xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 9b799b78)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44 
45 static kmem_zone_t *xfs_buf_zone;
46 
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp)	do { } while (0)
53 # define XB_CLEAR_OWNER(bp)	do { } while (0)
54 # define XB_GET_OWNER(bp)	do { } while (0)
55 #endif
56 
57 #define xb_to_gfp(flags) \
58 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59 
60 
61 static inline int
62 xfs_buf_is_vmapped(
63 	struct xfs_buf	*bp)
64 {
65 	/*
66 	 * Return true if the buffer is vmapped.
67 	 *
68 	 * b_addr is null if the buffer is not mapped, but the code is clever
69 	 * enough to know it doesn't have to map a single page, so the check has
70 	 * to be both for b_addr and bp->b_page_count > 1.
71 	 */
72 	return bp->b_addr && bp->b_page_count > 1;
73 }
74 
75 static inline int
76 xfs_buf_vmap_len(
77 	struct xfs_buf	*bp)
78 {
79 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81 
82 /*
83  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
84  * b_lru_ref count so that the buffer is freed immediately when the buffer
85  * reference count falls to zero. If the buffer is already on the LRU, we need
86  * to remove the reference that LRU holds on the buffer.
87  *
88  * This prevents build-up of stale buffers on the LRU.
89  */
90 void
91 xfs_buf_stale(
92 	struct xfs_buf	*bp)
93 {
94 	ASSERT(xfs_buf_islocked(bp));
95 
96 	bp->b_flags |= XBF_STALE;
97 
98 	/*
99 	 * Clear the delwri status so that a delwri queue walker will not
100 	 * flush this buffer to disk now that it is stale. The delwri queue has
101 	 * a reference to the buffer, so this is safe to do.
102 	 */
103 	bp->b_flags &= ~_XBF_DELWRI_Q;
104 
105 	spin_lock(&bp->b_lock);
106 	atomic_set(&bp->b_lru_ref, 0);
107 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
108 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
109 		atomic_dec(&bp->b_hold);
110 
111 	ASSERT(atomic_read(&bp->b_hold) >= 1);
112 	spin_unlock(&bp->b_lock);
113 }
114 
115 static int
116 xfs_buf_get_maps(
117 	struct xfs_buf		*bp,
118 	int			map_count)
119 {
120 	ASSERT(bp->b_maps == NULL);
121 	bp->b_map_count = map_count;
122 
123 	if (map_count == 1) {
124 		bp->b_maps = &bp->__b_map;
125 		return 0;
126 	}
127 
128 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
129 				KM_NOFS);
130 	if (!bp->b_maps)
131 		return -ENOMEM;
132 	return 0;
133 }
134 
135 /*
136  *	Frees b_pages if it was allocated.
137  */
138 static void
139 xfs_buf_free_maps(
140 	struct xfs_buf	*bp)
141 {
142 	if (bp->b_maps != &bp->__b_map) {
143 		kmem_free(bp->b_maps);
144 		bp->b_maps = NULL;
145 	}
146 }
147 
148 struct xfs_buf *
149 _xfs_buf_alloc(
150 	struct xfs_buftarg	*target,
151 	struct xfs_buf_map	*map,
152 	int			nmaps,
153 	xfs_buf_flags_t		flags)
154 {
155 	struct xfs_buf		*bp;
156 	int			error;
157 	int			i;
158 
159 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
160 	if (unlikely(!bp))
161 		return NULL;
162 
163 	/*
164 	 * We don't want certain flags to appear in b_flags unless they are
165 	 * specifically set by later operations on the buffer.
166 	 */
167 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
168 
169 	atomic_set(&bp->b_hold, 1);
170 	atomic_set(&bp->b_lru_ref, 1);
171 	init_completion(&bp->b_iowait);
172 	INIT_LIST_HEAD(&bp->b_lru);
173 	INIT_LIST_HEAD(&bp->b_list);
174 	RB_CLEAR_NODE(&bp->b_rbnode);
175 	sema_init(&bp->b_sema, 0); /* held, no waiters */
176 	spin_lock_init(&bp->b_lock);
177 	XB_SET_OWNER(bp);
178 	bp->b_target = target;
179 	bp->b_flags = flags;
180 
181 	/*
182 	 * Set length and io_length to the same value initially.
183 	 * I/O routines should use io_length, which will be the same in
184 	 * most cases but may be reset (e.g. XFS recovery).
185 	 */
186 	error = xfs_buf_get_maps(bp, nmaps);
187 	if (error)  {
188 		kmem_zone_free(xfs_buf_zone, bp);
189 		return NULL;
190 	}
191 
192 	bp->b_bn = map[0].bm_bn;
193 	bp->b_length = 0;
194 	for (i = 0; i < nmaps; i++) {
195 		bp->b_maps[i].bm_bn = map[i].bm_bn;
196 		bp->b_maps[i].bm_len = map[i].bm_len;
197 		bp->b_length += map[i].bm_len;
198 	}
199 	bp->b_io_length = bp->b_length;
200 
201 	atomic_set(&bp->b_pin_count, 0);
202 	init_waitqueue_head(&bp->b_waiters);
203 
204 	XFS_STATS_INC(xb_create);
205 	trace_xfs_buf_init(bp, _RET_IP_);
206 
207 	return bp;
208 }
209 
210 /*
211  *	Allocate a page array capable of holding a specified number
212  *	of pages, and point the page buf at it.
213  */
214 STATIC int
215 _xfs_buf_get_pages(
216 	xfs_buf_t		*bp,
217 	int			page_count)
218 {
219 	/* Make sure that we have a page list */
220 	if (bp->b_pages == NULL) {
221 		bp->b_page_count = page_count;
222 		if (page_count <= XB_PAGES) {
223 			bp->b_pages = bp->b_page_array;
224 		} else {
225 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
226 						 page_count, KM_NOFS);
227 			if (bp->b_pages == NULL)
228 				return -ENOMEM;
229 		}
230 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
231 	}
232 	return 0;
233 }
234 
235 /*
236  *	Frees b_pages if it was allocated.
237  */
238 STATIC void
239 _xfs_buf_free_pages(
240 	xfs_buf_t	*bp)
241 {
242 	if (bp->b_pages != bp->b_page_array) {
243 		kmem_free(bp->b_pages);
244 		bp->b_pages = NULL;
245 	}
246 }
247 
248 /*
249  *	Releases the specified buffer.
250  *
251  * 	The modification state of any associated pages is left unchanged.
252  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
253  * 	hashed and refcounted buffers
254  */
255 void
256 xfs_buf_free(
257 	xfs_buf_t		*bp)
258 {
259 	trace_xfs_buf_free(bp, _RET_IP_);
260 
261 	ASSERT(list_empty(&bp->b_lru));
262 
263 	if (bp->b_flags & _XBF_PAGES) {
264 		uint		i;
265 
266 		if (xfs_buf_is_vmapped(bp))
267 			vm_unmap_ram(bp->b_addr - bp->b_offset,
268 					bp->b_page_count);
269 
270 		for (i = 0; i < bp->b_page_count; i++) {
271 			struct page	*page = bp->b_pages[i];
272 
273 			__free_page(page);
274 		}
275 	} else if (bp->b_flags & _XBF_KMEM)
276 		kmem_free(bp->b_addr);
277 	_xfs_buf_free_pages(bp);
278 	xfs_buf_free_maps(bp);
279 	kmem_zone_free(xfs_buf_zone, bp);
280 }
281 
282 /*
283  * Allocates all the pages for buffer in question and builds it's page list.
