1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include <linux/stddef.h> 8 #include <linux/errno.h> 9 #include <linux/gfp.h> 10 #include <linux/pagemap.h> 11 #include <linux/init.h> 12 #include <linux/vmalloc.h> 13 #include <linux/bio.h> 14 #include <linux/sysctl.h> 15 #include <linux/proc_fs.h> 16 #include <linux/workqueue.h> 17 #include <linux/percpu.h> 18 #include <linux/blkdev.h> 19 #include <linux/hash.h> 20 #include <linux/kthread.h> 21 #include <linux/migrate.h> 22 #include <linux/backing-dev.h> 23 #include <linux/freezer.h> 24 25 #include "xfs_format.h" 26 #include "xfs_log_format.h" 27 #include "xfs_trans_resv.h" 28 #include "xfs_sb.h" 29 #include "xfs_mount.h" 30 #include "xfs_trace.h" 31 #include "xfs_log.h" 32 #include "xfs_errortag.h" 33 #include "xfs_error.h" 34 35 static kmem_zone_t *xfs_buf_zone; 36 37 #ifdef XFS_BUF_LOCK_TRACKING 38 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 39 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 40 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 41 #else 42 # define XB_SET_OWNER(bp) do { } while (0) 43 # define XB_CLEAR_OWNER(bp) do { } while (0) 44 # define XB_GET_OWNER(bp) do { } while (0) 45 #endif 46 47 #define xb_to_gfp(flags) \ 48 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 49 50 51 static inline int 52 xfs_buf_is_vmapped( 53 struct xfs_buf *bp) 54 { 55 /* 56 * Return true if the buffer is vmapped. 57 * 58 * b_addr is null if the buffer is not mapped, but the code is clever 59 * enough to know it doesn't have to map a single page, so the check has 60 * to be both for b_addr and bp->b_page_count > 1. 61 */ 62 return bp->b_addr && bp->b_page_count > 1; 63 } 64 65 static inline int 66 xfs_buf_vmap_len( 67 struct xfs_buf *bp) 68 { 69 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 70 } 71 72 /* 73 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 74 * this buffer. The count is incremented once per buffer (per hold cycle) 75 * because the corresponding decrement is deferred to buffer release. Buffers 76 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 77 * tracking adds unnecessary overhead. This is used for sychronization purposes 78 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of 79 * in-flight buffers. 80 * 81 * Buffers that are never released (e.g., superblock, iclog buffers) must set 82 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 83 * never reaches zero and unmount hangs indefinitely. 84 */ 85 static inline void 86 xfs_buf_ioacct_inc( 87 struct xfs_buf *bp) 88 { 89 if (bp->b_flags & XBF_NO_IOACCT) 90 return; 91 92 ASSERT(bp->b_flags & XBF_ASYNC); 93 spin_lock(&bp->b_lock); 94 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { 95 bp->b_state |= XFS_BSTATE_IN_FLIGHT; 96 percpu_counter_inc(&bp->b_target->bt_io_count); 97 } 98 spin_unlock(&bp->b_lock); 99 } 100 101 /* 102 * Clear the in-flight state on a buffer about to be released to the LRU or 103 * freed and unaccount from the buftarg. 104 */ 105 static inline void 106 __xfs_buf_ioacct_dec( 107 struct xfs_buf *bp) 108 { 109 lockdep_assert_held(&bp->b_lock); 110 111 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { 112 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; 113 percpu_counter_dec(&bp->b_target->bt_io_count); 114 } 115 } 116 117 static inline void 118 xfs_buf_ioacct_dec( 119 struct xfs_buf *bp) 120 { 121 spin_lock(&bp->b_lock); 122 __xfs_buf_ioacct_dec(bp); 123 spin_unlock(&bp->b_lock); 124 } 125 126 /* 127 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 128 * b_lru_ref count so that the buffer is freed immediately when the buffer 129 * reference count falls to zero. If the buffer is already on the LRU, we need 130 * to remove the reference that LRU holds on the buffer. 131 * 132 * This prevents build-up of stale buffers on the LRU. 133 */ 134 void 135 xfs_buf_stale( 136 struct xfs_buf *bp) 137 { 138 ASSERT(xfs_buf_islocked(bp)); 139 140 bp->b_flags |= XBF_STALE; 141 142 /* 143 * Clear the delwri status so that a delwri queue walker will not 144 * flush this buffer to disk now that it is stale. The delwri queue has 145 * a reference to the buffer, so this is safe to do. 146 */ 147 bp->b_flags &= ~_XBF_DELWRI_Q; 148 149 /* 150 * Once the buffer is marked stale and unlocked, a subsequent lookup 151 * could reset b_flags. There is no guarantee that the buffer is 152 * unaccounted (released to LRU) before that occurs. Drop in-flight 153 * status now to preserve accounting consistency. 154 */ 155 spin_lock(&bp->b_lock); 156 __xfs_buf_ioacct_dec(bp); 157 158 atomic_set(&bp->b_lru_ref, 0); 159 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 160 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 161 atomic_dec(&bp->b_hold); 162 163 ASSERT(atomic_read(&bp->b_hold) >= 1); 164 spin_unlock(&bp->b_lock); 165 } 166 167 static int 168 xfs_buf_get_maps( 169 struct xfs_buf *bp, 170 int map_count) 171 { 172 ASSERT(bp->b_maps == NULL); 173 bp->b_map_count = map_count; 174 175 if (map_count == 1) { 176 bp->b_maps = &bp->__b_map; 177 return 0; 178 } 179 180 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 181 KM_NOFS); 182 if (!bp->b_maps) 183 return -ENOMEM; 184 return 0; 185 } 186 187 /* 188 * Frees b_pages if it was allocated. 189 */ 190 static void 191 xfs_buf_free_maps( 192 struct xfs_buf *bp) 193 { 194 if (bp->b_maps != &bp->__b_map) { 195 kmem_free(bp->b_maps); 196 bp->b_maps = NULL; 197 } 198 } 199 200 struct xfs_buf * 201 _xfs_buf_alloc( 202 struct xfs_buftarg *target, 203 struct xfs_buf_map *map, 204 int nmaps, 205 xfs_buf_flags_t flags) 206 { 207 struct xfs_buf *bp; 208 int error; 209 int i; 210 211 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 212 if (unlikely(!bp)) 213 return NULL; 214 215 /* 216 * We don't want certain flags to appear in b_flags unless they are 217 * specifically set by later operations on the buffer. 218 */ 219 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 220 221 atomic_set(&bp->b_hold, 1); 222 atomic_set(&bp->b_lru_ref, 1); 223 init_completion(&bp->b_iowait); 224 INIT_LIST_HEAD(&bp->b_lru); 225 INIT_LIST_HEAD(&bp->b_list); 226 INIT_LIST_HEAD(&bp->b_li_list); 227 sema_init(&bp->b_sema, 0); /* held, no waiters */ 228 spin_lock_init(&bp->b_lock); 229 XB_SET_OWNER(bp); 230 bp->b_target = target; 231 bp->b_flags = flags; 232 233 /* 234 * Set length and io_length to the same value initially. 235 * I/O routines should use io_length, which will be the same in 236 * most cases but may be reset (e.g. XFS recovery). 237 */ 238 error = xfs_buf_get_maps(bp, nmaps); 239 if (error) { 240 kmem_zone_free(xfs_buf_zone, bp); 241 return NULL; 242 } 243 244 bp->b_bn = map[0].bm_bn; 245 bp->b_length = 0; 246 for (i = 0; i < nmaps; i++) { 247 bp->b_maps[i].bm_bn = map[i].bm_bn; 248 bp->b_maps[i].bm_len = map[i].bm_len; 249 bp->b_length += map[i].bm_len; 250 } 251 bp->b_io_length = bp->b_length; 252 253 atomic_set(&bp->b_pin_count, 0); 254 init_waitqueue_head(&bp->b_waiters); 255 256 XFS_STATS_INC(target->bt_mount, xb_create); 257 trace_xfs_buf_init(bp, _RET_IP_); 258 259 return bp; 260 } 261 262 /* 263 * Allocate a page array capable of holding a specified number 264 * of pages, and point the page buf at it. 265 */ 266 STATIC int 267 _xfs_buf_get_pages( 268 xfs_buf_t *bp, 269 int page_count) 270 { 271 /* Make sure that we have a page list */ 272 if (bp->b_pages == NULL) { 273 bp->b_page_count = page_count; 274 if (page_count <= XB_PAGES) { 275 bp->b_pages = bp->b_page_array; 276 } else { 277 bp->b_pages = kmem_alloc(sizeof(struct page *) * 278 page_count, KM_NOFS); 279 if (bp->b_pages == NULL) 280 return -ENOMEM; 281 } 282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 283 } 284 return 0; 285 } 286 287 /* 288 * Frees b_pages if it was allocated. 