xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 
20 static kmem_zone_t *xfs_buf_zone;
21 
22 #define xb_to_gfp(flags) \
23 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
24 
25 /*
26  * Locking orders
27  *
28  * xfs_buf_ioacct_inc:
29  * xfs_buf_ioacct_dec:
30  *	b_sema (caller holds)
31  *	  b_lock
32  *
33  * xfs_buf_stale:
34  *	b_sema (caller holds)
35  *	  b_lock
36  *	    lru_lock
37  *
38  * xfs_buf_rele:
39  *	b_lock
40  *	  pag_buf_lock
41  *	    lru_lock
42  *
43  * xfs_buftarg_wait_rele
44  *	lru_lock
45  *	  b_lock (trylock due to inversion)
46  *
47  * xfs_buftarg_isolate
48  *	lru_lock
49  *	  b_lock (trylock due to inversion)
50  */
51 
52 static inline int
53 xfs_buf_is_vmapped(
54 	struct xfs_buf	*bp)
55 {
56 	/*
57 	 * Return true if the buffer is vmapped.
58 	 *
59 	 * b_addr is null if the buffer is not mapped, but the code is clever
60 	 * enough to know it doesn't have to map a single page, so the check has
61 	 * to be both for b_addr and bp->b_page_count > 1.
62 	 */
63 	return bp->b_addr && bp->b_page_count > 1;
64 }
65 
66 static inline int
67 xfs_buf_vmap_len(
68 	struct xfs_buf	*bp)
69 {
70 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71 }
72 
73 /*
74  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75  * this buffer. The count is incremented once per buffer (per hold cycle)
76  * because the corresponding decrement is deferred to buffer release. Buffers
77  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78  * tracking adds unnecessary overhead. This is used for sychronization purposes
79  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80  * in-flight buffers.
81  *
82  * Buffers that are never released (e.g., superblock, iclog buffers) must set
83  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84  * never reaches zero and unmount hangs indefinitely.
85  */
86 static inline void
87 xfs_buf_ioacct_inc(
88 	struct xfs_buf	*bp)
89 {
90 	if (bp->b_flags & XBF_NO_IOACCT)
91 		return;
92 
93 	ASSERT(bp->b_flags & XBF_ASYNC);
94 	spin_lock(&bp->b_lock);
95 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 		percpu_counter_inc(&bp->b_target->bt_io_count);
98 	}
99 	spin_unlock(&bp->b_lock);
100 }
101 
102 /*
103  * Clear the in-flight state on a buffer about to be released to the LRU or
104  * freed and unaccount from the buftarg.
105  */
106 static inline void
107 __xfs_buf_ioacct_dec(
108 	struct xfs_buf	*bp)
109 {
110 	lockdep_assert_held(&bp->b_lock);
111 
112 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 		percpu_counter_dec(&bp->b_target->bt_io_count);
115 	}
116 }
117 
118 static inline void
119 xfs_buf_ioacct_dec(
120 	struct xfs_buf	*bp)
121 {
122 	spin_lock(&bp->b_lock);
123 	__xfs_buf_ioacct_dec(bp);
124 	spin_unlock(&bp->b_lock);
125 }
126 
127 /*
128  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129  * b_lru_ref count so that the buffer is freed immediately when the buffer
130  * reference count falls to zero. If the buffer is already on the LRU, we need
131  * to remove the reference that LRU holds on the buffer.
132  *
133  * This prevents build-up of stale buffers on the LRU.
134  */
135 void
136 xfs_buf_stale(
137 	struct xfs_buf	*bp)
138 {
139 	ASSERT(xfs_buf_islocked(bp));
140 
141 	bp->b_flags |= XBF_STALE;
142 
143 	/*
144 	 * Clear the delwri status so that a delwri queue walker will not
145 	 * flush this buffer to disk now that it is stale. The delwri queue has
146 	 * a reference to the buffer, so this is safe to do.
147 	 */
148 	bp->b_flags &= ~_XBF_DELWRI_Q;
149 
150 	/*
151 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 	 * could reset b_flags. There is no guarantee that the buffer is
153 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 	 * status now to preserve accounting consistency.
155 	 */
156 	spin_lock(&bp->b_lock);
157 	__xfs_buf_ioacct_dec(bp);
158 
159 	atomic_set(&bp->b_lru_ref, 0);
160 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
161 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 		atomic_dec(&bp->b_hold);
163 
164 	ASSERT(atomic_read(&bp->b_hold) >= 1);
165 	spin_unlock(&bp->b_lock);
166 }
167 
168 static int
169 xfs_buf_get_maps(
170 	struct xfs_buf		*bp,
171 	int			map_count)
172 {
173 	ASSERT(bp->b_maps == NULL);
174 	bp->b_map_count = map_count;
175 
176 	if (map_count == 1) {
177 		bp->b_maps = &bp->__b_map;
178 		return 0;
179 	}
180 
181 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 				KM_NOFS);
183 	if (!bp->b_maps)
184 		return -ENOMEM;
185 	return 0;
186 }
187 
188 /*
189  *	Frees b_pages if it was allocated.
190  */
191 static void
192 xfs_buf_free_maps(
193 	struct xfs_buf	*bp)
194 {
195 	if (bp->b_maps != &bp->__b_map) {
196 		kmem_free(bp->b_maps);
197 		bp->b_maps = NULL;
198 	}
199 }
200 
201 static struct xfs_buf *
202 _xfs_buf_alloc(
203 	struct xfs_buftarg	*target,
204 	struct xfs_buf_map	*map,
205 	int			nmaps,
206 	xfs_buf_flags_t		flags)
207 {
208 	struct xfs_buf		*bp;
209 	int			error;
210 	int			i;
211 
212 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
213 	if (unlikely(!bp))
214 		return NULL;
215 
216 	/*
217 	 * We don't want certain flags to appear in b_flags unless they are
218 	 * specifically set by later operations on the buffer.
219 	 */
220 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
221 
222 	atomic_set(&bp->b_hold, 1);
223 	atomic_set(&bp->b_lru_ref, 1);
224 	init_completion(&bp->b_iowait);
225 	INIT_LIST_HEAD(&bp->b_lru);
226 	INIT_LIST_HEAD(&bp->b_list);
227 	INIT_LIST_HEAD(&bp->b_li_list);
228 	sema_init(&bp->b_sema, 0); /* held, no waiters */
229 	spin_lock_init(&bp->b_lock);
230 	bp->b_target = target;
231 	bp->b_mount = target->bt_mount;
232 	bp->b_flags = flags;
233 
234 	/*
235 	 * Set length and io_length to the same value initially.
236 	 * I/O routines should use io_length, which will be the same in
237 	 * most cases but may be reset (e.g. XFS recovery).
238 	 */
239 	error = xfs_buf_get_maps(bp, nmaps);
240 	if (error)  {
241 		kmem_cache_free(xfs_buf_zone, bp);
242 		return NULL;
243 	}
244 
245 	bp->b_bn = map[0].bm_bn;
246 	bp->b_length = 0;
247 	for (i = 0; i < nmaps; i++) {
248 		bp->b_maps[i].bm_bn = map[i].bm_bn;
249 		bp->b_maps[i].bm_len = map[i].bm_len;
250 		bp->b_length += map[i].bm_len;
251 	}
252 
253 	atomic_set(&bp->b_pin_count, 0);
254 	init_waitqueue_head(&bp->b_waiters);
255 
256 	XFS_STATS_INC(bp->b_mount, xb_create);
257 	trace_xfs_buf_init(bp, _RET_IP_);
258 
259 	return bp;
260 }
261 
262 /*
263  *	Allocate a page array capable of holding a specified number
264  *	of pages, and point the page buf at it.
265  */
266 STATIC int
267 _xfs_buf_get_pages(
268 	xfs_buf_t		*bp,
269 	int			page_count)
270 {
271 	/* Make sure that we have a page list */
272 	if (bp->b_pages == NULL) {
273 		bp->b_page_count = page_count;
274 		if (page_count <= XB_PAGES) {
275 			bp->b_pages = bp->b_page_array;
276 		} else {
277 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
278 						 page_count, KM_NOFS);
279 			if (bp->b_pages == NULL)
280 				return -ENOMEM;
281 		}
282 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
283 	}
284 	return 0;
285 }
286 
287 /*
288  *	Frees b_pages if it was allocated.
