xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 9c1f8594)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_sb.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 
44 static kmem_zone_t *xfs_buf_zone;
45 STATIC int xfsbufd(void *);
46 STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
47 
48 static struct workqueue_struct *xfslogd_workqueue;
49 struct workqueue_struct *xfsdatad_workqueue;
50 struct workqueue_struct *xfsconvertd_workqueue;
51 
52 #ifdef XFS_BUF_LOCK_TRACKING
53 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
54 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
55 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
56 #else
57 # define XB_SET_OWNER(bp)	do { } while (0)
58 # define XB_CLEAR_OWNER(bp)	do { } while (0)
59 # define XB_GET_OWNER(bp)	do { } while (0)
60 #endif
61 
62 #define xb_to_gfp(flags) \
63 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
64 	  ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
65 
66 #define xb_to_km(flags) \
67 	 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
68 
69 #define xfs_buf_allocate(flags) \
70 	kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
71 #define xfs_buf_deallocate(bp) \
72 	kmem_zone_free(xfs_buf_zone, (bp));
73 
74 static inline int
75 xfs_buf_is_vmapped(
76 	struct xfs_buf	*bp)
77 {
78 	/*
79 	 * Return true if the buffer is vmapped.
80 	 *
81 	 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
82 	 * code is clever enough to know it doesn't have to map a single page,
83 	 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
84 	 */
85 	return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
86 }
87 
88 static inline int
89 xfs_buf_vmap_len(
90 	struct xfs_buf	*bp)
91 {
92 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
93 }
94 
95 /*
96  * xfs_buf_lru_add - add a buffer to the LRU.
97  *
98  * The LRU takes a new reference to the buffer so that it will only be freed
99  * once the shrinker takes the buffer off the LRU.
100  */
101 STATIC void
102 xfs_buf_lru_add(
103 	struct xfs_buf	*bp)
104 {
105 	struct xfs_buftarg *btp = bp->b_target;
106 
107 	spin_lock(&btp->bt_lru_lock);
108 	if (list_empty(&bp->b_lru)) {
109 		atomic_inc(&bp->b_hold);
110 		list_add_tail(&bp->b_lru, &btp->bt_lru);
111 		btp->bt_lru_nr++;
112 	}
113 	spin_unlock(&btp->bt_lru_lock);
114 }
115 
116 /*
117  * xfs_buf_lru_del - remove a buffer from the LRU
118  *
119  * The unlocked check is safe here because it only occurs when there are not
120  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
121  * to optimise the shrinker removing the buffer from the LRU and calling
122  * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
123  * bt_lru_lock.
124  */
125 STATIC void
126 xfs_buf_lru_del(
127 	struct xfs_buf	*bp)
128 {
129 	struct xfs_buftarg *btp = bp->b_target;
130 
131 	if (list_empty(&bp->b_lru))
132 		return;
133 
134 	spin_lock(&btp->bt_lru_lock);
135 	if (!list_empty(&bp->b_lru)) {
136 		list_del_init(&bp->b_lru);
137 		btp->bt_lru_nr--;
138 	}
139 	spin_unlock(&btp->bt_lru_lock);
140 }
141 
142 /*
143  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144  * b_lru_ref count so that the buffer is freed immediately when the buffer
145  * reference count falls to zero. If the buffer is already on the LRU, we need
146  * to remove the reference that LRU holds on the buffer.
147  *
148  * This prevents build-up of stale buffers on the LRU.
149  */
150 void
151 xfs_buf_stale(
152 	struct xfs_buf	*bp)
153 {
154 	bp->b_flags |= XBF_STALE;
155 	atomic_set(&(bp)->b_lru_ref, 0);
156 	if (!list_empty(&bp->b_lru)) {
157 		struct xfs_buftarg *btp = bp->b_target;
158 
159 		spin_lock(&btp->bt_lru_lock);
160 		if (!list_empty(&bp->b_lru)) {
161 			list_del_init(&bp->b_lru);
162 			btp->bt_lru_nr--;
163 			atomic_dec(&bp->b_hold);
164 		}
165 		spin_unlock(&btp->bt_lru_lock);
166 	}
167 	ASSERT(atomic_read(&bp->b_hold) >= 1);
168 }
169 
170 STATIC void
171 _xfs_buf_initialize(
172 	xfs_buf_t		*bp,
173 	xfs_buftarg_t		*target,
174 	xfs_off_t		range_base,
175 	size_t			range_length,
176 	xfs_buf_flags_t		flags)
177 {
178 	/*
179 	 * We don't want certain flags to appear in b_flags.
180 	 */
181 	flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
182 
183 	memset(bp, 0, sizeof(xfs_buf_t));
184 	atomic_set(&bp->b_hold, 1);
185 	atomic_set(&bp->b_lru_ref, 1);
186 	init_completion(&bp->b_iowait);
187 	INIT_LIST_HEAD(&bp->b_lru);
188 	INIT_LIST_HEAD(&bp->b_list);
189 	RB_CLEAR_NODE(&bp->b_rbnode);
190 	sema_init(&bp->b_sema, 0); /* held, no waiters */
191 	XB_SET_OWNER(bp);
192 	bp->b_target = target;
193 	bp->b_file_offset = range_base;
194 	/*
195 	 * Set buffer_length and count_desired to the same value initially.
196 	 * I/O routines should use count_desired, which will be the same in
197 	 * most cases but may be reset (e.g. XFS recovery).
198 	 */
199 	bp->b_buffer_length = bp->b_count_desired = range_length;
200 	bp->b_flags = flags;
201 	bp->b_bn = XFS_BUF_DADDR_NULL;
202 	atomic_set(&bp->b_pin_count, 0);
203 	init_waitqueue_head(&bp->b_waiters);
204 
205 	XFS_STATS_INC(xb_create);
206 
207 	trace_xfs_buf_init(bp, _RET_IP_);
208 }
209 
210 /*
211  *	Allocate a page array capable of holding a specified number
212  *	of pages, and point the page buf at it.
213  */
214 STATIC int
215 _xfs_buf_get_pages(
216 	xfs_buf_t		*bp,
217 	int			page_count,
218 	xfs_buf_flags_t		flags)
219 {
220 	/* Make sure that we have a page list */
221 	if (bp->b_pages == NULL) {
222 		bp->b_offset = xfs_buf_poff(bp->b_file_offset);
223 		bp->b_page_count = page_count;
224 		if (page_count <= XB_PAGES) {
225 			bp->b_pages = bp->b_page_array;
226 		} else {
227 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
228 					page_count, xb_to_km(flags));
229 			if (bp->b_pages == NULL)
230 				return -ENOMEM;
231 		}
232 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
233 	}
234 	return 0;
235 }
236 
237 /*
238  *	Frees b_pages if it was allocated.
239  */
240 STATIC void
241 _xfs_buf_free_pages(
242 	xfs_buf_t	*bp)
243 {
244 	if (bp->b_pages != bp->b_page_array) {
245 		kmem_free(bp->b_pages);
246 		bp->b_pages = NULL;
247 	}
248 }
249 
250 /*
251  *	Releases the specified buffer.
252  *
253  * 	The modification state of any associated pages is left unchanged.