289 */ 290 STATIC void 291 _xfs_buf_free_pages( 292 xfs_buf_t *bp) 293 { 294 if (bp->b_pages != bp->b_page_array) { 295 kmem_free(bp->b_pages); 296 bp->b_pages = NULL; 297 } 298 } 299 300 /* 301 * Releases the specified buffer. 302 * 303 * The modification state of any associated pages is left unchanged. 304 * The buffer must not be on any hash - use xfs_buf_rele instead for 305 * hashed and refcounted buffers 306 */ 307 void 308 xfs_buf_free( 309 xfs_buf_t *bp) 310 { 311 trace_xfs_buf_free(bp, _RET_IP_); 312 313 ASSERT(list_empty(&bp->b_lru)); 314 315 if (bp->b_flags & _XBF_PAGES) { 316 uint i; 317 318 if (xfs_buf_is_vmapped(bp)) 319 vm_unmap_ram(bp->b_addr - bp->b_offset, 320 bp->b_page_count); 321 322 for (i = 0; i < bp->b_page_count; i++) { 323 struct page *page = bp->b_pages[i]; 324 325 __free_page(page); 326 } 327 } else if (bp->b_flags & _XBF_KMEM) 328 kmem_free(bp->b_addr); 329 _xfs_buf_free_pages(bp); 330 xfs_buf_free_maps(bp); 331 kmem_zone_free(xfs_buf_zone, bp); 332 } 333 334 /* 335 * Allocates all the pages for buffer in question and builds it's page list. 336 */ 337 STATIC int 338 xfs_buf_allocate_memory( 339 xfs_buf_t *bp, 340 uint flags) 341 { 342 size_t size; 343 size_t nbytes, offset; 344 gfp_t gfp_mask = xb_to_gfp(flags); 345 unsigned short page_count, i; 346 xfs_off_t start, end; 347 int error; 348 349 /* 350 * for buffers that are contained within a single page, just allocate 351 * the memory from the heap - there's no need for the complexity of 352 * page arrays to keep allocation down to order 0. 353 */ 354 size = BBTOB(bp->b_length); 355 if (size < PAGE_SIZE) { 356 bp->b_addr = kmem_alloc(size, KM_NOFS); 357 if (!bp->b_addr) { 358 /* low memory - use alloc_page loop instead */ 359 goto use_alloc_page; 360 } 361 362 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 363 ((unsigned long)bp->b_addr & PAGE_MASK)) { 364 /* b_addr spans two pages - use alloc_page instead */ 365 kmem_free(bp->b_addr); 366 bp->b_addr = NULL; 367 goto use_alloc_page; 368 } 369 bp->b_offset = offset_in_page(bp->b_addr); 370 bp->b_pages = bp->b_page_array; 371 bp->b_pages[0] = virt_to_page(bp->b_addr); 372 bp->b_page_count = 1; 373 bp->b_flags |= _XBF_KMEM; 374 return 0; 375 } 376 377 use_alloc_page: 378 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 379 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 380 >> PAGE_SHIFT; 381 page_count = end - start; 382 error = _xfs_buf_get_pages(bp, page_count); 383 if (unlikely(error)) 384 return error; 385 386 offset = bp->b_offset; 387 bp->b_flags |= _XBF_PAGES; 388 389 for (i = 0; i < bp->b_page_count; i++) { 390 struct page *page; 391 uint retries = 0; 392 retry: 393 page = alloc_page(gfp_mask); 394 if (unlikely(page == NULL)) { 395 if (flags & XBF_READ_AHEAD) { 396 bp->b_page_count = i; 397 error = -ENOMEM; 398 goto out_free_pages; 399 } 400 401 /* 402 * This could deadlock. 403 * 404 * But until all the XFS lowlevel code is revamped to 405 * handle buffer allocation failures we can't do much. 406 */ 407 if (!(++retries % 100)) 408 xfs_err(NULL, 409 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", 410 current->comm, current->pid, 411 __func__, gfp_mask); 412 413 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries); 414 congestion_wait(BLK_RW_ASYNC, HZ/50); 415 goto retry; 416 } 417 418 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found); 419 420 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 421 size -= nbytes; 422 bp->b_pages[i] = page; 423 offset = 0; 424 } 425 return 0; 426 427 out_free_pages: 428 for (i = 0; i < bp->b_page_count; i++) 429 __free_page(bp->b_pages[i]); 430 bp->b_flags &= ~_XBF_PAGES; 431 return error; 432 } 433 434 /* 435 * Map buffer into kernel address-space if necessary. 436 */ 437 STATIC int 438 _xfs_buf_map_pages( 439 xfs_buf_t *bp, 440 uint flags) 441 { 442 ASSERT(bp->b_flags & _XBF_PAGES); 443 if (bp->b_page_count == 1) { 444 /* A single page buffer is always mappable */ 445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 446 } else if (flags & XBF_UNMAPPED) { 447 bp->b_addr = NULL; 448 } else { 449 int retried = 0; 450 unsigned nofs_flag; 451 452 /* 453 * vm_map_ram() will allocate auxillary structures (e.g. 454 * pagetables) with GFP_KERNEL, yet we are likely to be under 455 * GFP_NOFS context here. Hence we need to tell memory reclaim 456 * that we are in such a context via PF_MEMALLOC_NOFS to prevent 457 * memory reclaim re-entering the filesystem here and 458 * potentially deadlocking. 459 */ 460 nofs_flag = memalloc_nofs_save(); 461 do { 462 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 463 -1, PAGE_KERNEL); 464 if (bp->b_addr) 465 break; 466 vm_unmap_aliases(); 467 } while (retried++ <= 1); 468 memalloc_nofs_restore(nofs_flag); 469 470 if (!bp->b_addr) 471 return -ENOMEM; 472 bp->b_addr += bp->b_offset; 473 } 474 475 return 0; 476 } 477 478 /* 479 * Finding and Reading Buffers 480 */ 481 static int 482 _xfs_buf_obj_cmp( 483 struct rhashtable_compare_arg *arg, 484 const void *obj) 485 { 486 const struct xfs_buf_map *map = arg->key; 487 const struct xfs_buf *bp = obj; 488 489 /* 490 * The key hashing in the lookup path depends on the key being the 491 * first element of the compare_arg, make sure to assert this. 492 */ 493 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 494 495 if (bp->b_bn != map->bm_bn) 496 return 1; 497 498 if (unlikely(bp->b_length != map->bm_len)) { 499 /* 500 * found a block number match. If the range doesn't 501 * match, the only way this is allowed is if the buffer 502 * in the cache is stale and the transaction that made 503 * it stale has not yet committed. i.e. we are 504 * reallocating a busy extent. Skip this buffer and 505 * continue searching for an exact match. 506 */ 507 ASSERT(bp->b_flags & XBF_STALE); 508 return 1; 509 } 510 return 0; 511 } 512 513 static const struct rhashtable_params xfs_buf_hash_params = { 514 .min_size = 32, /* empty AGs have minimal footprint */ 515 .nelem_hint = 16, 516 .key_len = sizeof(xfs_daddr_t), 517 .key_offset = offsetof(struct xfs_buf, b_bn), 518 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 519 .automatic_shrinking = true, 520 .obj_cmpfn = _xfs_buf_obj_cmp, 521 }; 522 523 int 524 xfs_buf_hash_init( 525 struct xfs_perag *pag) 526 { 527 spin_lock_init(&pag->pag_buf_lock); 528 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); 529 } 530 531 void 532 xfs_buf_hash_destroy( 533 struct xfs_perag *pag) 534 { 535 rhashtable_destroy(&pag->pag_buf_hash); 536 } 537 538 /* 539 * Look up a buffer in the buffer cache and return it referenced and locked 540 * in @found_bp. 541 * 542 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the 543 * cache. 544 * 545 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return 546 * -EAGAIN if we fail to lock it. 547 * 548 * Return values are: 549 * -EFSCORRUPTED if have been supplied with an invalid address 550 * -EAGAIN on trylock failure 551 * -ENOENT if we fail to find a match and @new_bp was NULL 552 * 0, with @found_bp: 553 * - @new_bp if we inserted it into the cache 554 * - the buffer we found and locked. 