289  */
290 STATIC void
291 _xfs_buf_free_pages(
292 	xfs_buf_t	*bp)
293 {
294 	if (bp->b_pages != bp->b_page_array) {
295 		kmem_free(bp->b_pages);
296 		bp->b_pages = NULL;
297 	}
298 }
299 
300 /*
301  *	Releases the specified buffer.
302  *
303  * 	The modification state of any associated pages is left unchanged.
304  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
305  * 	hashed and refcounted buffers
306  */
307 static void
308 xfs_buf_free(
309 	xfs_buf_t		*bp)
310 {
311 	trace_xfs_buf_free(bp, _RET_IP_);
312 
313 	ASSERT(list_empty(&bp->b_lru));
314 
315 	if (bp->b_flags & _XBF_PAGES) {
316 		uint		i;
317 
318 		if (xfs_buf_is_vmapped(bp))
319 			vm_unmap_ram(bp->b_addr - bp->b_offset,
320 					bp->b_page_count);
321 
322 		for (i = 0; i < bp->b_page_count; i++) {
323 			struct page	*page = bp->b_pages[i];
324 
325 			__free_page(page);
326 		}
327 	} else if (bp->b_flags & _XBF_KMEM)
328 		kmem_free(bp->b_addr);
329 	_xfs_buf_free_pages(bp);
330 	xfs_buf_free_maps(bp);
331 	kmem_cache_free(xfs_buf_zone, bp);
332 }
333 
334 /*
335  * Allocates all the pages for buffer in question and builds it's page list.
336  */
337 STATIC int
338 xfs_buf_allocate_memory(
339 	xfs_buf_t		*bp,
340 	uint			flags)
341 {
342 	size_t			size;
343 	size_t			nbytes, offset;
344 	gfp_t			gfp_mask = xb_to_gfp(flags);
345 	unsigned short		page_count, i;
346 	xfs_off_t		start, end;
347 	int			error;
348 	xfs_km_flags_t		kmflag_mask = 0;
349 
350 	/*
351 	 * assure zeroed buffer for non-read cases.
352 	 */
353 	if (!(flags & XBF_READ)) {
354 		kmflag_mask |= KM_ZERO;
355 		gfp_mask |= __GFP_ZERO;
356 	}
357 
358 	/*
359 	 * for buffers that are contained within a single page, just allocate
360 	 * the memory from the heap - there's no need for the complexity of
361 	 * page arrays to keep allocation down to order 0.
362 	 */
363 	size = BBTOB(bp->b_length);
364 	if (size < PAGE_SIZE) {
365 		int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
366 		bp->b_addr = kmem_alloc_io(size, align_mask,
367 					   KM_NOFS | kmflag_mask);
368 		if (!bp->b_addr) {
369 			/* low memory - use alloc_page loop instead */
370 			goto use_alloc_page;
371 		}
372 
373 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
374 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
375 			/* b_addr spans two pages - use alloc_page instead */
376 			kmem_free(bp->b_addr);
377 			bp->b_addr = NULL;
378 			goto use_alloc_page;
379 		}
380 		bp->b_offset = offset_in_page(bp->b_addr);
381 		bp->b_pages = bp->b_page_array;
382 		bp->b_pages[0] = kmem_to_page(bp->b_addr);
383 		bp->b_page_count = 1;
384 		bp->b_flags |= _XBF_KMEM;
385 		return 0;
386 	}
387 
388 use_alloc_page:
389 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
390 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
391 								>> PAGE_SHIFT;
392 	page_count = end - start;
393 	error = _xfs_buf_get_pages(bp, page_count);
394 	if (unlikely(error))
395 		return error;
396 
397 	offset = bp->b_offset;
398 	bp->b_flags |= _XBF_PAGES;
399 
400 	for (i = 0; i < bp->b_page_count; i++) {
401 		struct page	*page;
402 		uint		retries = 0;
403 retry:
404 		page = alloc_page(gfp_mask);
405 		if (unlikely(page == NULL)) {
406 			if (flags & XBF_READ_AHEAD) {
407 				bp->b_page_count = i;
408 				error = -ENOMEM;
409 				goto out_free_pages;
410 			}
411 
412 			/*
413 			 * This could deadlock.
414 			 *
415 			 * But until all the XFS lowlevel code is revamped to
416 			 * handle buffer allocation failures we can't do much.
417 			 */
418 			if (!(++retries % 100))
419 				xfs_err(NULL,
420 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
421 					current->comm, current->pid,
422 					__func__, gfp_mask);
423 
424 			XFS_STATS_INC(bp->b_mount, xb_page_retries);
425 			congestion_wait(BLK_RW_ASYNC, HZ/50);
426 			goto retry;
427 		}
428 
429 		XFS_STATS_INC(bp->b_mount, xb_page_found);
430 
431 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
432 		size -= nbytes;
433 		bp->b_pages[i] = page;
434 		offset = 0;
435 	}
436 	return 0;
437 
438 out_free_pages:
439 	for (i = 0; i < bp->b_page_count; i++)
440 		__free_page(bp->b_pages[i]);
441 	bp->b_flags &= ~_XBF_PAGES;
442 	return error;
443 }
444 
445 /*
446  *	Map buffer into kernel address-space if necessary.
447  */
448 STATIC int
449 _xfs_buf_map_pages(
450 	xfs_buf_t		*bp,
451 	uint			flags)
452 {
453 	ASSERT(bp->b_flags & _XBF_PAGES);
454 	if (bp->b_page_count == 1) {
455 		/* A single page buffer is always mappable */
456 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457 	} else if (flags & XBF_UNMAPPED) {
458 		bp->b_addr = NULL;
459 	} else {
460 		int retried = 0;
461 		unsigned nofs_flag;
462 
463 		/*
464 		 * vm_map_ram() will allocate auxiliary structures (e.g.
465 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
466 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
467 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
468 		 * memory reclaim re-entering the filesystem here and
469 		 * potentially deadlocking.
470 		 */
471 		nofs_flag = memalloc_nofs_save();
472 		do {
473 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
474 						-1, PAGE_KERNEL);
475 			if (bp->b_addr)
476 				break;
477 			vm_unmap_aliases();
478 		} while (retried++ <= 1);
479 		memalloc_nofs_restore(nofs_flag);
480 
481 		if (!bp->b_addr)
482 			return -ENOMEM;
483 		bp->b_addr += bp->b_offset;
484 	}
485 
486 	return 0;
487 }
488 
489 /*
490  *	Finding and Reading Buffers
491  */
492 static int
493 _xfs_buf_obj_cmp(
494 	struct rhashtable_compare_arg	*arg,
495 	const void			*obj)
496 {
497 	const struct xfs_buf_map	*map = arg->key;
498 	const struct xfs_buf		*bp = obj;
499 
500 	/*
501 	 * The key hashing in the lookup path depends on the key being the
502 	 * first element of the compare_arg, make sure to assert this.
503 	 */
504 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
505 
506 	if (bp->b_bn != map->bm_bn)
507 		return 1;
508 
509 	if (unlikely(bp->b_length != map->bm_len)) {
510 		/*
511 		 * found a block number match. If the range doesn't
512 		 * match, the only way this is allowed is if the buffer
513 		 * in the cache is stale and the transaction that made
514 		 * it stale has not yet committed. i.e. we are
515 		 * reallocating a busy extent. Skip this buffer and
516 		 * continue searching for an exact match.
517 		 */
518 		ASSERT(bp->b_flags & XBF_STALE);
519 		return 1;
520 	}
521 	return 0;
522 }
523 
524 static const struct rhashtable_params xfs_buf_hash_params = {
525 	.min_size		= 32,	/* empty AGs have minimal footprint */
526 	.nelem_hint		= 16,
527 	.key_len		= sizeof(xfs_daddr_t),
528 	.key_offset		= offsetof(struct xfs_buf, b_bn),
529 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
530 	.automatic_shrinking	= true,
531 	.obj_cmpfn		= _xfs_buf_obj_cmp,
532 };
533 
534 int
535 xfs_buf_hash_init(
536 	struct xfs_perag	*pag)
537 {
538 	spin_lock_init(&pag->pag_buf_lock);
539 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
540 }
541 
542 void
543 xfs_buf_hash_destroy(
544 	struct xfs_perag	*pag)
545 {
546 	rhashtable_destroy(&pag->pag_buf_hash);
547 }
548 
549 /*
550  * Look up a buffer in the buffer cache and return it referenced and locked
551  * in @found_bp.