254  * 	The buffer most not be on any hash - use xfs_buf_rele instead for
255  * 	hashed and refcounted buffers
256  */
257 void
258 xfs_buf_free(
259 	xfs_buf_t		*bp)
260 {
261 	trace_xfs_buf_free(bp, _RET_IP_);
262 
263 	ASSERT(list_empty(&bp->b_lru));
264 
265 	if (bp->b_flags & _XBF_PAGES) {
266 		uint		i;
267 
268 		if (xfs_buf_is_vmapped(bp))
269 			vm_unmap_ram(bp->b_addr - bp->b_offset,
270 					bp->b_page_count);
271 
272 		for (i = 0; i < bp->b_page_count; i++) {
273 			struct page	*page = bp->b_pages[i];
274 
275 			__free_page(page);
276 		}
277 	} else if (bp->b_flags & _XBF_KMEM)
278 		kmem_free(bp->b_addr);
279 	_xfs_buf_free_pages(bp);
280 	xfs_buf_deallocate(bp);
281 }
282 
283 /*
284  * Allocates all the pages for buffer in question and builds it's page list.
285  */
286 STATIC int
287 xfs_buf_allocate_memory(
288 	xfs_buf_t		*bp,
289 	uint			flags)
290 {
291 	size_t			size = bp->b_count_desired;
292 	size_t			nbytes, offset;
293 	gfp_t			gfp_mask = xb_to_gfp(flags);
294 	unsigned short		page_count, i;
295 	xfs_off_t		end;
296 	int			error;
297 
298 	/*
299 	 * for buffers that are contained within a single page, just allocate
300 	 * the memory from the heap - there's no need for the complexity of
301 	 * page arrays to keep allocation down to order 0.
302 	 */
303 	if (bp->b_buffer_length < PAGE_SIZE) {
304 		bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
305 		if (!bp->b_addr) {
306 			/* low memory - use alloc_page loop instead */
307 			goto use_alloc_page;
308 		}
309 
310 		if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
311 								PAGE_MASK) !=
312 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
313 			/* b_addr spans two pages - use alloc_page instead */
314 			kmem_free(bp->b_addr);
315 			bp->b_addr = NULL;
316 			goto use_alloc_page;
317 		}
318 		bp->b_offset = offset_in_page(bp->b_addr);
319 		bp->b_pages = bp->b_page_array;
320 		bp->b_pages[0] = virt_to_page(bp->b_addr);
321 		bp->b_page_count = 1;
322 		bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
323 		return 0;
324 	}
325 
326 use_alloc_page:
327 	end = bp->b_file_offset + bp->b_buffer_length;
328 	page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
329 	error = _xfs_buf_get_pages(bp, page_count, flags);
330 	if (unlikely(error))
331 		return error;
332 
333 	offset = bp->b_offset;
334 	bp->b_flags |= _XBF_PAGES;
335 
336 	for (i = 0; i < bp->b_page_count; i++) {
337 		struct page	*page;
338 		uint		retries = 0;
339 retry:
340 		page = alloc_page(gfp_mask);
341 		if (unlikely(page == NULL)) {
342 			if (flags & XBF_READ_AHEAD) {
343 				bp->b_page_count = i;
344 				error = ENOMEM;
345 				goto out_free_pages;
346 			}
347 
348 			/*
349 			 * This could deadlock.
350 			 *
351 			 * But until all the XFS lowlevel code is revamped to
352 			 * handle buffer allocation failures we can't do much.
353 			 */
354 			if (!(++retries % 100))
355 				xfs_err(NULL,
356 		"possible memory allocation deadlock in %s (mode:0x%x)",
357 					__func__, gfp_mask);
358 
359 			XFS_STATS_INC(xb_page_retries);
360 			congestion_wait(BLK_RW_ASYNC, HZ/50);
361 			goto retry;
362 		}
363 
364 		XFS_STATS_INC(xb_page_found);
365 
366 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
367 		size -= nbytes;
368 		bp->b_pages[i] = page;
369 		offset = 0;
370 	}
371 	return 0;
372 
373 out_free_pages:
374 	for (i = 0; i < bp->b_page_count; i++)
375 		__free_page(bp->b_pages[i]);
376 	return error;
377 }
378 
379 /*
380  *	Map buffer into kernel address-space if necessary.
381  */
382 STATIC int
383 _xfs_buf_map_pages(
384 	xfs_buf_t		*bp,
385 	uint			flags)
386 {
387 	ASSERT(bp->b_flags & _XBF_PAGES);
388 	if (bp->b_page_count == 1) {
389 		/* A single page buffer is always mappable */
390 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
391 		bp->b_flags |= XBF_MAPPED;
392 	} else if (flags & XBF_MAPPED) {
393 		int retried = 0;
394 
395 		do {
396 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
397 						-1, PAGE_KERNEL);
398 			if (bp->b_addr)
399 				break;
400 			vm_unmap_aliases();
401 		} while (retried++ <= 1);
402 
403 		if (!bp->b_addr)
404 			return -ENOMEM;
405 		bp->b_addr += bp->b_offset;
406 		bp->b_flags |= XBF_MAPPED;
407 	}
408 
409 	return 0;
410 }
411 
412 /*
413  *	Finding and Reading Buffers
414  */
415 
416 /*
417  *	Look up, and creates if absent, a lockable buffer for
418  *	a given range of an inode.  The buffer is returned
419  *	locked.	 If other overlapping buffers exist, they are
420  *	released before the new buffer is created and locked,
421  *	which may imply that this call will block until those buffers
422  *	are unlocked.  No I/O is implied by this call.
423  */
424 xfs_buf_t *
425 _xfs_buf_find(
426 	xfs_buftarg_t		*btp,	/* block device target		*/
427 	xfs_off_t		ioff,	/* starting offset of range	*/
428 	size_t			isize,	/* length of range		*/
429 	xfs_buf_flags_t		flags,
430 	xfs_buf_t		*new_bp)
431 {
432 	xfs_off_t		range_base;
433 	size_t			range_length;
434 	struct xfs_perag	*pag;
435 	struct rb_node		**rbp;
436 	struct rb_node		*parent;
437 	xfs_buf_t		*bp;
438 
439 	range_base = (ioff << BBSHIFT);
440 	range_length = (isize << BBSHIFT);
441 
442 	/* Check for IOs smaller than the sector size / not sector aligned */
443 	ASSERT(!(range_length < (1 << btp->bt_sshift)));
444 	ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
445 
446 	/* get tree root */
447 	pag = xfs_perag_get(btp->bt_mount,
448 				xfs_daddr_to_agno(btp->bt_mount, ioff));
449 
450 	/* walk tree */
451 	spin_lock(&pag->pag_buf_lock);
452 	rbp = &pag->pag_buf_tree.rb_node;
453 	parent = NULL;
454 	bp = NULL;
455 	while (*rbp) {
456 		parent = *rbp;
457 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
458 
459 		if (range_base < bp->b_file_offset)
460 			rbp = &(*rbp)->rb_left;
461 		else if (range_base > bp->b_file_offset)
462 			rbp = &(*rbp)->rb_right;
463 		else {
464 			/*
465 			 * found a block offset match. If the range doesn't
466 			 * match, the only way this is allowed is if the buffer
467 			 * in the cache is stale and the transaction that made
468 			 * it stale has not yet committed. i.e. we are
469 			 * reallocating a busy extent. Skip this buffer and
470 			 * continue searching to the right for an exact match.
