xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 95777591)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
24 
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
28 #include "xfs_sb.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34 
35 static kmem_zone_t *xfs_buf_zone;
36 
37 #define xb_to_gfp(flags) \
38 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
39 
40 /*
41  * Locking orders
42  *
43  * xfs_buf_ioacct_inc:
44  * xfs_buf_ioacct_dec:
45  *	b_sema (caller holds)
46  *	  b_lock
47  *
48  * xfs_buf_stale:
49  *	b_sema (caller holds)
50  *	  b_lock
51  *	    lru_lock
52  *
53  * xfs_buf_rele:
54  *	b_lock
55  *	  pag_buf_lock
56  *	    lru_lock
57  *
58  * xfs_buftarg_wait_rele
59  *	lru_lock
60  *	  b_lock (trylock due to inversion)
61  *
62  * xfs_buftarg_isolate
63  *	lru_lock
64  *	  b_lock (trylock due to inversion)
65  */
66 
67 static inline int
68 xfs_buf_is_vmapped(
69 	struct xfs_buf	*bp)
70 {
71 	/*
72 	 * Return true if the buffer is vmapped.
73 	 *
74 	 * b_addr is null if the buffer is not mapped, but the code is clever
75 	 * enough to know it doesn't have to map a single page, so the check has
76 	 * to be both for b_addr and bp->b_page_count > 1.
77 	 */
78 	return bp->b_addr && bp->b_page_count > 1;
79 }
80 
81 static inline int
82 xfs_buf_vmap_len(
83 	struct xfs_buf	*bp)
84 {
85 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
86 }
87 
88 /*
89  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
90  * this buffer. The count is incremented once per buffer (per hold cycle)
91  * because the corresponding decrement is deferred to buffer release. Buffers
92  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
93  * tracking adds unnecessary overhead. This is used for sychronization purposes
94  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
95  * in-flight buffers.
96  *
97  * Buffers that are never released (e.g., superblock, iclog buffers) must set
98  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
99  * never reaches zero and unmount hangs indefinitely.
100  */
101 static inline void
102 xfs_buf_ioacct_inc(
103 	struct xfs_buf	*bp)
104 {
105 	if (bp->b_flags & XBF_NO_IOACCT)
106 		return;
107 
108 	ASSERT(bp->b_flags & XBF_ASYNC);
109 	spin_lock(&bp->b_lock);
110 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
111 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
112 		percpu_counter_inc(&bp->b_target->bt_io_count);
113 	}
114 	spin_unlock(&bp->b_lock);
115 }
116 
117 /*
118  * Clear the in-flight state on a buffer about to be released to the LRU or
119  * freed and unaccount from the buftarg.
120  */
121 static inline void
122 __xfs_buf_ioacct_dec(
123 	struct xfs_buf	*bp)
124 {
125 	lockdep_assert_held(&bp->b_lock);
126 
127 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
128 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
129 		percpu_counter_dec(&bp->b_target->bt_io_count);
130 	}
131 }
132 
133 static inline void
134 xfs_buf_ioacct_dec(
135 	struct xfs_buf	*bp)
136 {
137 	spin_lock(&bp->b_lock);
138 	__xfs_buf_ioacct_dec(bp);
139 	spin_unlock(&bp->b_lock);
140 }
141 
142 /*
143  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144  * b_lru_ref count so that the buffer is freed immediately when the buffer
145  * reference count falls to zero. If the buffer is already on the LRU, we need
146  * to remove the reference that LRU holds on the buffer.
147  *
148  * This prevents build-up of stale buffers on the LRU.
149  */
150 void
151 xfs_buf_stale(
152 	struct xfs_buf	*bp)
153 {
154 	ASSERT(xfs_buf_islocked(bp));
155 
156 	bp->b_flags |= XBF_STALE;
157 
158 	/*
159 	 * Clear the delwri status so that a delwri queue walker will not
160 	 * flush this buffer to disk now that it is stale. The delwri queue has
161 	 * a reference to the buffer, so this is safe to do.
162 	 */
163 	bp->b_flags &= ~_XBF_DELWRI_Q;
164 
165 	/*
166 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
167 	 * could reset b_flags. There is no guarantee that the buffer is
168 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
169 	 * status now to preserve accounting consistency.
170 	 */
171 	spin_lock(&bp->b_lock);
172 	__xfs_buf_ioacct_dec(bp);
173 
174 	atomic_set(&bp->b_lru_ref, 0);
175 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
176 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
177 		atomic_dec(&bp->b_hold);
178 
179 	ASSERT(atomic_read(&bp->b_hold) >= 1);
180 	spin_unlock(&bp->b_lock);
181 }
182 
183 static int
184 xfs_buf_get_maps(
185 	struct xfs_buf		*bp,
186 	int			map_count)
187 {
188 	ASSERT(bp->b_maps == NULL);
189 	bp->b_map_count = map_count;
190 
191 	if (map_count == 1) {
192 		bp->b_maps = &bp->__b_map;
193 		return 0;
194 	}
195 
196 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
197 				KM_NOFS);
198 	if (!bp->b_maps)
199 		return -ENOMEM;
200 	return 0;
201 }
202 
203 /*
204  *	Frees b_pages if it was allocated.
205  */
206 static void
207 xfs_buf_free_maps(
208 	struct xfs_buf	*bp)
209 {
210 	if (bp->b_maps != &bp->__b_map) {
211 		kmem_free(bp->b_maps);
212 		bp->b_maps = NULL;
213 	}
214 }
215 
216 struct xfs_buf *
217 _xfs_buf_alloc(
218 	struct xfs_buftarg	*target,
219 	struct xfs_buf_map	*map,
220 	int			nmaps,
221 	xfs_buf_flags_t		flags)
222 {
223 	struct xfs_buf		*bp;
224 	int			error;
225 	int			i;
226 
227 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
228 	if (unlikely(!bp))
229 		return NULL;
230 
231 	/*
232 	 * We don't want certain flags to appear in b_flags unless they are
233 	 * specifically set by later operations on the buffer.