552  *
553  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
554  * cache.
555  *
556  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
557  * -EAGAIN if we fail to lock it.
558  *
559  * Return values are:
560  *	-EFSCORRUPTED if have been supplied with an invalid address
561  *	-EAGAIN on trylock failure
562  *	-ENOENT if we fail to find a match and @new_bp was NULL
563  *	0, with @found_bp:
564  *		- @new_bp if we inserted it into the cache
565  *		- the buffer we found and locked.
566  */
567 static int
568 xfs_buf_find(
569 	struct xfs_buftarg	*btp,
570 	struct xfs_buf_map	*map,
571 	int			nmaps,
572 	xfs_buf_flags_t		flags,
573 	struct xfs_buf		*new_bp,
574 	struct xfs_buf		**found_bp)
575 {
576 	struct xfs_perag	*pag;
577 	xfs_buf_t		*bp;
578 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
579 	xfs_daddr_t		eofs;
580 	int			i;
581 
582 	*found_bp = NULL;
583 
584 	for (i = 0; i < nmaps; i++)
585 		cmap.bm_len += map[i].bm_len;
586 
587 	/* Check for IOs smaller than the sector size / not sector aligned */
588 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
589 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
590 
591 	/*
592 	 * Corrupted block numbers can get through to here, unfortunately, so we
593 	 * have to check that the buffer falls within the filesystem bounds.
594 	 */
595 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
596 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
597 		xfs_alert(btp->bt_mount,
598 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
599 			  __func__, cmap.bm_bn, eofs);
600 		WARN_ON(1);
601 		return -EFSCORRUPTED;
602 	}
603 
604 	pag = xfs_perag_get(btp->bt_mount,
605 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
606 
607 	spin_lock(&pag->pag_buf_lock);
608 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
609 				    xfs_buf_hash_params);
610 	if (bp) {
611 		atomic_inc(&bp->b_hold);
612 		goto found;
613 	}
614 
615 	/* No match found */
616 	if (!new_bp) {
617 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
618 		spin_unlock(&pag->pag_buf_lock);
619 		xfs_perag_put(pag);
620 		return -ENOENT;
621 	}
622 
623 	/* the buffer keeps the perag reference until it is freed */
624 	new_bp->b_pag = pag;
625 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
626 			       xfs_buf_hash_params);
627 	spin_unlock(&pag->pag_buf_lock);
628 	*found_bp = new_bp;
629 	return 0;
630 
631 found:
632 	spin_unlock(&pag->pag_buf_lock);
633 	xfs_perag_put(pag);
634 
635 	if (!xfs_buf_trylock(bp)) {
636 		if (flags & XBF_TRYLOCK) {
637 			xfs_buf_rele(bp);
638 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
639 			return -EAGAIN;
640 		}
641 		xfs_buf_lock(bp);
642 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
643 	}
644 
645 	/*
646 	 * if the buffer is stale, clear all the external state associated with
647 	 * it. We need to keep flags such as how we allocated the buffer memory
648 	 * intact here.
649 	 */
650 	if (bp->b_flags & XBF_STALE) {
651 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
652 		ASSERT(bp->b_iodone == NULL);
653 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
654 		bp->b_ops = NULL;
655 	}
656 
657 	trace_xfs_buf_find(bp, flags, _RET_IP_);
658 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
659 	*found_bp = bp;
660 	return 0;
661 }
662 
663 struct xfs_buf *
664 xfs_buf_incore(
665 	struct xfs_buftarg	*target,
666 	xfs_daddr_t		blkno,
667 	size_t			numblks,
668 	xfs_buf_flags_t		flags)
669 {
670 	struct xfs_buf		*bp;
671 	int			error;
672 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
673 
674 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
675 	if (error)
676 		return NULL;
677 	return bp;
678 }
679 
680 /*
681  * Assembles a buffer covering the specified range. The code is optimised for
682  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
683  * more hits than misses.
684  */
685 struct xfs_buf *
686 xfs_buf_get_map(
687 	struct xfs_buftarg	*target,
688 	struct xfs_buf_map	*map,
689 	int			nmaps,
690 	xfs_buf_flags_t		flags)
691 {
692 	struct xfs_buf		*bp;
693 	struct xfs_buf		*new_bp;
694 	int			error = 0;
695 
696 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
697 
698 	switch (error) {
699 	case 0:
700 		/* cache hit */
701 		goto found;
702 	case -EAGAIN:
703 		/* cache hit, trylock failure, caller handles failure */
704 		ASSERT(flags & XBF_TRYLOCK);
705 		return NULL;
706 	case -ENOENT:
707 		/* cache miss, go for insert */
708 		break;
709 	case -EFSCORRUPTED:
710 	default:
711 		/*
712 		 * None of the higher layers understand failure types
713 		 * yet, so return NULL to signal a fatal lookup error.
714 		 */
715 		return NULL;
716 	}
717 
718 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
719 	if (unlikely(!new_bp))
720 		return NULL;
721 
722 	error = xfs_buf_allocate_memory(new_bp, flags);
723 	if (error) {
724 		xfs_buf_free(new_bp);
725 		return NULL;
726 	}
727 
728 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
729 	if (error) {
730 		xfs_buf_free(new_bp);
731 		return NULL;
732 	}
733 
734 	if (bp != new_bp)
735 		xfs_buf_free(new_bp);
736 
737 found:
738 	if (!bp->b_addr) {
739 		error = _xfs_buf_map_pages(bp, flags);
740 		if (unlikely(error)) {
741 			xfs_warn(target->bt_mount,
742 				"%s: failed to map pagesn", __func__);
743 			xfs_buf_relse(bp);
744 			return NULL;
745 		}
746 	}
747 
748 	/*
749 	 * Clear b_error if this is a lookup from a caller that doesn't expect
750 	 * valid data to be found in the buffer.
751 	 */
752 	if (!(flags & XBF_READ))
753 		xfs_buf_ioerror(bp, 0);
754 
755 	XFS_STATS_INC(target->bt_mount, xb_get);
756 	trace_xfs_buf_get(bp, flags, _RET_IP_);
757 	return bp;
758 }
759 
760 STATIC int
761 _xfs_buf_read(
762 	xfs_buf_t		*bp,
763 	xfs_buf_flags_t		flags)
764 {
765 	ASSERT(!(flags & XBF_WRITE));
766 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
767 
768 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
769 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
770 
771 	return xfs_buf_submit(bp);
772 }
773 
774 /*
775  * Reverify a buffer found in cache without an attached ->b_ops.
776  *
777  * If the caller passed an ops structure and the buffer doesn't have ops
778  * assigned, set the ops and use it to verify the contents. If verification
779  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
780  * already in XBF_DONE state on entry.
781  *
782  * Under normal operations, every in-core buffer is verified on read I/O
783  * completion. There are two scenarios that can lead to in-core buffers without
784  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
785  * filesystem, though these buffers are purged at the end of recovery. The
786  * other is online repair, which intentionally reads with a NULL buffer ops to
787  * run several verifiers across an in-core buffer in order to establish buffer
788  * type.  If repair can't establish that, the buffer will be left in memory
789  * with NULL buffer ops.
790  */
791 int
792 xfs_buf_reverify(
793 	struct xfs_buf		*bp,
794 	const struct xfs_buf_ops *ops)
795 {
796 	ASSERT(bp->b_flags & XBF_DONE);
797 	ASSERT(bp->b_error == 0);
798 
799 	if (!ops || bp->b_ops)
800 		return 0;
801 
802 	bp->b_ops = ops;
803 	bp->b_ops->verify_read(bp);
804 	if (bp->b_error)
805 		bp->b_flags &= ~XBF_DONE;
806 	return bp->b_error;
807 }
808 
809 xfs_buf_t *
810 xfs_buf_read_map(
811 	struct xfs_buftarg	*target,
812 	struct xfs_buf_map	*map,
813 	int			nmaps,
814 	xfs_buf_flags_t		flags,
815 	const struct xfs_buf_ops *ops)
816 {
817 	struct xfs_buf		*bp;
818 
819 	flags |= XBF_READ;
820 
821 	bp = xfs_buf_get_map(target, map, nmaps, flags);
822 	if (!bp)
823 		return NULL;
824 
825 	trace_xfs_buf_read(bp, flags, _RET_IP_);
826 
827 	if (!(bp->b_flags & XBF_DONE)) {
828 		XFS_STATS_INC(target->bt_mount, xb_get_read);
829 		bp->b_ops = ops;
830 		_xfs_buf_read(bp, flags);
831 		return bp;
832 	}
833 
834 	xfs_buf_reverify(bp, ops);
835 
836 	if (flags & XBF_ASYNC) {
837 		/*
838 		 * Read ahead call which is already satisfied,
839 		 * drop the buffer
840 		 */
841 		xfs_buf_relse(bp);
842 		return NULL;
843 	}
844 
845 	/* We do not want read in the flags */
846 	bp->b_flags &= ~XBF_READ;
847 	ASSERT(bp->b_ops != NULL || ops == NULL);
848 	return bp;
849 }
850 
851 /*
852  *	If we are not low on memory then do the readahead in a deadlock
853  *	safe manner.