284  */
285 STATIC int
286 xfs_buf_allocate_memory(
287 	xfs_buf_t		*bp,
288 	uint			flags)
289 {
290 	size_t			size;
291 	size_t			nbytes, offset;
292 	gfp_t			gfp_mask = xb_to_gfp(flags);
293 	unsigned short		page_count, i;
294 	xfs_off_t		start, end;
295 	int			error;
296 
297 	/*
298 	 * for buffers that are contained within a single page, just allocate
299 	 * the memory from the heap - there's no need for the complexity of
300 	 * page arrays to keep allocation down to order 0.
301 	 */
302 	size = BBTOB(bp->b_length);
303 	if (size < PAGE_SIZE) {
304 		bp->b_addr = kmem_alloc(size, KM_NOFS);
305 		if (!bp->b_addr) {
306 			/* low memory - use alloc_page loop instead */
307 			goto use_alloc_page;
308 		}
309 
310 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
311 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
312 			/* b_addr spans two pages - use alloc_page instead */
313 			kmem_free(bp->b_addr);
314 			bp->b_addr = NULL;
315 			goto use_alloc_page;
316 		}
317 		bp->b_offset = offset_in_page(bp->b_addr);
318 		bp->b_pages = bp->b_page_array;
319 		bp->b_pages[0] = virt_to_page(bp->b_addr);
320 		bp->b_page_count = 1;
321 		bp->b_flags |= _XBF_KMEM;
322 		return 0;
323 	}
324 
325 use_alloc_page:
326 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
327 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
328 								>> PAGE_SHIFT;
329 	page_count = end - start;
330 	error = _xfs_buf_get_pages(bp, page_count);
331 	if (unlikely(error))
332 		return error;
333 
334 	offset = bp->b_offset;
335 	bp->b_flags |= _XBF_PAGES;
336 
337 	for (i = 0; i < bp->b_page_count; i++) {
338 		struct page	*page;
339 		uint		retries = 0;
340 retry:
341 		page = alloc_page(gfp_mask);
342 		if (unlikely(page == NULL)) {
343 			if (flags & XBF_READ_AHEAD) {
344 				bp->b_page_count = i;
345 				error = -ENOMEM;
346 				goto out_free_pages;
347 			}
348 
349 			/*
350 			 * This could deadlock.
351 			 *
352 			 * But until all the XFS lowlevel code is revamped to
353 			 * handle buffer allocation failures we can't do much.
354 			 */
355 			if (!(++retries % 100))
356 				xfs_err(NULL,
357 		"possible memory allocation deadlock in %s (mode:0x%x)",
358 					__func__, gfp_mask);
359 
360 			XFS_STATS_INC(xb_page_retries);
361 			congestion_wait(BLK_RW_ASYNC, HZ/50);
362 			goto retry;
363 		}
364 
365 		XFS_STATS_INC(xb_page_found);
366 
367 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
368 		size -= nbytes;
369 		bp->b_pages[i] = page;
370 		offset = 0;
371 	}
372 	return 0;
373 
374 out_free_pages:
375 	for (i = 0; i < bp->b_page_count; i++)
376 		__free_page(bp->b_pages[i]);
377 	return error;
378 }
379 
380 /*
381  *	Map buffer into kernel address-space if necessary.
382  */
383 STATIC int
384 _xfs_buf_map_pages(
385 	xfs_buf_t		*bp,
386 	uint			flags)
387 {
388 	ASSERT(bp->b_flags & _XBF_PAGES);
389 	if (bp->b_page_count == 1) {
390 		/* A single page buffer is always mappable */
391 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
392 	} else if (flags & XBF_UNMAPPED) {
393 		bp->b_addr = NULL;
394 	} else {
395 		int retried = 0;
396 		unsigned noio_flag;
397 
398 		/*
399 		 * vm_map_ram() will allocate auxillary structures (e.g.
400 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
401 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
402 		 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
403 		 * memory reclaim re-entering the filesystem here and
404 		 * potentially deadlocking.
405 		 */
406 		noio_flag = memalloc_noio_save();
407 		do {
408 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
409 						-1, PAGE_KERNEL);
410 			if (bp->b_addr)
411 				break;
412 			vm_unmap_aliases();
413 		} while (retried++ <= 1);
414 		memalloc_noio_restore(noio_flag);
415 
416 		if (!bp->b_addr)
417 			return -ENOMEM;
418 		bp->b_addr += bp->b_offset;
419 	}
420 
421 	return 0;
422 }
423 
424 /*
425  *	Finding and Reading Buffers
426  */
427 
428 /*
429  *	Look up, and creates if absent, a lockable buffer for
430  *	a given range of an inode.  The buffer is returned
431  *	locked.	No I/O is implied by this call.
432  */
433 xfs_buf_t *
434 _xfs_buf_find(
435 	struct xfs_buftarg	*btp,
436 	struct xfs_buf_map	*map,
437 	int			nmaps,
438 	xfs_buf_flags_t		flags,
439 	xfs_buf_t		*new_bp)
440 {
441 	size_t			numbytes;
442 	struct xfs_perag	*pag;
443 	struct rb_node		**rbp;
444 	struct rb_node		*parent;
445 	xfs_buf_t		*bp;
446 	xfs_daddr_t		blkno = map[0].bm_bn;
447 	xfs_daddr_t		eofs;
448 	int			numblks = 0;
449 	int			i;
450 
451 	for (i = 0; i < nmaps; i++)
452 		numblks += map[i].bm_len;
453 	numbytes = BBTOB(numblks);
454 
455 	/* Check for IOs smaller than the sector size / not sector aligned */
456 	ASSERT(!(numbytes < btp->bt_meta_sectorsize));
457 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
458 
459 	/*
460 	 * Corrupted block numbers can get through to here, unfortunately, so we
461 	 * have to check that the buffer falls within the filesystem bounds.
462 	 */
463 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
464 	if (blkno < 0 || blkno >= eofs) {
465 		/*
466 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
467 		 * but none of the higher level infrastructure supports
468 		 * returning a specific error on buffer lookup failures.
469 		 */
470 		xfs_alert(btp->bt_mount,
471 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
472 			  __func__, blkno, eofs);
473 		WARN_ON(1);
474 		return NULL;
475 	}
476 
477 	/* get tree root */
478 	pag = xfs_perag_get(btp->bt_mount,
479 				xfs_daddr_to_agno(btp->bt_mount, blkno));
480 
481 	/* walk tree */
482 	spin_lock(&pag->pag_buf_lock);
483 	rbp = &pag->pag_buf_tree.rb_node;
484 	parent = NULL;
485 	bp = NULL;
486 	while (*rbp) {
487 		parent = *rbp;
488 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
489 
490 		if (blkno < bp->b_bn)
491 			rbp = &(*rbp)->rb_left;
492 		else if (blkno > bp->b_bn)
493 			rbp = &(*rbp)->rb_right;
494 		else {
495 			/*
496 			 * found a block number match. If the range doesn't
497 			 * match, the only way this is allowed is if the buffer
498 			 * in the cache is stale and the transaction that made
499 			 * it stale has not yet committed. i.e. we are
500 			 * reallocating a busy extent. Skip this buffer and
501 			 * continue searching to the right for an exact match.