471 			 */
472 			if (bp->b_buffer_length != range_length) {
473 				ASSERT(bp->b_flags & XBF_STALE);
474 				rbp = &(*rbp)->rb_right;
475 				continue;
476 			}
477 			atomic_inc(&bp->b_hold);
478 			goto found;
479 		}
480 	}
481 
482 	/* No match found */
483 	if (new_bp) {
484 		_xfs_buf_initialize(new_bp, btp, range_base,
485 				range_length, flags);
486 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
487 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
488 		/* the buffer keeps the perag reference until it is freed */
489 		new_bp->b_pag = pag;
490 		spin_unlock(&pag->pag_buf_lock);
491 	} else {
492 		XFS_STATS_INC(xb_miss_locked);
493 		spin_unlock(&pag->pag_buf_lock);
494 		xfs_perag_put(pag);
495 	}
496 	return new_bp;
497 
498 found:
499 	spin_unlock(&pag->pag_buf_lock);
500 	xfs_perag_put(pag);
501 
502 	if (!xfs_buf_trylock(bp)) {
503 		if (flags & XBF_TRYLOCK) {
504 			xfs_buf_rele(bp);
505 			XFS_STATS_INC(xb_busy_locked);
506 			return NULL;
507 		}
508 		xfs_buf_lock(bp);
509 		XFS_STATS_INC(xb_get_locked_waited);
510 	}
511 
512 	/*
513 	 * if the buffer is stale, clear all the external state associated with
514 	 * it. We need to keep flags such as how we allocated the buffer memory
515 	 * intact here.
516 	 */
517 	if (bp->b_flags & XBF_STALE) {
518 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
519 		bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
520 	}
521 
522 	trace_xfs_buf_find(bp, flags, _RET_IP_);
523 	XFS_STATS_INC(xb_get_locked);
524 	return bp;
525 }
526 
527 /*
528  *	Assembles a buffer covering the specified range.
529  *	Storage in memory for all portions of the buffer will be allocated,
530  *	although backing storage may not be.
531  */
532 xfs_buf_t *
533 xfs_buf_get(
534 	xfs_buftarg_t		*target,/* target for buffer		*/
535 	xfs_off_t		ioff,	/* starting offset of range	*/
536 	size_t			isize,	/* length of range		*/
537 	xfs_buf_flags_t		flags)
538 {
539 	xfs_buf_t		*bp, *new_bp;
540 	int			error = 0;
541 
542 	new_bp = xfs_buf_allocate(flags);
543 	if (unlikely(!new_bp))
544 		return NULL;
545 
546 	bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
547 	if (bp == new_bp) {
548 		error = xfs_buf_allocate_memory(bp, flags);
549 		if (error)
550 			goto no_buffer;
551 	} else {
552 		xfs_buf_deallocate(new_bp);
553 		if (unlikely(bp == NULL))
554 			return NULL;
555 	}
556 
557 	if (!(bp->b_flags & XBF_MAPPED)) {
558 		error = _xfs_buf_map_pages(bp, flags);
559 		if (unlikely(error)) {
560 			xfs_warn(target->bt_mount,
561 				"%s: failed to map pages\n", __func__);
562 			goto no_buffer;
563 		}
564 	}
565 
566 	XFS_STATS_INC(xb_get);
567 
568 	/*
569 	 * Always fill in the block number now, the mapped cases can do
570 	 * their own overlay of this later.
571 	 */
572 	bp->b_bn = ioff;
573 	bp->b_count_desired = bp->b_buffer_length;
574 
575 	trace_xfs_buf_get(bp, flags, _RET_IP_);
576 	return bp;
577 
578  no_buffer:
579 	if (flags & (XBF_LOCK | XBF_TRYLOCK))
580 		xfs_buf_unlock(bp);
581 	xfs_buf_rele(bp);
582 	return NULL;
583 }
584 
585 STATIC int
586 _xfs_buf_read(
587 	xfs_buf_t		*bp,
588 	xfs_buf_flags_t		flags)
589 {
590 	int			status;
591 
592 	ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
593 	ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
594 
595 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD);
596 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
597 
598 	status = xfs_buf_iorequest(bp);
599 	if (status || bp->b_error || (flags & XBF_ASYNC))
600 		return status;
601 	return xfs_buf_iowait(bp);
602 }
603 
604 xfs_buf_t *
605 xfs_buf_read(
606 	xfs_buftarg_t		*target,
607 	xfs_off_t		ioff,
608 	size_t			isize,
609 	xfs_buf_flags_t		flags)
610 {
611 	xfs_buf_t		*bp;
612 
613 	flags |= XBF_READ;
614 
615 	bp = xfs_buf_get(target, ioff, isize, flags);
616 	if (bp) {
617 		trace_xfs_buf_read(bp, flags, _RET_IP_);
618 
619 		if (!XFS_BUF_ISDONE(bp)) {
620 			XFS_STATS_INC(xb_get_read);
621 			_xfs_buf_read(bp, flags);
622 		} else if (flags & XBF_ASYNC) {
623 			/*
624 			 * Read ahead call which is already satisfied,
625 			 * drop the buffer
626 			 */
627 			goto no_buffer;
628 		} else {
629 			/* We do not want read in the flags */
630 			bp->b_flags &= ~XBF_READ;
631 		}
632 	}
633 
634 	return bp;
635 
636  no_buffer:
637 	if (flags & (XBF_LOCK | XBF_TRYLOCK))
638 		xfs_buf_unlock(bp);
639 	xfs_buf_rele(bp);
640 	return NULL;
641 }
642 
643 /*
644  *	If we are not low on memory then do the readahead in a deadlock
645  *	safe manner.
646  */
647 void
648 xfs_buf_readahead(
649 	xfs_buftarg_t		*target,
650 	xfs_off_t		ioff,
651 	size_t			isize)
652 {
653 	if (bdi_read_congested(target->bt_bdi))
654 		return;
655 
656 	xfs_buf_read(target, ioff, isize,
657 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
658 }
659 
660 /*
661  * Read an uncached buffer from disk. Allocates and returns a locked
662  * buffer containing the disk contents or nothing.
663  */
664 struct xfs_buf *
665 xfs_buf_read_uncached(
666 	struct xfs_mount	*mp,
667 	struct xfs_buftarg	*target,
668 	xfs_daddr_t		daddr,
669 	size_t			length,
670 	int			flags)
671 {
672 	xfs_buf_t		*bp;
673 	int			error;
674 
675 	bp = xfs_buf_get_uncached(target, length, flags);
676 	if (!bp)
677 		return NULL;
678 
679 	/* set up the buffer for a read IO */
680 	XFS_BUF_SET_ADDR(bp, daddr);
681 	XFS_BUF_READ(bp);
682 
683 	xfsbdstrat(mp, bp);
684 	error = xfs_buf_iowait(bp);
685 	if (error || bp->b_error) {
686 		xfs_buf_relse(bp);
687 		return NULL;
688 	}
689 	return bp;
690 }
691 
692 xfs_buf_t *
693 xfs_buf_get_empty(
694 	size_t			len,
695 	xfs_buftarg_t		*target)
696 {
697 	xfs_buf_t		*bp;
698 
699 	bp = xfs_buf_allocate(0);
700 	if (bp)
701 		_xfs_buf_initialize(bp, target, 0, len, 0);
702 	return bp;
703 }
704 
705 /*
706  * Return a buffer allocated as an empty buffer and associated to external
707  * memory via xfs_buf_associate_memory() back to it's empty state.