234 	 */
235 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
236 
237 	atomic_set(&bp->b_hold, 1);
238 	atomic_set(&bp->b_lru_ref, 1);
239 	init_completion(&bp->b_iowait);
240 	INIT_LIST_HEAD(&bp->b_lru);
241 	INIT_LIST_HEAD(&bp->b_list);
242 	INIT_LIST_HEAD(&bp->b_li_list);
243 	sema_init(&bp->b_sema, 0); /* held, no waiters */
244 	spin_lock_init(&bp->b_lock);
245 	bp->b_target = target;
246 	bp->b_flags = flags;
247 
248 	/*
249 	 * Set length and io_length to the same value initially.
250 	 * I/O routines should use io_length, which will be the same in
251 	 * most cases but may be reset (e.g. XFS recovery).
252 	 */
253 	error = xfs_buf_get_maps(bp, nmaps);
254 	if (error)  {
255 		kmem_zone_free(xfs_buf_zone, bp);
256 		return NULL;
257 	}
258 
259 	bp->b_bn = map[0].bm_bn;
260 	bp->b_length = 0;
261 	for (i = 0; i < nmaps; i++) {
262 		bp->b_maps[i].bm_bn = map[i].bm_bn;
263 		bp->b_maps[i].bm_len = map[i].bm_len;
264 		bp->b_length += map[i].bm_len;
265 	}
266 	bp->b_io_length = bp->b_length;
267 
268 	atomic_set(&bp->b_pin_count, 0);
269 	init_waitqueue_head(&bp->b_waiters);
270 
271 	XFS_STATS_INC(target->bt_mount, xb_create);
272 	trace_xfs_buf_init(bp, _RET_IP_);
273 
274 	return bp;
275 }
276 
277 /*
278  *	Allocate a page array capable of holding a specified number
279  *	of pages, and point the page buf at it.
280  */
281 STATIC int
282 _xfs_buf_get_pages(
283 	xfs_buf_t		*bp,
284 	int			page_count)
285 {
286 	/* Make sure that we have a page list */
287 	if (bp->b_pages == NULL) {
288 		bp->b_page_count = page_count;
289 		if (page_count <= XB_PAGES) {
290 			bp->b_pages = bp->b_page_array;
291 		} else {
292 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
293 						 page_count, KM_NOFS);
294 			if (bp->b_pages == NULL)
295 				return -ENOMEM;
296 		}
297 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
298 	}
299 	return 0;
300 }
301 
302 /*
303  *	Frees b_pages if it was allocated.
304  */
305 STATIC void
306 _xfs_buf_free_pages(
307 	xfs_buf_t	*bp)
308 {
309 	if (bp->b_pages != bp->b_page_array) {
310 		kmem_free(bp->b_pages);
311 		bp->b_pages = NULL;
312 	}
313 }
314 
315 /*
316  *	Releases the specified buffer.
317  *
318  * 	The modification state of any associated pages is left unchanged.
319  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
320  * 	hashed and refcounted buffers
321  */
322 void
323 xfs_buf_free(
324 	xfs_buf_t		*bp)
325 {
326 	trace_xfs_buf_free(bp, _RET_IP_);
327 
328 	ASSERT(list_empty(&bp->b_lru));
329 
330 	if (bp->b_flags & _XBF_PAGES) {
331 		uint		i;
332 
333 		if (xfs_buf_is_vmapped(bp))
334 			vm_unmap_ram(bp->b_addr - bp->b_offset,
335 					bp->b_page_count);
336 
337 		for (i = 0; i < bp->b_page_count; i++) {
338 			struct page	*page = bp->b_pages[i];
339 
340 			__free_page(page);
341 		}
342 	} else if (bp->b_flags & _XBF_KMEM)
343 		kmem_free(bp->b_addr);
344 	_xfs_buf_free_pages(bp);
345 	xfs_buf_free_maps(bp);
346 	kmem_zone_free(xfs_buf_zone, bp);
347 }
348 
349 /*
350  * Allocates all the pages for buffer in question and builds it's page list.
351  */
352 STATIC int
353 xfs_buf_allocate_memory(
354 	xfs_buf_t		*bp,
355 	uint			flags)
356 {
357 	size_t			size;
358 	size_t			nbytes, offset;
359 	gfp_t			gfp_mask = xb_to_gfp(flags);
360 	unsigned short		page_count, i;
361 	xfs_off_t		start, end;
362 	int			error;
363 
364 	/*
365 	 * for buffers that are contained within a single page, just allocate
366 	 * the memory from the heap - there's no need for the complexity of
367 	 * page arrays to keep allocation down to order 0.
368 	 */
369 	size = BBTOB(bp->b_length);
370 	if (size < PAGE_SIZE) {
371 		bp->b_addr = kmem_alloc(size, KM_NOFS);
372 		if (!bp->b_addr) {
373 			/* low memory - use alloc_page loop instead */
374 			goto use_alloc_page;
375 		}
376 
377 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
378 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
379 			/* b_addr spans two pages - use alloc_page instead */
380 			kmem_free(bp->b_addr);
381 			bp->b_addr = NULL;
382 			goto use_alloc_page;
383 		}
384 		bp->b_offset = offset_in_page(bp->b_addr);
385 		bp->b_pages = bp->b_page_array;
386 		bp->b_pages[0] = virt_to_page(bp->b_addr);
387 		bp->b_page_count = 1;
388 		bp->b_flags |= _XBF_KMEM;
389 		return 0;
390 	}
391 
392 use_alloc_page:
393 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
394 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
395 								>> PAGE_SHIFT;
396 	page_count = end - start;
397 	error = _xfs_buf_get_pages(bp, page_count);
398 	if (unlikely(error))
399 		return error;
400 
401 	offset = bp->b_offset;
402 	bp->b_flags |= _XBF_PAGES;
403 
404 	for (i = 0; i < bp->b_page_count; i++) {
405 		struct page	*page;
406 		uint		retries = 0;
407 retry:
408 		page = alloc_page(gfp_mask);
409 		if (unlikely(page == NULL)) {
410 			if (flags & XBF_READ_AHEAD) {
411 				bp->b_page_count = i;
412 				error = -ENOMEM;
413 				goto out_free_pages;
414 			}
415 
416 			/*
417 			 * This could deadlock.
418 			 *
419 			 * But until all the XFS lowlevel code is revamped to
420 			 * handle buffer allocation failures we can't do much.