502 			 */
503 			if (bp->b_length != numblks) {
504 				ASSERT(bp->b_flags & XBF_STALE);
505 				rbp = &(*rbp)->rb_right;
506 				continue;
507 			}
508 			atomic_inc(&bp->b_hold);
509 			goto found;
510 		}
511 	}
512 
513 	/* No match found */
514 	if (new_bp) {
515 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
516 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
517 		/* the buffer keeps the perag reference until it is freed */
518 		new_bp->b_pag = pag;
519 		spin_unlock(&pag->pag_buf_lock);
520 	} else {
521 		XFS_STATS_INC(xb_miss_locked);
522 		spin_unlock(&pag->pag_buf_lock);
523 		xfs_perag_put(pag);
524 	}
525 	return new_bp;
526 
527 found:
528 	spin_unlock(&pag->pag_buf_lock);
529 	xfs_perag_put(pag);
530 
531 	if (!xfs_buf_trylock(bp)) {
532 		if (flags & XBF_TRYLOCK) {
533 			xfs_buf_rele(bp);
534 			XFS_STATS_INC(xb_busy_locked);
535 			return NULL;
536 		}
537 		xfs_buf_lock(bp);
538 		XFS_STATS_INC(xb_get_locked_waited);
539 	}
540 
541 	/*
542 	 * if the buffer is stale, clear all the external state associated with
543 	 * it. We need to keep flags such as how we allocated the buffer memory
544 	 * intact here.
545 	 */
546 	if (bp->b_flags & XBF_STALE) {
547 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
548 		ASSERT(bp->b_iodone == NULL);
549 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
550 		bp->b_ops = NULL;
551 	}
552 
553 	trace_xfs_buf_find(bp, flags, _RET_IP_);
554 	XFS_STATS_INC(xb_get_locked);
555 	return bp;
556 }
557 
558 /*
559  * Assembles a buffer covering the specified range. The code is optimised for
560  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
561  * more hits than misses.
562  */
563 struct xfs_buf *
564 xfs_buf_get_map(
565 	struct xfs_buftarg	*target,
566 	struct xfs_buf_map	*map,
567 	int			nmaps,
568 	xfs_buf_flags_t		flags)
569 {
570 	struct xfs_buf		*bp;
571 	struct xfs_buf		*new_bp;
572 	int			error = 0;
573 
574 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
575 	if (likely(bp))
576 		goto found;
577 
578 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
579 	if (unlikely(!new_bp))
580 		return NULL;
581 
582 	error = xfs_buf_allocate_memory(new_bp, flags);
583 	if (error) {
584 		xfs_buf_free(new_bp);
585 		return NULL;
586 	}
587 
588 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
589 	if (!bp) {
590 		xfs_buf_free(new_bp);
591 		return NULL;
592 	}
593 
594 	if (bp != new_bp)
595 		xfs_buf_free(new_bp);
596 
597 found:
598 	if (!bp->b_addr) {
599 		error = _xfs_buf_map_pages(bp, flags);
600 		if (unlikely(error)) {
601 			xfs_warn(target->bt_mount,
602 				"%s: failed to map pagesn", __func__);
603 			xfs_buf_relse(bp);
604 			return NULL;
605 		}
606 	}
607 
608 	XFS_STATS_INC(xb_get);
609 	trace_xfs_buf_get(bp, flags, _RET_IP_);
610 	return bp;
611 }
612 
613 STATIC int
614 _xfs_buf_read(
615 	xfs_buf_t		*bp,
616 	xfs_buf_flags_t		flags)
617 {
618 	ASSERT(!(flags & XBF_WRITE));
619 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
620 
621 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
622 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
623 
624 	if (flags & XBF_ASYNC) {
625 		xfs_buf_submit(bp);
626 		return 0;
627 	}
628 	return xfs_buf_submit_wait(bp);
629 }
630 
631 xfs_buf_t *
632 xfs_buf_read_map(
633 	struct xfs_buftarg	*target,
634 	struct xfs_buf_map	*map,
635 	int			nmaps,
636 	xfs_buf_flags_t		flags,
637 	const struct xfs_buf_ops *ops)
638 {
639 	struct xfs_buf		*bp;
640 
641 	flags |= XBF_READ;
642 
643 	bp = xfs_buf_get_map(target, map, nmaps, flags);
644 	if (bp) {
645 		trace_xfs_buf_read(bp, flags, _RET_IP_);
646 
647 		if (!XFS_BUF_ISDONE(bp)) {
648 			XFS_STATS_INC(xb_get_read);
649 			bp->b_ops = ops;
650 			_xfs_buf_read(bp, flags);
651 		} else if (flags & XBF_ASYNC) {
652 			/*
653 			 * Read ahead call which is already satisfied,
654 			 * drop the buffer
655 			 */
656 			xfs_buf_relse(bp);
657 			return NULL;
658 		} else {
659 			/* We do not want read in the flags */
660 			bp->b_flags &= ~XBF_READ;
661 		}
662 	}
663 
664 	return bp;
665 }
666 
667 /*
668  *	If we are not low on memory then do the readahead in a deadlock
669  *	safe manner.
670  */
671 void
672 xfs_buf_readahead_map(
673 	struct xfs_buftarg	*target,
674 	struct xfs_buf_map	*map,
675 	int			nmaps,
676 	const struct xfs_buf_ops *ops)
677 {
678 	if (bdi_read_congested(target->bt_bdi))
679 		return;
680 
681 	xfs_buf_read_map(target, map, nmaps,
682 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
683 }
684 
685 /*
686  * Read an uncached buffer from disk. Allocates and returns a locked
687  * buffer containing the disk contents or nothing.
688  */
689 int
690 xfs_buf_read_uncached(
691 	struct xfs_buftarg	*target,
692 	xfs_daddr_t		daddr,
693 	size_t			numblks,
694 	int			flags,
695 	struct xfs_buf		**bpp,
696 	const struct xfs_buf_ops *ops)
697 {
698 	struct xfs_buf		*bp;
699 
700 	*bpp = NULL;
701 
702 	bp = xfs_buf_get_uncached(target, numblks, flags);
703 	if (!bp)
704 		return -ENOMEM;
705 
706 	/* set up the buffer for a read IO */
707 	ASSERT(bp->b_map_count == 1);
708 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
709 	bp->b_maps[0].bm_bn = daddr;
710 	bp->b_flags |= XBF_READ;
711 	bp->b_ops = ops;
712 
713 	xfs_buf_submit_wait(bp);
714 	if (bp->b_error) {
715 		int	error = bp->b_error;
716 		xfs_buf_relse(bp);
717 		return error;
718 	}
719 
720 	*bpp = bp;
721 	return 0;
722 }
723 
724 /*
725  * Return a buffer allocated as an empty buffer and associated to external
726  * memory via xfs_buf_associate_memory() back to it's empty state.
