 * found a block number match. If the range doesn't
497 		 * match, the only way this is allowed is if the buffer
498 		 * in the cache is stale and the transaction that made
499 		 * it stale has not yet committed. i.e. we are
500 		 * reallocating a busy extent. Skip this buffer and
501 		 * continue searching for an exact match.
502 		 */
503 		ASSERT(bp->b_flags & XBF_STALE);
504 		return 1;
505 	}
506 	return 0;
507 }
508 
509 static const struct rhashtable_params xfs_buf_hash_params = {
510 	.min_size		= 32,	/* empty AGs have minimal footprint */
511 	.nelem_hint		= 16,
512 	.key_len		= sizeof(xfs_daddr_t),
513 	.key_offset		= offsetof(struct xfs_buf, b_bn),
514 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
515 	.automatic_shrinking	= true,
516 	.obj_cmpfn		= _xfs_buf_obj_cmp,
517 };
518 
519 int
520 xfs_buf_hash_init(
521 	struct xfs_perag	*pag)
522 {
523 	spin_lock_init(&pag->pag_buf_lock);
524 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
525 }
526 
527 void
528 xfs_buf_hash_destroy(
529 	struct xfs_perag	*pag)
530 {
531 	rhashtable_destroy(&pag->pag_buf_hash);
532 }
533 
534 /*
535  *	Look up, and creates if absent, a lockable buffer for
536  *	a given range of an inode.  The buffer is returned
537  *	locked.	No I/O is implied by this call.
538  */
539 xfs_buf_t *
540 _xfs_buf_find(
541 	struct xfs_buftarg	*btp,
542 	struct xfs_buf_map	*map,
543 	int			nmaps,
544 	xfs_buf_flags_t		flags,
545 	xfs_buf_t		*new_bp)
546 {
547 	struct xfs_perag	*pag;
548 	xfs_buf_t		*bp;
549 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
550 	xfs_daddr_t		eofs;
551 	int			i;
552 
553 	for (i = 0; i < nmaps; i++)
554 		cmap.bm_len += map[i].bm_len;
555 
556 	/* Check for IOs smaller than the sector size / not sector aligned */
557 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
558 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
559 
560 	/*
561 	 * Corrupted block numbers can get through to here, unfortunately, so we
562 	 * have to check that the buffer falls within the filesystem bounds.
563 	 */
564 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
565 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
566 		/*
567 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
568 		 * but none of the higher level infrastructure supports
569 		 * returning a specific error on buffer lookup failures.
570 		 */
571 		xfs_alert(btp->bt_mount,
572 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
573 			  __func__, cmap.bm_bn, eofs);
574 		WARN_ON(1);
575 		return NULL;
576 	}
577 
578 	pag = xfs_perag_get(btp->bt_mount,
579 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
580 
581 	spin_lock(&pag->pag_buf_lock);
582 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
583 				    xfs_buf_hash_params);
584 	if (bp) {
585 		atomic_inc(&bp->b_hold);
586 		goto found;
587 	}
588 
589 	/* No match found */
590 	if (new_bp) {
591 		/* the buffer keeps the perag reference until it is freed */
592 		new_bp->b_pag = pag;
593 		rhashtable_insert_fast(&pag->pag_buf_hash,
594 				       &new_bp->b_rhash_head,
595 				       xfs_buf_hash_params);
596 		spin_unlock(&pag->pag_buf_lock);
597 	} else {
598 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
599 		spin_unlock(&pag->pag_buf_lock);
600 		xfs_perag_put(pag);
601 	}
602 	return new_bp;
603 
604 found:
605 	spin_unlock(&pag->pag_buf_lock);
606 	xfs_perag_put(pag);
607 
608 	if (!xfs_buf_trylock(bp)) {
609 		if (flags & XBF_TRYLOCK) {
610 			xfs_buf_rele(bp);
611 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
612 			return NULL;
613 		}
614 		xfs_buf_lock(bp);
615 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
616 	}
617 
618 	/*
619 	 * if the buffer is stale, clear all the external state associated with
620 	 * it. We need to keep flags such as how we allocated the buffer memory
621 	 * intact here.
622 	 */
623 	if (bp->b_flags & XBF_STALE) {
624 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
625 		ASSERT(bp->b_iodone == NULL);
626 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
627 		bp->b_ops = NULL;
628 	}
629 
630 	trace_xfs_buf_find(bp, flags, _RET_IP_);
631 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
632 	return bp;
633 }
634 
635 /*
636  * Assembles a buffer covering the specified range. The code is optimised for
637  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
638  * more hits than misses.
639  */
640 struct xfs_buf *
641 xfs_buf_get_map(
642 	struct xfs_buftarg	*target,
643 	struct xfs_buf_map	*map,
644 	int			nmaps,
645 	xfs_buf_flags_t		flags)
646 {
647 	struct xfs_buf		*bp;
648 	struct xfs_buf		*new_bp;
649 	int			error = 0;
650 
651 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
652 	if (likely(bp))
653 		goto found;
654 
655 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
656 	if (unlikely(!new_bp))
657 		return NULL;
658 
659 	error = xfs_buf_allocate_memory(new_bp, flags);
660 	if (error) {
661 		xfs_buf_free(new_bp);
662 		return NULL;
663 	}
664 
665 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
666 	if (!bp) {
667 		xfs_buf_free(new_bp);
668 		return NULL;
669 	}
670 
671 	if (bp != new_bp)
672 		xfs_buf_free(new_bp);
673 
674 found:
675 	if (!bp->b_addr) {
676 		error = _xfs_buf_map_pages(bp, flags);
677 		if (unlikely(error)) {
678 			xfs_warn(target->bt_mount,
679 				"%s: failed to map pagesn", __func__);
680 			xfs_buf_relse(bp);
681 			return NULL;
682 		}
683 	}
684 
685 	/*
686 	 * Clear b_error if this is a lookup from a caller that doesn't expect
687 	 * valid data to be found in the buffer.