555 */ 556 static int 557 xfs_buf_find( 558 struct xfs_buftarg *btp, 559 struct xfs_buf_map *map, 560 int nmaps, 561 xfs_buf_flags_t flags, 562 struct xfs_buf *new_bp, 563 struct xfs_buf **found_bp) 564 { 565 struct xfs_perag *pag; 566 xfs_buf_t *bp; 567 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 568 xfs_daddr_t eofs; 569 int i; 570 571 *found_bp = NULL; 572 573 for (i = 0; i < nmaps; i++) 574 cmap.bm_len += map[i].bm_len; 575 576 /* Check for IOs smaller than the sector size / not sector aligned */ 577 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize)); 578 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 579 580 /* 581 * Corrupted block numbers can get through to here, unfortunately, so we 582 * have to check that the buffer falls within the filesystem bounds. 583 */ 584 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 585 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) { 586 xfs_alert(btp->bt_mount, 587 "%s: daddr 0x%llx out of range, EOFS 0x%llx", 588 __func__, cmap.bm_bn, eofs); 589 WARN_ON(1); 590 return -EFSCORRUPTED; 591 } 592 593 pag = xfs_perag_get(btp->bt_mount, 594 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); 595 596 spin_lock(&pag->pag_buf_lock); 597 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap, 598 xfs_buf_hash_params); 599 if (bp) { 600 atomic_inc(&bp->b_hold); 601 goto found; 602 } 603 604 /* No match found */ 605 if (!new_bp) { 606 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 607 spin_unlock(&pag->pag_buf_lock); 608 xfs_perag_put(pag); 609 return -ENOENT; 610 } 611 612 /* the buffer keeps the perag reference until it is freed */ 613 new_bp->b_pag = pag; 614 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head, 615 xfs_buf_hash_params); 616 spin_unlock(&pag->pag_buf_lock); 617 *found_bp = new_bp; 618 return 0; 619 620 found: 621 spin_unlock(&pag->pag_buf_lock); 622 xfs_perag_put(pag); 623 624 if (!xfs_buf_trylock(bp)) { 625 if (flags & XBF_TRYLOCK) { 626 xfs_buf_rele(bp); 627 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 628 return -EAGAIN; 629 } 630 xfs_buf_lock(bp); 631 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 632 } 633 634 /* 635 * if the buffer is stale, clear all the external state associated with 636 * it. We need to keep flags such as how we allocated the buffer memory 637 * intact here. 638 */ 639 if (bp->b_flags & XBF_STALE) { 640 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 641 ASSERT(bp->b_iodone == NULL); 642 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 643 bp->b_ops = NULL; 644 } 645 646 trace_xfs_buf_find(bp, flags, _RET_IP_); 647 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 648 *found_bp = bp; 649 return 0; 650 } 651 652 struct xfs_buf * 653 xfs_buf_incore( 654 struct xfs_buftarg *target, 655 xfs_daddr_t blkno, 656 size_t numblks, 657 xfs_buf_flags_t flags) 658 { 659 struct xfs_buf *bp; 660 int error; 661 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks); 662 663 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp); 664 if (error) 665 return NULL; 666 return bp; 667 } 668 669 /* 670 * Assembles a buffer covering the specified range. The code is optimised for 671 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 672 * more hits than misses. 673 */ 674 struct xfs_buf * 675 xfs_buf_get_map( 676 struct xfs_buftarg *target, 677 struct xfs_buf_map *map, 678 int nmaps, 679 xfs_buf_flags_t flags) 680 { 681 struct xfs_buf *bp; 682 struct xfs_buf *new_bp; 683 int error = 0; 684 685 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp); 686 687 switch (error) { 688 case 0: 689 /* cache hit */ 690 goto found; 691 case -EAGAIN: 692 /* cache hit, trylock failure, caller handles failure */ 693 ASSERT(flags & XBF_TRYLOCK); 694 return NULL; 695 case -ENOENT: 696 /* cache miss, go for insert */ 697 break; 698 case -EFSCORRUPTED: 699 default: 700 /* 701 * None of the higher layers understand failure types 702 * yet, so return NULL to signal a fatal lookup error. 703 */ 704 return NULL; 705 } 706 707 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 708 if (unlikely(!new_bp)) 709 return NULL; 710 711 error = xfs_buf_allocate_memory(new_bp, flags); 712 if (error) { 713 xfs_buf_free(new_bp); 714 return NULL; 715 } 716 717 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp); 718 if (error) { 719 xfs_buf_free(new_bp); 720 return NULL; 721 } 722 723 if (bp != new_bp) 724 xfs_buf_free(new_bp); 725 726 found: 727 if (!bp->b_addr) { 728 error = _xfs_buf_map_pages(bp, flags); 729 if (unlikely(error)) { 730 xfs_warn(target->bt_mount, 731 "%s: failed to map pagesn", __func__); 732 xfs_buf_relse(bp); 733 return NULL; 734 } 735 } 736 737 /* 738 * Clear b_error if this is a lookup from a caller that doesn't expect 739 * valid data to be found in the buffer. 740 */ 741 if (!(flags & XBF_READ)) 742 xfs_buf_ioerror(bp, 0); 743 744 XFS_STATS_INC(target->bt_mount, xb_get); 745 trace_xfs_buf_get(bp, flags, _RET_IP_); 746 return bp; 747 } 748 749 STATIC int 750 _xfs_buf_read( 751 xfs_buf_t *bp, 752 xfs_buf_flags_t flags) 753 { 754 ASSERT(!(flags & XBF_WRITE)); 755 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 756 757 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 758 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 759 760 if (flags & XBF_ASYNC) { 761 xfs_buf_submit(bp); 762 return 0; 763 } 764 return xfs_buf_submit_wait(bp); 765 } 766 767 xfs_buf_t * 768 xfs_buf_read_map( 769 struct xfs_buftarg *target, 770 struct xfs_buf_map *map, 771 int nmaps, 772 xfs_buf_flags_t flags, 773 const struct xfs_buf_ops *ops) 774 { 775 struct xfs_buf *bp; 776 777 flags |= XBF_READ; 778 779 bp = xfs_buf_get_map(target, map, nmaps, flags); 780 if (bp) { 781 trace_xfs_buf_read(bp, flags, _RET_IP_); 782 783 if (!(bp->b_flags & XBF_DONE)) { 784 XFS_STATS_INC(target->bt_mount, xb_get_read); 785 bp->b_ops = ops; 786 _xfs_buf_read(bp, flags); 787 } else if (flags & XBF_ASYNC) { 788 /* 789 * Read ahead call which is already satisfied, 790 * drop the buffer 791 */ 792 xfs_buf_relse(bp); 793 return NULL; 794 } else { 795 /* We do not want read in the flags */ 796 bp->b_flags &= ~XBF_READ; 797 } 798 } 799 800 return bp; 801 } 802 803 /* 804 * If we are not low on memory then do the readahead in a deadlock 805 * safe manner. 806 */ 807 void 808 xfs_buf_readahead_map( 809 struct xfs_buftarg *target, 810 struct xfs_buf_map *map, 811 int nmaps, 812 const struct xfs_buf_ops *ops) 813 { 814 if (bdi_read_congested(target->bt_bdev->bd_bdi)) 815 return; 816 817 xfs_buf_read_map(target, map, nmaps, 818 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 819 } 820 821 /* 822 * Read an uncached buffer from disk. Allocates and returns a locked 823 * buffer containing the disk contents or nothing. 824 */ 825 int 826 xfs_buf_read_uncached( 827 struct xfs_buftarg *target, 828 xfs_daddr_t daddr, 829 size_t numblks, 830 int flags, 831 struct xfs_buf **bpp, 832 const struct xfs_buf_ops *ops) 833 { 834 struct xfs_buf *bp; 835 836 *bpp = NULL; 837 838 bp = xfs_buf_get_uncached(target, numblks, flags); 839 if (!bp) 840 return -ENOMEM; 841 842 /* set up the buffer for a read IO */ 843 ASSERT(bp->b_map_count == 1); 844 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 845 bp->b_maps[0].bm_bn = daddr; 846 bp->b_flags |= XBF_READ; 847 bp->b_ops = ops; 848 849 xfs_buf_submit_wait(bp); 850 if (bp->b_error) { 851 int error = bp->b_error; 852 xfs_buf_relse(bp); 853 return error; 854 } 855 856 *bpp = bp; 857 return 0; 858 } 859 860 /* 861 * Return a buffer allocated as an empty buffer and associated to external 862 * memory via xfs_buf_associate_memory() back to it's empty state. 