708  */
709 void
710 xfs_buf_set_empty(
711 	struct xfs_buf		*bp,
712 	size_t			len)
713 {
714 	if (bp->b_pages)
715 		_xfs_buf_free_pages(bp);
716 
717 	bp->b_pages = NULL;
718 	bp->b_page_count = 0;
719 	bp->b_addr = NULL;
720 	bp->b_file_offset = 0;
721 	bp->b_buffer_length = bp->b_count_desired = len;
722 	bp->b_bn = XFS_BUF_DADDR_NULL;
723 	bp->b_flags &= ~XBF_MAPPED;
724 }
725 
726 static inline struct page *
727 mem_to_page(
728 	void			*addr)
729 {
730 	if ((!is_vmalloc_addr(addr))) {
731 		return virt_to_page(addr);
732 	} else {
733 		return vmalloc_to_page(addr);
734 	}
735 }
736 
737 int
738 xfs_buf_associate_memory(
739 	xfs_buf_t		*bp,
740 	void			*mem,
741 	size_t			len)
742 {
743 	int			rval;
744 	int			i = 0;
745 	unsigned long		pageaddr;
746 	unsigned long		offset;
747 	size_t			buflen;
748 	int			page_count;
749 
750 	pageaddr = (unsigned long)mem & PAGE_MASK;
751 	offset = (unsigned long)mem - pageaddr;
752 	buflen = PAGE_ALIGN(len + offset);
753 	page_count = buflen >> PAGE_SHIFT;
754 
755 	/* Free any previous set of page pointers */
756 	if (bp->b_pages)
757 		_xfs_buf_free_pages(bp);
758 
759 	bp->b_pages = NULL;
760 	bp->b_addr = mem;
761 
762 	rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
763 	if (rval)
764 		return rval;
765 
766 	bp->b_offset = offset;
767 
768 	for (i = 0; i < bp->b_page_count; i++) {
769 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
770 		pageaddr += PAGE_SIZE;
771 	}
772 
773 	bp->b_count_desired = len;
774 	bp->b_buffer_length = buflen;
775 	bp->b_flags |= XBF_MAPPED;
776 
777 	return 0;
778 }
779 
780 xfs_buf_t *
781 xfs_buf_get_uncached(
782 	struct xfs_buftarg	*target,
783 	size_t			len,
784 	int			flags)
785 {
786 	unsigned long		page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
787 	int			error, i;
788 	xfs_buf_t		*bp;
789 
790 	bp = xfs_buf_allocate(0);
791 	if (unlikely(bp == NULL))
792 		goto fail;
793 	_xfs_buf_initialize(bp, target, 0, len, 0);
794 
795 	error = _xfs_buf_get_pages(bp, page_count, 0);
796 	if (error)
797 		goto fail_free_buf;
798 
799 	for (i = 0; i < page_count; i++) {
800 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
801 		if (!bp->b_pages[i])
802 			goto fail_free_mem;
803 	}
804 	bp->b_flags |= _XBF_PAGES;
805 
806 	error = _xfs_buf_map_pages(bp, XBF_MAPPED);
807 	if (unlikely(error)) {
808 		xfs_warn(target->bt_mount,
809 			"%s: failed to map pages\n", __func__);
810 		goto fail_free_mem;
811 	}
812 
813 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
814 	return bp;
815 
816  fail_free_mem:
817 	while (--i >= 0)
818 		__free_page(bp->b_pages[i]);
819 	_xfs_buf_free_pages(bp);
820  fail_free_buf:
821 	xfs_buf_deallocate(bp);
822  fail:
823 	return NULL;
824 }
825 
826 /*
827  *	Increment reference count on buffer, to hold the buffer concurrently
828  *	with another thread which may release (free) the buffer asynchronously.
829  *	Must hold the buffer already to call this function.
830  */
831 void
832 xfs_buf_hold(
833 	xfs_buf_t		*bp)
834 {
835 	trace_xfs_buf_hold(bp, _RET_IP_);
836 	atomic_inc(&bp->b_hold);
837 }
838 
839 /*
840  *	Releases a hold on the specified buffer.  If the
841  *	the hold count is 1, calls xfs_buf_free.
842  */
843 void
844 xfs_buf_rele(
845 	xfs_buf_t		*bp)
846 {
847 	struct xfs_perag	*pag = bp->b_pag;
848 
849 	trace_xfs_buf_rele(bp, _RET_IP_);
850 
851 	if (!pag) {
852 		ASSERT(list_empty(&bp->b_lru));
853 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
854 		if (atomic_dec_and_test(&bp->b_hold))
855 			xfs_buf_free(bp);
856 		return;
857 	}
858 
859 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
860 
861 	ASSERT(atomic_read(&bp->b_hold) > 0);
862 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
863 		if (!(bp->b_flags & XBF_STALE) &&
864 			   atomic_read(&bp->b_lru_ref)) {
865 			xfs_buf_lru_add(bp);
866 			spin_unlock(&pag->pag_buf_lock);
867 		} else {
868 			xfs_buf_lru_del(bp);
869 			ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
870 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
871 			spin_unlock(&pag->pag_buf_lock);
872 			xfs_perag_put(pag);
873 			xfs_buf_free(bp);
874 		}
875 	}
876 }
877 
878 
879 /*
880  *	Lock a buffer object, if it is not already locked.
881  *
882  *	If we come across a stale, pinned, locked buffer, we know that we are
883  *	being asked to lock a buffer that has been reallocated. Because it is
884  *	pinned, we know that the log has not been pushed to disk and hence it
885  *	will still be locked.  Rather than continuing to have trylock attempts
886  *	fail until someone else pushes the log, push it ourselves before
887  *	returning.  This means that the xfsaild will not get stuck trying
888  *	to push on stale inode buffers.
889  */
890 int
891 xfs_buf_trylock(
892 	struct xfs_buf		*bp)
893 {
894 	int			locked;
895 
896 	locked = down_trylock(&bp->b_sema) == 0;
897 	if (locked)
898 		XB_SET_OWNER(bp);
899 	else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
900 		xfs_log_force(bp->b_target->bt_mount, 0);
901 
902 	trace_xfs_buf_trylock(bp, _RET_IP_);
903 	return locked;
904 }
905 
906 /*
907  *	Lock a buffer object.
908  *
909  *	If we come across a stale, pinned, locked buffer, we know that we
910  *	are being asked to lock a buffer that has been reallocated. Because
911  *	it is pinned, we know that the log has not been pushed to disk and
912  *	hence it will still be locked. Rather than sleeping until someone
913  *	else pushes the log, push it ourselves before trying to get the lock.
914  */
915 void
916 xfs_buf_lock(
917 	struct xfs_buf		*bp)
918 {
919 	trace_xfs_buf_lock(bp, _RET_IP_);
920 
921 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
922 		xfs_log_force(bp->b_target->bt_mount, 0);
923 	down(&bp->b_sema);
924 	XB_SET_OWNER(bp);
925 
926 	trace_xfs_buf_lock_done(bp, _RET_IP_);
927 }
928 
929 /*
930  *	Releases the lock on the buffer object.
931  *	If the buffer is marked delwri but is not queued, do so before we
932  *	unlock the buffer as we need to set flags correctly.  We also need to
933  *	take a reference for the delwri queue because the unlocker is going to
934  *	drop their's and they don't know we just queued it.