421 			 */
422 			if (!(++retries % 100))
423 				xfs_err(NULL,
424 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
425 					current->comm, current->pid,
426 					__func__, gfp_mask);
427 
428 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
429 			congestion_wait(BLK_RW_ASYNC, HZ/50);
430 			goto retry;
431 		}
432 
433 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
434 
435 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
436 		size -= nbytes;
437 		bp->b_pages[i] = page;
438 		offset = 0;
439 	}
440 	return 0;
441 
442 out_free_pages:
443 	for (i = 0; i < bp->b_page_count; i++)
444 		__free_page(bp->b_pages[i]);
445 	bp->b_flags &= ~_XBF_PAGES;
446 	return error;
447 }
448 
449 /*
450  *	Map buffer into kernel address-space if necessary.
451  */
452 STATIC int
453 _xfs_buf_map_pages(
454 	xfs_buf_t		*bp,
455 	uint			flags)
456 {
457 	ASSERT(bp->b_flags & _XBF_PAGES);
458 	if (bp->b_page_count == 1) {
459 		/* A single page buffer is always mappable */
460 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
461 	} else if (flags & XBF_UNMAPPED) {
462 		bp->b_addr = NULL;
463 	} else {
464 		int retried = 0;
465 		unsigned nofs_flag;
466 
467 		/*
468 		 * vm_map_ram() will allocate auxillary structures (e.g.
469 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
470 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
471 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
472 		 * memory reclaim re-entering the filesystem here and
473 		 * potentially deadlocking.
474 		 */
475 		nofs_flag = memalloc_nofs_save();
476 		do {
477 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
478 						-1, PAGE_KERNEL);
479 			if (bp->b_addr)
480 				break;
481 			vm_unmap_aliases();
482 		} while (retried++ <= 1);
483 		memalloc_nofs_restore(nofs_flag);
484 
485 		if (!bp->b_addr)
486 			return -ENOMEM;
487 		bp->b_addr += bp->b_offset;
488 	}
489 
490 	return 0;
491 }
492 
493 /*
494  *	Finding and Reading Buffers
495  */
496 static int
497 _xfs_buf_obj_cmp(
498 	struct rhashtable_compare_arg	*arg,
499 	const void			*obj)
500 {
501 	const struct xfs_buf_map	*map = arg->key;
502 	const struct xfs_buf		*bp = obj;
503 
504 	/*
505 	 * The key hashing in the lookup path depends on the key being the
506 	 * first element of the compare_arg, make sure to assert this.
507 	 */
508 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
509 
510 	if (bp->b_bn != map->bm_bn)
511 		return 1;
512 
513 	if (unlikely(bp->b_length != map->bm_len)) {
514 		/*
515 		 * found a block number match. If the range doesn't
516 		 * match, the only way this is allowed is if the buffer
517 		 * in the cache is stale and the transaction that made
518 		 * it stale has not yet committed. i.e. we are
519 		 * reallocating a busy extent. Skip this buffer and
520 		 * continue searching for an exact match.
521 		 */
522 		ASSERT(bp->b_flags & XBF_STALE);
523 		return 1;
524 	}
525 	return 0;
526 }
527 
528 static const struct rhashtable_params xfs_buf_hash_params = {
529 	.min_size		= 32,	/* empty AGs have minimal footprint */
530 	.nelem_hint		= 16,
531 	.key_len		= sizeof(xfs_daddr_t),
532 	.key_offset		= offsetof(struct xfs_buf, b_bn),
533 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
534 	.automatic_shrinking	= true,
535 	.obj_cmpfn		= _xfs_buf_obj_cmp,
536 };
537 
538 int
539 xfs_buf_hash_init(
540 	struct xfs_perag	*pag)
541 {
542 	spin_lock_init(&pag->pag_buf_lock);
543 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
544 }
545 
546 void
547 xfs_buf_hash_destroy(
548 	struct xfs_perag	*pag)
549 {
550 	rhashtable_destroy(&pag->pag_buf_hash);
551 }
552 
553 /*
554  * Look up a buffer in the buffer cache and return it referenced and locked
555  * in @found_bp.
556  *
557  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
558  * cache.
559  *
560  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
561  * -EAGAIN if we fail to lock it.
562  *
563  * Return values are:
564  *	-EFSCORRUPTED if have been supplied with an invalid address
565  *	-EAGAIN on trylock failure
566  *	-ENOENT if we fail to find a match and @new_bp was NULL
567  *	0, with @found_bp:
568  *		- @new_bp if we inserted it into the cache
569  *		- the buffer we found and locked.
570  */
571 static int
572 xfs_buf_find(
573 	struct xfs_buftarg	*btp,
574 	struct xfs_buf_map	*map,
575 	int			nmaps,
576 	xfs_buf_flags_t		flags,
577 	struct xfs_buf		*new_bp,
578 	struct xfs_buf		**found_bp)
579 {
580 	struct xfs_perag	*pag;
581 	xfs_buf_t		*bp;
582 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
583 	xfs_daddr_t		eofs;
584 	int			i;
585 
586 	*found_bp = NULL;
587 
588 	for (i = 0; i < nmaps; i++)
589 		cmap.bm_len += map[i].bm_len;
590 
591 	/* Check for IOs smaller than the sector size / not sector aligned */
592 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
593 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
594 
595 	/*
596 	 * Corrupted block numbers can get through to here, unfortunately, so we
597 	 * have to check that the buffer falls within the filesystem bounds.
598 	 */
599 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
600 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
601 		xfs_alert(btp->bt_mount,
602 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
603 			  __func__, cmap.bm_bn, eofs);
604 		WARN_ON(1);
605 		return -EFSCORRUPTED;
606 	}
607 
608 	pag = xfs_perag_get(btp->bt_mount,
609 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
610 
611 	spin_lock(&pag->pag_buf_lock);
612 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
613 				    xfs_buf_hash_params);
614 	if (bp) {
615 		atomic_inc(&bp->b_hold);
616 		goto found;
617 	}
618 
619 	/* No match found */
620 	if (!new_bp) {
621 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
622 		spin_unlock(&pag->pag_buf_lock);
623 		xfs_perag_put(pag);
624 		return -ENOENT;
625 	}
626 
627 	/* the buffer keeps the perag reference until it is freed */
628 	new_bp->b_pag = pag;
629 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
630 			       xfs_buf_hash_params);
631 	spin_unlock(&pag->pag_buf_lock);
632 	*found_bp = new_bp;
633 	return 0;
634 
635 found:
636 	spin_unlock(&pag->pag_buf_lock);
637 	xfs_perag_put(pag);
638 
639 	if (!xfs_buf_trylock(bp)) {
640 		if (flags & XBF_TRYLOCK) {
641 			xfs_buf_rele(bp);
642 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
643 			return -EAGAIN;
644 		}
645 		xfs_buf_lock(bp);
646 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
647 	}
648 
649 	/*
650 	 * if the buffer is stale, clear all the external state associated with
651 	 * it. We need to keep flags such as how we allocated the buffer memory
652 	 * intact here.