863 */ 864 void 865 xfs_buf_set_empty( 866 struct xfs_buf *bp, 867 size_t numblks) 868 { 869 if (bp->b_pages) 870 _xfs_buf_free_pages(bp); 871 872 bp->b_pages = NULL; 873 bp->b_page_count = 0; 874 bp->b_addr = NULL; 875 bp->b_length = numblks; 876 bp->b_io_length = numblks; 877 878 ASSERT(bp->b_map_count == 1); 879 bp->b_bn = XFS_BUF_DADDR_NULL; 880 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 881 bp->b_maps[0].bm_len = bp->b_length; 882 } 883 884 static inline struct page * 885 mem_to_page( 886 void *addr) 887 { 888 if ((!is_vmalloc_addr(addr))) { 889 return virt_to_page(addr); 890 } else { 891 return vmalloc_to_page(addr); 892 } 893 } 894 895 int 896 xfs_buf_associate_memory( 897 xfs_buf_t *bp, 898 void *mem, 899 size_t len) 900 { 901 int rval; 902 int i = 0; 903 unsigned long pageaddr; 904 unsigned long offset; 905 size_t buflen; 906 int page_count; 907 908 pageaddr = (unsigned long)mem & PAGE_MASK; 909 offset = (unsigned long)mem - pageaddr; 910 buflen = PAGE_ALIGN(len + offset); 911 page_count = buflen >> PAGE_SHIFT; 912 913 /* Free any previous set of page pointers */ 914 if (bp->b_pages) 915 _xfs_buf_free_pages(bp); 916 917 bp->b_pages = NULL; 918 bp->b_addr = mem; 919 920 rval = _xfs_buf_get_pages(bp, page_count); 921 if (rval) 922 return rval; 923 924 bp->b_offset = offset; 925 926 for (i = 0; i < bp->b_page_count; i++) { 927 bp->b_pages[i] = mem_to_page((void *)pageaddr); 928 pageaddr += PAGE_SIZE; 929 } 930 931 bp->b_io_length = BTOBB(len); 932 bp->b_length = BTOBB(buflen); 933 934 return 0; 935 } 936 937 xfs_buf_t * 938 xfs_buf_get_uncached( 939 struct xfs_buftarg *target, 940 size_t numblks, 941 int flags) 942 { 943 unsigned long page_count; 944 int error, i; 945 struct xfs_buf *bp; 946 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 947 948 /* flags might contain irrelevant bits, pass only what we care about */ 949 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT); 950 if (unlikely(bp == NULL)) 951 goto fail; 952 953 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 954 error = _xfs_buf_get_pages(bp, page_count); 955 if (error) 956 goto fail_free_buf; 957 958 for (i = 0; i < page_count; i++) { 959 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 960 if (!bp->b_pages[i]) 961 goto fail_free_mem; 962 } 963 bp->b_flags |= _XBF_PAGES; 964 965 error = _xfs_buf_map_pages(bp, 0); 966 if (unlikely(error)) { 967 xfs_warn(target->bt_mount, 968 "%s: failed to map pages", __func__); 969 goto fail_free_mem; 970 } 971 972 trace_xfs_buf_get_uncached(bp, _RET_IP_); 973 return bp; 974 975 fail_free_mem: 976 while (--i >= 0) 977 __free_page(bp->b_pages[i]); 978 _xfs_buf_free_pages(bp); 979 fail_free_buf: 980 xfs_buf_free_maps(bp); 981 kmem_zone_free(xfs_buf_zone, bp); 982 fail: 983 return NULL; 984 } 985 986 /* 987 * Increment reference count on buffer, to hold the buffer concurrently 988 * with another thread which may release (free) the buffer asynchronously. 989 * Must hold the buffer already to call this function. 990 */ 991 void 992 xfs_buf_hold( 993 xfs_buf_t *bp) 994 { 995 trace_xfs_buf_hold(bp, _RET_IP_); 996 atomic_inc(&bp->b_hold); 997 } 998 999 /* 1000 * Release a hold on the specified buffer. If the hold count is 1, the buffer is 1001 * placed on LRU or freed (depending on b_lru_ref). 1002 */ 1003 void 1004 xfs_buf_rele( 1005 xfs_buf_t *bp) 1006 { 1007 struct xfs_perag *pag = bp->b_pag; 1008 bool release; 1009 bool freebuf = false; 1010 1011 trace_xfs_buf_rele(bp, _RET_IP_); 1012 1013 if (!pag) { 1014 ASSERT(list_empty(&bp->b_lru)); 1015 if (atomic_dec_and_test(&bp->b_hold)) { 1016 xfs_buf_ioacct_dec(bp); 1017 xfs_buf_free(bp); 1018 } 1019 return; 1020 } 1021 1022 ASSERT(atomic_read(&bp->b_hold) > 0); 1023 1024 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); 1025 spin_lock(&bp->b_lock); 1026 if (!release) { 1027 /* 1028 * Drop the in-flight state if the buffer is already on the LRU 1029 * and it holds the only reference. This is racy because we 1030 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 1031 * ensures the decrement occurs only once per-buf. 1032 */ 1033 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 1034 __xfs_buf_ioacct_dec(bp); 1035 goto out_unlock; 1036 } 1037 1038 /* the last reference has been dropped ... */ 1039 __xfs_buf_ioacct_dec(bp); 1040 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 1041 /* 1042 * If the buffer is added to the LRU take a new reference to the 1043 * buffer for the LRU and clear the (now stale) dispose list 1044 * state flag 1045 */ 1046 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 1047 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1048 atomic_inc(&bp->b_hold); 1049 } 1050 spin_unlock(&pag->pag_buf_lock); 1051 } else { 1052 /* 1053 * most of the time buffers will already be removed from the 1054 * LRU, so optimise that case by checking for the 1055 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1056 * was on was the disposal list 1057 */ 1058 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1059 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 1060 } else { 1061 ASSERT(list_empty(&bp->b_lru)); 1062 } 1063 1064 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1065 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, 1066 xfs_buf_hash_params); 1067 spin_unlock(&pag->pag_buf_lock); 1068 xfs_perag_put(pag); 1069 freebuf = true; 1070 } 1071 1072 out_unlock: 1073 spin_unlock(&bp->b_lock); 1074 1075 if (freebuf) 1076 xfs_buf_free(bp); 1077 } 1078 1079 1080 /* 1081 * Lock a buffer object, if it is not already locked. 1082 * 1083 * If we come across a stale, pinned, locked buffer, we know that we are 1084 * being asked to lock a buffer that has been reallocated. Because it is 1085 * pinned, we know that the log has not been pushed to disk and hence it 1086 * will still be locked. Rather than continuing to have trylock attempts 1087 * fail until someone else pushes the log, push it ourselves before 1088 * returning. This means that the xfsaild will not get stuck trying 1089 * to push on stale inode buffers. 1090 */ 1091 int 1092 xfs_buf_trylock( 1093 struct xfs_buf *bp) 1094 { 1095 int locked; 1096 1097 locked = down_trylock(&bp->b_sema) == 0; 1098 if (locked) { 1099 XB_SET_OWNER(bp); 1100 trace_xfs_buf_trylock(bp, _RET_IP_); 1101 } else { 1102 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1103 } 1104 return locked; 1105 } 1106 1107 /* 1108 * Lock a buffer object. 1109 * 1110 * If we come across a stale, pinned, locked buffer, we know that we 1111 * are being asked to lock a buffer that has been reallocated. Because 1112 * it is pinned, we know that the log has not been pushed to disk and 1113 * hence it will still be locked. Rather than sleeping until someone 1114 * else pushes the log, push it ourselves before trying to get the lock. 1115 */ 1116 void 1117 xfs_buf_lock( 1118 struct xfs_buf *bp) 1119 { 1120 trace_xfs_buf_lock(bp, _RET_IP_); 1121 1122 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1123 xfs_log_force(bp->b_target->bt_mount, 0); 1124 down(&bp->b_sema); 1125 XB_SET_OWNER(bp); 1126 1127 trace_xfs_buf_lock_done(bp, _RET_IP_); 1128 } 1129 1130 void 1131 xfs_buf_unlock( 1132 struct xfs_buf *bp) 1133 { 1134 ASSERT(xfs_buf_islocked(bp)); 1135 1136 XB_CLEAR_OWNER(bp); 1137 up(&bp->b_sema); 1138 1139 trace_xfs_buf_unlock(bp, _RET_IP_); 1140 } 1141 1142 STATIC void 1143 xfs_buf_wait_unpin( 1144 xfs_buf_t *bp) 1145 { 1146 DECLARE_WAITQUEUE (wait, current); 1147 1148 if (atomic_read(&bp->b_pin_count) == 0) 1149 return; 1150 1151 add_wait_queue(&bp->b_waiters, &wait); 1152 for (;;) { 1153 set_current_state(TASK_UNINTERRUPTIBLE); 1154 if (atomic_read(&bp->b_pin_count) == 0) 1155 break; 1156 io_schedule(); 1157 } 1158 remove_wait_queue(&bp->b_waiters, &wait); 1159 set_current_state(TASK_RUNNING); 1160 } 1161 1162 /* 1163 * Buffer Utility Routines 1164 */ 1165 1166 void 1167 xfs_buf_ioend( 1168 struct xfs_buf *bp) 1169 { 1170 bool read = bp->b_flags & XBF_READ; 1171 1172 trace_xfs_buf_iodone(bp, _RET_IP_); 1173 1174 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1175 1176 /* 1177 * Pull in IO completion errors now. We are guaranteed to be running 1178 * single threaded, so we don't need the lock to read b_io_error. 