935  */
936 void
937 xfs_buf_unlock(
938 	struct xfs_buf		*bp)
939 {
940 	if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
941 		atomic_inc(&bp->b_hold);
942 		bp->b_flags |= XBF_ASYNC;
943 		xfs_buf_delwri_queue(bp, 0);
944 	}
945 
946 	XB_CLEAR_OWNER(bp);
947 	up(&bp->b_sema);
948 
949 	trace_xfs_buf_unlock(bp, _RET_IP_);
950 }
951 
952 STATIC void
953 xfs_buf_wait_unpin(
954 	xfs_buf_t		*bp)
955 {
956 	DECLARE_WAITQUEUE	(wait, current);
957 
958 	if (atomic_read(&bp->b_pin_count) == 0)
959 		return;
960 
961 	add_wait_queue(&bp->b_waiters, &wait);
962 	for (;;) {
963 		set_current_state(TASK_UNINTERRUPTIBLE);
964 		if (atomic_read(&bp->b_pin_count) == 0)
965 			break;
966 		io_schedule();
967 	}
968 	remove_wait_queue(&bp->b_waiters, &wait);
969 	set_current_state(TASK_RUNNING);
970 }
971 
972 /*
973  *	Buffer Utility Routines
974  */
975 
976 STATIC void
977 xfs_buf_iodone_work(
978 	struct work_struct	*work)
979 {
980 	xfs_buf_t		*bp =
981 		container_of(work, xfs_buf_t, b_iodone_work);
982 
983 	if (bp->b_iodone)
984 		(*(bp->b_iodone))(bp);
985 	else if (bp->b_flags & XBF_ASYNC)
986 		xfs_buf_relse(bp);
987 }
988 
989 void
990 xfs_buf_ioend(
991 	xfs_buf_t		*bp,
992 	int			schedule)
993 {
994 	trace_xfs_buf_iodone(bp, _RET_IP_);
995 
996 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
997 	if (bp->b_error == 0)
998 		bp->b_flags |= XBF_DONE;
999 
1000 	if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1001 		if (schedule) {
1002 			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1003 			queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1004 		} else {
1005 			xfs_buf_iodone_work(&bp->b_iodone_work);
1006 		}
1007 	} else {
1008 		complete(&bp->b_iowait);
1009 	}
1010 }
1011 
1012 void
1013 xfs_buf_ioerror(
1014 	xfs_buf_t		*bp,
1015 	int			error)
1016 {
1017 	ASSERT(error >= 0 && error <= 0xffff);
1018 	bp->b_error = (unsigned short)error;
1019 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1020 }
1021 
1022 int
1023 xfs_bwrite(
1024 	struct xfs_mount	*mp,
1025 	struct xfs_buf		*bp)
1026 {
1027 	int			error;
1028 
1029 	bp->b_flags |= XBF_WRITE;
1030 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1031 
1032 	xfs_buf_delwri_dequeue(bp);
1033 	xfs_bdstrat_cb(bp);
1034 
1035 	error = xfs_buf_iowait(bp);
1036 	if (error)
1037 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1038 	xfs_buf_relse(bp);
1039 	return error;
1040 }
1041 
1042 void
1043 xfs_bdwrite(
1044 	void			*mp,
1045 	struct xfs_buf		*bp)
1046 {
1047 	trace_xfs_buf_bdwrite(bp, _RET_IP_);
1048 
1049 	bp->b_flags &= ~XBF_READ;
1050 	bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1051 
1052 	xfs_buf_delwri_queue(bp, 1);
1053 }
1054 
1055 /*
1056  * Called when we want to stop a buffer from getting written or read.
1057  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1058  * so that the proper iodone callbacks get called.
1059  */
1060 STATIC int
1061 xfs_bioerror(
1062 	xfs_buf_t *bp)
1063 {
1064 #ifdef XFSERRORDEBUG
1065 	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1066 #endif
1067 
1068 	/*
1069 	 * No need to wait until the buffer is unpinned, we aren't flushing it.
1070 	 */
1071 	xfs_buf_ioerror(bp, EIO);
1072 
1073 	/*
1074 	 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1075 	 */
1076 	XFS_BUF_UNREAD(bp);
1077 	XFS_BUF_UNDELAYWRITE(bp);
1078 	XFS_BUF_UNDONE(bp);
1079 	XFS_BUF_STALE(bp);
1080 
1081 	xfs_buf_ioend(bp, 0);
1082 
1083 	return EIO;
1084 }
1085 
1086 /*
1087  * Same as xfs_bioerror, except that we are releasing the buffer
1088  * here ourselves, and avoiding the xfs_buf_ioend call.
1089  * This is meant for userdata errors; metadata bufs come with
1090  * iodone functions attached, so that we can track down errors.
1091  */
1092 STATIC int
1093 xfs_bioerror_relse(
1094 	struct xfs_buf	*bp)
1095 {
1096 	int64_t		fl = bp->b_flags;
1097 	/*
1098 	 * No need to wait until the buffer is unpinned.
1099 	 * We aren't flushing it.
1100 	 *
1101 	 * chunkhold expects B_DONE to be set, whether
1102 	 * we actually finish the I/O or not. We don't want to
1103 	 * change that interface.
1104 	 */
1105 	XFS_BUF_UNREAD(bp);
1106 	XFS_BUF_UNDELAYWRITE(bp);
1107 	XFS_BUF_DONE(bp);
1108 	XFS_BUF_STALE(bp);
1109 	bp->b_iodone = NULL;
1110 	if (!(fl & XBF_ASYNC)) {
1111 		/*
1112 		 * Mark b_error and B_ERROR _both_.
1113 		 * Lot's of chunkcache code assumes that.
1114 		 * There's no reason to mark error for
1115 		 * ASYNC buffers.
1116 		 */
1117 		xfs_buf_ioerror(bp, EIO);
1118 		XFS_BUF_FINISH_IOWAIT(bp);
1119 	} else {
1120 		xfs_buf_relse(bp);
1121 	}
1122 
1123 	return EIO;
1124 }
1125 
1126 
1127 /*
1128  * All xfs metadata buffers except log state machine buffers
1129  * get this attached as their b_bdstrat callback function.
1130  * This is so that we can catch a buffer
1131  * after prematurely unpinning it to forcibly shutdown the filesystem.
1132  */
1133 int
1134 xfs_bdstrat_cb(
1135 	struct xfs_buf	*bp)
1136 {
1137 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1138 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1139 		/*
1140 		 * Metadata write that didn't get logged but
1141 		 * written delayed anyway. These aren't associated
1142 		 * with a transaction, and can be ignored.
1143 		 */
1144 		if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1145 			return xfs_bioerror_relse(bp);
1146 		else
1147 			return xfs_bioerror(bp);
1148 	}
1149 
1150 	xfs_buf_iorequest(bp);
1151 	return 0;
1152 }
1153 
1154 /*
1155  * Wrapper around bdstrat so that we can stop data from going to disk in case
1156  * we are shutting down the filesystem.  Typically user data goes thru this
1157  * path; one of the exceptions is the superblock.