727  */
728 void
729 xfs_buf_set_empty(
730 	struct xfs_buf		*bp,
731 	size_t			numblks)
732 {
733 	if (bp->b_pages)
734 		_xfs_buf_free_pages(bp);
735 
736 	bp->b_pages = NULL;
737 	bp->b_page_count = 0;
738 	bp->b_addr = NULL;
739 	bp->b_length = numblks;
740 	bp->b_io_length = numblks;
741 
742 	ASSERT(bp->b_map_count == 1);
743 	bp->b_bn = XFS_BUF_DADDR_NULL;
744 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
745 	bp->b_maps[0].bm_len = bp->b_length;
746 }
747 
748 static inline struct page *
749 mem_to_page(
750 	void			*addr)
751 {
752 	if ((!is_vmalloc_addr(addr))) {
753 		return virt_to_page(addr);
754 	} else {
755 		return vmalloc_to_page(addr);
756 	}
757 }
758 
759 int
760 xfs_buf_associate_memory(
761 	xfs_buf_t		*bp,
762 	void			*mem,
763 	size_t			len)
764 {
765 	int			rval;
766 	int			i = 0;
767 	unsigned long		pageaddr;
768 	unsigned long		offset;
769 	size_t			buflen;
770 	int			page_count;
771 
772 	pageaddr = (unsigned long)mem & PAGE_MASK;
773 	offset = (unsigned long)mem - pageaddr;
774 	buflen = PAGE_ALIGN(len + offset);
775 	page_count = buflen >> PAGE_SHIFT;
776 
777 	/* Free any previous set of page pointers */
778 	if (bp->b_pages)
779 		_xfs_buf_free_pages(bp);
780 
781 	bp->b_pages = NULL;
782 	bp->b_addr = mem;
783 
784 	rval = _xfs_buf_get_pages(bp, page_count);
785 	if (rval)
786 		return rval;
787 
788 	bp->b_offset = offset;
789 
790 	for (i = 0; i < bp->b_page_count; i++) {
791 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
792 		pageaddr += PAGE_SIZE;
793 	}
794 
795 	bp->b_io_length = BTOBB(len);
796 	bp->b_length = BTOBB(buflen);
797 
798 	return 0;
799 }
800 
801 xfs_buf_t *
802 xfs_buf_get_uncached(
803 	struct xfs_buftarg	*target,
804 	size_t			numblks,
805 	int			flags)
806 {
807 	unsigned long		page_count;
808 	int			error, i;
809 	struct xfs_buf		*bp;
810 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
811 
812 	bp = _xfs_buf_alloc(target, &map, 1, 0);
813 	if (unlikely(bp == NULL))
814 		goto fail;
815 
816 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
817 	error = _xfs_buf_get_pages(bp, page_count);
818 	if (error)
819 		goto fail_free_buf;
820 
821 	for (i = 0; i < page_count; i++) {
822 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
823 		if (!bp->b_pages[i])
824 			goto fail_free_mem;
825 	}
826 	bp->b_flags |= _XBF_PAGES;
827 
828 	error = _xfs_buf_map_pages(bp, 0);
829 	if (unlikely(error)) {
830 		xfs_warn(target->bt_mount,
831 			"%s: failed to map pages", __func__);
832 		goto fail_free_mem;
833 	}
834 
835 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
836 	return bp;
837 
838  fail_free_mem:
839 	while (--i >= 0)
840 		__free_page(bp->b_pages[i]);
841 	_xfs_buf_free_pages(bp);
842  fail_free_buf:
843 	xfs_buf_free_maps(bp);
844 	kmem_zone_free(xfs_buf_zone, bp);
845  fail:
846 	return NULL;
847 }
848 
849 /*
850  *	Increment reference count on buffer, to hold the buffer concurrently
851  *	with another thread which may release (free) the buffer asynchronously.
852  *	Must hold the buffer already to call this function.
853  */
854 void
855 xfs_buf_hold(
856 	xfs_buf_t		*bp)
857 {
858 	trace_xfs_buf_hold(bp, _RET_IP_);
859 	atomic_inc(&bp->b_hold);
860 }
861 
862 /*
863  *	Releases a hold on the specified buffer.  If the
864  *	the hold count is 1, calls xfs_buf_free.
865  */
866 void
867 xfs_buf_rele(
868 	xfs_buf_t		*bp)
869 {
870 	struct xfs_perag	*pag = bp->b_pag;
871 
872 	trace_xfs_buf_rele(bp, _RET_IP_);
873 
874 	if (!pag) {
875 		ASSERT(list_empty(&bp->b_lru));
876 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
877 		if (atomic_dec_and_test(&bp->b_hold))
878 			xfs_buf_free(bp);
879 		return;
880 	}
881 
882 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
883 
884 	ASSERT(atomic_read(&bp->b_hold) > 0);
885 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
886 		spin_lock(&bp->b_lock);
887 		if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
888 			/*
889 			 * If the buffer is added to the LRU take a new
890 			 * reference to the buffer for the LRU and clear the
891 			 * (now stale) dispose list state flag
892 			 */
893 			if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
894 				bp->b_state &= ~XFS_BSTATE_DISPOSE;
895 				atomic_inc(&bp->b_hold);
896 			}
897 			spin_unlock(&bp->b_lock);
898 			spin_unlock(&pag->pag_buf_lock);
899 		} else {
900 			/*
901 			 * most of the time buffers will already be removed from
902 			 * the LRU, so optimise that case by checking for the
903 			 * XFS_BSTATE_DISPOSE flag indicating the last list the
904 			 * buffer was on was the disposal list
905 			 */
906 			if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
907 				list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
908 			} else {
909 				ASSERT(list_empty(&bp->b_lru));
910 			}
911 			spin_unlock(&bp->b_lock);
912 
913 			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
914 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
915 			spin_unlock(&pag->pag_buf_lock);
916 			xfs_perag_put(pag);
917 			xfs_buf_free(bp);
918 		}
919 	}
920 }
921 
922 
923 /*
924  *	Lock a buffer object, if it is not already locked.
925  *
926  *	If we come across a stale, pinned, locked buffer, we know that we are
927  *	being asked to lock a buffer that has been reallocated. Because it is
928  *	pinned, we know that the log has not been pushed to disk and hence it
929  *	will still be locked.  Rather than continuing to have trylock attempts
930  *	fail until someone else pushes the log, push it ourselves before
931  *	returning.  This means that the xfsaild will not get stuck trying
932  *	to push on stale inode buffers.
933  */
934 int
935 xfs_buf_trylock(
936 	struct xfs_buf		*bp)
937 {
938 	int			locked;
939 
940 	locked = down_trylock(&bp->b_sema) == 0;
941 	if (locked)
942 		XB_SET_OWNER(bp);
943 
944 	trace_xfs_buf_trylock(bp, _RET_IP_);
945 	return locked;
946 }
947 
948 /*
949  *	Lock a buffer object.
950  *
951  *	If we come across a stale, pinned, locked buffer, we know that we
952  *	are being asked to lock a buffer that has been reallocated. Because
953  *	it is pinned, we know that the log has not been pushed to disk and
954  *	hence it will still be locked. Rather than sleeping until someone
955  *	else pushes the log, push it ourselves before trying to get the lock.