1179 */ 1180 if (!bp->b_error && bp->b_io_error) 1181 xfs_buf_ioerror(bp, bp->b_io_error); 1182 1183 /* Only validate buffers that were read without errors */ 1184 if (read && !bp->b_error && bp->b_ops) { 1185 ASSERT(!bp->b_iodone); 1186 bp->b_ops->verify_read(bp); 1187 } 1188 1189 if (!bp->b_error) 1190 bp->b_flags |= XBF_DONE; 1191 1192 if (bp->b_iodone) 1193 (*(bp->b_iodone))(bp); 1194 else if (bp->b_flags & XBF_ASYNC) 1195 xfs_buf_relse(bp); 1196 else 1197 complete(&bp->b_iowait); 1198 } 1199 1200 static void 1201 xfs_buf_ioend_work( 1202 struct work_struct *work) 1203 { 1204 struct xfs_buf *bp = 1205 container_of(work, xfs_buf_t, b_ioend_work); 1206 1207 xfs_buf_ioend(bp); 1208 } 1209 1210 static void 1211 xfs_buf_ioend_async( 1212 struct xfs_buf *bp) 1213 { 1214 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1215 queue_work(bp->b_ioend_wq, &bp->b_ioend_work); 1216 } 1217 1218 void 1219 __xfs_buf_ioerror( 1220 xfs_buf_t *bp, 1221 int error, 1222 xfs_failaddr_t failaddr) 1223 { 1224 ASSERT(error <= 0 && error >= -1000); 1225 bp->b_error = error; 1226 trace_xfs_buf_ioerror(bp, error, failaddr); 1227 } 1228 1229 void 1230 xfs_buf_ioerror_alert( 1231 struct xfs_buf *bp, 1232 const char *func) 1233 { 1234 xfs_alert(bp->b_target->bt_mount, 1235 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d", 1236 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length, 1237 -bp->b_error); 1238 } 1239 1240 int 1241 xfs_bwrite( 1242 struct xfs_buf *bp) 1243 { 1244 int error; 1245 1246 ASSERT(xfs_buf_islocked(bp)); 1247 1248 bp->b_flags |= XBF_WRITE; 1249 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1250 XBF_WRITE_FAIL | XBF_DONE); 1251 1252 error = xfs_buf_submit_wait(bp); 1253 if (error) { 1254 xfs_force_shutdown(bp->b_target->bt_mount, 1255 SHUTDOWN_META_IO_ERROR); 1256 } 1257 return error; 1258 } 1259 1260 static void 1261 xfs_buf_bio_end_io( 1262 struct bio *bio) 1263 { 1264 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1265 1266 /* 1267 * don't overwrite existing errors - otherwise we can lose errors on 1268 * buffers that require multiple bios to complete. 1269 */ 1270 if (bio->bi_status) { 1271 int error = blk_status_to_errno(bio->bi_status); 1272 1273 cmpxchg(&bp->b_io_error, 0, error); 1274 } 1275 1276 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1277 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1278 1279 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1280 xfs_buf_ioend_async(bp); 1281 bio_put(bio); 1282 } 1283 1284 static void 1285 xfs_buf_ioapply_map( 1286 struct xfs_buf *bp, 1287 int map, 1288 int *buf_offset, 1289 int *count, 1290 int op, 1291 int op_flags) 1292 { 1293 int page_index; 1294 int total_nr_pages = bp->b_page_count; 1295 int nr_pages; 1296 struct bio *bio; 1297 sector_t sector = bp->b_maps[map].bm_bn; 1298 int size; 1299 int offset; 1300 1301 /* skip the pages in the buffer before the start offset */ 1302 page_index = 0; 1303 offset = *buf_offset; 1304 while (offset >= PAGE_SIZE) { 1305 page_index++; 1306 offset -= PAGE_SIZE; 1307 } 1308 1309 /* 1310 * Limit the IO size to the length of the current vector, and update the 1311 * remaining IO count for the next time around. 1312 */ 1313 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1314 *count -= size; 1315 *buf_offset += size; 1316 1317 next_chunk: 1318 atomic_inc(&bp->b_io_remaining); 1319 nr_pages = min(total_nr_pages, BIO_MAX_PAGES); 1320 1321 bio = bio_alloc(GFP_NOIO, nr_pages); 1322 bio_set_dev(bio, bp->b_target->bt_bdev); 1323 bio->bi_iter.bi_sector = sector; 1324 bio->bi_end_io = xfs_buf_bio_end_io; 1325 bio->bi_private = bp; 1326 bio_set_op_attrs(bio, op, op_flags); 1327 1328 for (; size && nr_pages; nr_pages--, page_index++) { 1329 int rbytes, nbytes = PAGE_SIZE - offset; 1330 1331 if (nbytes > size) 1332 nbytes = size; 1333 1334 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1335 offset); 1336 if (rbytes < nbytes) 1337 break; 1338 1339 offset = 0; 1340 sector += BTOBB(nbytes); 1341 size -= nbytes; 1342 total_nr_pages--; 1343 } 1344 1345 if (likely(bio->bi_iter.bi_size)) { 1346 if (xfs_buf_is_vmapped(bp)) { 1347 flush_kernel_vmap_range(bp->b_addr, 1348 xfs_buf_vmap_len(bp)); 1349 } 1350 submit_bio(bio); 1351 if (size) 1352 goto next_chunk; 1353 } else { 1354 /* 1355 * This is guaranteed not to be the last io reference count 1356 * because the caller (xfs_buf_submit) holds a count itself. 1357 */ 1358 atomic_dec(&bp->b_io_remaining); 1359 xfs_buf_ioerror(bp, -EIO); 1360 bio_put(bio); 1361 } 1362 1363 } 1364 1365 STATIC void 1366 _xfs_buf_ioapply( 1367 struct xfs_buf *bp) 1368 { 1369 struct blk_plug plug; 1370 int op; 1371 int op_flags = 0; 1372 int offset; 1373 int size; 1374 int i; 1375 1376 /* 1377 * Make sure we capture only current IO errors rather than stale errors 1378 * left over from previous use of the buffer (e.g. failed readahead). 1379 */ 1380 bp->b_error = 0; 1381 1382 /* 1383 * Initialize the I/O completion workqueue if we haven't yet or the 1384 * submitter has not opted to specify a custom one. 1385 */ 1386 if (!bp->b_ioend_wq) 1387 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue; 1388 1389 if (bp->b_flags & XBF_WRITE) { 1390 op = REQ_OP_WRITE; 1391 if (bp->b_flags & XBF_SYNCIO) 1392 op_flags = REQ_SYNC; 1393 if (bp->b_flags & XBF_FUA) 1394 op_flags |= REQ_FUA; 1395 if (bp->b_flags & XBF_FLUSH) 1396 op_flags |= REQ_PREFLUSH; 1397 1398 /* 1399 * Run the write verifier callback function if it exists. If 1400 * this function fails it will mark the buffer with an error and 1401 * the IO should not be dispatched. 1402 */ 1403 if (bp->b_ops) { 1404 bp->b_ops->verify_write(bp); 1405 if (bp->b_error) { 1406 xfs_force_shutdown(bp->b_target->bt_mount, 1407 SHUTDOWN_CORRUPT_INCORE); 1408 return; 1409 } 1410 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1411 struct xfs_mount *mp = bp->b_target->bt_mount; 1412 1413 /* 1414 * non-crc filesystems don't attach verifiers during 1415 * log recovery, so don't warn for such filesystems. 