688 	 */
689 	if (!(flags & XBF_READ))
690 		xfs_buf_ioerror(bp, 0);
691 
692 	XFS_STATS_INC(target->bt_mount, xb_get);
693 	trace_xfs_buf_get(bp, flags, _RET_IP_);
694 	return bp;
695 }
696 
697 STATIC int
698 _xfs_buf_read(
699 	xfs_buf_t		*bp,
700 	xfs_buf_flags_t		flags)
701 {
702 	ASSERT(!(flags & XBF_WRITE));
703 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
704 
705 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
706 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
707 
708 	if (flags & XBF_ASYNC) {
709 		xfs_buf_submit(bp);
710 		return 0;
711 	}
712 	return xfs_buf_submit_wait(bp);
713 }
714 
715 xfs_buf_t *
716 xfs_buf_read_map(
717 	struct xfs_buftarg	*target,
718 	struct xfs_buf_map	*map,
719 	int			nmaps,
720 	xfs_buf_flags_t		flags,
721 	const struct xfs_buf_ops *ops)
722 {
723 	struct xfs_buf		*bp;
724 
725 	flags |= XBF_READ;
726 
727 	bp = xfs_buf_get_map(target, map, nmaps, flags);
728 	if (bp) {
729 		trace_xfs_buf_read(bp, flags, _RET_IP_);
730 
731 		if (!(bp->b_flags & XBF_DONE)) {
732 			XFS_STATS_INC(target->bt_mount, xb_get_read);
733 			bp->b_ops = ops;
734 			_xfs_buf_read(bp, flags);
735 		} else if (flags & XBF_ASYNC) {
736 			/*
737 			 * Read ahead call which is already satisfied,
738 			 * drop the buffer
739 			 */
740 			xfs_buf_relse(bp);
741 			return NULL;
742 		} else {
743 			/* We do not want read in the flags */
744 			bp->b_flags &= ~XBF_READ;
745 		}
746 	}
747 
748 	return bp;
749 }
750 
751 /*
752  *	If we are not low on memory then do the readahead in a deadlock
753  *	safe manner.
754  */
755 void
756 xfs_buf_readahead_map(
757 	struct xfs_buftarg	*target,
758 	struct xfs_buf_map	*map,
759 	int			nmaps,
760 	const struct xfs_buf_ops *ops)
761 {
762 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
763 		return;
764 
765 	xfs_buf_read_map(target, map, nmaps,
766 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
767 }
768 
769 /*
770  * Read an uncached buffer from disk. Allocates and returns a locked
771  * buffer containing the disk contents or nothing.
772  */
773 int
774 xfs_buf_read_uncached(
775 	struct xfs_buftarg	*target,
776 	xfs_daddr_t		daddr,
777 	size_t			numblks,
778 	int			flags,
779 	struct xfs_buf		**bpp,
780 	const struct xfs_buf_ops *ops)
781 {
782 	struct xfs_buf		*bp;
783 
784 	*bpp = NULL;
785 
786 	bp = xfs_buf_get_uncached(target, numblks, flags);
787 	if (!bp)
788 		return -ENOMEM;
789 
790 	/* set up the buffer for a read IO */
791 	ASSERT(bp->b_map_count == 1);
792 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
793 	bp->b_maps[0].bm_bn = daddr;
794 	bp->b_flags |= XBF_READ;
795 	bp->b_ops = ops;
796 
797 	xfs_buf_submit_wait(bp);
798 	if (bp->b_error) {
799 		int	error = bp->b_error;
800 		xfs_buf_relse(bp);
801 		return error;
802 	}
803 
804 	*bpp = bp;
805 	return 0;
806 }
807 
808 /*
809  * Return a buffer allocated as an empty buffer and associated to external
810  * memory via xfs_buf_associate_memory() back to it's empty state.
811  */
812 void
813 xfs_buf_set_empty(
814 	struct xfs_buf		*bp,
815 	size_t			numblks)
816 {
817 	if (bp->b_pages)
818 		_xfs_buf_free_pages(bp);
819 
820 	bp->b_pages = NULL;
821 	bp->b_page_count = 0;
822 	bp->b_addr = NULL;
823 	bp->b_length = numblks;
824 	bp->b_io_length = numblks;
825 
826 	ASSERT(bp->b_map_count == 1);
827 	bp->b_bn = XFS_BUF_DADDR_NULL;
828 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
829 	bp->b_maps[0].bm_len = bp->b_length;
830 }
831 
832 static inline struct page *
833 mem_to_page(
834 	void			*addr)
835 {
836 	if ((!is_vmalloc_addr(addr))) {
837 		return virt_to_page(addr);
838 	} else {
839 		return vmalloc_to_page(addr);
840 	}
841 }
842 
843 int
844 xfs_buf_associate_memory(
845 	xfs_buf_t		*bp,
846 	void			*mem,
847 	size_t			len)
848 {
849 	int			rval;
850 	int			i = 0;
851 	unsigned long		pageaddr;
852 	unsigned long		offset;
853 	size_t			buflen;
854 	int			page_count;
855 
856 	pageaddr = (unsigned long)mem & PAGE_MASK;
857 	offset = (unsigned long)mem - pageaddr;
858 	buflen = PAGE_ALIGN(len + offset);
859 	page_count = buflen >> PAGE_SHIFT;
860 
861 	/* Free any previous set of page pointers */
862 	if (bp->b_pages)
863 		_xfs_buf_free_pages(bp);
864 
865 	bp->b_pages = NULL;
866 	bp->b_addr = mem;
867 
868 	rval = _xfs_buf_get_pages(bp, page_count);
869 	if (rval)
870 		return rval;
871 
872 	bp->b_offset = offset;
873 
874 	for (i = 0; i < bp->b_page_count; i++) {
875 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
876 		pageaddr += PAGE_SIZE;
877 	}
878 
879 	bp->b_io_length = BTOBB(len);
880 	bp->b_length = BTOBB(buflen);
881 
882 	return 0;
883 }
884 
885 xfs_buf_t *
886 xfs_buf_get_uncached(
887 	struct xfs_buftarg	*target,
888 	size_t			numblks,
889 	int			flags)
890 {
891 	unsigned long		page_count;
892 	int			error, i;
893 	struct xfs_buf		*bp;
894 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
895 
896 	/* flags might contain irrelevant bits, pass only what we care about */
897 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
898 	if (unlikely(bp == NULL))
899 		goto fail;
900 
901 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
902 	error = _xfs_buf_get_pages(bp, page_count);
903 	if (error)
904 		goto fail_free_buf;
905 
906 	for (i = 0; i < page_count; i++) {
907 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
908 		if (!bp->b_pages[i])
909 			goto fail_free_mem;
910 	}
911 	bp->b_flags |= _XBF_PAGES;
912 
913 	error = _xfs_buf_map_pages(bp, 0);
914 	if (unlikely(error)) {
915 		xfs_warn(target->bt_mount,
916 			"%s: failed to map pages", __func__);
917 		goto fail_free_mem;
918 	}
919 
920 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
921 	return bp;
922 
923  fail_free_mem:
924 	while (--i >= 0)
925 		__free_page(bp->b_pages[i]);
926 	_xfs_buf_free_pages(bp);
927  fail_free_buf:
928 	xfs_buf_free_maps(bp);
929 	kmem_zone_free(xfs_buf_zone, bp);
930  fail:
931 	return NULL;
932 }
933 
934 /*
935  *	Increment reference count on buffer, to hold the buffer concurrently
936  *	with another thread which may release (free) the buffer asynchronously.