956  */
957 void
958 xfs_buf_lock(
959 	struct xfs_buf		*bp)
960 {
961 	trace_xfs_buf_lock(bp, _RET_IP_);
962 
963 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
964 		xfs_log_force(bp->b_target->bt_mount, 0);
965 	down(&bp->b_sema);
966 	XB_SET_OWNER(bp);
967 
968 	trace_xfs_buf_lock_done(bp, _RET_IP_);
969 }
970 
971 void
972 xfs_buf_unlock(
973 	struct xfs_buf		*bp)
974 {
975 	XB_CLEAR_OWNER(bp);
976 	up(&bp->b_sema);
977 
978 	trace_xfs_buf_unlock(bp, _RET_IP_);
979 }
980 
981 STATIC void
982 xfs_buf_wait_unpin(
983 	xfs_buf_t		*bp)
984 {
985 	DECLARE_WAITQUEUE	(wait, current);
986 
987 	if (atomic_read(&bp->b_pin_count) == 0)
988 		return;
989 
990 	add_wait_queue(&bp->b_waiters, &wait);
991 	for (;;) {
992 		set_current_state(TASK_UNINTERRUPTIBLE);
993 		if (atomic_read(&bp->b_pin_count) == 0)
994 			break;
995 		io_schedule();
996 	}
997 	remove_wait_queue(&bp->b_waiters, &wait);
998 	set_current_state(TASK_RUNNING);
999 }
1000 
1001 /*
1002  *	Buffer Utility Routines
1003  */
1004 
1005 void
1006 xfs_buf_ioend(
1007 	struct xfs_buf	*bp)
1008 {
1009 	bool		read = bp->b_flags & XBF_READ;
1010 
1011 	trace_xfs_buf_iodone(bp, _RET_IP_);
1012 
1013 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1014 
1015 	/*
1016 	 * Pull in IO completion errors now. We are guaranteed to be running
1017 	 * single threaded, so we don't need the lock to read b_io_error.
1018 	 */
1019 	if (!bp->b_error && bp->b_io_error)
1020 		xfs_buf_ioerror(bp, bp->b_io_error);
1021 
1022 	/* Only validate buffers that were read without errors */
1023 	if (read && !bp->b_error && bp->b_ops) {
1024 		ASSERT(!bp->b_iodone);
1025 		bp->b_ops->verify_read(bp);
1026 	}
1027 
1028 	if (!bp->b_error)
1029 		bp->b_flags |= XBF_DONE;
1030 
1031 	if (bp->b_iodone)
1032 		(*(bp->b_iodone))(bp);
1033 	else if (bp->b_flags & XBF_ASYNC)
1034 		xfs_buf_relse(bp);
1035 	else
1036 		complete(&bp->b_iowait);
1037 }
1038 
1039 static void
1040 xfs_buf_ioend_work(
1041 	struct work_struct	*work)
1042 {
1043 	struct xfs_buf		*bp =
1044 		container_of(work, xfs_buf_t, b_ioend_work);
1045 
1046 	xfs_buf_ioend(bp);
1047 }
1048 
1049 void
1050 xfs_buf_ioend_async(
1051 	struct xfs_buf	*bp)
1052 {
1053 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1054 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1055 }
1056 
1057 void
1058 xfs_buf_ioerror(
1059 	xfs_buf_t		*bp,
1060 	int			error)
1061 {
1062 	ASSERT(error <= 0 && error >= -1000);
1063 	bp->b_error = error;
1064 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1065 }
1066 
1067 void
1068 xfs_buf_ioerror_alert(
1069 	struct xfs_buf		*bp,
1070 	const char		*func)
1071 {
1072 	xfs_alert(bp->b_target->bt_mount,
1073 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1074 		(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1075 }
1076 
1077 int
1078 xfs_bwrite(
1079 	struct xfs_buf		*bp)
1080 {
1081 	int			error;
1082 
1083 	ASSERT(xfs_buf_islocked(bp));
1084 
1085 	bp->b_flags |= XBF_WRITE;
1086 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1087 			 XBF_WRITE_FAIL | XBF_DONE);
1088 
1089 	error = xfs_buf_submit_wait(bp);
1090 	if (error) {
1091 		xfs_force_shutdown(bp->b_target->bt_mount,
1092 				   SHUTDOWN_META_IO_ERROR);
1093 	}
1094 	return error;
1095 }
1096 
1097 STATIC void
1098 xfs_buf_bio_end_io(
1099 	struct bio		*bio,
1100 	int			error)
1101 {
1102 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1103 
1104 	/*
1105 	 * don't overwrite existing errors - otherwise we can lose errors on
1106 	 * buffers that require multiple bios to complete.
1107 	 */
1108 	if (error) {
1109 		spin_lock(&bp->b_lock);
1110 		if (!bp->b_io_error)
1111 			bp->b_io_error = error;
1112 		spin_unlock(&bp->b_lock);
1113 	}
1114 
1115 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1116 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1117 
1118 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1119 		xfs_buf_ioend_async(bp);
1120 	bio_put(bio);
1121 }
1122 
1123 static void
1124 xfs_buf_ioapply_map(
1125 	struct xfs_buf	*bp,
1126 	int		map,
1127 	int		*buf_offset,
1128 	int		*count,
1129 	int		rw)
1130 {
1131 	int		page_index;
1132 	int		total_nr_pages = bp->b_page_count;
1133 	int		nr_pages;
1134 	struct bio	*bio;
1135 	sector_t	sector =  bp->b_maps[map].bm_bn;
1136 	int		size;
1137 	int		offset;
1138 
1139 	total_nr_pages = bp->b_page_count;
1140 
1141 	/* skip the pages in the buffer before the start offset */
1142 	page_index = 0;
1143 	offset = *buf_offset;
1144 	while (offset >= PAGE_SIZE) {
1145 		page_index++;
1146 		offset -= PAGE_SIZE;
1147 	}
1148 
1149 	/*
1150 	 * Limit the IO size to the length of the current vector, and update the
1151 	 * remaining IO count for the next time around.
1152 	 */
1153 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1154 	*count -= size;
1155 	*buf_offset += size;
1156 
1157 next_chunk:
1158 	atomic_inc(&bp->b_io_remaining);
1159 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1160 	if (nr_pages > total_nr_pages)
1161 		nr_pages = total_nr_pages;
1162 
1163 	bio = bio_alloc(GFP_NOIO, nr_pages);
1164 	bio->bi_bdev = bp->b_target->bt_bdev;
1165 	bio->bi_iter.bi_sector = sector;
1166 	bio->bi_end_io = xfs_buf_bio_end_io;
1167 	bio->bi_private = bp;
1168 
1169 
1170 	for (; size && nr_pages; nr_pages--, page_index++) {
1171 		int	rbytes, nbytes = PAGE_SIZE - offset;
1172 
1173 		if (nbytes > size)
1174 			nbytes = size;
1175 
1176 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1177 				      offset);
1178 		if (rbytes < nbytes)
1179 			break;
1180 
1181 		offset = 0;
1182 		sector += BTOBB(nbytes);
1183 		size -= nbytes;
1184 		total_nr_pages--;
1185 	}
1186 
1187 	if (likely(bio->bi_iter.bi_size)) {
1188 		if (xfs_buf_is_vmapped(bp)) {
1189 			flush_kernel_vmap_range(bp->b_addr,
1190 						xfs_buf_vmap_len(bp));
1191 		}
1192 		submit_bio(rw, bio);
1193 		if (size)
1194 			goto next_chunk;
1195 	} else {
1196 		/*
1197 		 * This is guaranteed not to be the last io reference count
1198 		 * because the caller (xfs_buf_submit) holds a count itself.
1199 		 */
1200 		atomic_dec(&bp->b_io_remaining);
1201 		xfs_buf_ioerror(bp, -EIO);
1202 		bio_put(bio);
1203 	}
1204 
1205 }
1206 
1207 STATIC void
1208 _xfs_buf_ioapply(
1209 	struct xfs_buf	*bp)
1210 {
1211 	struct blk_plug	plug;
1212 	int		rw;
1213 	int		offset;
1214 	int		size;
1215 	int		i;
1216 
1217 	/*
1218 	 * Make sure we capture only current IO errors rather than stale errors
1219 	 * left over from previous use of the buffer (e.g. failed readahead).