1416 */ 1417 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1418 xfs_warn(mp, 1419 "%s: no buf ops on daddr 0x%llx len %d", 1420 __func__, bp->b_bn, bp->b_length); 1421 xfs_hex_dump(bp->b_addr, 1422 XFS_CORRUPTION_DUMP_LEN); 1423 dump_stack(); 1424 } 1425 } 1426 } else if (bp->b_flags & XBF_READ_AHEAD) { 1427 op = REQ_OP_READ; 1428 op_flags = REQ_RAHEAD; 1429 } else { 1430 op = REQ_OP_READ; 1431 } 1432 1433 /* we only use the buffer cache for meta-data */ 1434 op_flags |= REQ_META; 1435 1436 /* 1437 * Walk all the vectors issuing IO on them. Set up the initial offset 1438 * into the buffer and the desired IO size before we start - 1439 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1440 * subsequent call. 1441 */ 1442 offset = bp->b_offset; 1443 size = BBTOB(bp->b_io_length); 1444 blk_start_plug(&plug); 1445 for (i = 0; i < bp->b_map_count; i++) { 1446 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags); 1447 if (bp->b_error) 1448 break; 1449 if (size <= 0) 1450 break; /* all done */ 1451 } 1452 blk_finish_plug(&plug); 1453 } 1454 1455 /* 1456 * Asynchronous IO submission path. This transfers the buffer lock ownership and 1457 * the current reference to the IO. It is not safe to reference the buffer after 1458 * a call to this function unless the caller holds an additional reference 1459 * itself. 1460 */ 1461 void 1462 xfs_buf_submit( 1463 struct xfs_buf *bp) 1464 { 1465 trace_xfs_buf_submit(bp, _RET_IP_); 1466 1467 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1468 ASSERT(bp->b_flags & XBF_ASYNC); 1469 1470 /* on shutdown we stale and complete the buffer immediately */ 1471 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1472 xfs_buf_ioerror(bp, -EIO); 1473 bp->b_flags &= ~XBF_DONE; 1474 xfs_buf_stale(bp); 1475 xfs_buf_ioend(bp); 1476 return; 1477 } 1478 1479 if (bp->b_flags & XBF_WRITE) 1480 xfs_buf_wait_unpin(bp); 1481 1482 /* clear the internal error state to avoid spurious errors */ 1483 bp->b_io_error = 0; 1484 1485 /* 1486 * The caller's reference is released during I/O completion. 1487 * This occurs some time after the last b_io_remaining reference is 1488 * released, so after we drop our Io reference we have to have some 1489 * other reference to ensure the buffer doesn't go away from underneath 1490 * us. Take a direct reference to ensure we have safe access to the 1491 * buffer until we are finished with it. 1492 */ 1493 xfs_buf_hold(bp); 1494 1495 /* 1496 * Set the count to 1 initially, this will stop an I/O completion 1497 * callout which happens before we have started all the I/O from calling 1498 * xfs_buf_ioend too early. 1499 */ 1500 atomic_set(&bp->b_io_remaining, 1); 1501 xfs_buf_ioacct_inc(bp); 1502 _xfs_buf_ioapply(bp); 1503 1504 /* 1505 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1506 * reference we took above. If we drop it to zero, run completion so 1507 * that we don't return to the caller with completion still pending. 1508 */ 1509 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1510 if (bp->b_error) 1511 xfs_buf_ioend(bp); 1512 else 1513 xfs_buf_ioend_async(bp); 1514 } 1515 1516 xfs_buf_rele(bp); 1517 /* Note: it is not safe to reference bp now we've dropped our ref */ 1518 } 1519 1520 /* 1521 * Synchronous buffer IO submission path, read or write. 1522 */ 1523 int 1524 xfs_buf_submit_wait( 1525 struct xfs_buf *bp) 1526 { 1527 int error; 1528 1529 trace_xfs_buf_submit_wait(bp, _RET_IP_); 1530 1531 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC))); 1532 1533 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1534 xfs_buf_ioerror(bp, -EIO); 1535 xfs_buf_stale(bp); 1536 bp->b_flags &= ~XBF_DONE; 1537 return -EIO; 1538 } 1539 1540 if (bp->b_flags & XBF_WRITE) 1541 xfs_buf_wait_unpin(bp); 1542 1543 /* clear the internal error state to avoid spurious errors */ 1544 bp->b_io_error = 0; 1545 1546 /* 1547 * For synchronous IO, the IO does not inherit the submitters reference 1548 * count, nor the buffer lock. Hence we cannot release the reference we 1549 * are about to take until we've waited for all IO completion to occur, 1550 * including any xfs_buf_ioend_async() work that may be pending. 1551 */ 1552 xfs_buf_hold(bp); 1553 1554 /* 1555 * Set the count to 1 initially, this will stop an I/O completion 1556 * callout which happens before we have started all the I/O from calling 1557 * xfs_buf_ioend too early. 1558 */ 1559 atomic_set(&bp->b_io_remaining, 1); 1560 _xfs_buf_ioapply(bp); 1561 1562 /* 1563 * make sure we run completion synchronously if it raced with us and is 1564 * already complete. 1565 */ 1566 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1567 xfs_buf_ioend(bp); 1568 1569 /* wait for completion before gathering the error from the buffer */ 1570 trace_xfs_buf_iowait(bp, _RET_IP_); 1571 wait_for_completion(&bp->b_iowait); 1572 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1573 error = bp->b_error; 1574 1575 /* 1576 * all done now, we can release the hold that keeps the buffer 1577 * referenced for the entire IO. 1578 */ 1579 xfs_buf_rele(bp); 1580 return error; 1581 } 1582 1583 void * 1584 xfs_buf_offset( 1585 struct xfs_buf *bp, 1586 size_t offset) 1587 { 1588 struct page *page; 1589 1590 if (bp->b_addr) 1591 return bp->b_addr + offset; 1592 1593 offset += bp->b_offset; 1594 page = bp->b_pages[offset >> PAGE_SHIFT]; 1595 return page_address(page) + (offset & (PAGE_SIZE-1)); 1596 } 1597 1598 /* 1599 * Move data into or out of a buffer. 1600 */ 1601 void 1602 xfs_buf_iomove( 1603 xfs_buf_t *bp, /* buffer to process */ 1604 size_t boff, /* starting buffer offset */ 1605 size_t bsize, /* length to copy */ 1606 void *data, /* data address */ 1607 xfs_buf_rw_t mode) /* read/write/zero flag */ 1608 { 1609 size_t bend; 1610 1611 bend = boff + bsize; 1612 while (boff < bend) { 1613 struct page *page; 1614 int page_index, page_offset, csize; 1615 1616 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1617 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1618 page = bp->b_pages[page_index]; 1619 csize = min_t(size_t, PAGE_SIZE - page_offset, 1620 BBTOB(bp->b_io_length) - boff); 1621 1622 ASSERT((csize + page_offset) <= PAGE_SIZE); 1623 1624 switch (mode) { 1625 case XBRW_ZERO: 1626 memset(page_address(page) + page_offset, 0, csize); 1627 break; 1628 case XBRW_READ: 1629 memcpy(data, page_address(page) + page_offset, csize); 1630 break; 1631 case XBRW_WRITE: 1632 memcpy(page_address(page) + page_offset, data, csize); 1633 } 1634 1635 boff += csize; 1636 data += csize; 1637 } 1638 } 1639 1640 /* 1641 * Handling of buffer targets (buftargs). 1642 */ 1643 1644 /* 1645 * Wait for any bufs with callbacks that have been submitted but have not yet 1646 * returned. These buffers will have an elevated hold count, so wait on those 1647 * while freeing all the buffers only held by the LRU. 1648 */ 1649 static enum lru_status 1650 xfs_buftarg_wait_rele( 1651 struct list_head *item, 1652 struct list_lru_one *lru, 1653 spinlock_t *lru_lock, 1654 void *arg) 1655 1656 { 1657 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1658 struct list_head *dispose = arg; 1659 1660 if (atomic_read(&bp->b_hold) > 1) { 1661 /* need to wait, so skip it this pass */ 1662 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1663 return LRU_SKIP; 1664 } 1665 if (!spin_trylock(&bp->b_lock)) 1666 return LRU_SKIP; 1667 1668 /* 1669 * clear the LRU reference count so the buffer doesn't get 1670 * ignored in xfs_buf_rele(). 1671 */ 1672 atomic_set(&bp->b_lru_ref, 0); 1673 bp->b_state |= XFS_BSTATE_DISPOSE; 1674 list_lru_isolate_move(lru, item, dispose); 1675 spin_unlock(&bp->b_lock); 1676 return LRU_REMOVED; 1677 } 1678 1679 void 1680 xfs_wait_buftarg( 1681 struct xfs_buftarg *btp) 1682 { 1683 LIST_HEAD(dispose); 1684 int loop = 0; 1685 1686 /* 1687 * First wait on the buftarg I/O count for all in-flight buffers to be 1688 * released. This is critical as new buffers do not make the LRU until 1689 * they are released. 