854  */
855 void
856 xfs_buf_readahead_map(
857 	struct xfs_buftarg	*target,
858 	struct xfs_buf_map	*map,
859 	int			nmaps,
860 	const struct xfs_buf_ops *ops)
861 {
862 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
863 		return;
864 
865 	xfs_buf_read_map(target, map, nmaps,
866 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
867 }
868 
869 /*
870  * Read an uncached buffer from disk. Allocates and returns a locked
871  * buffer containing the disk contents or nothing.
872  */
873 int
874 xfs_buf_read_uncached(
875 	struct xfs_buftarg	*target,
876 	xfs_daddr_t		daddr,
877 	size_t			numblks,
878 	int			flags,
879 	struct xfs_buf		**bpp,
880 	const struct xfs_buf_ops *ops)
881 {
882 	struct xfs_buf		*bp;
883 
884 	*bpp = NULL;
885 
886 	bp = xfs_buf_get_uncached(target, numblks, flags);
887 	if (!bp)
888 		return -ENOMEM;
889 
890 	/* set up the buffer for a read IO */
891 	ASSERT(bp->b_map_count == 1);
892 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
893 	bp->b_maps[0].bm_bn = daddr;
894 	bp->b_flags |= XBF_READ;
895 	bp->b_ops = ops;
896 
897 	xfs_buf_submit(bp);
898 	if (bp->b_error) {
899 		int	error = bp->b_error;
900 		xfs_buf_relse(bp);
901 		return error;
902 	}
903 
904 	*bpp = bp;
905 	return 0;
906 }
907 
908 xfs_buf_t *
909 xfs_buf_get_uncached(
910 	struct xfs_buftarg	*target,
911 	size_t			numblks,
912 	int			flags)
913 {
914 	unsigned long		page_count;
915 	int			error, i;
916 	struct xfs_buf		*bp;
917 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
918 
919 	/* flags might contain irrelevant bits, pass only what we care about */
920 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
921 	if (unlikely(bp == NULL))
922 		goto fail;
923 
924 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
925 	error = _xfs_buf_get_pages(bp, page_count);
926 	if (error)
927 		goto fail_free_buf;
928 
929 	for (i = 0; i < page_count; i++) {
930 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
931 		if (!bp->b_pages[i])
932 			goto fail_free_mem;
933 	}
934 	bp->b_flags |= _XBF_PAGES;
935 
936 	error = _xfs_buf_map_pages(bp, 0);
937 	if (unlikely(error)) {
938 		xfs_warn(target->bt_mount,
939 			"%s: failed to map pages", __func__);
940 		goto fail_free_mem;
941 	}
942 
943 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
944 	return bp;
945 
946  fail_free_mem:
947 	while (--i >= 0)
948 		__free_page(bp->b_pages[i]);
949 	_xfs_buf_free_pages(bp);
950  fail_free_buf:
951 	xfs_buf_free_maps(bp);
952 	kmem_cache_free(xfs_buf_zone, bp);
953  fail:
954 	return NULL;
955 }
956 
957 /*
958  *	Increment reference count on buffer, to hold the buffer concurrently
959  *	with another thread which may release (free) the buffer asynchronously.
960  *	Must hold the buffer already to call this function.
961  */
962 void
963 xfs_buf_hold(
964 	xfs_buf_t		*bp)
965 {
966 	trace_xfs_buf_hold(bp, _RET_IP_);
967 	atomic_inc(&bp->b_hold);
968 }
969 
970 /*
971  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
972  * placed on LRU or freed (depending on b_lru_ref).
973  */
974 void
975 xfs_buf_rele(
976 	xfs_buf_t		*bp)
977 {
978 	struct xfs_perag	*pag = bp->b_pag;
979 	bool			release;
980 	bool			freebuf = false;
981 
982 	trace_xfs_buf_rele(bp, _RET_IP_);
983 
984 	if (!pag) {
985 		ASSERT(list_empty(&bp->b_lru));
986 		if (atomic_dec_and_test(&bp->b_hold)) {
987 			xfs_buf_ioacct_dec(bp);
988 			xfs_buf_free(bp);
989 		}
990 		return;
991 	}
992 
993 	ASSERT(atomic_read(&bp->b_hold) > 0);
994 
995 	/*
996 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
997 	 * calls. The pag_buf_lock being taken on the last reference only
998 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
999 	 * to last reference we drop here is not serialised against the last
1000 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1001 	 * first, the last "release" reference can win the race to the lock and
1002 	 * free the buffer before the second-to-last reference is processed,
1003 	 * leading to a use-after-free scenario.
1004 	 */
1005 	spin_lock(&bp->b_lock);
1006 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1007 	if (!release) {
1008 		/*
1009 		 * Drop the in-flight state if the buffer is already on the LRU
1010 		 * and it holds the only reference. This is racy because we
1011 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1012 		 * ensures the decrement occurs only once per-buf.
1013 		 */
1014 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1015 			__xfs_buf_ioacct_dec(bp);
1016 		goto out_unlock;
1017 	}
1018 
1019 	/* the last reference has been dropped ... */
1020 	__xfs_buf_ioacct_dec(bp);
1021 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1022 		/*
1023 		 * If the buffer is added to the LRU take a new reference to the
1024 		 * buffer for the LRU and clear the (now stale) dispose list
1025 		 * state flag
1026 		 */
1027 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1028 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1029 			atomic_inc(&bp->b_hold);
1030 		}
1031 		spin_unlock(&pag->pag_buf_lock);
1032 	} else {
1033 		/*
1034 		 * most of the time buffers will already be removed from the
1035 		 * LRU, so optimise that case by checking for the
1036 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1037 		 * was on was the disposal list
1038 		 */
1039 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1040 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1041 		} else {
1042 			ASSERT(list_empty(&bp->b_lru));
1043 		}
1044 
1045 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1046 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1047 				       xfs_buf_hash_params);
1048 		spin_unlock(&pag->pag_buf_lock);
1049 		xfs_perag_put(pag);
1050 		freebuf = true;
1051 	}
1052 
1053 out_unlock:
1054 	spin_unlock(&bp->b_lock);
1055 
1056 	if (freebuf)
1057 		xfs_buf_free(bp);
1058 }
1059 
1060 
1061 /*
1062  *	Lock a buffer object, if it is not already locked.
1063  *
1064  *	If we come across a stale, pinned, locked buffer, we know that we are
1065  *	being asked to lock a buffer that has been reallocated. Because it is
1066  *	pinned, we know that the log has not been pushed to disk and hence it
1067  *	will still be locked.  Rather than continuing to have trylock attempts
1068  *	fail until someone else pushes the log, push it ourselves before
1069  *	returning.  This means that the xfsaild will not get stuck trying
1070  *	to push on stale inode buffers.
1071  */
1072 int
1073 xfs_buf_trylock(
1074 	struct xfs_buf		*bp)
1075 {
1076 	int			locked;
1077 
1078 	locked = down_trylock(&bp->b_sema) == 0;
1079 	if (locked)
1080 		trace_xfs_buf_trylock(bp, _RET_IP_);
1081 	else
1082 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1083 	return locked;
1084 }
1085 
1086 /*
1087  *	Lock a buffer object.
1088  *
1089  *	If we come across a stale, pinned, locked buffer, we know that we
1090  *	are being asked to lock a buffer that has been reallocated. Because
1091  *	it is pinned, we know that the log has not been pushed to disk and
1092  *	hence it will still be locked. Rather than sleeping until someone
1093  *	else pushes the log, push it ourselves before trying to get the lock.