1220 	 */
1221 	bp->b_error = 0;
1222 
1223 	/*
1224 	 * Initialize the I/O completion workqueue if we haven't yet or the
1225 	 * submitter has not opted to specify a custom one.
1226 	 */
1227 	if (!bp->b_ioend_wq)
1228 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1229 
1230 	if (bp->b_flags & XBF_WRITE) {
1231 		if (bp->b_flags & XBF_SYNCIO)
1232 			rw = WRITE_SYNC;
1233 		else
1234 			rw = WRITE;
1235 		if (bp->b_flags & XBF_FUA)
1236 			rw |= REQ_FUA;
1237 		if (bp->b_flags & XBF_FLUSH)
1238 			rw |= REQ_FLUSH;
1239 
1240 		/*
1241 		 * Run the write verifier callback function if it exists. If
1242 		 * this function fails it will mark the buffer with an error and
1243 		 * the IO should not be dispatched.
1244 		 */
1245 		if (bp->b_ops) {
1246 			bp->b_ops->verify_write(bp);
1247 			if (bp->b_error) {
1248 				xfs_force_shutdown(bp->b_target->bt_mount,
1249 						   SHUTDOWN_CORRUPT_INCORE);
1250 				return;
1251 			}
1252 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1253 			struct xfs_mount *mp = bp->b_target->bt_mount;
1254 
1255 			/*
1256 			 * non-crc filesystems don't attach verifiers during
1257 			 * log recovery, so don't warn for such filesystems.
1258 			 */
1259 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1260 				xfs_warn(mp,
1261 					"%s: no ops on block 0x%llx/0x%x",
1262 					__func__, bp->b_bn, bp->b_length);
1263 				xfs_hex_dump(bp->b_addr, 64);
1264 				dump_stack();
1265 			}
1266 		}
1267 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1268 		rw = READA;
1269 	} else {
1270 		rw = READ;
1271 	}
1272 
1273 	/* we only use the buffer cache for meta-data */
1274 	rw |= REQ_META;
1275 
1276 	/*
1277 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1278 	 * into the buffer and the desired IO size before we start -
1279 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1280 	 * subsequent call.
1281 	 */
1282 	offset = bp->b_offset;
1283 	size = BBTOB(bp->b_io_length);
1284 	blk_start_plug(&plug);
1285 	for (i = 0; i < bp->b_map_count; i++) {
1286 		xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1287 		if (bp->b_error)
1288 			break;
1289 		if (size <= 0)
1290 			break;	/* all done */
1291 	}
1292 	blk_finish_plug(&plug);
1293 }
1294 
1295 /*
1296  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1297  * the current reference to the IO. It is not safe to reference the buffer after
1298  * a call to this function unless the caller holds an additional reference
1299  * itself.
1300  */
1301 void
1302 xfs_buf_submit(
1303 	struct xfs_buf	*bp)
1304 {
1305 	trace_xfs_buf_submit(bp, _RET_IP_);
1306 
1307 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1308 	ASSERT(bp->b_flags & XBF_ASYNC);
1309 
1310 	/* on shutdown we stale and complete the buffer immediately */
1311 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1312 		xfs_buf_ioerror(bp, -EIO);
1313 		bp->b_flags &= ~XBF_DONE;
1314 		xfs_buf_stale(bp);
1315 		xfs_buf_ioend(bp);
1316 		return;
1317 	}
1318 
1319 	if (bp->b_flags & XBF_WRITE)
1320 		xfs_buf_wait_unpin(bp);
1321 
1322 	/* clear the internal error state to avoid spurious errors */
1323 	bp->b_io_error = 0;
1324 
1325 	/*
1326 	 * The caller's reference is released during I/O completion.
1327 	 * This occurs some time after the last b_io_remaining reference is
1328 	 * released, so after we drop our Io reference we have to have some
1329 	 * other reference to ensure the buffer doesn't go away from underneath
1330 	 * us. Take a direct reference to ensure we have safe access to the
1331 	 * buffer until we are finished with it.
1332 	 */
1333 	xfs_buf_hold(bp);
1334 
1335 	/*
1336 	 * Set the count to 1 initially, this will stop an I/O completion
1337 	 * callout which happens before we have started all the I/O from calling
1338 	 * xfs_buf_ioend too early.
1339 	 */
1340 	atomic_set(&bp->b_io_remaining, 1);
1341 	_xfs_buf_ioapply(bp);
1342 
1343 	/*
1344 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1345 	 * reference we took above. If we drop it to zero, run completion so
1346 	 * that we don't return to the caller with completion still pending.
1347 	 */
1348 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1349 		if (bp->b_error)
1350 			xfs_buf_ioend(bp);
1351 		else
1352 			xfs_buf_ioend_async(bp);
1353 	}
1354 
1355 	xfs_buf_rele(bp);
1356 	/* Note: it is not safe to reference bp now we've dropped our ref */
1357 }
1358 
1359 /*
1360  * Synchronous buffer IO submission path, read or write.
1361  */
1362 int
1363 xfs_buf_submit_wait(
1364 	struct xfs_buf	*bp)
1365 {
1366 	int		error;
1367 
1368 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1369 
1370 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1371 
1372 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1373 		xfs_buf_ioerror(bp, -EIO);
1374 		xfs_buf_stale(bp);
1375 		bp->b_flags &= ~XBF_DONE;
1376 		return -EIO;
1377 	}
1378 
1379 	if (bp->b_flags & XBF_WRITE)
1380 		xfs_buf_wait_unpin(bp);
1381 
1382 	/* clear the internal error state to avoid spurious errors */
1383 	bp->b_io_error = 0;
1384 
1385 	/*
1386 	 * For synchronous IO, the IO does not inherit the submitters reference
1387 	 * count, nor the buffer lock. Hence we cannot release the reference we
1388 	 * are about to take until we've waited for all IO completion to occur,
1389 	 * including any xfs_buf_ioend_async() work that may be pending.
1390 	 */
1391 	xfs_buf_hold(bp);
1392 
1393 	/*
1394 	 * Set the count to 1 initially, this will stop an I/O completion
1395 	 * callout which happens before we have started all the I/O from calling
1396 	 * xfs_buf_ioend too early.
1397 	 */
1398 	atomic_set(&bp->b_io_remaining, 1);
1399 	_xfs_buf_ioapply(bp);
1400 
1401 	/*
1402 	 * make sure we run completion synchronously if it raced with us and is
1403 	 * already complete.
1404 	 */
1405 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1406 		xfs_buf_ioend(bp);
1407 
1408 	/* wait for completion before gathering the error from the buffer */
1409 	trace_xfs_buf_iowait(bp, _RET_IP_);
1410 	wait_for_completion(&bp->b_iowait);
1411 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1412 	error = bp->b_error;
1413 
1414 	/*
1415 	 * all done now, we can release the hold that keeps the buffer
1416 	 * referenced for the entire IO.