937  *	Must hold the buffer already to call this function.
938  */
939 void
940 xfs_buf_hold(
941 	xfs_buf_t		*bp)
942 {
943 	trace_xfs_buf_hold(bp, _RET_IP_);
944 	atomic_inc(&bp->b_hold);
945 }
946 
947 /*
948  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
949  * placed on LRU or freed (depending on b_lru_ref).
950  */
951 void
952 xfs_buf_rele(
953 	xfs_buf_t		*bp)
954 {
955 	struct xfs_perag	*pag = bp->b_pag;
956 	bool			release;
957 	bool			freebuf = false;
958 
959 	trace_xfs_buf_rele(bp, _RET_IP_);
960 
961 	if (!pag) {
962 		ASSERT(list_empty(&bp->b_lru));
963 		if (atomic_dec_and_test(&bp->b_hold)) {
964 			xfs_buf_ioacct_dec(bp);
965 			xfs_buf_free(bp);
966 		}
967 		return;
968 	}
969 
970 	ASSERT(atomic_read(&bp->b_hold) > 0);
971 
972 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
973 	spin_lock(&bp->b_lock);
974 	if (!release) {
975 		/*
976 		 * Drop the in-flight state if the buffer is already on the LRU
977 		 * and it holds the only reference. This is racy because we
978 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
979 		 * ensures the decrement occurs only once per-buf.
980 		 */
981 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
982 			xfs_buf_ioacct_dec(bp);
983 		goto out_unlock;
984 	}
985 
986 	/* the last reference has been dropped ... */
987 	xfs_buf_ioacct_dec(bp);
988 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
989 		/*
990 		 * If the buffer is added to the LRU take a new reference to the
991 		 * buffer for the LRU and clear the (now stale) dispose list
992 		 * state flag
993 		 */
994 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
995 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
996 			atomic_inc(&bp->b_hold);
997 		}
998 		spin_unlock(&pag->pag_buf_lock);
999 	} else {
1000 		/*
1001 		 * most of the time buffers will already be removed from the
1002 		 * LRU, so optimise that case by checking for the
1003 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1004 		 * was on was the disposal list
1005 		 */
1006 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1007 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1008 		} else {
1009 			ASSERT(list_empty(&bp->b_lru));
1010 		}
1011 
1012 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1013 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1014 				       xfs_buf_hash_params);
1015 		spin_unlock(&pag->pag_buf_lock);
1016 		xfs_perag_put(pag);
1017 		freebuf = true;
1018 	}
1019 
1020 out_unlock:
1021 	spin_unlock(&bp->b_lock);
1022 
1023 	if (freebuf)
1024 		xfs_buf_free(bp);
1025 }
1026 
1027 
1028 /*
1029  *	Lock a buffer object, if it is not already locked.
1030  *
1031  *	If we come across a stale, pinned, locked buffer, we know that we are
1032  *	being asked to lock a buffer that has been reallocated. Because it is
1033  *	pinned, we know that the log has not been pushed to disk and hence it
1034  *	will still be locked.  Rather than continuing to have trylock attempts
1035  *	fail until someone else pushes the log, push it ourselves before
1036  *	returning.  This means that the xfsaild will not get stuck trying
1037  *	to push on stale inode buffers.
1038  */
1039 int
1040 xfs_buf_trylock(
1041 	struct xfs_buf		*bp)
1042 {
1043 	int			locked;
1044 
1045 	locked = down_trylock(&bp->b_sema) == 0;
1046 	if (locked) {
1047 		XB_SET_OWNER(bp);
1048 		trace_xfs_buf_trylock(bp, _RET_IP_);
1049 	} else {
1050 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1051 	}
1052 	return locked;
1053 }
1054 
1055 /*
1056  *	Lock a buffer object.
1057  *
1058  *	If we come across a stale, pinned, locked buffer, we know that we
1059  *	are being asked to lock a buffer that has been reallocated. Because
1060  *	it is pinned, we know that the log has not been pushed to disk and
1061  *	hence it will still be locked. Rather than sleeping until someone
1062  *	else pushes the log, push it ourselves before trying to get the lock.
1063  */
1064 void
1065 xfs_buf_lock(
1066 	struct xfs_buf		*bp)
1067 {
1068 	trace_xfs_buf_lock(bp, _RET_IP_);
1069 
1070 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1071 		xfs_log_force(bp->b_target->bt_mount, 0);
1072 	down(&bp->b_sema);
1073 	XB_SET_OWNER(bp);
1074 
1075 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1076 }
1077 
1078 void
1079 xfs_buf_unlock(
1080 	struct xfs_buf		*bp)
1081 {
1082 	ASSERT(xfs_buf_islocked(bp));
1083 
1084 	XB_CLEAR_OWNER(bp);
1085 	up(&bp->b_sema);
1086 
1087 	trace_xfs_buf_unlock(bp, _RET_IP_);
1088 }
1089 
1090 STATIC void
1091 xfs_buf_wait_unpin(
1092 	xfs_buf_t		*bp)
1093 {
1094 	DECLARE_WAITQUEUE	(wait, current);
1095 
1096 	if (atomic_read(&bp->b_pin_count) == 0)
1097 		return;
1098 
1099 	add_wait_queue(&bp->b_waiters, &wait);
1100 	for (;;) {
1101 		set_current_state(TASK_UNINTERRUPTIBLE);
1102 		if (atomic_read(&bp->b_pin_count) == 0)
1103 			break;
1104 		io_schedule();
1105 	}
1106 	remove_wait_queue(&bp->b_waiters, &wait);
1107 	set_current_state(TASK_RUNNING);
1108 }
1109 
1110 /*
1111  *	Buffer Utility Routines
1112  */
1113 
1114 void
1115 xfs_buf_ioend(
1116 	struct xfs_buf	*bp)
1117 {
1118 	bool		read = bp->b_flags & XBF_READ;
1119 
1120 	trace_xfs_buf_iodone(bp, _RET_IP_);
1121 
1122 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1123 
1124 	/*
1125 	 * Pull in IO completion errors now. We are guaranteed to be running
1126 	 * single threaded, so we don't need the lock to read b_io_error.