1094  */
1095 void
1096 xfs_buf_lock(
1097 	struct xfs_buf		*bp)
1098 {
1099 	trace_xfs_buf_lock(bp, _RET_IP_);
1100 
1101 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1102 		xfs_log_force(bp->b_mount, 0);
1103 	down(&bp->b_sema);
1104 
1105 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1106 }
1107 
1108 void
1109 xfs_buf_unlock(
1110 	struct xfs_buf		*bp)
1111 {
1112 	ASSERT(xfs_buf_islocked(bp));
1113 
1114 	up(&bp->b_sema);
1115 	trace_xfs_buf_unlock(bp, _RET_IP_);
1116 }
1117 
1118 STATIC void
1119 xfs_buf_wait_unpin(
1120 	xfs_buf_t		*bp)
1121 {
1122 	DECLARE_WAITQUEUE	(wait, current);
1123 
1124 	if (atomic_read(&bp->b_pin_count) == 0)
1125 		return;
1126 
1127 	add_wait_queue(&bp->b_waiters, &wait);
1128 	for (;;) {
1129 		set_current_state(TASK_UNINTERRUPTIBLE);
1130 		if (atomic_read(&bp->b_pin_count) == 0)
1131 			break;
1132 		io_schedule();
1133 	}
1134 	remove_wait_queue(&bp->b_waiters, &wait);
1135 	set_current_state(TASK_RUNNING);
1136 }
1137 
1138 /*
1139  *	Buffer Utility Routines
1140  */
1141 
1142 void
1143 xfs_buf_ioend(
1144 	struct xfs_buf	*bp)
1145 {
1146 	bool		read = bp->b_flags & XBF_READ;
1147 
1148 	trace_xfs_buf_iodone(bp, _RET_IP_);
1149 
1150 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1151 
1152 	/*
1153 	 * Pull in IO completion errors now. We are guaranteed to be running
1154 	 * single threaded, so we don't need the lock to read b_io_error.
1155 	 */
1156 	if (!bp->b_error && bp->b_io_error)
1157 		xfs_buf_ioerror(bp, bp->b_io_error);
1158 
1159 	/* Only validate buffers that were read without errors */
1160 	if (read && !bp->b_error && bp->b_ops) {
1161 		ASSERT(!bp->b_iodone);
1162 		bp->b_ops->verify_read(bp);
1163 	}
1164 
1165 	if (!bp->b_error)
1166 		bp->b_flags |= XBF_DONE;
1167 
1168 	if (bp->b_iodone)
1169 		(*(bp->b_iodone))(bp);
1170 	else if (bp->b_flags & XBF_ASYNC)
1171 		xfs_buf_relse(bp);
1172 	else
1173 		complete(&bp->b_iowait);
1174 }
1175 
1176 static void
1177 xfs_buf_ioend_work(
1178 	struct work_struct	*work)
1179 {
1180 	struct xfs_buf		*bp =
1181 		container_of(work, xfs_buf_t, b_ioend_work);
1182 
1183 	xfs_buf_ioend(bp);
1184 }
1185 
1186 static void
1187 xfs_buf_ioend_async(
1188 	struct xfs_buf	*bp)
1189 {
1190 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1191 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1192 }
1193 
1194 void
1195 __xfs_buf_ioerror(
1196 	xfs_buf_t		*bp,
1197 	int			error,
1198 	xfs_failaddr_t		failaddr)
1199 {
1200 	ASSERT(error <= 0 && error >= -1000);
1201 	bp->b_error = error;
1202 	trace_xfs_buf_ioerror(bp, error, failaddr);
1203 }
1204 
1205 void
1206 xfs_buf_ioerror_alert(
1207 	struct xfs_buf		*bp,
1208 	const char		*func)
1209 {
1210 	xfs_alert(bp->b_mount,
1211 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1212 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1213 			-bp->b_error);
1214 }
1215 
1216 int
1217 xfs_bwrite(
1218 	struct xfs_buf		*bp)
1219 {
1220 	int			error;
1221 
1222 	ASSERT(xfs_buf_islocked(bp));
1223 
1224 	bp->b_flags |= XBF_WRITE;
1225 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1226 			 XBF_WRITE_FAIL | XBF_DONE);
1227 
1228 	error = xfs_buf_submit(bp);
1229 	if (error)
1230 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1231 	return error;
1232 }
1233 
1234 static void
1235 xfs_buf_bio_end_io(
1236 	struct bio		*bio)
1237 {
1238 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1239 
1240 	/*
1241 	 * don't overwrite existing errors - otherwise we can lose errors on
1242 	 * buffers that require multiple bios to complete.
1243 	 */
1244 	if (bio->bi_status) {
1245 		int error = blk_status_to_errno(bio->bi_status);
1246 
1247 		cmpxchg(&bp->b_io_error, 0, error);
1248 	}
1249 
1250 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1251 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1252 
1253 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1254 		xfs_buf_ioend_async(bp);
1255 	bio_put(bio);
1256 }
1257 
1258 static void
1259 xfs_buf_ioapply_map(
1260 	struct xfs_buf	*bp,
1261 	int		map,
1262 	int		*buf_offset,
1263 	int		*count,
1264 	int		op)
1265 {
1266 	int		page_index;
1267 	int		total_nr_pages = bp->b_page_count;
1268 	int		nr_pages;
1269 	struct bio	*bio;
1270 	sector_t	sector =  bp->b_maps[map].bm_bn;
1271 	int		size;
1272 	int		offset;
1273 
1274 	/* skip the pages in the buffer before the start offset */
1275 	page_index = 0;
1276 	offset = *buf_offset;
1277 	while (offset >= PAGE_SIZE) {
1278 		page_index++;
1279 		offset -= PAGE_SIZE;
1280 	}
1281 
1282 	/*
1283 	 * Limit the IO size to the length of the current vector, and update the
1284 	 * remaining IO count for the next time around.
1285 	 */
1286 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1287 	*count -= size;
1288 	*buf_offset += size;
1289 
1290 next_chunk:
1291 	atomic_inc(&bp->b_io_remaining);
1292 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1293 
1294 	bio = bio_alloc(GFP_NOIO, nr_pages);
1295 	bio_set_dev(bio, bp->b_target->bt_bdev);
1296 	bio->bi_iter.bi_sector = sector;
1297 	bio->bi_end_io = xfs_buf_bio_end_io;
1298 	bio->bi_private = bp;
1299 	bio->bi_opf = op;
1300 
1301 	for (; size && nr_pages; nr_pages--, page_index++) {
1302 		int	rbytes, nbytes = PAGE_SIZE - offset;
1303 
1304 		if (nbytes > size)
1305 			nbytes = size;
1306 
1307 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1308 				      offset);
1309 		if (rbytes < nbytes)
1310 			break;
1311 
1312 		offset = 0;
1313 		sector += BTOBB(nbytes);
1314 		size -= nbytes;
1315 		total_nr_pages--;
1316 	}
1317 
1318 	if (likely(bio->bi_iter.bi_size)) {
1319 		if (xfs_buf_is_vmapped(bp)) {
1320 			flush_kernel_vmap_range(bp->b_addr,
1321 						xfs_buf_vmap_len(bp));
1322 		}
1323 		submit_bio(bio);
1324 		if (size)
1325 			goto next_chunk;
1326 	} else {
1327 		/*
1328 		 * This is guaranteed not to be the last io reference count
1329 		 * because the caller (xfs_buf_submit) holds a count itself.
1330 		 */
1331 		atomic_dec(&bp->b_io_remaining);
1332 		xfs_buf_ioerror(bp, -EIO);
1333 		bio_put(bio);
1334 	}
1335 
1336 }
1337 
1338 STATIC void
1339 _xfs_buf_ioapply(
1340 	struct xfs_buf	*bp)
1341 {
1342 	struct blk_plug	plug;
1343 	int		op;
1344 	int		offset;
1345 	int		size;
1346 	int		i;
1347 
1348 	/*
1349 	 * Make sure we capture only current IO errors rather than stale errors
1350 	 * left over from previous use of the buffer (e.g. failed readahead).
1351 	 */
1352 	bp->b_error = 0;
1353 
1354 	if (bp->b_flags & XBF_WRITE) {
1355 		op = REQ_OP_WRITE;
1356 
1357 		/*
1358 		 * Run the write verifier callback function if it exists. If
1359 		 * this function fails it will mark the buffer with an error and
1360 		 * the IO should not be dispatched.