653 	 */
654 	if (bp->b_flags & XBF_STALE) {
655 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
656 		ASSERT(bp->b_iodone == NULL);
657 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
658 		bp->b_ops = NULL;
659 	}
660 
661 	trace_xfs_buf_find(bp, flags, _RET_IP_);
662 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
663 	*found_bp = bp;
664 	return 0;
665 }
666 
667 struct xfs_buf *
668 xfs_buf_incore(
669 	struct xfs_buftarg	*target,
670 	xfs_daddr_t		blkno,
671 	size_t			numblks,
672 	xfs_buf_flags_t		flags)
673 {
674 	struct xfs_buf		*bp;
675 	int			error;
676 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
677 
678 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
679 	if (error)
680 		return NULL;
681 	return bp;
682 }
683 
684 /*
685  * Assembles a buffer covering the specified range. The code is optimised for
686  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
687  * more hits than misses.
688  */
689 struct xfs_buf *
690 xfs_buf_get_map(
691 	struct xfs_buftarg	*target,
692 	struct xfs_buf_map	*map,
693 	int			nmaps,
694 	xfs_buf_flags_t		flags)
695 {
696 	struct xfs_buf		*bp;
697 	struct xfs_buf		*new_bp;
698 	int			error = 0;
699 
700 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
701 
702 	switch (error) {
703 	case 0:
704 		/* cache hit */
705 		goto found;
706 	case -EAGAIN:
707 		/* cache hit, trylock failure, caller handles failure */
708 		ASSERT(flags & XBF_TRYLOCK);
709 		return NULL;
710 	case -ENOENT:
711 		/* cache miss, go for insert */
712 		break;
713 	case -EFSCORRUPTED:
714 	default:
715 		/*
716 		 * None of the higher layers understand failure types
717 		 * yet, so return NULL to signal a fatal lookup error.
718 		 */
719 		return NULL;
720 	}
721 
722 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
723 	if (unlikely(!new_bp))
724 		return NULL;
725 
726 	error = xfs_buf_allocate_memory(new_bp, flags);
727 	if (error) {
728 		xfs_buf_free(new_bp);
729 		return NULL;
730 	}
731 
732 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
733 	if (error) {
734 		xfs_buf_free(new_bp);
735 		return NULL;
736 	}
737 
738 	if (bp != new_bp)
739 		xfs_buf_free(new_bp);
740 
741 found:
742 	if (!bp->b_addr) {
743 		error = _xfs_buf_map_pages(bp, flags);
744 		if (unlikely(error)) {
745 			xfs_warn(target->bt_mount,
746 				"%s: failed to map pagesn", __func__);
747 			xfs_buf_relse(bp);
748 			return NULL;
749 		}
750 	}
751 
752 	/*
753 	 * Clear b_error if this is a lookup from a caller that doesn't expect
754 	 * valid data to be found in the buffer.
755 	 */
756 	if (!(flags & XBF_READ))
757 		xfs_buf_ioerror(bp, 0);
758 
759 	XFS_STATS_INC(target->bt_mount, xb_get);
760 	trace_xfs_buf_get(bp, flags, _RET_IP_);
761 	return bp;
762 }
763 
764 STATIC int
765 _xfs_buf_read(
766 	xfs_buf_t		*bp,
767 	xfs_buf_flags_t		flags)
768 {
769 	ASSERT(!(flags & XBF_WRITE));
770 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
771 
772 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
773 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
774 
775 	return xfs_buf_submit(bp);
776 }
777 
778 /*
779  * Set buffer ops on an unchecked buffer and validate it, if possible.
780  *
781  * If the caller passed in an ops structure and the buffer doesn't have ops
782  * assigned, set the ops and use them to verify the contents.  If the contents
783  * cannot be verified, we'll clear XBF_DONE.  We assume the buffer has no
784  * recorded errors and is already in XBF_DONE state.
785  *
786  * Under normal operations, every in-core buffer must have buffer ops assigned
787  * to them when the buffer is read in from disk so that we can validate the
788  * metadata.
789  *
790  * However, there are two scenarios where one can encounter in-core buffers
791  * that don't have buffer ops.  The first is during log recovery of buffers on
792  * a V4 filesystem, though these buffers are purged at the end of recovery.
793  *
794  * The other is online repair, which tries to match arbitrary metadata blocks
795  * with btree types in order to find the root.  If online repair doesn't match
796  * the buffer with /any/ btree type, the buffer remains in memory in DONE state
797  * with no ops, and a subsequent read_buf call from elsewhere will not set the
798  * ops.  This function helps us fix this situation.
799  */
800 int
801 xfs_buf_ensure_ops(
802 	struct xfs_buf		*bp,
803 	const struct xfs_buf_ops *ops)
804 {
805 	ASSERT(bp->b_flags & XBF_DONE);
806 	ASSERT(bp->b_error == 0);
807 
808 	if (!ops || bp->b_ops)
809 		return 0;
810 
811 	bp->b_ops = ops;
812 	bp->b_ops->verify_read(bp);
813 	if (bp->b_error)
814 		bp->b_flags &= ~XBF_DONE;
815 	return bp->b_error;
816 }
817 
818 xfs_buf_t *
819 xfs_buf_read_map(
820 	struct xfs_buftarg	*target,
821 	struct xfs_buf_map	*map,
822 	int			nmaps,
823 	xfs_buf_flags_t		flags,
824 	const struct xfs_buf_ops *ops)
825 {
826 	struct xfs_buf		*bp;
827 
828 	flags |= XBF_READ;
829 
830 	bp = xfs_buf_get_map(target, map, nmaps, flags);
831 	if (!bp)
832 		return NULL;
833 
834 	trace_xfs_buf_read(bp, flags, _RET_IP_);
835 
836 	if (!(bp->b_flags & XBF_DONE)) {
837 		XFS_STATS_INC(target->bt_mount, xb_get_read);
838 		bp->b_ops = ops;
839 		_xfs_buf_read(bp, flags);
840 		return bp;
841 	}
842 
843 	xfs_buf_ensure_ops(bp, ops);
844 
845 	if (flags & XBF_ASYNC) {
846 		/*
847 		 * Read ahead call which is already satisfied,
848 		 * drop the buffer
849 		 */
850 		xfs_buf_relse(bp);
851 		return NULL;
852 	}
853 
854 	/* We do not want read in the flags */
855 	bp->b_flags &= ~XBF_READ;
856 	ASSERT(bp->b_ops != NULL || ops == NULL);
857 	return bp;
858 }
859 
860 /*
861  *	If we are not low on memory then do the readahead in a deadlock
862  *	safe manner.