1690 * 1691 * Next, flush the buffer workqueue to ensure all completion processing 1692 * has finished. Just waiting on buffer locks is not sufficient for 1693 * async IO as the reference count held over IO is not released until 1694 * after the buffer lock is dropped. Hence we need to ensure here that 1695 * all reference counts have been dropped before we start walking the 1696 * LRU list. 1697 */ 1698 while (percpu_counter_sum(&btp->bt_io_count)) 1699 delay(100); 1700 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1701 1702 /* loop until there is nothing left on the lru list. */ 1703 while (list_lru_count(&btp->bt_lru)) { 1704 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1705 &dispose, LONG_MAX); 1706 1707 while (!list_empty(&dispose)) { 1708 struct xfs_buf *bp; 1709 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1710 list_del_init(&bp->b_lru); 1711 if (bp->b_flags & XBF_WRITE_FAIL) { 1712 xfs_alert(btp->bt_mount, 1713 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", 1714 (long long)bp->b_bn); 1715 xfs_alert(btp->bt_mount, 1716 "Please run xfs_repair to determine the extent of the problem."); 1717 } 1718 xfs_buf_rele(bp); 1719 } 1720 if (loop++ != 0) 1721 delay(100); 1722 } 1723 } 1724 1725 static enum lru_status 1726 xfs_buftarg_isolate( 1727 struct list_head *item, 1728 struct list_lru_one *lru, 1729 spinlock_t *lru_lock, 1730 void *arg) 1731 { 1732 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1733 struct list_head *dispose = arg; 1734 1735 /* 1736 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1737 * If we fail to get the lock, just skip it. 1738 */ 1739 if (!spin_trylock(&bp->b_lock)) 1740 return LRU_SKIP; 1741 /* 1742 * Decrement the b_lru_ref count unless the value is already 1743 * zero. If the value is already zero, we need to reclaim the 1744 * buffer, otherwise it gets another trip through the LRU. 1745 */ 1746 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1747 spin_unlock(&bp->b_lock); 1748 return LRU_ROTATE; 1749 } 1750 1751 bp->b_state |= XFS_BSTATE_DISPOSE; 1752 list_lru_isolate_move(lru, item, dispose); 1753 spin_unlock(&bp->b_lock); 1754 return LRU_REMOVED; 1755 } 1756 1757 static unsigned long 1758 xfs_buftarg_shrink_scan( 1759 struct shrinker *shrink, 1760 struct shrink_control *sc) 1761 { 1762 struct xfs_buftarg *btp = container_of(shrink, 1763 struct xfs_buftarg, bt_shrinker); 1764 LIST_HEAD(dispose); 1765 unsigned long freed; 1766 1767 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1768 xfs_buftarg_isolate, &dispose); 1769 1770 while (!list_empty(&dispose)) { 1771 struct xfs_buf *bp; 1772 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1773 list_del_init(&bp->b_lru); 1774 xfs_buf_rele(bp); 1775 } 1776 1777 return freed; 1778 } 1779 1780 static unsigned long 1781 xfs_buftarg_shrink_count( 1782 struct shrinker *shrink, 1783 struct shrink_control *sc) 1784 { 1785 struct xfs_buftarg *btp = container_of(shrink, 1786 struct xfs_buftarg, bt_shrinker); 1787 return list_lru_shrink_count(&btp->bt_lru, sc); 1788 } 1789 1790 void 1791 xfs_free_buftarg( 1792 struct xfs_buftarg *btp) 1793 { 1794 unregister_shrinker(&btp->bt_shrinker); 1795 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1796 percpu_counter_destroy(&btp->bt_io_count); 1797 list_lru_destroy(&btp->bt_lru); 1798 1799 xfs_blkdev_issue_flush(btp); 1800 1801 kmem_free(btp); 1802 } 1803 1804 int 1805 xfs_setsize_buftarg( 1806 xfs_buftarg_t *btp, 1807 unsigned int sectorsize) 1808 { 1809 /* Set up metadata sector size info */ 1810 btp->bt_meta_sectorsize = sectorsize; 1811 btp->bt_meta_sectormask = sectorsize - 1; 1812 1813 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1814 xfs_warn(btp->bt_mount, 1815 "Cannot set_blocksize to %u on device %pg", 1816 sectorsize, btp->bt_bdev); 1817 return -EINVAL; 1818 } 1819 1820 /* Set up device logical sector size mask */ 1821 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1822 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1823 1824 return 0; 1825 } 1826 1827 /* 1828 * When allocating the initial buffer target we have not yet 1829 * read in the superblock, so don't know what sized sectors 1830 * are being used at this early stage. Play safe. 1831 */ 1832 STATIC int 1833 xfs_setsize_buftarg_early( 1834 xfs_buftarg_t *btp, 1835 struct block_device *bdev) 1836 { 1837 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1838 } 1839 1840 xfs_buftarg_t * 1841 xfs_alloc_buftarg( 1842 struct xfs_mount *mp, 1843 struct block_device *bdev, 1844 struct dax_device *dax_dev) 1845 { 1846 xfs_buftarg_t *btp; 1847 1848 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); 1849 1850 btp->bt_mount = mp; 1851 btp->bt_dev = bdev->bd_dev; 1852 btp->bt_bdev = bdev; 1853 btp->bt_daxdev = dax_dev; 1854 1855 if (xfs_setsize_buftarg_early(btp, bdev)) 1856 goto error_free; 1857 1858 if (list_lru_init(&btp->bt_lru)) 1859 goto error_free; 1860 1861 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 1862 goto error_lru; 1863 1864 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1865 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1866 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1867 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1868 if (register_shrinker(&btp->bt_shrinker)) 1869 goto error_pcpu; 1870 return btp; 1871 1872 error_pcpu: 1873 percpu_counter_destroy(&btp->bt_io_count); 1874 error_lru: 1875 list_lru_destroy(&btp->bt_lru); 1876 error_free: 1877 kmem_free(btp); 1878 return NULL; 1879 } 1880 1881 /* 1882 * Cancel a delayed write list. 1883 * 1884 * Remove each buffer from the list, clear the delwri queue flag and drop the 1885 * associated buffer reference. 1886 */ 1887 void 1888 xfs_buf_delwri_cancel( 1889 struct list_head *list) 1890 { 1891 struct xfs_buf *bp; 1892 1893 while (!list_empty(list)) { 1894 bp = list_first_entry(list, struct xfs_buf, b_list); 1895 1896 xfs_buf_lock(bp); 1897 bp->b_flags &= ~_XBF_DELWRI_Q; 1898 list_del_init(&bp->b_list); 1899 xfs_buf_relse(bp); 1900 } 1901 } 1902 1903 /* 1904 * Add a buffer to the delayed write list. 1905 * 1906 * This queues a buffer for writeout if it hasn't already been. Note that 1907 * neither this routine nor the buffer list submission functions perform 1908 * any internal synchronization. It is expected that the lists are thread-local 1909 * to the callers. 1910 * 1911 * Returns true if we queued up the buffer, or false if it already had 1912 * been on the buffer list. 1913 */ 1914 bool 1915 xfs_buf_delwri_queue( 1916 struct xfs_buf *bp, 1917 struct list_head *list) 1918 { 1919 ASSERT(xfs_buf_islocked(bp)); 1920 ASSERT(!(bp->b_flags & XBF_READ)); 1921 1922 /* 1923 * If the buffer is already marked delwri it already is queued up 1924 * by someone else for imediate writeout. Just ignore it in that 1925 * case. 1926 */ 1927 if (bp->b_flags & _XBF_DELWRI_Q) { 1928 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1929 return false; 1930 } 1931 1932 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1933 1934 /* 1935 * If a buffer gets written out synchronously or marked stale while it 1936 * is on a delwri list we lazily remove it. To do this, the other party 1937 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1938 * It remains referenced and on the list. In a rare corner case it 1939 * might get readded to a delwri list after the synchronous writeout, in 1940 * which case we need just need to re-add the flag here. 1941 */ 1942 bp->b_flags |= _XBF_DELWRI_Q; 1943 if (list_empty(&bp->b_list)) { 1944 atomic_inc(&bp->b_hold); 1945 list_add_tail(&bp->b_list, list); 1946 } 1947 1948 return true; 1949 } 1950 1951 /* 1952 * Compare function is more complex than it needs to be because 1953 * the return value is only 32 bits and we are doing comparisons 1954 * on 64 bit values 1955 */ 1956 static int 1957 xfs_buf_cmp( 1958 void *priv, 1959 struct list_head *a, 1960 struct list_head *b) 1961 { 1962 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1963 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1964 xfs_daddr_t diff; 1965 1966 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1967 if (diff < 0) 1968 return -1; 1969 if (diff > 0) 1970 return 1; 1971 return 0; 1972 } 1973 1974 /* 1975 * submit buffers for write. 