1127 	 */
1128 	if (!bp->b_error && bp->b_io_error)
1129 		xfs_buf_ioerror(bp, bp->b_io_error);
1130 
1131 	/* Only validate buffers that were read without errors */
1132 	if (read && !bp->b_error && bp->b_ops) {
1133 		ASSERT(!bp->b_iodone);
1134 		bp->b_ops->verify_read(bp);
1135 	}
1136 
1137 	if (!bp->b_error)
1138 		bp->b_flags |= XBF_DONE;
1139 
1140 	if (bp->b_iodone)
1141 		(*(bp->b_iodone))(bp);
1142 	else if (bp->b_flags & XBF_ASYNC)
1143 		xfs_buf_relse(bp);
1144 	else
1145 		complete(&bp->b_iowait);
1146 }
1147 
1148 static void
1149 xfs_buf_ioend_work(
1150 	struct work_struct	*work)
1151 {
1152 	struct xfs_buf		*bp =
1153 		container_of(work, xfs_buf_t, b_ioend_work);
1154 
1155 	xfs_buf_ioend(bp);
1156 }
1157 
1158 static void
1159 xfs_buf_ioend_async(
1160 	struct xfs_buf	*bp)
1161 {
1162 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1163 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1164 }
1165 
1166 void
1167 xfs_buf_ioerror(
1168 	xfs_buf_t		*bp,
1169 	int			error)
1170 {
1171 	ASSERT(error <= 0 && error >= -1000);
1172 	bp->b_error = error;
1173 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1174 }
1175 
1176 void
1177 xfs_buf_ioerror_alert(
1178 	struct xfs_buf		*bp,
1179 	const char		*func)
1180 {
1181 	xfs_alert(bp->b_target->bt_mount,
1182 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1183 		(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1184 }
1185 
1186 int
1187 xfs_bwrite(
1188 	struct xfs_buf		*bp)
1189 {
1190 	int			error;
1191 
1192 	ASSERT(xfs_buf_islocked(bp));
1193 
1194 	bp->b_flags |= XBF_WRITE;
1195 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1196 			 XBF_WRITE_FAIL | XBF_DONE);
1197 
1198 	error = xfs_buf_submit_wait(bp);
1199 	if (error) {
1200 		xfs_force_shutdown(bp->b_target->bt_mount,
1201 				   SHUTDOWN_META_IO_ERROR);
1202 	}
1203 	return error;
1204 }
1205 
1206 static void
1207 xfs_buf_bio_end_io(
1208 	struct bio		*bio)
1209 {
1210 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1211 
1212 	/*
1213 	 * don't overwrite existing errors - otherwise we can lose errors on
1214 	 * buffers that require multiple bios to complete.
1215 	 */
1216 	if (bio->bi_error)
1217 		cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1218 
1219 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1220 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1221 
1222 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1223 		xfs_buf_ioend_async(bp);
1224 	bio_put(bio);
1225 }
1226 
1227 static void
1228 xfs_buf_ioapply_map(
1229 	struct xfs_buf	*bp,
1230 	int		map,
1231 	int		*buf_offset,
1232 	int		*count,
1233 	int		op,
1234 	int		op_flags)
1235 {
1236 	int		page_index;
1237 	int		total_nr_pages = bp->b_page_count;
1238 	int		nr_pages;
1239 	struct bio	*bio;
1240 	sector_t	sector =  bp->b_maps[map].bm_bn;
1241 	int		size;
1242 	int		offset;
1243 
1244 	total_nr_pages = bp->b_page_count;
1245 
1246 	/* skip the pages in the buffer before the start offset */
1247 	page_index = 0;
1248 	offset = *buf_offset;
1249 	while (offset >= PAGE_SIZE) {
1250 		page_index++;
1251 		offset -= PAGE_SIZE;
1252 	}
1253 
1254 	/*
1255 	 * Limit the IO size to the length of the current vector, and update the
1256 	 * remaining IO count for the next time around.
1257 	 */
1258 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1259 	*count -= size;
1260 	*buf_offset += size;
1261 
1262 next_chunk:
1263 	atomic_inc(&bp->b_io_remaining);
1264 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1265 
1266 	bio = bio_alloc(GFP_NOIO, nr_pages);
1267 	bio->bi_bdev = bp->b_target->bt_bdev;
1268 	bio->bi_iter.bi_sector = sector;
1269 	bio->bi_end_io = xfs_buf_bio_end_io;
1270 	bio->bi_private = bp;
1271 	bio_set_op_attrs(bio, op, op_flags);
1272 
1273 	for (; size && nr_pages; nr_pages--, page_index++) {
1274 		int	rbytes, nbytes = PAGE_SIZE - offset;
1275 
1276 		if (nbytes > size)
1277 			nbytes = size;
1278 
1279 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1280 				      offset);
1281 		if (rbytes < nbytes)
1282 			break;
1283 
1284 		offset = 0;
1285 		sector += BTOBB(nbytes);
1286 		size -= nbytes;
1287 		total_nr_pages--;
1288 	}
1289 
1290 	if (likely(bio->bi_iter.bi_size)) {
1291 		if (xfs_buf_is_vmapped(bp)) {
1292 			flush_kernel_vmap_range(bp->b_addr,
1293 						xfs_buf_vmap_len(bp));
1294 		}
1295 		submit_bio(bio);
1296 		if (size)
1297 			goto next_chunk;
1298 	} else {
1299 		/*
1300 		 * This is guaranteed not to be the last io reference count
1301 		 * because the caller (xfs_buf_submit) holds a count itself.