1158  */
1159 void
1160 xfsbdstrat(
1161 	struct xfs_mount	*mp,
1162 	struct xfs_buf		*bp)
1163 {
1164 	if (XFS_FORCED_SHUTDOWN(mp)) {
1165 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1166 		xfs_bioerror_relse(bp);
1167 		return;
1168 	}
1169 
1170 	xfs_buf_iorequest(bp);
1171 }
1172 
1173 STATIC void
1174 _xfs_buf_ioend(
1175 	xfs_buf_t		*bp,
1176 	int			schedule)
1177 {
1178 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1179 		xfs_buf_ioend(bp, schedule);
1180 }
1181 
1182 STATIC void
1183 xfs_buf_bio_end_io(
1184 	struct bio		*bio,
1185 	int			error)
1186 {
1187 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1188 
1189 	xfs_buf_ioerror(bp, -error);
1190 
1191 	if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1192 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1193 
1194 	_xfs_buf_ioend(bp, 1);
1195 	bio_put(bio);
1196 }
1197 
1198 STATIC void
1199 _xfs_buf_ioapply(
1200 	xfs_buf_t		*bp)
1201 {
1202 	int			rw, map_i, total_nr_pages, nr_pages;
1203 	struct bio		*bio;
1204 	int			offset = bp->b_offset;
1205 	int			size = bp->b_count_desired;
1206 	sector_t		sector = bp->b_bn;
1207 
1208 	total_nr_pages = bp->b_page_count;
1209 	map_i = 0;
1210 
1211 	if (bp->b_flags & XBF_WRITE) {
1212 		if (bp->b_flags & XBF_SYNCIO)
1213 			rw = WRITE_SYNC;
1214 		else
1215 			rw = WRITE;
1216 		if (bp->b_flags & XBF_FUA)
1217 			rw |= REQ_FUA;
1218 		if (bp->b_flags & XBF_FLUSH)
1219 			rw |= REQ_FLUSH;
1220 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1221 		rw = READA;
1222 	} else {
1223 		rw = READ;
1224 	}
1225 
1226 	/* we only use the buffer cache for meta-data */
1227 	rw |= REQ_META;
1228 
1229 next_chunk:
1230 	atomic_inc(&bp->b_io_remaining);
1231 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1232 	if (nr_pages > total_nr_pages)
1233 		nr_pages = total_nr_pages;
1234 
1235 	bio = bio_alloc(GFP_NOIO, nr_pages);
1236 	bio->bi_bdev = bp->b_target->bt_bdev;
1237 	bio->bi_sector = sector;
1238 	bio->bi_end_io = xfs_buf_bio_end_io;
1239 	bio->bi_private = bp;
1240 
1241 
1242 	for (; size && nr_pages; nr_pages--, map_i++) {
1243 		int	rbytes, nbytes = PAGE_SIZE - offset;
1244 
1245 		if (nbytes > size)
1246 			nbytes = size;
1247 
1248 		rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1249 		if (rbytes < nbytes)
1250 			break;
1251 
1252 		offset = 0;
1253 		sector += nbytes >> BBSHIFT;
1254 		size -= nbytes;
1255 		total_nr_pages--;
1256 	}
1257 
1258 	if (likely(bio->bi_size)) {
1259 		if (xfs_buf_is_vmapped(bp)) {
1260 			flush_kernel_vmap_range(bp->b_addr,
1261 						xfs_buf_vmap_len(bp));
1262 		}
1263 		submit_bio(rw, bio);
1264 		if (size)
1265 			goto next_chunk;
1266 	} else {
1267 		xfs_buf_ioerror(bp, EIO);
1268 		bio_put(bio);
1269 	}
1270 }
1271 
1272 int
1273 xfs_buf_iorequest(
1274 	xfs_buf_t		*bp)
1275 {
1276 	trace_xfs_buf_iorequest(bp, _RET_IP_);
1277 
1278 	if (bp->b_flags & XBF_DELWRI) {
1279 		xfs_buf_delwri_queue(bp, 1);
1280 		return 0;
1281 	}
1282 
1283 	if (bp->b_flags & XBF_WRITE) {
1284 		xfs_buf_wait_unpin(bp);
1285 	}
1286 
1287 	xfs_buf_hold(bp);
1288 
1289 	/* Set the count to 1 initially, this will stop an I/O
1290 	 * completion callout which happens before we have started
1291 	 * all the I/O from calling xfs_buf_ioend too early.
1292 	 */
1293 	atomic_set(&bp->b_io_remaining, 1);
1294 	_xfs_buf_ioapply(bp);
1295 	_xfs_buf_ioend(bp, 0);
1296 
1297 	xfs_buf_rele(bp);
1298 	return 0;
1299 }
1300 
1301 /*
1302  *	Waits for I/O to complete on the buffer supplied.
1303  *	It returns immediately if no I/O is pending.
1304  *	It returns the I/O error code, if any, or 0 if there was no error.
1305  */
1306 int
1307 xfs_buf_iowait(
1308 	xfs_buf_t		*bp)
1309 {
1310 	trace_xfs_buf_iowait(bp, _RET_IP_);
1311 
1312 	wait_for_completion(&bp->b_iowait);
1313 
1314 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1315 	return bp->b_error;
1316 }
1317 
1318 xfs_caddr_t
1319 xfs_buf_offset(
1320 	xfs_buf_t		*bp,
1321 	size_t			offset)
1322 {
1323 	struct page		*page;
1324 
1325 	if (bp->b_flags & XBF_MAPPED)
1326 		return bp->b_addr + offset;
1327 
1328 	offset += bp->b_offset;
1329 	page = bp->b_pages[offset >> PAGE_SHIFT];
1330 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1331 }
1332 
1333 /*
1334  *	Move data into or out of a buffer.
1335  */
1336 void
1337 xfs_buf_iomove(
1338 	xfs_buf_t		*bp,	/* buffer to process		*/
1339 	size_t			boff,	/* starting buffer offset	*/
1340 	size_t			bsize,	/* length to copy		*/
1341 	void			*data,	/* data address			*/
1342 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1343 {
1344 	size_t			bend, cpoff, csize;
1345 	struct page		*page;
1346 
1347 	bend = boff + bsize;
1348 	while (boff < bend) {
1349 		page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1350 		cpoff = xfs_buf_poff(boff + bp->b_offset);
1351 		csize = min_t(size_t,
1352 			      PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1353 
1354 		ASSERT(((csize + cpoff) <= PAGE_SIZE));
1355 
1356 		switch (mode) {
1357 		case XBRW_ZERO:
1358 			memset(page_address(page) + cpoff, 0, csize);
1359 			break;
1360 		case XBRW_READ:
1361 			memcpy(data, page_address(page) + cpoff, csize);
1362 			break;
1363 		case XBRW_WRITE:
1364 			memcpy(page_address(page) + cpoff, data, csize);
1365 		}
1366 
1367 		boff += csize;
1368 		data += csize;
1369 	}
1370 }
1371 
1372 /*
1373  *	Handling of buffer targets (buftargs).
1374  */
1375 
1376 /*
1377  * Wait for any bufs with callbacks that have been submitted but have not yet
1378  * returned. These buffers will have an elevated hold count, so wait on those
1379  * while freeing all the buffers only held by the LRU.
1380  */
1381 void
1382 xfs_wait_buftarg(
1383 	struct xfs_buftarg	*btp)
1384 {
1385 	struct xfs_buf		*bp;
1386 
1387 restart:
1388 	spin_lock(&btp->bt_lru_lock);
1389 	while (!list_empty(&btp->bt_lru)) {
1390 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1391 		if (atomic_read(&bp->b_hold) > 1) {
1392 			spin_unlock(&btp->bt_lru_lock);
1393 			delay(100);
1394 			goto restart;
1395 		}
1396 		/*
1397 		 * clear the LRU reference count so the bufer doesn't get
1398 		 * ignored in xfs_buf_rele().
1399 		 */
1400 		atomic_set(&bp->b_lru_ref, 0);
1401 		spin_unlock(&btp->bt_lru_lock);
1402 		xfs_buf_rele(bp);
1403 		spin_lock(&btp->bt_lru_lock);
1404 	}
1405 	spin_unlock(&btp->bt_lru_lock);
1406 }
1407 
1408 int
1409 xfs_buftarg_shrink(
1410 	struct shrinker		*shrink,
1411 	struct shrink_control	*sc)
1412 {
1413 	struct xfs_buftarg	*btp = container_of(shrink,
1414 					struct xfs_buftarg, bt_shrinker);
1415 	struct xfs_buf		*bp;
1416 	int nr_to_scan = sc->nr_to_scan;
1417 	LIST_HEAD(dispose);
1418 
1419 	if (!nr_to_scan)
1420 		return btp->bt_lru_nr;
1421 
1422 	spin_lock(&btp->bt_lru_lock);
1423 	while (!list_empty(&btp->bt_lru)) {
1424 		if (nr_to_scan-- <= 0)
1425 			break;
1426 
1427 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1428 
1429 		/*
1430 		 * Decrement the b_lru_ref count unless the value is already
1431 		 * zero. If the value is already zero, we need to reclaim the
1432 		 * buffer, otherwise it gets another trip through the LRU.