1417 	 */
1418 	xfs_buf_rele(bp);
1419 	return error;
1420 }
1421 
1422 xfs_caddr_t
1423 xfs_buf_offset(
1424 	xfs_buf_t		*bp,
1425 	size_t			offset)
1426 {
1427 	struct page		*page;
1428 
1429 	if (bp->b_addr)
1430 		return bp->b_addr + offset;
1431 
1432 	offset += bp->b_offset;
1433 	page = bp->b_pages[offset >> PAGE_SHIFT];
1434 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1435 }
1436 
1437 /*
1438  *	Move data into or out of a buffer.
1439  */
1440 void
1441 xfs_buf_iomove(
1442 	xfs_buf_t		*bp,	/* buffer to process		*/
1443 	size_t			boff,	/* starting buffer offset	*/
1444 	size_t			bsize,	/* length to copy		*/
1445 	void			*data,	/* data address			*/
1446 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1447 {
1448 	size_t			bend;
1449 
1450 	bend = boff + bsize;
1451 	while (boff < bend) {
1452 		struct page	*page;
1453 		int		page_index, page_offset, csize;
1454 
1455 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1456 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1457 		page = bp->b_pages[page_index];
1458 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1459 				      BBTOB(bp->b_io_length) - boff);
1460 
1461 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1462 
1463 		switch (mode) {
1464 		case XBRW_ZERO:
1465 			memset(page_address(page) + page_offset, 0, csize);
1466 			break;
1467 		case XBRW_READ:
1468 			memcpy(data, page_address(page) + page_offset, csize);
1469 			break;
1470 		case XBRW_WRITE:
1471 			memcpy(page_address(page) + page_offset, data, csize);
1472 		}
1473 
1474 		boff += csize;
1475 		data += csize;
1476 	}
1477 }
1478 
1479 /*
1480  *	Handling of buffer targets (buftargs).
1481  */
1482 
1483 /*
1484  * Wait for any bufs with callbacks that have been submitted but have not yet
1485  * returned. These buffers will have an elevated hold count, so wait on those
1486  * while freeing all the buffers only held by the LRU.
1487  */
1488 static enum lru_status
1489 xfs_buftarg_wait_rele(
1490 	struct list_head	*item,
1491 	struct list_lru_one	*lru,
1492 	spinlock_t		*lru_lock,
1493 	void			*arg)
1494 
1495 {
1496 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1497 	struct list_head	*dispose = arg;
1498 
1499 	if (atomic_read(&bp->b_hold) > 1) {
1500 		/* need to wait, so skip it this pass */
1501 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1502 		return LRU_SKIP;
1503 	}
1504 	if (!spin_trylock(&bp->b_lock))
1505 		return LRU_SKIP;
1506 
1507 	/*
1508 	 * clear the LRU reference count so the buffer doesn't get
1509 	 * ignored in xfs_buf_rele().
1510 	 */
1511 	atomic_set(&bp->b_lru_ref, 0);
1512 	bp->b_state |= XFS_BSTATE_DISPOSE;
1513 	list_lru_isolate_move(lru, item, dispose);
1514 	spin_unlock(&bp->b_lock);
1515 	return LRU_REMOVED;
1516 }
1517 
1518 void
1519 xfs_wait_buftarg(
1520 	struct xfs_buftarg	*btp)
1521 {
1522 	LIST_HEAD(dispose);
1523 	int loop = 0;
1524 
1525 	/* loop until there is nothing left on the lru list. */
1526 	while (list_lru_count(&btp->bt_lru)) {
1527 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1528 			      &dispose, LONG_MAX);
1529 
1530 		while (!list_empty(&dispose)) {
1531 			struct xfs_buf *bp;
1532 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1533 			list_del_init(&bp->b_lru);
1534 			if (bp->b_flags & XBF_WRITE_FAIL) {
1535 				xfs_alert(btp->bt_mount,
1536 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1537 "Please run xfs_repair to determine the extent of the problem.",
1538 					(long long)bp->b_bn);
1539 			}
1540 			xfs_buf_rele(bp);
1541 		}
1542 		if (loop++ != 0)
1543 			delay(100);
1544 	}
1545 }
1546 
1547 static enum lru_status
1548 xfs_buftarg_isolate(
1549 	struct list_head	*item,
1550 	struct list_lru_one	*lru,
1551 	spinlock_t		*lru_lock,
1552 	void			*arg)
1553 {
1554 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1555 	struct list_head	*dispose = arg;
1556 
1557 	/*
1558 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1559 	 * If we fail to get the lock, just skip it.
1560 	 */
1561 	if (!spin_trylock(&bp->b_lock))
1562 		return LRU_SKIP;
1563 	/*
1564 	 * Decrement the b_lru_ref count unless the value is already
1565 	 * zero. If the value is already zero, we need to reclaim the
1566 	 * buffer, otherwise it gets another trip through the LRU.
1567 	 */
1568 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1569 		spin_unlock(&bp->b_lock);
1570 		return LRU_ROTATE;
1571 	}
1572 
1573 	bp->b_state |= XFS_BSTATE_DISPOSE;
1574 	list_lru_isolate_move(lru, item, dispose);
1575 	spin_unlock(&bp->b_lock);
1576 	return LRU_REMOVED;
1577 }
1578 
1579 static unsigned long
1580 xfs_buftarg_shrink_scan(
1581 	struct shrinker		*shrink,
1582 	struct shrink_control	*sc)
1583 {
1584 	struct xfs_buftarg	*btp = container_of(shrink,
1585 					struct xfs_buftarg, bt_shrinker);
1586 	LIST_HEAD(dispose);
1587 	unsigned long		freed;
1588 
1589 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1590 				     xfs_buftarg_isolate, &dispose);
1591 
1592 	while (!list_empty(&dispose)) {
1593 		struct xfs_buf *bp;
1594 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1595 		list_del_init(&bp->b_lru);
1596 		xfs_buf_rele(bp);
1597 	}
1598 
1599 	return freed;
1600 }
1601 
1602 static unsigned long
1603 xfs_buftarg_shrink_count(
1604 	struct shrinker		*shrink,
1605 	struct shrink_control	*sc)
1606 {
1607 	struct xfs_buftarg	*btp = container_of(shrink,
1608 					struct xfs_buftarg, bt_shrinker);
1609 	return list_lru_shrink_count(&btp->bt_lru, sc);
1610 }
1611 
1612 void
1613 xfs_free_buftarg(
1614 	struct xfs_mount	*mp,
1615 	struct xfs_buftarg	*btp)
1616 {
1617 	unregister_shrinker(&btp->bt_shrinker);
1618 	list_lru_destroy(&btp->bt_lru);
1619 
1620 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1621 		xfs_blkdev_issue_flush(btp);
1622 
1623 	kmem_free(btp);
1624 }
1625 
1626 int
1627 xfs_setsize_buftarg(
1628 	xfs_buftarg_t		*btp,
1629 	unsigned int		sectorsize)
1630 {
1631 	/* Set up metadata sector size info */
1632 	btp->bt_meta_sectorsize = sectorsize;
1633 	btp->bt_meta_sectormask = sectorsize - 1;
1634 
1635 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1636 		char name[BDEVNAME_SIZE];
1637 
1638 		bdevname(btp->bt_bdev, name);
1639 
1640 		xfs_warn(btp->bt_mount,
1641 			"Cannot set_blocksize to %u on device %s",
1642 			sectorsize, name);
1643 		return -EINVAL;
1644 	}
1645 
1646 	/* Set up device logical sector size mask */
1647 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1648 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1649 
1650 	return 0;
1651 }
1652 
1653 /*
1654  * When allocating the initial buffer target we have not yet
1655  * read in the superblock, so don't know what sized sectors
1656  * are being used at this early stage.  Play safe.