863  */
864 void
865 xfs_buf_readahead_map(
866 	struct xfs_buftarg	*target,
867 	struct xfs_buf_map	*map,
868 	int			nmaps,
869 	const struct xfs_buf_ops *ops)
870 {
871 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
872 		return;
873 
874 	xfs_buf_read_map(target, map, nmaps,
875 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
876 }
877 
878 /*
879  * Read an uncached buffer from disk. Allocates and returns a locked
880  * buffer containing the disk contents or nothing.
881  */
882 int
883 xfs_buf_read_uncached(
884 	struct xfs_buftarg	*target,
885 	xfs_daddr_t		daddr,
886 	size_t			numblks,
887 	int			flags,
888 	struct xfs_buf		**bpp,
889 	const struct xfs_buf_ops *ops)
890 {
891 	struct xfs_buf		*bp;
892 
893 	*bpp = NULL;
894 
895 	bp = xfs_buf_get_uncached(target, numblks, flags);
896 	if (!bp)
897 		return -ENOMEM;
898 
899 	/* set up the buffer for a read IO */
900 	ASSERT(bp->b_map_count == 1);
901 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
902 	bp->b_maps[0].bm_bn = daddr;
903 	bp->b_flags |= XBF_READ;
904 	bp->b_ops = ops;
905 
906 	xfs_buf_submit(bp);
907 	if (bp->b_error) {
908 		int	error = bp->b_error;
909 		xfs_buf_relse(bp);
910 		return error;
911 	}
912 
913 	*bpp = bp;
914 	return 0;
915 }
916 
917 /*
918  * Return a buffer allocated as an empty buffer and associated to external
919  * memory via xfs_buf_associate_memory() back to it's empty state.
920  */
921 void
922 xfs_buf_set_empty(
923 	struct xfs_buf		*bp,
924 	size_t			numblks)
925 {
926 	if (bp->b_pages)
927 		_xfs_buf_free_pages(bp);
928 
929 	bp->b_pages = NULL;
930 	bp->b_page_count = 0;
931 	bp->b_addr = NULL;
932 	bp->b_length = numblks;
933 	bp->b_io_length = numblks;
934 
935 	ASSERT(bp->b_map_count == 1);
936 	bp->b_bn = XFS_BUF_DADDR_NULL;
937 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
938 	bp->b_maps[0].bm_len = bp->b_length;
939 }
940 
941 static inline struct page *
942 mem_to_page(
943 	void			*addr)
944 {
945 	if ((!is_vmalloc_addr(addr))) {
946 		return virt_to_page(addr);
947 	} else {
948 		return vmalloc_to_page(addr);
949 	}
950 }
951 
952 int
953 xfs_buf_associate_memory(
954 	xfs_buf_t		*bp,
955 	void			*mem,
956 	size_t			len)
957 {
958 	int			rval;
959 	int			i = 0;
960 	unsigned long		pageaddr;
961 	unsigned long		offset;
962 	size_t			buflen;
963 	int			page_count;
964 
965 	pageaddr = (unsigned long)mem & PAGE_MASK;
966 	offset = (unsigned long)mem - pageaddr;
967 	buflen = PAGE_ALIGN(len + offset);
968 	page_count = buflen >> PAGE_SHIFT;
969 
970 	/* Free any previous set of page pointers */
971 	if (bp->b_pages)
972 		_xfs_buf_free_pages(bp);
973 
974 	bp->b_pages = NULL;
975 	bp->b_addr = mem;
976 
977 	rval = _xfs_buf_get_pages(bp, page_count);
978 	if (rval)
979 		return rval;
980 
981 	bp->b_offset = offset;
982 
983 	for (i = 0; i < bp->b_page_count; i++) {
984 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
985 		pageaddr += PAGE_SIZE;
986 	}
987 
988 	bp->b_io_length = BTOBB(len);
989 	bp->b_length = BTOBB(buflen);
990 
991 	return 0;
992 }
993 
994 xfs_buf_t *
995 xfs_buf_get_uncached(
996 	struct xfs_buftarg	*target,
997 	size_t			numblks,
998 	int			flags)
999 {
1000 	unsigned long		page_count;
1001 	int			error, i;
1002 	struct xfs_buf		*bp;
1003 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1004 
1005 	/* flags might contain irrelevant bits, pass only what we care about */
1006 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1007 	if (unlikely(bp == NULL))
1008 		goto fail;
1009 
1010 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1011 	error = _xfs_buf_get_pages(bp, page_count);
1012 	if (error)
1013 		goto fail_free_buf;
1014 
1015 	for (i = 0; i < page_count; i++) {
1016 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1017 		if (!bp->b_pages[i])
1018 			goto fail_free_mem;
1019 	}
1020 	bp->b_flags |= _XBF_PAGES;
1021 
1022 	error = _xfs_buf_map_pages(bp, 0);
1023 	if (unlikely(error)) {
1024 		xfs_warn(target->bt_mount,
1025 			"%s: failed to map pages", __func__);
1026 		goto fail_free_mem;
1027 	}
1028 
1029 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
1030 	return bp;
1031 
1032  fail_free_mem:
1033 	while (--i >= 0)
1034 		__free_page(bp->b_pages[i]);
1035 	_xfs_buf_free_pages(bp);
1036  fail_free_buf:
1037 	xfs_buf_free_maps(bp);
1038 	kmem_zone_free(xfs_buf_zone, bp);
1039  fail:
1040 	return NULL;
1041 }
1042 
1043 /*
1044  *	Increment reference count on buffer, to hold the buffer concurrently
1045  *	with another thread which may release (free) the buffer asynchronously.