1361 		 */
1362 		if (bp->b_ops) {
1363 			bp->b_ops->verify_write(bp);
1364 			if (bp->b_error) {
1365 				xfs_force_shutdown(bp->b_mount,
1366 						   SHUTDOWN_CORRUPT_INCORE);
1367 				return;
1368 			}
1369 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1370 			struct xfs_mount *mp = bp->b_mount;
1371 
1372 			/*
1373 			 * non-crc filesystems don't attach verifiers during
1374 			 * log recovery, so don't warn for such filesystems.
1375 			 */
1376 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1377 				xfs_warn(mp,
1378 					"%s: no buf ops on daddr 0x%llx len %d",
1379 					__func__, bp->b_bn, bp->b_length);
1380 				xfs_hex_dump(bp->b_addr,
1381 						XFS_CORRUPTION_DUMP_LEN);
1382 				dump_stack();
1383 			}
1384 		}
1385 	} else {
1386 		op = REQ_OP_READ;
1387 		if (bp->b_flags & XBF_READ_AHEAD)
1388 			op |= REQ_RAHEAD;
1389 	}
1390 
1391 	/* we only use the buffer cache for meta-data */
1392 	op |= REQ_META;
1393 
1394 	/*
1395 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1396 	 * into the buffer and the desired IO size before we start -
1397 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1398 	 * subsequent call.
1399 	 */
1400 	offset = bp->b_offset;
1401 	size = BBTOB(bp->b_length);
1402 	blk_start_plug(&plug);
1403 	for (i = 0; i < bp->b_map_count; i++) {
1404 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1405 		if (bp->b_error)
1406 			break;
1407 		if (size <= 0)
1408 			break;	/* all done */
1409 	}
1410 	blk_finish_plug(&plug);
1411 }
1412 
1413 /*
1414  * Wait for I/O completion of a sync buffer and return the I/O error code.
1415  */
1416 static int
1417 xfs_buf_iowait(
1418 	struct xfs_buf	*bp)
1419 {
1420 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1421 
1422 	trace_xfs_buf_iowait(bp, _RET_IP_);
1423 	wait_for_completion(&bp->b_iowait);
1424 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1425 
1426 	return bp->b_error;
1427 }
1428 
1429 /*
1430  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1431  * the buffer lock ownership and the current reference to the IO. It is not
1432  * safe to reference the buffer after a call to this function unless the caller
1433  * holds an additional reference itself.
1434  */
1435 int
1436 __xfs_buf_submit(
1437 	struct xfs_buf	*bp,
1438 	bool		wait)
1439 {
1440 	int		error = 0;
1441 
1442 	trace_xfs_buf_submit(bp, _RET_IP_);
1443 
1444 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1445 
1446 	/* on shutdown we stale and complete the buffer immediately */
1447 	if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1448 		xfs_buf_ioerror(bp, -EIO);
1449 		bp->b_flags &= ~XBF_DONE;
1450 		xfs_buf_stale(bp);
1451 		xfs_buf_ioend(bp);
1452 		return -EIO;
1453 	}
1454 
1455 	/*
1456 	 * Grab a reference so the buffer does not go away underneath us. For
1457 	 * async buffers, I/O completion drops the callers reference, which
1458 	 * could occur before submission returns.
1459 	 */
1460 	xfs_buf_hold(bp);
1461 
1462 	if (bp->b_flags & XBF_WRITE)
1463 		xfs_buf_wait_unpin(bp);
1464 
1465 	/* clear the internal error state to avoid spurious errors */
1466 	bp->b_io_error = 0;
1467 
1468 	/*
1469 	 * Set the count to 1 initially, this will stop an I/O completion
1470 	 * callout which happens before we have started all the I/O from calling
1471 	 * xfs_buf_ioend too early.
1472 	 */
1473 	atomic_set(&bp->b_io_remaining, 1);
1474 	if (bp->b_flags & XBF_ASYNC)
1475 		xfs_buf_ioacct_inc(bp);
1476 	_xfs_buf_ioapply(bp);
1477 
1478 	/*
1479 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1480 	 * reference we took above. If we drop it to zero, run completion so
1481 	 * that we don't return to the caller with completion still pending.
1482 	 */
1483 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1484 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1485 			xfs_buf_ioend(bp);
1486 		else
1487 			xfs_buf_ioend_async(bp);
1488 	}
1489 
1490 	if (wait)
1491 		error = xfs_buf_iowait(bp);
1492 
1493 	/*
1494 	 * Release the hold that keeps the buffer referenced for the entire
1495 	 * I/O. Note that if the buffer is async, it is not safe to reference
1496 	 * after this release.
1497 	 */
1498 	xfs_buf_rele(bp);
1499 	return error;
1500 }
1501 
1502 void *
1503 xfs_buf_offset(
1504 	struct xfs_buf		*bp,
1505 	size_t			offset)
1506 {
1507 	struct page		*page;
1508 
1509 	if (bp->b_addr)
1510 		return bp->b_addr + offset;
1511 
1512 	offset += bp->b_offset;
1513 	page = bp->b_pages[offset >> PAGE_SHIFT];
1514 	return page_address(page) + (offset & (PAGE_SIZE-1));
1515 }
1516 
1517 void
1518 xfs_buf_zero(
1519 	struct xfs_buf		*bp,
1520 	size_t			boff,
1521 	size_t			bsize)
1522 {
1523 	size_t			bend;
1524 
1525 	bend = boff + bsize;
1526 	while (boff < bend) {
1527 		struct page	*page;
1528 		int		page_index, page_offset, csize;
1529 
1530 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1531 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1532 		page = bp->b_pages[page_index];
1533 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1534 				      BBTOB(bp->b_length) - boff);
1535 
1536 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1537 
1538 		memset(page_address(page) + page_offset, 0, csize);
1539 
1540 		boff += csize;
1541 	}
1542 }
1543 
1544 /*
1545  *	Handling of buffer targets (buftargs).
1546  */
1547 
1548 /*
1549  * Wait for any bufs with callbacks that have been submitted but have not yet
1550  * returned. These buffers will have an elevated hold count, so wait on those
1551  * while freeing all the buffers only held by the LRU.
1552  */
1553 static enum lru_status
1554 xfs_buftarg_wait_rele(
1555 	struct list_head	*item,
1556 	struct list_lru_one	*lru,
1557 	spinlock_t		*lru_lock,
1558 	void			*arg)
1559 
1560 {
1561 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1562 	struct list_head	*dispose = arg;
1563 
1564 	if (atomic_read(&bp->b_hold) > 1) {
1565 		/* need to wait, so skip it this pass */
1566 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1567 		return LRU_SKIP;
1568 	}
1569 	if (!spin_trylock(&bp->b_lock))
1570 		return LRU_SKIP;
1571 
1572 	/*
1573 	 * clear the LRU reference count so the buffer doesn't get
1574 	 * ignored in xfs_buf_rele().
1575 	 */
1576 	atomic_set(&bp->b_lru_ref, 0);
1577 	bp->b_state |= XFS_BSTATE_DISPOSE;
1578 	list_lru_isolate_move(lru, item, dispose);
1579 	spin_unlock(&bp->b_lock);
1580 	return LRU_REMOVED;
1581 }
1582 
1583 void
1584 xfs_wait_buftarg(
1585 	struct xfs_buftarg	*btp)
1586 {
1587 	LIST_HEAD(dispose);
1588 	int loop = 0;
1589 
1590 	/*
1591 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1592 	 * released. This is critical as new buffers do not make the LRU until
1593 	 * they are released.
1594 	 *
1595 	 * Next, flush the buffer workqueue to ensure all completion processing
1596 	 * has finished. Just waiting on buffer locks is not sufficient for
1597 	 * async IO as the reference count held over IO is not released until
1598 	 * after the buffer lock is dropped. Hence we need to ensure here that
1599 	 * all reference counts have been dropped before we start walking the
1600 	 * LRU list.