1302 		 */
1303 		atomic_dec(&bp->b_io_remaining);
1304 		xfs_buf_ioerror(bp, -EIO);
1305 		bio_put(bio);
1306 	}
1307 
1308 }
1309 
1310 STATIC void
1311 _xfs_buf_ioapply(
1312 	struct xfs_buf	*bp)
1313 {
1314 	struct blk_plug	plug;
1315 	int		op;
1316 	int		op_flags = 0;
1317 	int		offset;
1318 	int		size;
1319 	int		i;
1320 
1321 	/*
1322 	 * Make sure we capture only current IO errors rather than stale errors
1323 	 * left over from previous use of the buffer (e.g. failed readahead).
1324 	 */
1325 	bp->b_error = 0;
1326 
1327 	/*
1328 	 * Initialize the I/O completion workqueue if we haven't yet or the
1329 	 * submitter has not opted to specify a custom one.
1330 	 */
1331 	if (!bp->b_ioend_wq)
1332 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1333 
1334 	if (bp->b_flags & XBF_WRITE) {
1335 		op = REQ_OP_WRITE;
1336 		if (bp->b_flags & XBF_SYNCIO)
1337 			op_flags = REQ_SYNC;
1338 		if (bp->b_flags & XBF_FUA)
1339 			op_flags |= REQ_FUA;
1340 		if (bp->b_flags & XBF_FLUSH)
1341 			op_flags |= REQ_PREFLUSH;
1342 
1343 		/*
1344 		 * Run the write verifier callback function if it exists. If
1345 		 * this function fails it will mark the buffer with an error and
1346 		 * the IO should not be dispatched.
1347 		 */
1348 		if (bp->b_ops) {
1349 			bp->b_ops->verify_write(bp);
1350 			if (bp->b_error) {
1351 				xfs_force_shutdown(bp->b_target->bt_mount,
1352 						   SHUTDOWN_CORRUPT_INCORE);
1353 				return;
1354 			}
1355 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1356 			struct xfs_mount *mp = bp->b_target->bt_mount;
1357 
1358 			/*
1359 			 * non-crc filesystems don't attach verifiers during
1360 			 * log recovery, so don't warn for such filesystems.
1361 			 */
1362 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1363 				xfs_warn(mp,
1364 					"%s: no ops on block 0x%llx/0x%x",
1365 					__func__, bp->b_bn, bp->b_length);
1366 				xfs_hex_dump(bp->b_addr, 64);
1367 				dump_stack();
1368 			}
1369 		}
1370 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1371 		op = REQ_OP_READ;
1372 		op_flags = REQ_RAHEAD;
1373 	} else {
1374 		op = REQ_OP_READ;
1375 	}
1376 
1377 	/* we only use the buffer cache for meta-data */
1378 	op_flags |= REQ_META;
1379 
1380 	/*
1381 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1382 	 * into the buffer and the desired IO size before we start -
1383 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1384 	 * subsequent call.
1385 	 */
1386 	offset = bp->b_offset;
1387 	size = BBTOB(bp->b_io_length);
1388 	blk_start_plug(&plug);
1389 	for (i = 0; i < bp->b_map_count; i++) {
1390 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1391 		if (bp->b_error)
1392 			break;
1393 		if (size <= 0)
1394 			break;	/* all done */
1395 	}
1396 	blk_finish_plug(&plug);
1397 }
1398 
1399 /*
1400  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1401  * the current reference to the IO. It is not safe to reference the buffer after
1402  * a call to this function unless the caller holds an additional reference
1403  * itself.
1404  */
1405 void
1406 xfs_buf_submit(
1407 	struct xfs_buf	*bp)
1408 {
1409 	trace_xfs_buf_submit(bp, _RET_IP_);
1410 
1411 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1412 	ASSERT(bp->b_flags & XBF_ASYNC);
1413 
1414 	/* on shutdown we stale and complete the buffer immediately */
1415 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1416 		xfs_buf_ioerror(bp, -EIO);
1417 		bp->b_flags &= ~XBF_DONE;
1418 		xfs_buf_stale(bp);
1419 		xfs_buf_ioend(bp);
1420 		return;
1421 	}
1422 
1423 	if (bp->b_flags & XBF_WRITE)
1424 		xfs_buf_wait_unpin(bp);
1425 
1426 	/* clear the internal error state to avoid spurious errors */
1427 	bp->b_io_error = 0;
1428 
1429 	/*
1430 	 * The caller's reference is released during I/O completion.
1431 	 * This occurs some time after the last b_io_remaining reference is
1432 	 * released, so after we drop our Io reference we have to have some
1433 	 * other reference to ensure the buffer doesn't go away from underneath
1434 	 * us. Take a direct reference to ensure we have safe access to the
1435 	 * buffer until we are finished with it.
1436 	 */
1437 	xfs_buf_hold(bp);
1438 
1439 	/*
1440 	 * Set the count to 1 initially, this will stop an I/O completion
1441 	 * callout which happens before we have started all the I/O from calling
1442 	 * xfs_buf_ioend too early.
1443 	 */
1444 	atomic_set(&bp->b_io_remaining, 1);
1445 	xfs_buf_ioacct_inc(bp);
1446 	_xfs_buf_ioapply(bp);
1447 
1448 	/*
1449 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1450 	 * reference we took above. If we drop it to zero, run completion so
1451 	 * that we don't return to the caller with completion still pending.
1452 	 */
1453 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1454 		if (bp->b_error)
1455 			xfs_buf_ioend(bp);
1456 		else
1457 			xfs_buf_ioend_async(bp);
1458 	}
1459 
1460 	xfs_buf_rele(bp);
1461 	/* Note: it is not safe to reference bp now we've dropped our ref */
1462 }
1463 
1464 /*
1465  * Synchronous buffer IO submission path, read or write.