1046  *	Must hold the buffer already to call this function.
1047  */
1048 void
1049 xfs_buf_hold(
1050 	xfs_buf_t		*bp)
1051 {
1052 	trace_xfs_buf_hold(bp, _RET_IP_);
1053 	atomic_inc(&bp->b_hold);
1054 }
1055 
1056 /*
1057  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1058  * placed on LRU or freed (depending on b_lru_ref).
1059  */
1060 void
1061 xfs_buf_rele(
1062 	xfs_buf_t		*bp)
1063 {
1064 	struct xfs_perag	*pag = bp->b_pag;
1065 	bool			release;
1066 	bool			freebuf = false;
1067 
1068 	trace_xfs_buf_rele(bp, _RET_IP_);
1069 
1070 	if (!pag) {
1071 		ASSERT(list_empty(&bp->b_lru));
1072 		if (atomic_dec_and_test(&bp->b_hold)) {
1073 			xfs_buf_ioacct_dec(bp);
1074 			xfs_buf_free(bp);
1075 		}
1076 		return;
1077 	}
1078 
1079 	ASSERT(atomic_read(&bp->b_hold) > 0);
1080 
1081 	/*
1082 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1083 	 * calls. The pag_buf_lock being taken on the last reference only
1084 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1085 	 * to last reference we drop here is not serialised against the last
1086 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1087 	 * first, the last "release" reference can win the race to the lock and
1088 	 * free the buffer before the second-to-last reference is processed,
1089 	 * leading to a use-after-free scenario.
1090 	 */
1091 	spin_lock(&bp->b_lock);
1092 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1093 	if (!release) {
1094 		/*
1095 		 * Drop the in-flight state if the buffer is already on the LRU
1096 		 * and it holds the only reference. This is racy because we
1097 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1098 		 * ensures the decrement occurs only once per-buf.
1099 		 */
1100 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1101 			__xfs_buf_ioacct_dec(bp);
1102 		goto out_unlock;
1103 	}
1104 
1105 	/* the last reference has been dropped ... */
1106 	__xfs_buf_ioacct_dec(bp);
1107 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1108 		/*
1109 		 * If the buffer is added to the LRU take a new reference to the
1110 		 * buffer for the LRU and clear the (now stale) dispose list
1111 		 * state flag
1112 		 */
1113 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1114 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1115 			atomic_inc(&bp->b_hold);
1116 		}
1117 		spin_unlock(&pag->pag_buf_lock);
1118 	} else {
1119 		/*
1120 		 * most of the time buffers will already be removed from the
1121 		 * LRU, so optimise that case by checking for the
1122 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1123 		 * was on was the disposal list
1124 		 */
1125 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1126 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1127 		} else {
1128 			ASSERT(list_empty(&bp->b_lru));
1129 		}
1130 
1131 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1132 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1133 				       xfs_buf_hash_params);
1134 		spin_unlock(&pag->pag_buf_lock);
1135 		xfs_perag_put(pag);
1136 		freebuf = true;
1137 	}
1138 
1139 out_unlock:
1140 	spin_unlock(&bp->b_lock);
1141 
1142 	if (freebuf)
1143 		xfs_buf_free(bp);
1144 }
1145 
1146 
1147 /*
1148  *	Lock a buffer object, if it is not already locked.
1149  *
1150  *	If we come across a stale, pinned, locked buffer, we know that we are
1151  *	being asked to lock a buffer that has been reallocated. Because it is
1152  *	pinned, we know that the log has not been pushed to disk and hence it
1153  *	will still be locked.  Rather than continuing to have trylock attempts
1154  *	fail until someone else pushes the log, push it ourselves before
1155  *	returning.  This means that the xfsaild will not get stuck trying
1156  *	to push on stale inode buffers.
1157  */
1158 int
1159 xfs_buf_trylock(
1160 	struct xfs_buf		*bp)
1161 {
1162 	int			locked;
1163 
1164 	locked = down_trylock(&bp->b_sema) == 0;
1165 	if (locked)
1166 		trace_xfs_buf_trylock(bp, _RET_IP_);
1167 	else
1168 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1169 	return locked;
1170 }
1171 
1172 /*
1173  *	Lock a buffer object.
1174  *
1175  *	If we come across a stale, pinned, locked buffer, we know that we
1176  *	are being asked to lock a buffer that has been reallocated. Because
1177  *	it is pinned, we know that the log has not been pushed to disk and
1178  *	hence it will still be locked. Rather than sleeping until someone
1179  *	else pushes the log, push it ourselves before trying to get the lock.
1180  */
1181 void
1182 xfs_buf_lock(
1183 	struct xfs_buf		*bp)
1184 {
1185 	trace_xfs_buf_lock(bp, _RET_IP_);
1186 
1187 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1188 		xfs_log_force(bp->b_target->bt_mount, 0);
1189 	down(&bp->b_sema);
1190 
1191 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1192 }
1193 
1194 void
1195 xfs_buf_unlock(
1196 	struct xfs_buf		*bp)
1197 {
1198 	ASSERT(xfs_buf_islocked(bp));
1199 
1200 	up(&bp->b_sema);
1201 	trace_xfs_buf_unlock(bp, _RET_IP_);
1202 }
1203 
1204 STATIC void
1205 xfs_buf_wait_unpin(
1206 	xfs_buf_t		*bp)
1207 {
1208 	DECLARE_WAITQUEUE	(wait, current);
1209 
1210 	if (atomic_read(&bp->b_pin_count) == 0)
1211 		return;
1212 
1213 	add_wait_queue(&bp->b_waiters, &wait);
1214 	for (;;) {
1215 		set_current_state(TASK_UNINTERRUPTIBLE);
1216 		if (atomic_read(&bp->b_pin_count) == 0)
1217 			break;
1218 		io_schedule();
1219 	}
1220 	remove_wait_queue(&bp->b_waiters, &wait);
1221 	set_current_state(TASK_RUNNING);
1222 }
1223 
1224 /*
1225  *	Buffer Utility Routines
1226  */
1227 
1228 void
1229 xfs_buf_ioend(
1230 	struct xfs_buf	*bp)
1231 {
1232 	bool		read = bp->b_flags & XBF_READ;
1233 
1234 	trace_xfs_buf_iodone(bp, _RET_IP_);
1235 
1236 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1237 
1238 	/*
1239 	 * Pull in IO completion errors now. We are guaranteed to be running
1240 	 * single threaded, so we don't need the lock to read b_io_error.