1601 	 */
1602 	while (percpu_counter_sum(&btp->bt_io_count))
1603 		delay(100);
1604 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1605 
1606 	/* loop until there is nothing left on the lru list. */
1607 	while (list_lru_count(&btp->bt_lru)) {
1608 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1609 			      &dispose, LONG_MAX);
1610 
1611 		while (!list_empty(&dispose)) {
1612 			struct xfs_buf *bp;
1613 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1614 			list_del_init(&bp->b_lru);
1615 			if (bp->b_flags & XBF_WRITE_FAIL) {
1616 				xfs_alert(btp->bt_mount,
1617 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1618 					(long long)bp->b_bn);
1619 				xfs_alert(btp->bt_mount,
1620 "Please run xfs_repair to determine the extent of the problem.");
1621 			}
1622 			xfs_buf_rele(bp);
1623 		}
1624 		if (loop++ != 0)
1625 			delay(100);
1626 	}
1627 }
1628 
1629 static enum lru_status
1630 xfs_buftarg_isolate(
1631 	struct list_head	*item,
1632 	struct list_lru_one	*lru,
1633 	spinlock_t		*lru_lock,
1634 	void			*arg)
1635 {
1636 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1637 	struct list_head	*dispose = arg;
1638 
1639 	/*
1640 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1641 	 * If we fail to get the lock, just skip it.
1642 	 */
1643 	if (!spin_trylock(&bp->b_lock))
1644 		return LRU_SKIP;
1645 	/*
1646 	 * Decrement the b_lru_ref count unless the value is already
1647 	 * zero. If the value is already zero, we need to reclaim the
1648 	 * buffer, otherwise it gets another trip through the LRU.
1649 	 */
1650 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1651 		spin_unlock(&bp->b_lock);
1652 		return LRU_ROTATE;
1653 	}
1654 
1655 	bp->b_state |= XFS_BSTATE_DISPOSE;
1656 	list_lru_isolate_move(lru, item, dispose);
1657 	spin_unlock(&bp->b_lock);
1658 	return LRU_REMOVED;
1659 }
1660 
1661 static unsigned long
1662 xfs_buftarg_shrink_scan(
1663 	struct shrinker		*shrink,
1664 	struct shrink_control	*sc)
1665 {
1666 	struct xfs_buftarg	*btp = container_of(shrink,
1667 					struct xfs_buftarg, bt_shrinker);
1668 	LIST_HEAD(dispose);
1669 	unsigned long		freed;
1670 
1671 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1672 				     xfs_buftarg_isolate, &dispose);
1673 
1674 	while (!list_empty(&dispose)) {
1675 		struct xfs_buf *bp;
1676 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1677 		list_del_init(&bp->b_lru);
1678 		xfs_buf_rele(bp);
1679 	}
1680 
1681 	return freed;
1682 }
1683 
1684 static unsigned long
1685 xfs_buftarg_shrink_count(
1686 	struct shrinker		*shrink,
1687 	struct shrink_control	*sc)
1688 {
1689 	struct xfs_buftarg	*btp = container_of(shrink,
1690 					struct xfs_buftarg, bt_shrinker);
1691 	return list_lru_shrink_count(&btp->bt_lru, sc);
1692 }
1693 
1694 void
1695 xfs_free_buftarg(
1696 	struct xfs_buftarg	*btp)
1697 {
1698 	unregister_shrinker(&btp->bt_shrinker);
1699 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1700 	percpu_counter_destroy(&btp->bt_io_count);
1701 	list_lru_destroy(&btp->bt_lru);
1702 
1703 	xfs_blkdev_issue_flush(btp);
1704 
1705 	kmem_free(btp);
1706 }
1707 
1708 int
1709 xfs_setsize_buftarg(
1710 	xfs_buftarg_t		*btp,
1711 	unsigned int		sectorsize)
1712 {
1713 	/* Set up metadata sector size info */
1714 	btp->bt_meta_sectorsize = sectorsize;
1715 	btp->bt_meta_sectormask = sectorsize - 1;
1716 
1717 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1718 		xfs_warn(btp->bt_mount,
1719 			"Cannot set_blocksize to %u on device %pg",
1720 			sectorsize, btp->bt_bdev);
1721 		return -EINVAL;
1722 	}
1723 
1724 	/* Set up device logical sector size mask */
1725 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1726 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1727 
1728 	return 0;
1729 }
1730 
1731 /*
1732  * When allocating the initial buffer target we have not yet
1733  * read in the superblock, so don't know what sized sectors
1734  * are being used at this early stage.  Play safe.
1735  */
1736 STATIC int
1737 xfs_setsize_buftarg_early(
1738 	xfs_buftarg_t		*btp,
1739 	struct block_device	*bdev)
1740 {
1741 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1742 }
1743 
1744 xfs_buftarg_t *
1745 xfs_alloc_buftarg(
1746 	struct xfs_mount	*mp,
1747 	struct block_device	*bdev,
1748 	struct dax_device	*dax_dev)
1749 {
1750 	xfs_buftarg_t		*btp;
1751 
1752 	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1753 
1754 	btp->bt_mount = mp;
1755 	btp->bt_dev =  bdev->bd_dev;
1756 	btp->bt_bdev = bdev;
1757 	btp->bt_daxdev = dax_dev;
1758 
1759 	if (xfs_setsize_buftarg_early(btp, bdev))
1760 		goto error_free;
1761 
1762 	if (list_lru_init(&btp->bt_lru))
1763 		goto error_free;
1764 
1765 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1766 		goto error_lru;
1767 
1768 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1769 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1770 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1771 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1772 	if (register_shrinker(&btp->bt_shrinker))
1773 		goto error_pcpu;
1774 	return btp;
1775 
1776 error_pcpu:
1777 	percpu_counter_destroy(&btp->bt_io_count);
1778 error_lru:
1779 	list_lru_destroy(&btp->bt_lru);
1780 error_free:
1781 	kmem_free(btp);
1782 	return NULL;
1783 }
1784 
1785 /*
1786  * Cancel a delayed write list.
1787  *
1788  * Remove each buffer from the list, clear the delwri queue flag and drop the
1789  * associated buffer reference.
1790  */
1791 void
1792 xfs_buf_delwri_cancel(
1793 	struct list_head	*list)
1794 {
1795 	struct xfs_buf		*bp;
1796 
1797 	while (!list_empty(list)) {
1798 		bp = list_first_entry(list, struct xfs_buf, b_list);
1799 
1800 		xfs_buf_lock(bp);
1801 		bp->b_flags &= ~_XBF_DELWRI_Q;
1802 		list_del_init(&bp->b_list);
1803 		xfs_buf_relse(bp);
1804 	}
1805 }
1806 
1807 /*
1808  * Add a buffer to the delayed write list.
1809  *
1810  * This queues a buffer for writeout if it hasn't already been.  Note that
1811  * neither this routine nor the buffer list submission functions perform
1812  * any internal synchronization.  It is expected that the lists are thread-local
1813  * to the callers.
1814  *
1815  * Returns true if we queued up the buffer, or false if it already had
1816  * been on the buffer list.
1817  */
1818 bool
1819 xfs_buf_delwri_queue(
1820 	struct xfs_buf		*bp,
1821 	struct list_head	*list)
1822 {
1823 	ASSERT(xfs_buf_islocked(bp));
1824 	ASSERT(!(bp->b_flags & XBF_READ));
1825 
1826 	/*
1827 	 * If the buffer is already marked delwri it already is queued up
1828 	 * by someone else for imediate writeout.  Just ignore it in that
1829 	 * case.
1830 	 */
1831 	if (bp->b_flags & _XBF_DELWRI_Q) {
1832 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1833 		return false;
1834 	}
1835 
1836 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1837 
1838 	/*
1839 	 * If a buffer gets written out synchronously or marked stale while it
1840 	 * is on a delwri list we lazily remove it. To do this, the other party
1841 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1842 	 * It remains referenced and on the list.  In a rare corner case it
1843 	 * might get readded to a delwri list after the synchronous writeout, in
1844 	 * which case we need just need to re-add the flag here.
1845 	 */
1846 	bp->b_flags |= _XBF_DELWRI_Q;
1847 	if (list_empty(&bp->b_list)) {
1848 		atomic_inc(&bp->b_hold);
1849 		list_add_tail(&bp->b_list, list);
1850 	}
1851 
1852 	return true;
1853 }
1854 
1855 /*
1856  * Compare function is more complex than it needs to be because
1857  * the return value is only 32 bits and we are doing comparisons
1858  * on 64 bit values
1859  */
1860 static int
1861 xfs_buf_cmp(
1862 	void		*priv,
1863 	struct list_head *a,
1864 	struct list_head *b)
1865 {
1866 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1867 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1868 	xfs_daddr_t		diff;
1869 
1870 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1871 	if (diff < 0)
1872 		return -1;
1873 	if (diff > 0)
1874 		return 1;
1875 	return 0;
1876 }
1877 
1878 /*
1879  * Submit buffers for write. If wait_list is specified, the buffers are
1880  * submitted using sync I/O and placed on the wait list such that the caller can
1881  * iowait each buffer. Otherwise async I/O is used and the buffers are released
1882  * at I/O completion time. In either case, buffers remain locked until I/O
1883  * completes and the buffer is released from the queue.