1466  */
1467 int
1468 xfs_buf_submit_wait(
1469 	struct xfs_buf	*bp)
1470 {
1471 	int		error;
1472 
1473 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1474 
1475 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1476 
1477 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1478 		xfs_buf_ioerror(bp, -EIO);
1479 		xfs_buf_stale(bp);
1480 		bp->b_flags &= ~XBF_DONE;
1481 		return -EIO;
1482 	}
1483 
1484 	if (bp->b_flags & XBF_WRITE)
1485 		xfs_buf_wait_unpin(bp);
1486 
1487 	/* clear the internal error state to avoid spurious errors */
1488 	bp->b_io_error = 0;
1489 
1490 	/*
1491 	 * For synchronous IO, the IO does not inherit the submitters reference
1492 	 * count, nor the buffer lock. Hence we cannot release the reference we
1493 	 * are about to take until we've waited for all IO completion to occur,
1494 	 * including any xfs_buf_ioend_async() work that may be pending.
1495 	 */
1496 	xfs_buf_hold(bp);
1497 
1498 	/*
1499 	 * Set the count to 1 initially, this will stop an I/O completion
1500 	 * callout which happens before we have started all the I/O from calling
1501 	 * xfs_buf_ioend too early.
1502 	 */
1503 	atomic_set(&bp->b_io_remaining, 1);
1504 	_xfs_buf_ioapply(bp);
1505 
1506 	/*
1507 	 * make sure we run completion synchronously if it raced with us and is
1508 	 * already complete.
1509 	 */
1510 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1511 		xfs_buf_ioend(bp);
1512 
1513 	/* wait for completion before gathering the error from the buffer */
1514 	trace_xfs_buf_iowait(bp, _RET_IP_);
1515 	wait_for_completion(&bp->b_iowait);
1516 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1517 	error = bp->b_error;
1518 
1519 	/*
1520 	 * all done now, we can release the hold that keeps the buffer
1521 	 * referenced for the entire IO.
1522 	 */
1523 	xfs_buf_rele(bp);
1524 	return error;
1525 }
1526 
1527 void *
1528 xfs_buf_offset(
1529 	struct xfs_buf		*bp,
1530 	size_t			offset)
1531 {
1532 	struct page		*page;
1533 
1534 	if (bp->b_addr)
1535 		return bp->b_addr + offset;
1536 
1537 	offset += bp->b_offset;
1538 	page = bp->b_pages[offset >> PAGE_SHIFT];
1539 	return page_address(page) + (offset & (PAGE_SIZE-1));
1540 }
1541 
1542 /*
1543  *	Move data into or out of a buffer.
1544  */
1545 void
1546 xfs_buf_iomove(
1547 	xfs_buf_t		*bp,	/* buffer to process		*/
1548 	size_t			boff,	/* starting buffer offset	*/
1549 	size_t			bsize,	/* length to copy		*/
1550 	void			*data,	/* data address			*/
1551 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1552 {
1553 	size_t			bend;
1554 
1555 	bend = boff + bsize;
1556 	while (boff < bend) {
1557 		struct page	*page;
1558 		int		page_index, page_offset, csize;
1559 
1560 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1561 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1562 		page = bp->b_pages[page_index];
1563 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1564 				      BBTOB(bp->b_io_length) - boff);
1565 
1566 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1567 
1568 		switch (mode) {
1569 		case XBRW_ZERO:
1570 			memset(page_address(page) + page_offset, 0, csize);
1571 			break;
1572 		case XBRW_READ:
1573 			memcpy(data, page_address(page) + page_offset, csize);
1574 			break;
1575 		case XBRW_WRITE:
1576 			memcpy(page_address(page) + page_offset, data, csize);
1577 		}
1578 
1579 		boff += csize;
1580 		data += csize;
1581 	}
1582 }
1583 
1584 /*
1585  *	Handling of buffer targets (buftargs).
1586  */
1587 
1588 /*
1589  * Wait for any bufs with callbacks that have been submitted but have not yet
1590  * returned. These buffers will have an elevated hold count, so wait on those
1591  * while freeing all the buffers only held by the LRU.
1592  */
1593 static enum lru_status
1594 xfs_buftarg_wait_rele(
1595 	struct list_head	*item,
1596 	struct list_lru_one	*lru,
1597 	spinlock_t		*lru_lock,
1598 	void			*arg)
1599 
1600 {
1601 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1602 	struct list_head	*dispose = arg;
1603 
1604 	if (atomic_read(&bp->b_hold) > 1) {
1605 		/* need to wait, so skip it this pass */
1606 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1607 		return LRU_SKIP;
1608 	}
1609 	if (!spin_trylock(&bp->b_lock))
1610 		return LRU_SKIP;
1611 
1612 	/*
1613 	 * clear the LRU reference count so the buffer doesn't get
1614 	 * ignored in xfs_buf_rele().
1615 	 */
1616 	atomic_set(&bp->b_lru_ref, 0);
1617 	bp->b_state |= XFS_BSTATE_DISPOSE;
1618 	list_lru_isolate_move(lru, item, dispose);
1619 	spin_unlock(&bp->b_lock);
1620 	return LRU_REMOVED;
1621 }
1622 
1623 void
1624 xfs_wait_buftarg(
1625 	struct xfs_buftarg	*btp)
1626 {
1627 	LIST_HEAD(dispose);
1628 	int loop = 0;
1629 
1630 	/*
1631 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1632 	 * released. This is critical as new buffers do not make the LRU until
1633 	 * they are released.
1634 	 *
1635 	 * Next, flush the buffer workqueue to ensure all completion processing
1636 	 * has finished. Just waiting on buffer locks is not sufficient for
1637 	 * async IO as the reference count held over IO is not released until
1638 	 * after the buffer lock is dropped. Hence we need to ensure here that
1639 	 * all reference counts have been dropped before we start walking the
1640 	 * LRU list.