1241 	 */
1242 	if (!bp->b_error && bp->b_io_error)
1243 		xfs_buf_ioerror(bp, bp->b_io_error);
1244 
1245 	/* Only validate buffers that were read without errors */
1246 	if (read && !bp->b_error && bp->b_ops) {
1247 		ASSERT(!bp->b_iodone);
1248 		bp->b_ops->verify_read(bp);
1249 	}
1250 
1251 	if (!bp->b_error)
1252 		bp->b_flags |= XBF_DONE;
1253 
1254 	if (bp->b_iodone)
1255 		(*(bp->b_iodone))(bp);
1256 	else if (bp->b_flags & XBF_ASYNC)
1257 		xfs_buf_relse(bp);
1258 	else
1259 		complete(&bp->b_iowait);
1260 }
1261 
1262 static void
1263 xfs_buf_ioend_work(
1264 	struct work_struct	*work)
1265 {
1266 	struct xfs_buf		*bp =
1267 		container_of(work, xfs_buf_t, b_ioend_work);
1268 
1269 	xfs_buf_ioend(bp);
1270 }
1271 
1272 static void
1273 xfs_buf_ioend_async(
1274 	struct xfs_buf	*bp)
1275 {
1276 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1277 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1278 }
1279 
1280 void
1281 __xfs_buf_ioerror(
1282 	xfs_buf_t		*bp,
1283 	int			error,
1284 	xfs_failaddr_t		failaddr)
1285 {
1286 	ASSERT(error <= 0 && error >= -1000);
1287 	bp->b_error = error;
1288 	trace_xfs_buf_ioerror(bp, error, failaddr);
1289 }
1290 
1291 void
1292 xfs_buf_ioerror_alert(
1293 	struct xfs_buf		*bp,
1294 	const char		*func)
1295 {
1296 	xfs_alert(bp->b_target->bt_mount,
1297 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1298 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1299 			-bp->b_error);
1300 }
1301 
1302 int
1303 xfs_bwrite(
1304 	struct xfs_buf		*bp)
1305 {
1306 	int			error;
1307 
1308 	ASSERT(xfs_buf_islocked(bp));
1309 
1310 	bp->b_flags |= XBF_WRITE;
1311 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1312 			 XBF_WRITE_FAIL | XBF_DONE);
1313 
1314 	error = xfs_buf_submit(bp);
1315 	if (error) {
1316 		xfs_force_shutdown(bp->b_target->bt_mount,
1317 				   SHUTDOWN_META_IO_ERROR);
1318 	}
1319 	return error;
1320 }
1321 
1322 static void
1323 xfs_buf_bio_end_io(
1324 	struct bio		*bio)
1325 {
1326 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1327 
1328 	/*
1329 	 * don't overwrite existing errors - otherwise we can lose errors on
1330 	 * buffers that require multiple bios to complete.
1331 	 */
1332 	if (bio->bi_status) {
1333 		int error = blk_status_to_errno(bio->bi_status);
1334 
1335 		cmpxchg(&bp->b_io_error, 0, error);
1336 	}
1337 
1338 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1339 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1340 
1341 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1342 		xfs_buf_ioend_async(bp);
1343 	bio_put(bio);
1344 }
1345 
1346 static void
1347 xfs_buf_ioapply_map(
1348 	struct xfs_buf	*bp,
1349 	int		map,
1350 	int		*buf_offset,
1351 	int		*count,
1352 	int		op,
1353 	int		op_flags)
1354 {
1355 	int		page_index;
1356 	int		total_nr_pages = bp->b_page_count;
1357 	int		nr_pages;
1358 	struct bio	*bio;
1359 	sector_t	sector =  bp->b_maps[map].bm_bn;
1360 	int		size;
1361 	int		offset;
1362 
1363 	/* skip the pages in the buffer before the start offset */
1364 	page_index = 0;
1365 	offset = *buf_offset;
1366 	while (offset >= PAGE_SIZE) {
1367 		page_index++;
1368 		offset -= PAGE_SIZE;
1369 	}
1370 
1371 	/*
1372 	 * Limit the IO size to the length of the current vector, and update the
1373 	 * remaining IO count for the next time around.
1374 	 */
1375 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1376 	*count -= size;
1377 	*buf_offset += size;
1378 
1379 next_chunk:
1380 	atomic_inc(&bp->b_io_remaining);
1381 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1382 
1383 	bio = bio_alloc(GFP_NOIO, nr_pages);
1384 	bio_set_dev(bio, bp->b_target->bt_bdev);
1385 	bio->bi_iter.bi_sector = sector;
1386 	bio->bi_end_io = xfs_buf_bio_end_io;
1387 	bio->bi_private = bp;
1388 	bio_set_op_attrs(bio, op, op_flags);
1389 
1390 	for (; size && nr_pages; nr_pages--, page_index++) {
1391 		int	rbytes, nbytes = PAGE_SIZE - offset;
1392 
1393 		if (nbytes > size)
1394 			nbytes = size;
1395 
1396 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1397 				      offset);
1398 		if (rbytes < nbytes)
1399 			break;
1400 
1401 		offset = 0;
1402 		sector += BTOBB(nbytes);
1403 		size -= nbytes;
1404 		total_nr_pages--;
1405 	}
1406 
1407 	if (likely(bio->bi_iter.bi_size)) {
1408 		if (xfs_buf_is_vmapped(bp)) {
1409 			flush_kernel_vmap_range(bp->b_addr,
1410 						xfs_buf_vmap_len(bp));
1411 		}
1412 		submit_bio(bio);
1413 		if (size)
1414 			goto next_chunk;
1415 	} else {
1416 		/*
1417 		 * This is guaranteed not to be the last io reference count
1418 		 * because the caller (xfs_buf_submit) holds a count itself.
1419 		 */
1420 		atomic_dec(&bp->b_io_remaining);
1421 		xfs_buf_ioerror(bp, -EIO);
1422 		bio_put(bio);
1423 	}
1424 
1425 }
1426 
1427 STATIC void
1428 _xfs_buf_ioapply(
1429 	struct xfs_buf	*bp)
1430 {
1431 	struct blk_plug	plug;
1432 	int		op;
1433 	int		op_flags = 0;
1434 	int		offset;
1435 	int		size;
1436 	int		i;
1437 
1438 	/*
1439 	 * Make sure we capture only current IO errors rather than stale errors
1440 	 * left over from previous use of the buffer (e.g. failed readahead).