1433 		 */
1434 		if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1435 			list_move_tail(&bp->b_lru, &btp->bt_lru);
1436 			continue;
1437 		}
1438 
1439 		/*
1440 		 * remove the buffer from the LRU now to avoid needing another
1441 		 * lock round trip inside xfs_buf_rele().
1442 		 */
1443 		list_move(&bp->b_lru, &dispose);
1444 		btp->bt_lru_nr--;
1445 	}
1446 	spin_unlock(&btp->bt_lru_lock);
1447 
1448 	while (!list_empty(&dispose)) {
1449 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1450 		list_del_init(&bp->b_lru);
1451 		xfs_buf_rele(bp);
1452 	}
1453 
1454 	return btp->bt_lru_nr;
1455 }
1456 
1457 void
1458 xfs_free_buftarg(
1459 	struct xfs_mount	*mp,
1460 	struct xfs_buftarg	*btp)
1461 {
1462 	unregister_shrinker(&btp->bt_shrinker);
1463 
1464 	xfs_flush_buftarg(btp, 1);
1465 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1466 		xfs_blkdev_issue_flush(btp);
1467 
1468 	kthread_stop(btp->bt_task);
1469 	kmem_free(btp);
1470 }
1471 
1472 STATIC int
1473 xfs_setsize_buftarg_flags(
1474 	xfs_buftarg_t		*btp,
1475 	unsigned int		blocksize,
1476 	unsigned int		sectorsize,
1477 	int			verbose)
1478 {
1479 	btp->bt_bsize = blocksize;
1480 	btp->bt_sshift = ffs(sectorsize) - 1;
1481 	btp->bt_smask = sectorsize - 1;
1482 
1483 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1484 		xfs_warn(btp->bt_mount,
1485 			"Cannot set_blocksize to %u on device %s\n",
1486 			sectorsize, xfs_buf_target_name(btp));
1487 		return EINVAL;
1488 	}
1489 
1490 	return 0;
1491 }
1492 
1493 /*
1494  *	When allocating the initial buffer target we have not yet
1495  *	read in the superblock, so don't know what sized sectors
1496  *	are being used is at this early stage.  Play safe.
1497  */
1498 STATIC int
1499 xfs_setsize_buftarg_early(
1500 	xfs_buftarg_t		*btp,
1501 	struct block_device	*bdev)
1502 {
1503 	return xfs_setsize_buftarg_flags(btp,
1504 			PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1505 }
1506 
1507 int
1508 xfs_setsize_buftarg(
1509 	xfs_buftarg_t		*btp,
1510 	unsigned int		blocksize,
1511 	unsigned int		sectorsize)
1512 {
1513 	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1514 }
1515 
1516 STATIC int
1517 xfs_alloc_delwrite_queue(
1518 	xfs_buftarg_t		*btp,
1519 	const char		*fsname)
1520 {
1521 	INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1522 	spin_lock_init(&btp->bt_delwrite_lock);
1523 	btp->bt_flags = 0;
1524 	btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
1525 	if (IS_ERR(btp->bt_task))
1526 		return PTR_ERR(btp->bt_task);
1527 	return 0;
1528 }
1529 
1530 xfs_buftarg_t *
1531 xfs_alloc_buftarg(
1532 	struct xfs_mount	*mp,
1533 	struct block_device	*bdev,
1534 	int			external,
1535 	const char		*fsname)
1536 {
1537 	xfs_buftarg_t		*btp;
1538 
1539 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1540 
1541 	btp->bt_mount = mp;
1542 	btp->bt_dev =  bdev->bd_dev;
1543 	btp->bt_bdev = bdev;
1544 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1545 	if (!btp->bt_bdi)
1546 		goto error;
1547 
1548 	INIT_LIST_HEAD(&btp->bt_lru);
1549 	spin_lock_init(&btp->bt_lru_lock);
1550 	if (xfs_setsize_buftarg_early(btp, bdev))
1551 		goto error;
1552 	if (xfs_alloc_delwrite_queue(btp, fsname))
1553 		goto error;
1554 	btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1555 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1556 	register_shrinker(&btp->bt_shrinker);
1557 	return btp;
1558 
1559 error:
1560 	kmem_free(btp);
1561 	return NULL;
1562 }
1563 
1564 
1565 /*
1566  *	Delayed write buffer handling
1567  */
1568 STATIC void
1569 xfs_buf_delwri_queue(
1570 	xfs_buf_t		*bp,
1571 	int			unlock)
1572 {
1573 	struct list_head	*dwq = &bp->b_target->bt_delwrite_queue;
1574 	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock;
1575 
1576 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1577 
1578 	ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1579 
1580 	spin_lock(dwlk);
1581 	/* If already in the queue, dequeue and place at tail */
1582 	if (!list_empty(&bp->b_list)) {
1583 		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1584 		if (unlock)
1585 			atomic_dec(&bp->b_hold);
1586 		list_del(&bp->b_list);
1587 	}
1588 
1589 	if (list_empty(dwq)) {
1590 		/* start xfsbufd as it is about to have something to do */
1591 		wake_up_process(bp->b_target->bt_task);
1592 	}
1593 
1594 	bp->b_flags |= _XBF_DELWRI_Q;
1595 	list_add_tail(&bp->b_list, dwq);
1596 	bp->b_queuetime = jiffies;
1597 	spin_unlock(dwlk);
1598 
1599 	if (unlock)
1600 		xfs_buf_unlock(bp);
1601 }
1602 
1603 void
1604 xfs_buf_delwri_dequeue(
1605 	xfs_buf_t		*bp)
1606 {
1607 	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock;
1608 	int			dequeued = 0;
1609 
1610 	spin_lock(dwlk);
1611 	if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1612 		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1613 		list_del_init(&bp->b_list);
1614 		dequeued = 1;
1615 	}
1616 	bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1617 	spin_unlock(dwlk);
1618 
1619 	if (dequeued)
1620 		xfs_buf_rele(bp);
1621 
1622 	trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1623 }
1624 
1625 /*
1626  * If a delwri buffer needs to be pushed before it has aged out, then promote
1627  * it to the head of the delwri queue so that it will be flushed on the next
1628  * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1629  * than the age currently needed to flush the buffer. Hence the next time the
1630  * xfsbufd sees it is guaranteed to be considered old enough to flush.
1631  */
1632 void
1633 xfs_buf_delwri_promote(
1634 	struct xfs_buf	*bp)
1635 {
1636 	struct xfs_buftarg *btp = bp->b_target;
1637 	long		age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1638 
1639 	ASSERT(bp->b_flags & XBF_DELWRI);
1640 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1641 
1642 	/*
1643 	 * Check the buffer age before locking the delayed write queue as we
1644 	 * don't need to promote buffers that are already past the flush age.
1645 	 */
1646 	if (bp->b_queuetime < jiffies - age)
1647 		return;
1648 	bp->b_queuetime = jiffies - age;
1649 	spin_lock(&btp->bt_delwrite_lock);
1650 	list_move(&bp->b_list, &btp->bt_delwrite_queue);
1651 	spin_unlock(&btp->bt_delwrite_lock);
1652 }
1653 
1654 STATIC void
1655 xfs_buf_runall_queues(
1656 	struct workqueue_struct	*queue)
1657 {
1658 	flush_workqueue(queue);
1659 }
1660 
1661 /*
1662  * Move as many buffers as specified to the supplied list
1663  * idicating if we skipped any buffers to prevent deadlocks.