1641 	 */
1642 	while (percpu_counter_sum(&btp->bt_io_count))
1643 		delay(100);
1644 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1645 
1646 	/* loop until there is nothing left on the lru list. */
1647 	while (list_lru_count(&btp->bt_lru)) {
1648 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1649 			      &dispose, LONG_MAX);
1650 
1651 		while (!list_empty(&dispose)) {
1652 			struct xfs_buf *bp;
1653 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1654 			list_del_init(&bp->b_lru);
1655 			if (bp->b_flags & XBF_WRITE_FAIL) {
1656 				xfs_alert(btp->bt_mount,
1657 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1658 					(long long)bp->b_bn);
1659 				xfs_alert(btp->bt_mount,
1660 "Please run xfs_repair to determine the extent of the problem.");
1661 			}
1662 			xfs_buf_rele(bp);
1663 		}
1664 		if (loop++ != 0)
1665 			delay(100);
1666 	}
1667 }
1668 
1669 static enum lru_status
1670 xfs_buftarg_isolate(
1671 	struct list_head	*item,
1672 	struct list_lru_one	*lru,
1673 	spinlock_t		*lru_lock,
1674 	void			*arg)
1675 {
1676 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1677 	struct list_head	*dispose = arg;
1678 
1679 	/*
1680 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1681 	 * If we fail to get the lock, just skip it.
1682 	 */
1683 	if (!spin_trylock(&bp->b_lock))
1684 		return LRU_SKIP;
1685 	/*
1686 	 * Decrement the b_lru_ref count unless the value is already
1687 	 * zero. If the value is already zero, we need to reclaim the
1688 	 * buffer, otherwise it gets another trip through the LRU.
1689 	 */
1690 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1691 		spin_unlock(&bp->b_lock);
1692 		return LRU_ROTATE;
1693 	}
1694 
1695 	bp->b_state |= XFS_BSTATE_DISPOSE;
1696 	list_lru_isolate_move(lru, item, dispose);
1697 	spin_unlock(&bp->b_lock);
1698 	return LRU_REMOVED;
1699 }
1700 
1701 static unsigned long
1702 xfs_buftarg_shrink_scan(
1703 	struct shrinker		*shrink,
1704 	struct shrink_control	*sc)
1705 {
1706 	struct xfs_buftarg	*btp = container_of(shrink,
1707 					struct xfs_buftarg, bt_shrinker);
1708 	LIST_HEAD(dispose);
1709 	unsigned long		freed;
1710 
1711 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1712 				     xfs_buftarg_isolate, &dispose);
1713 
1714 	while (!list_empty(&dispose)) {
1715 		struct xfs_buf *bp;
1716 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1717 		list_del_init(&bp->b_lru);
1718 		xfs_buf_rele(bp);
1719 	}
1720 
1721 	return freed;
1722 }
1723 
1724 static unsigned long
1725 xfs_buftarg_shrink_count(
1726 	struct shrinker		*shrink,
1727 	struct shrink_control	*sc)
1728 {
1729 	struct xfs_buftarg	*btp = container_of(shrink,
1730 					struct xfs_buftarg, bt_shrinker);
1731 	return list_lru_shrink_count(&btp->bt_lru, sc);
1732 }
1733 
1734 void
1735 xfs_free_buftarg(
1736 	struct xfs_mount	*mp,
1737 	struct xfs_buftarg	*btp)
1738 {
1739 	unregister_shrinker(&btp->bt_shrinker);
1740 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1741 	percpu_counter_destroy(&btp->bt_io_count);
1742 	list_lru_destroy(&btp->bt_lru);
1743 
1744 	xfs_blkdev_issue_flush(btp);
1745 
1746 	kmem_free(btp);
1747 }
1748 
1749 int
1750 xfs_setsize_buftarg(
1751 	xfs_buftarg_t		*btp,
1752 	unsigned int		sectorsize)
1753 {
1754 	/* Set up metadata sector size info */
1755 	btp->bt_meta_sectorsize = sectorsize;
1756 	btp->bt_meta_sectormask = sectorsize - 1;
1757 
1758 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1759 		xfs_warn(btp->bt_mount,
1760 			"Cannot set_blocksize to %u on device %pg",
1761 			sectorsize, btp->bt_bdev);
1762 		return -EINVAL;
1763 	}
1764 
1765 	/* Set up device logical sector size mask */
1766 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1767 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1768 
1769 	return 0;
1770 }
1771 
1772 /*
1773  * When allocating the initial buffer target we have not yet
1774  * read in the superblock, so don't know what sized sectors
1775  * are being used at this early stage.  Play safe.
1776  */
1777 STATIC int
1778 xfs_setsize_buftarg_early(
1779 	xfs_buftarg_t		*btp,
1780 	struct block_device	*bdev)
1781 {
1782 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1783 }
1784 
1785 xfs_buftarg_t *
1786 xfs_alloc_buftarg(
1787 	struct xfs_mount	*mp,
1788 	struct block_device	*bdev)
1789 {
1790 	xfs_buftarg_t		*btp;
1791 
1792 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1793 
1794 	btp->bt_mount = mp;
1795 	btp->bt_dev =  bdev->bd_dev;
1796 	btp->bt_bdev = bdev;
1797 
1798 	if (xfs_setsize_buftarg_early(btp, bdev))
1799 		goto error;
1800 
1801 	if (list_lru_init(&btp->bt_lru))
1802 		goto error;
1803 
1804 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1805 		goto error;
1806 
1807 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1808 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1809 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1810 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1811 	register_shrinker(&btp->bt_shrinker);
1812 	return btp;
1813 
1814 error:
1815 	kmem_free(btp);
1816 	return NULL;
1817 }
1818 
1819 /*
1820  * Cancel a delayed write list.
1821  *
1822  * Remove each buffer from the list, clear the delwri queue flag and drop the
1823  * associated buffer reference.
1824  */
1825 void
1826 xfs_buf_delwri_cancel(
1827 	struct list_head	*list)
1828 {
1829 	struct xfs_buf		*bp;
1830 
1831 	while (!list_empty(list)) {
1832 		bp = list_first_entry(list, struct xfs_buf, b_list);
1833 
1834 		xfs_buf_lock(bp);
1835 		bp->b_flags &= ~_XBF_DELWRI_Q;
1836 		list_del_init(&bp->b_list);
1837 		xfs_buf_relse(bp);
1838 	}
1839 }
1840 
1841 /*
1842  * Add a buffer to the delayed write list.
1843  *
1844  * This queues a buffer for writeout if it hasn't already been.  Note that
1845  * neither this routine nor the buffer list submission functions perform
1846  * any internal synchronization.  It is expected that the lists are thread-local
1847  * to the callers.
1848  *
1849  * Returns true if we queued up the buffer, or false if it already had
1850  * been on the buffer list.