1657  */
1658 STATIC int
1659 xfs_setsize_buftarg_early(
1660 	xfs_buftarg_t		*btp,
1661 	struct block_device	*bdev)
1662 {
1663 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1664 }
1665 
1666 xfs_buftarg_t *
1667 xfs_alloc_buftarg(
1668 	struct xfs_mount	*mp,
1669 	struct block_device	*bdev)
1670 {
1671 	xfs_buftarg_t		*btp;
1672 
1673 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1674 
1675 	btp->bt_mount = mp;
1676 	btp->bt_dev =  bdev->bd_dev;
1677 	btp->bt_bdev = bdev;
1678 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1679 
1680 	if (xfs_setsize_buftarg_early(btp, bdev))
1681 		goto error;
1682 
1683 	if (list_lru_init(&btp->bt_lru))
1684 		goto error;
1685 
1686 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1687 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1688 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1689 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1690 	register_shrinker(&btp->bt_shrinker);
1691 	return btp;
1692 
1693 error:
1694 	kmem_free(btp);
1695 	return NULL;
1696 }
1697 
1698 /*
1699  * Add a buffer to the delayed write list.
1700  *
1701  * This queues a buffer for writeout if it hasn't already been.  Note that
1702  * neither this routine nor the buffer list submission functions perform
1703  * any internal synchronization.  It is expected that the lists are thread-local
1704  * to the callers.
1705  *
1706  * Returns true if we queued up the buffer, or false if it already had
1707  * been on the buffer list.
1708  */
1709 bool
1710 xfs_buf_delwri_queue(
1711 	struct xfs_buf		*bp,
1712 	struct list_head	*list)
1713 {
1714 	ASSERT(xfs_buf_islocked(bp));
1715 	ASSERT(!(bp->b_flags & XBF_READ));
1716 
1717 	/*
1718 	 * If the buffer is already marked delwri it already is queued up
1719 	 * by someone else for imediate writeout.  Just ignore it in that
1720 	 * case.
1721 	 */
1722 	if (bp->b_flags & _XBF_DELWRI_Q) {
1723 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1724 		return false;
1725 	}
1726 
1727 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1728 
1729 	/*
1730 	 * If a buffer gets written out synchronously or marked stale while it
1731 	 * is on a delwri list we lazily remove it. To do this, the other party
1732 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1733 	 * It remains referenced and on the list.  In a rare corner case it
1734 	 * might get readded to a delwri list after the synchronous writeout, in
1735 	 * which case we need just need to re-add the flag here.
1736 	 */
1737 	bp->b_flags |= _XBF_DELWRI_Q;
1738 	if (list_empty(&bp->b_list)) {
1739 		atomic_inc(&bp->b_hold);
1740 		list_add_tail(&bp->b_list, list);
1741 	}
1742 
1743 	return true;
1744 }
1745 
1746 /*
1747  * Compare function is more complex than it needs to be because
1748  * the return value is only 32 bits and we are doing comparisons
1749  * on 64 bit values
1750  */
1751 static int
1752 xfs_buf_cmp(
1753 	void		*priv,
1754 	struct list_head *a,
1755 	struct list_head *b)
1756 {
1757 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1758 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1759 	xfs_daddr_t		diff;
1760 
1761 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1762 	if (diff < 0)
1763 		return -1;
1764 	if (diff > 0)
1765 		return 1;
1766 	return 0;
1767 }
1768 
1769 static int
1770 __xfs_buf_delwri_submit(
1771 	struct list_head	*buffer_list,
1772 	struct list_head	*io_list,
1773 	bool			wait)
1774 {
1775 	struct blk_plug		plug;
1776 	struct xfs_buf		*bp, *n;
1777 	int			pinned = 0;
1778 
1779 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1780 		if (!wait) {
1781 			if (xfs_buf_ispinned(bp)) {
1782 				pinned++;
1783 				continue;
1784 			}
1785 			if (!xfs_buf_trylock(bp))
1786 				continue;
1787 		} else {
1788 			xfs_buf_lock(bp);
1789 		}
1790 
1791 		/*
1792 		 * Someone else might have written the buffer synchronously or
1793 		 * marked it stale in the meantime.  In that case only the
1794 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1795 		 * reference and remove it from the list here.
1796 		 */
1797 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1798 			list_del_init(&bp->b_list);
1799 			xfs_buf_relse(bp);
1800 			continue;
1801 		}
1802 
1803 		list_move_tail(&bp->b_list, io_list);
1804 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1805 	}
1806 
1807 	list_sort(NULL, io_list, xfs_buf_cmp);
1808 
1809 	blk_start_plug(&plug);
1810 	list_for_each_entry_safe(bp, n, io_list, b_list) {
1811 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
1812 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1813 
1814 		/*
1815 		 * we do all Io submission async. This means if we need to wait
1816 		 * for IO completion we need to take an extra reference so the
1817 		 * buffer is still valid on the other side.
1818 		 */
1819 		if (wait)
1820 			xfs_buf_hold(bp);
1821 		else
1822 			list_del_init(&bp->b_list);
1823 
1824 		xfs_buf_submit(bp);
1825 	}
1826 	blk_finish_plug(&plug);
1827 
1828 	return pinned;
1829 }
1830 
1831 /*
1832  * Write out a buffer list asynchronously.
1833  *
1834  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1835  * out and not wait for I/O completion on any of the buffers.  This interface
1836  * is only safely useable for callers that can track I/O completion by higher
1837  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1838  * function.
1839  */
1840 int
1841 xfs_buf_delwri_submit_nowait(
1842 	struct list_head	*buffer_list)
1843 {
1844 	LIST_HEAD		(io_list);
1845 	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1846 }
1847 
1848 /*
1849  * Write out a buffer list synchronously.
1850  *
1851  * This will take the @buffer_list, write all buffers out and wait for I/O
1852  * completion on all of the buffers. @buffer_list is consumed by the function,
1853  * so callers must have some other way of tracking buffers if they require such
1854  * functionality.
1855  */
1856 int
1857 xfs_buf_delwri_submit(
1858 	struct list_head	*buffer_list)
1859 {
1860 	LIST_HEAD		(io_list);
1861 	int			error = 0, error2;
1862 	struct xfs_buf		*bp;
1863 
1864 	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
1865 
1866 	/* Wait for IO to complete. */
1867 	while (!list_empty(&io_list)) {
1868 		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1869 
1870 		list_del_init(&bp->b_list);
1871 
1872 		/* locking the buffer will wait for async IO completion. */
1873 		xfs_buf_lock(bp);
1874 		error2 = bp->b_error;
1875 		xfs_buf_relse(bp);
1876 		if (!error)
1877 			error = error2;
1878 	}
1879 
1880 	return error;
1881 }
1882 
1883 int __init
1884 xfs_buf_init(void)
1885 {
1886 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1887 						KM_ZONE_HWALIGN, NULL);
1888 	if (!xfs_buf_zone)
1889 		goto out;
1890 
1891 	return 0;
1892 
1893  out:
1894 	return -ENOMEM;
1895 }
1896 
1897 void
1898 xfs_buf_terminate(void)
1899 {
1900 	kmem_zone_destroy(xfs_buf_zone);
1901 }
1902