1976 * 1977 * When we have a large buffer list, we do not want to hold all the buffers 1978 * locked while we block on the request queue waiting for IO dispatch. To avoid 1979 * this problem, we lock and submit buffers in groups of 50, thereby minimising 1980 * the lock hold times for lists which may contain thousands of objects. 1981 * 1982 * To do this, we sort the buffer list before we walk the list to lock and 1983 * submit buffers, and we plug and unplug around each group of buffers we 1984 * submit. 1985 */ 1986 static int 1987 xfs_buf_delwri_submit_buffers( 1988 struct list_head *buffer_list, 1989 struct list_head *wait_list) 1990 { 1991 struct xfs_buf *bp, *n; 1992 LIST_HEAD (submit_list); 1993 int pinned = 0; 1994 struct blk_plug plug; 1995 1996 list_sort(NULL, buffer_list, xfs_buf_cmp); 1997 1998 blk_start_plug(&plug); 1999 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 2000 if (!wait_list) { 2001 if (xfs_buf_ispinned(bp)) { 2002 pinned++; 2003 continue; 2004 } 2005 if (!xfs_buf_trylock(bp)) 2006 continue; 2007 } else { 2008 xfs_buf_lock(bp); 2009 } 2010 2011 /* 2012 * Someone else might have written the buffer synchronously or 2013 * marked it stale in the meantime. In that case only the 2014 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 2015 * reference and remove it from the list here. 2016 */ 2017 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 2018 list_del_init(&bp->b_list); 2019 xfs_buf_relse(bp); 2020 continue; 2021 } 2022 2023 trace_xfs_buf_delwri_split(bp, _RET_IP_); 2024 2025 /* 2026 * We do all IO submission async. This means if we need 2027 * to wait for IO completion we need to take an extra 2028 * reference so the buffer is still valid on the other 2029 * side. We need to move the buffer onto the io_list 2030 * at this point so the caller can still access it. 2031 */ 2032 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL); 2033 bp->b_flags |= XBF_WRITE | XBF_ASYNC; 2034 if (wait_list) { 2035 xfs_buf_hold(bp); 2036 list_move_tail(&bp->b_list, wait_list); 2037 } else 2038 list_del_init(&bp->b_list); 2039 2040 xfs_buf_submit(bp); 2041 } 2042 blk_finish_plug(&plug); 2043 2044 return pinned; 2045 } 2046 2047 /* 2048 * Write out a buffer list asynchronously. 2049 * 2050 * This will take the @buffer_list, write all non-locked and non-pinned buffers 2051 * out and not wait for I/O completion on any of the buffers. This interface 2052 * is only safely useable for callers that can track I/O completion by higher 2053 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 2054 * function. 2055 */ 2056 int 2057 xfs_buf_delwri_submit_nowait( 2058 struct list_head *buffer_list) 2059 { 2060 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 2061 } 2062 2063 /* 2064 * Write out a buffer list synchronously. 2065 * 2066 * This will take the @buffer_list, write all buffers out and wait for I/O 2067 * completion on all of the buffers. @buffer_list is consumed by the function, 2068 * so callers must have some other way of tracking buffers if they require such 2069 * functionality. 2070 */ 2071 int 2072 xfs_buf_delwri_submit( 2073 struct list_head *buffer_list) 2074 { 2075 LIST_HEAD (wait_list); 2076 int error = 0, error2; 2077 struct xfs_buf *bp; 2078 2079 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 2080 2081 /* Wait for IO to complete. */ 2082 while (!list_empty(&wait_list)) { 2083 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 2084 2085 list_del_init(&bp->b_list); 2086 2087 /* locking the buffer will wait for async IO completion. */ 2088 xfs_buf_lock(bp); 2089 error2 = bp->b_error; 2090 xfs_buf_relse(bp); 2091 if (!error) 2092 error = error2; 2093 } 2094 2095 return error; 2096 } 2097 2098 /* 2099 * Push a single buffer on a delwri queue. 2100 * 2101 * The purpose of this function is to submit a single buffer of a delwri queue 2102 * and return with the buffer still on the original queue. The waiting delwri 2103 * buffer submission infrastructure guarantees transfer of the delwri queue 2104 * buffer reference to a temporary wait list. We reuse this infrastructure to 2105 * transfer the buffer back to the original queue. 2106 * 2107 * Note the buffer transitions from the queued state, to the submitted and wait 2108 * listed state and back to the queued state during this call. The buffer 2109 * locking and queue management logic between _delwri_pushbuf() and 2110 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2111 * before returning. 2112 */ 2113 int 2114 xfs_buf_delwri_pushbuf( 2115 struct xfs_buf *bp, 2116 struct list_head *buffer_list) 2117 { 2118 LIST_HEAD (submit_list); 2119 int error; 2120 2121 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2122 2123 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2124 2125 /* 2126 * Isolate the buffer to a new local list so we can submit it for I/O 2127 * independently from the rest of the original list. 2128 */ 2129 xfs_buf_lock(bp); 2130 list_move(&bp->b_list, &submit_list); 2131 xfs_buf_unlock(bp); 2132 2133 /* 2134 * Delwri submission clears the DELWRI_Q buffer flag and returns with 2135 * the buffer on the wait list with an associated reference. Rather than 2136 * bounce the buffer from a local wait list back to the original list 2137 * after I/O completion, reuse the original list as the wait list. 2138 */ 2139 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); 2140 2141 /* 2142 * The buffer is now under I/O and wait listed as during typical delwri 2143 * submission. Lock the buffer to wait for I/O completion. Rather than 2144 * remove the buffer from the wait list and release the reference, we 2145 * want to return with the buffer queued to the original list. The 2146 * buffer already sits on the original list with a wait list reference, 2147 * however. If we let the queue inherit that wait list reference, all we 2148 * need to do is reset the DELWRI_Q flag. 2149 */ 2150 xfs_buf_lock(bp); 2151 error = bp->b_error; 2152 bp->b_flags |= _XBF_DELWRI_Q; 2153 xfs_buf_unlock(bp); 2154 2155 return error; 2156 } 2157 2158 int __init 2159 xfs_buf_init(void) 2160 { 2161 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 2162 KM_ZONE_HWALIGN, NULL); 2163 if (!xfs_buf_zone) 2164 goto out; 2165 2166 return 0; 2167 2168 out: 2169 return -ENOMEM; 2170 } 2171 2172 void 2173 xfs_buf_terminate(void) 2174 { 2175 kmem_zone_destroy(xfs_buf_zone); 2176 } 2177 2178 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) 2179 { 2180 /* 2181 * Set the lru reference count to 0 based on the error injection tag. 2182 * This allows userspace to disrupt buffer caching for debug/testing 2183 * purposes. 2184 */ 2185 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount, 2186 XFS_ERRTAG_BUF_LRU_REF)) 2187 lru_ref = 0; 2188 2189 atomic_set(&bp->b_lru_ref, lru_ref); 2190 } 2191