1851  */
1852 bool
1853 xfs_buf_delwri_queue(
1854 	struct xfs_buf		*bp,
1855 	struct list_head	*list)
1856 {
1857 	ASSERT(xfs_buf_islocked(bp));
1858 	ASSERT(!(bp->b_flags & XBF_READ));
1859 
1860 	/*
1861 	 * If the buffer is already marked delwri it already is queued up
1862 	 * by someone else for imediate writeout.  Just ignore it in that
1863 	 * case.
1864 	 */
1865 	if (bp->b_flags & _XBF_DELWRI_Q) {
1866 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1867 		return false;
1868 	}
1869 
1870 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1871 
1872 	/*
1873 	 * If a buffer gets written out synchronously or marked stale while it
1874 	 * is on a delwri list we lazily remove it. To do this, the other party
1875 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1876 	 * It remains referenced and on the list.  In a rare corner case it
1877 	 * might get readded to a delwri list after the synchronous writeout, in
1878 	 * which case we need just need to re-add the flag here.
1879 	 */
1880 	bp->b_flags |= _XBF_DELWRI_Q;
1881 	if (list_empty(&bp->b_list)) {
1882 		atomic_inc(&bp->b_hold);
1883 		list_add_tail(&bp->b_list, list);
1884 	}
1885 
1886 	return true;
1887 }
1888 
1889 /*
1890  * Compare function is more complex than it needs to be because
1891  * the return value is only 32 bits and we are doing comparisons
1892  * on 64 bit values
1893  */
1894 static int
1895 xfs_buf_cmp(
1896 	void		*priv,
1897 	struct list_head *a,
1898 	struct list_head *b)
1899 {
1900 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1901 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1902 	xfs_daddr_t		diff;
1903 
1904 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1905 	if (diff < 0)
1906 		return -1;
1907 	if (diff > 0)
1908 		return 1;
1909 	return 0;
1910 }
1911 
1912 /*
1913  * submit buffers for write.
1914  *
1915  * When we have a large buffer list, we do not want to hold all the buffers
1916  * locked while we block on the request queue waiting for IO dispatch. To avoid
1917  * this problem, we lock and submit buffers in groups of 50, thereby minimising
1918  * the lock hold times for lists which may contain thousands of objects.
1919  *
1920  * To do this, we sort the buffer list before we walk the list to lock and
1921  * submit buffers, and we plug and unplug around each group of buffers we
1922  * submit.
1923  */
1924 static int
1925 xfs_buf_delwri_submit_buffers(
1926 	struct list_head	*buffer_list,
1927 	struct list_head	*wait_list)
1928 {
1929 	struct xfs_buf		*bp, *n;
1930 	LIST_HEAD		(submit_list);
1931 	int			pinned = 0;
1932 	struct blk_plug		plug;
1933 
1934 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1935 
1936 	blk_start_plug(&plug);
1937 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1938 		if (!wait_list) {
1939 			if (xfs_buf_ispinned(bp)) {
1940 				pinned++;
1941 				continue;
1942 			}
1943 			if (!xfs_buf_trylock(bp))
1944 				continue;
1945 		} else {
1946 			xfs_buf_lock(bp);
1947 		}
1948 
1949 		/*
1950 		 * Someone else might have written the buffer synchronously or
1951 		 * marked it stale in the meantime.  In that case only the
1952 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1953 		 * reference and remove it from the list here.
1954 		 */
1955 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1956 			list_del_init(&bp->b_list);
1957 			xfs_buf_relse(bp);
1958 			continue;
1959 		}
1960 
1961 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1962 
1963 		/*
1964 		 * We do all IO submission async. This means if we need
1965 		 * to wait for IO completion we need to take an extra
1966 		 * reference so the buffer is still valid on the other
1967 		 * side. We need to move the buffer onto the io_list
1968 		 * at this point so the caller can still access it.
1969 		 */
1970 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1971 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1972 		if (wait_list) {
1973 			xfs_buf_hold(bp);
1974 			list_move_tail(&bp->b_list, wait_list);
1975 		} else
1976 			list_del_init(&bp->b_list);
1977 
1978 		xfs_buf_submit(bp);
1979 	}
1980 	blk_finish_plug(&plug);
1981 
1982 	return pinned;
1983 }
1984 
1985 /*
1986  * Write out a buffer list asynchronously.
1987  *
1988  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1989  * out and not wait for I/O completion on any of the buffers.  This interface
1990  * is only safely useable for callers that can track I/O completion by higher
1991  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1992  * function.
1993  */
1994 int
1995 xfs_buf_delwri_submit_nowait(
1996 	struct list_head	*buffer_list)
1997 {
1998 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1999 }
2000 
2001 /*
2002  * Write out a buffer list synchronously.
2003  *
2004  * This will take the @buffer_list, write all buffers out and wait for I/O
2005  * completion on all of the buffers. @buffer_list is consumed by the function,
2006  * so callers must have some other way of tracking buffers if they require such
2007  * functionality.
2008  */
2009 int
2010 xfs_buf_delwri_submit(
2011 	struct list_head	*buffer_list)
2012 {
2013 	LIST_HEAD		(wait_list);
2014 	int			error = 0, error2;
2015 	struct xfs_buf		*bp;
2016 
2017 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2018 
2019 	/* Wait for IO to complete. */
2020 	while (!list_empty(&wait_list)) {
2021 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2022 
2023 		list_del_init(&bp->b_list);
2024 
2025 		/* locking the buffer will wait for async IO completion. */
2026 		xfs_buf_lock(bp);
2027 		error2 = bp->b_error;
2028 		xfs_buf_relse(bp);
2029 		if (!error)
2030 			error = error2;
2031 	}
2032 
2033 	return error;
2034 }
2035 
2036 int __init
2037 xfs_buf_init(void)
2038 {
2039 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2040 						KM_ZONE_HWALIGN, NULL);
2041 	if (!xfs_buf_zone)
2042 		goto out;
2043 
2044 	return 0;
2045 
2046  out:
2047 	return -ENOMEM;
2048 }
2049 
2050 void
2051 xfs_buf_terminate(void)
2052 {
2053 	kmem_zone_destroy(xfs_buf_zone);
2054 }
2055