1884  */
1885 static int
1886 xfs_buf_delwri_submit_buffers(
1887 	struct list_head	*buffer_list,
1888 	struct list_head	*wait_list)
1889 {
1890 	struct xfs_buf		*bp, *n;
1891 	int			pinned = 0;
1892 	struct blk_plug		plug;
1893 
1894 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1895 
1896 	blk_start_plug(&plug);
1897 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1898 		if (!wait_list) {
1899 			if (xfs_buf_ispinned(bp)) {
1900 				pinned++;
1901 				continue;
1902 			}
1903 			if (!xfs_buf_trylock(bp))
1904 				continue;
1905 		} else {
1906 			xfs_buf_lock(bp);
1907 		}
1908 
1909 		/*
1910 		 * Someone else might have written the buffer synchronously or
1911 		 * marked it stale in the meantime.  In that case only the
1912 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1913 		 * reference and remove it from the list here.
1914 		 */
1915 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1916 			list_del_init(&bp->b_list);
1917 			xfs_buf_relse(bp);
1918 			continue;
1919 		}
1920 
1921 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1922 
1923 		/*
1924 		 * If we have a wait list, each buffer (and associated delwri
1925 		 * queue reference) transfers to it and is submitted
1926 		 * synchronously. Otherwise, drop the buffer from the delwri
1927 		 * queue and submit async.
1928 		 */
1929 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1930 		bp->b_flags |= XBF_WRITE;
1931 		if (wait_list) {
1932 			bp->b_flags &= ~XBF_ASYNC;
1933 			list_move_tail(&bp->b_list, wait_list);
1934 		} else {
1935 			bp->b_flags |= XBF_ASYNC;
1936 			list_del_init(&bp->b_list);
1937 		}
1938 		__xfs_buf_submit(bp, false);
1939 	}
1940 	blk_finish_plug(&plug);
1941 
1942 	return pinned;
1943 }
1944 
1945 /*
1946  * Write out a buffer list asynchronously.
1947  *
1948  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1949  * out and not wait for I/O completion on any of the buffers.  This interface
1950  * is only safely useable for callers that can track I/O completion by higher
1951  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1952  * function.
1953  *
1954  * Note: this function will skip buffers it would block on, and in doing so
1955  * leaves them on @buffer_list so they can be retried on a later pass. As such,
1956  * it is up to the caller to ensure that the buffer list is fully submitted or
1957  * cancelled appropriately when they are finished with the list. Failure to
1958  * cancel or resubmit the list until it is empty will result in leaked buffers
1959  * at unmount time.
1960  */
1961 int
1962 xfs_buf_delwri_submit_nowait(
1963 	struct list_head	*buffer_list)
1964 {
1965 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1966 }
1967 
1968 /*
1969  * Write out a buffer list synchronously.
1970  *
1971  * This will take the @buffer_list, write all buffers out and wait for I/O
1972  * completion on all of the buffers. @buffer_list is consumed by the function,
1973  * so callers must have some other way of tracking buffers if they require such
1974  * functionality.
1975  */
1976 int
1977 xfs_buf_delwri_submit(
1978 	struct list_head	*buffer_list)
1979 {
1980 	LIST_HEAD		(wait_list);
1981 	int			error = 0, error2;
1982 	struct xfs_buf		*bp;
1983 
1984 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1985 
1986 	/* Wait for IO to complete. */
1987 	while (!list_empty(&wait_list)) {
1988 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1989 
1990 		list_del_init(&bp->b_list);
1991 
1992 		/*
1993 		 * Wait on the locked buffer, check for errors and unlock and
1994 		 * release the delwri queue reference.
1995 		 */
1996 		error2 = xfs_buf_iowait(bp);
1997 		xfs_buf_relse(bp);
1998 		if (!error)
1999 			error = error2;
2000 	}
2001 
2002 	return error;
2003 }
2004 
2005 /*
2006  * Push a single buffer on a delwri queue.
2007  *
2008  * The purpose of this function is to submit a single buffer of a delwri queue
2009  * and return with the buffer still on the original queue. The waiting delwri
2010  * buffer submission infrastructure guarantees transfer of the delwri queue
2011  * buffer reference to a temporary wait list. We reuse this infrastructure to
2012  * transfer the buffer back to the original queue.
2013  *
2014  * Note the buffer transitions from the queued state, to the submitted and wait
2015  * listed state and back to the queued state during this call. The buffer
2016  * locking and queue management logic between _delwri_pushbuf() and
2017  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2018  * before returning.
2019  */
2020 int
2021 xfs_buf_delwri_pushbuf(
2022 	struct xfs_buf		*bp,
2023 	struct list_head	*buffer_list)
2024 {
2025 	LIST_HEAD		(submit_list);
2026 	int			error;
2027 
2028 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2029 
2030 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2031 
2032 	/*
2033 	 * Isolate the buffer to a new local list so we can submit it for I/O
2034 	 * independently from the rest of the original list.
2035 	 */
2036 	xfs_buf_lock(bp);
2037 	list_move(&bp->b_list, &submit_list);
2038 	xfs_buf_unlock(bp);
2039 
2040 	/*
2041 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2042 	 * the buffer on the wait list with the original reference. Rather than
2043 	 * bounce the buffer from a local wait list back to the original list
2044 	 * after I/O completion, reuse the original list as the wait list.
2045 	 */
2046 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2047 
2048 	/*
2049 	 * The buffer is now locked, under I/O and wait listed on the original
2050 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2051 	 * return with the buffer unlocked and on the original queue.
2052 	 */
2053 	error = xfs_buf_iowait(bp);
2054 	bp->b_flags |= _XBF_DELWRI_Q;
2055 	xfs_buf_unlock(bp);
2056 
2057 	return error;
2058 }
2059 
2060 int __init
2061 xfs_buf_init(void)
2062 {
2063 	xfs_buf_zone = kmem_cache_create("xfs_buf",
2064 					 sizeof(struct xfs_buf), 0,
2065 					 SLAB_HWCACHE_ALIGN, NULL);
2066 	if (!xfs_buf_zone)
2067 		goto out;
2068 
2069 	return 0;
2070 
2071  out:
2072 	return -ENOMEM;
2073 }
2074 
2075 void
2076 xfs_buf_terminate(void)
2077 {
2078 	kmem_cache_destroy(xfs_buf_zone);
2079 }
2080 
2081 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2082 {
2083 	/*
2084 	 * Set the lru reference count to 0 based on the error injection tag.
2085 	 * This allows userspace to disrupt buffer caching for debug/testing
2086 	 * purposes.
2087 	 */
2088 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2089 		lru_ref = 0;
2090 
2091 	atomic_set(&bp->b_lru_ref, lru_ref);
2092 }
2093 
2094 /*
2095  * Verify an on-disk magic value against the magic value specified in the
2096  * verifier structure. The verifier magic is in disk byte order so the caller is
2097  * expected to pass the value directly from disk.
2098  */
2099 bool
2100 xfs_verify_magic(
2101 	struct xfs_buf		*bp,
2102 	__be32			dmagic)
2103 {
2104 	struct xfs_mount	*mp = bp->b_mount;
2105 	int			idx;
2106 
2107 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2108 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2109 		return false;
2110 	return dmagic == bp->b_ops->magic[idx];
2111 }
2112 /*
2113  * Verify an on-disk magic value against the magic value specified in the
2114  * verifier structure. The verifier magic is in disk byte order so the caller is
2115  * expected to pass the value directly from disk.
2116  */
2117 bool
2118 xfs_verify_magic16(
2119 	struct xfs_buf		*bp,
2120 	__be16			dmagic)
2121 {
2122 	struct xfs_mount	*mp = bp->b_mount;
2123 	int			idx;
2124 
2125 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2126 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2127 		return false;
2128 	return dmagic == bp->b_ops->magic16[idx];
2129 }
2130