1664  */
1665 STATIC int
1666 xfs_buf_delwri_split(
1667 	xfs_buftarg_t	*target,
1668 	struct list_head *list,
1669 	unsigned long	age)
1670 {
1671 	xfs_buf_t	*bp, *n;
1672 	struct list_head *dwq = &target->bt_delwrite_queue;
1673 	spinlock_t	*dwlk = &target->bt_delwrite_lock;
1674 	int		skipped = 0;
1675 	int		force;
1676 
1677 	force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1678 	INIT_LIST_HEAD(list);
1679 	spin_lock(dwlk);
1680 	list_for_each_entry_safe(bp, n, dwq, b_list) {
1681 		ASSERT(bp->b_flags & XBF_DELWRI);
1682 
1683 		if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) {
1684 			if (!force &&
1685 			    time_before(jiffies, bp->b_queuetime + age)) {
1686 				xfs_buf_unlock(bp);
1687 				break;
1688 			}
1689 
1690 			bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q);
1691 			bp->b_flags |= XBF_WRITE;
1692 			list_move_tail(&bp->b_list, list);
1693 			trace_xfs_buf_delwri_split(bp, _RET_IP_);
1694 		} else
1695 			skipped++;
1696 	}
1697 	spin_unlock(dwlk);
1698 
1699 	return skipped;
1700 
1701 }
1702 
1703 /*
1704  * Compare function is more complex than it needs to be because
1705  * the return value is only 32 bits and we are doing comparisons
1706  * on 64 bit values
1707  */
1708 static int
1709 xfs_buf_cmp(
1710 	void		*priv,
1711 	struct list_head *a,
1712 	struct list_head *b)
1713 {
1714 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1715 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1716 	xfs_daddr_t		diff;
1717 
1718 	diff = ap->b_bn - bp->b_bn;
1719 	if (diff < 0)
1720 		return -1;
1721 	if (diff > 0)
1722 		return 1;
1723 	return 0;
1724 }
1725 
1726 STATIC int
1727 xfsbufd(
1728 	void		*data)
1729 {
1730 	xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1731 
1732 	current->flags |= PF_MEMALLOC;
1733 
1734 	set_freezable();
1735 
1736 	do {
1737 		long	age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1738 		long	tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
1739 		struct list_head tmp;
1740 		struct blk_plug plug;
1741 
1742 		if (unlikely(freezing(current))) {
1743 			set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1744 			refrigerator();
1745 		} else {
1746 			clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1747 		}
1748 
1749 		/* sleep for a long time if there is nothing to do. */
1750 		if (list_empty(&target->bt_delwrite_queue))
1751 			tout = MAX_SCHEDULE_TIMEOUT;
1752 		schedule_timeout_interruptible(tout);
1753 
1754 		xfs_buf_delwri_split(target, &tmp, age);
1755 		list_sort(NULL, &tmp, xfs_buf_cmp);
1756 
1757 		blk_start_plug(&plug);
1758 		while (!list_empty(&tmp)) {
1759 			struct xfs_buf *bp;
1760 			bp = list_first_entry(&tmp, struct xfs_buf, b_list);
1761 			list_del_init(&bp->b_list);
1762 			xfs_bdstrat_cb(bp);
1763 		}
1764 		blk_finish_plug(&plug);
1765 	} while (!kthread_should_stop());
1766 
1767 	return 0;
1768 }
1769 
1770 /*
1771  *	Go through all incore buffers, and release buffers if they belong to
1772  *	the given device. This is used in filesystem error handling to
1773  *	preserve the consistency of its metadata.
1774  */
1775 int
1776 xfs_flush_buftarg(
1777 	xfs_buftarg_t	*target,
1778 	int		wait)
1779 {
1780 	xfs_buf_t	*bp;
1781 	int		pincount = 0;
1782 	LIST_HEAD(tmp_list);
1783 	LIST_HEAD(wait_list);
1784 	struct blk_plug plug;
1785 
1786 	xfs_buf_runall_queues(xfsconvertd_workqueue);
1787 	xfs_buf_runall_queues(xfsdatad_workqueue);
1788 	xfs_buf_runall_queues(xfslogd_workqueue);
1789 
1790 	set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1791 	pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1792 
1793 	/*
1794 	 * Dropped the delayed write list lock, now walk the temporary list.
1795 	 * All I/O is issued async and then if we need to wait for completion
1796 	 * we do that after issuing all the IO.
1797 	 */
1798 	list_sort(NULL, &tmp_list, xfs_buf_cmp);
1799 
1800 	blk_start_plug(&plug);
1801 	while (!list_empty(&tmp_list)) {
1802 		bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
1803 		ASSERT(target == bp->b_target);
1804 		list_del_init(&bp->b_list);
1805 		if (wait) {
1806 			bp->b_flags &= ~XBF_ASYNC;
1807 			list_add(&bp->b_list, &wait_list);
1808 		}
1809 		xfs_bdstrat_cb(bp);
1810 	}
1811 	blk_finish_plug(&plug);
1812 
1813 	if (wait) {
1814 		/* Wait for IO to complete. */
1815 		while (!list_empty(&wait_list)) {
1816 			bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1817 
1818 			list_del_init(&bp->b_list);
1819 			xfs_buf_iowait(bp);
1820 			xfs_buf_relse(bp);
1821 		}
1822 	}
1823 
1824 	return pincount;
1825 }
1826 
1827 int __init
1828 xfs_buf_init(void)
1829 {
1830 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1831 						KM_ZONE_HWALIGN, NULL);
1832 	if (!xfs_buf_zone)
1833 		goto out;
1834 
1835 	xfslogd_workqueue = alloc_workqueue("xfslogd",
1836 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1837 	if (!xfslogd_workqueue)
1838 		goto out_free_buf_zone;
1839 
1840 	xfsdatad_workqueue = alloc_workqueue("xfsdatad", WQ_MEM_RECLAIM, 1);
1841 	if (!xfsdatad_workqueue)
1842 		goto out_destroy_xfslogd_workqueue;
1843 
1844 	xfsconvertd_workqueue = alloc_workqueue("xfsconvertd",
1845 						WQ_MEM_RECLAIM, 1);
1846 	if (!xfsconvertd_workqueue)
1847 		goto out_destroy_xfsdatad_workqueue;
1848 
1849 	return 0;
1850 
1851  out_destroy_xfsdatad_workqueue:
1852 	destroy_workqueue(xfsdatad_workqueue);
1853  out_destroy_xfslogd_workqueue:
1854 	destroy_workqueue(xfslogd_workqueue);
1855  out_free_buf_zone:
1856 	kmem_zone_destroy(xfs_buf_zone);
1857  out:
1858 	return -ENOMEM;
1859 }
1860 
1861 void
1862 xfs_buf_terminate(void)
1863 {
1864 	destroy_workqueue(xfsconvertd_workqueue);
1865 	destroy_workqueue(xfsdatad_workqueue);
1866 	destroy_workqueue(xfslogd_workqueue);
1867 	kmem_zone_destroy(xfs_buf_zone);
1868 }
1869 
1870 #ifdef CONFIG_KDB_MODULES
1871 struct list_head *
1872 xfs_get_buftarg_list(void)
1873 {
1874 	return &xfs_buftarg_list;
1875 }
1876 #endif
1877