1441 	 */
1442 	bp->b_error = 0;
1443 
1444 	/*
1445 	 * Initialize the I/O completion workqueue if we haven't yet or the
1446 	 * submitter has not opted to specify a custom one.
1447 	 */
1448 	if (!bp->b_ioend_wq)
1449 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1450 
1451 	if (bp->b_flags & XBF_WRITE) {
1452 		op = REQ_OP_WRITE;
1453 		if (bp->b_flags & XBF_SYNCIO)
1454 			op_flags = REQ_SYNC;
1455 		if (bp->b_flags & XBF_FUA)
1456 			op_flags |= REQ_FUA;
1457 		if (bp->b_flags & XBF_FLUSH)
1458 			op_flags |= REQ_PREFLUSH;
1459 
1460 		/*
1461 		 * Run the write verifier callback function if it exists. If
1462 		 * this function fails it will mark the buffer with an error and
1463 		 * the IO should not be dispatched.
1464 		 */
1465 		if (bp->b_ops) {
1466 			bp->b_ops->verify_write(bp);
1467 			if (bp->b_error) {
1468 				xfs_force_shutdown(bp->b_target->bt_mount,
1469 						   SHUTDOWN_CORRUPT_INCORE);
1470 				return;
1471 			}
1472 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1473 			struct xfs_mount *mp = bp->b_target->bt_mount;
1474 
1475 			/*
1476 			 * non-crc filesystems don't attach verifiers during
1477 			 * log recovery, so don't warn for such filesystems.
1478 			 */
1479 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1480 				xfs_warn(mp,
1481 					"%s: no buf ops on daddr 0x%llx len %d",
1482 					__func__, bp->b_bn, bp->b_length);
1483 				xfs_hex_dump(bp->b_addr,
1484 						XFS_CORRUPTION_DUMP_LEN);
1485 				dump_stack();
1486 			}
1487 		}
1488 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1489 		op = REQ_OP_READ;
1490 		op_flags = REQ_RAHEAD;
1491 	} else {
1492 		op = REQ_OP_READ;
1493 	}
1494 
1495 	/* we only use the buffer cache for meta-data */
1496 	op_flags |= REQ_META;
1497 
1498 	/*
1499 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1500 	 * into the buffer and the desired IO size before we start -
1501 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1502 	 * subsequent call.
1503 	 */
1504 	offset = bp->b_offset;
1505 	size = BBTOB(bp->b_io_length);
1506 	blk_start_plug(&plug);
1507 	for (i = 0; i < bp->b_map_count; i++) {
1508 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1509 		if (bp->b_error)
1510 			break;
1511 		if (size <= 0)
1512 			break;	/* all done */
1513 	}
1514 	blk_finish_plug(&plug);
1515 }
1516 
1517 /*
1518  * Wait for I/O completion of a sync buffer and return the I/O error code.
1519  */
1520 static int
1521 xfs_buf_iowait(
1522 	struct xfs_buf	*bp)
1523 {
1524 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1525 
1526 	trace_xfs_buf_iowait(bp, _RET_IP_);
1527 	wait_for_completion(&bp->b_iowait);
1528 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1529 
1530 	return bp->b_error;
1531 }
1532 
1533 /*
1534  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1535  * the buffer lock ownership and the current reference to the IO. It is not
1536  * safe to reference the buffer after a call to this function unless the caller
1537  * holds an additional reference itself.
1538  */
1539 int
1540 __xfs_buf_submit(
1541 	struct xfs_buf	*bp,
1542 	bool		wait)
1543 {
1544 	int		error = 0;
1545 
1546 	trace_xfs_buf_submit(bp, _RET_IP_);
1547 
1548 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1549 
1550 	/* on shutdown we stale and complete the buffer immediately */
1551 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1552 		xfs_buf_ioerror(bp, -EIO);
1553 		bp->b_flags &= ~XBF_DONE;
1554 		xfs_buf_stale(bp);
1555 		xfs_buf_ioend(bp);
1556 		return -EIO;
1557 	}
1558 
1559 	/*
1560 	 * Grab a reference so the buffer does not go away underneath us. For
1561 	 * async buffers, I/O completion drops the callers reference, which
1562 	 * could occur before submission returns.
1563 	 */
1564 	xfs_buf_hold(bp);
1565 
1566 	if (bp->b_flags & XBF_WRITE)
1567 		xfs_buf_wait_unpin(bp);
1568 
1569 	/* clear the internal error state to avoid spurious errors */
1570 	bp->b_io_error = 0;
1571 
1572 	/*
1573 	 * Set the count to 1 initially, this will stop an I/O completion
1574 	 * callout which happens before we have started all the I/O from calling
1575 	 * xfs_buf_ioend too early.
1576 	 */
1577 	atomic_set(&bp->b_io_remaining, 1);
1578 	if (bp->b_flags & XBF_ASYNC)
1579 		xfs_buf_ioacct_inc(bp);
1580 	_xfs_buf_ioapply(bp);
1581 
1582 	/*
1583 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1584 	 * reference we took above. If we drop it to zero, run completion so
1585 	 * that we don't return to the caller with completion still pending.
1586 	 */
1587 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1588 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1589 			xfs_buf_ioend(bp);
1590 		else
1591 			xfs_buf_ioend_async(bp);
1592 	}
1593 
1594 	if (wait)
1595 		error = xfs_buf_iowait(bp);
1596 
1597 	/*
1598 	 * Release the hold that keeps the buffer referenced for the entire
1599 	 * I/O. Note that if the buffer is async, it is not safe to reference
1600 	 * after this release.
1601 	 */
1602 	xfs_buf_rele(bp);
1603 	return error;
1604 }
1605 
1606 void *
1607 xfs_buf_offset(
1608 	struct xfs_buf		*bp,
1609 	size_t			offset)
1610 {
1611 	struct page		*page;
1612 
1613 	if (bp->b_addr)
1614 		return bp->b_addr + offset;
1615 
1616 	offset += bp->b_offset;
1617 	page = bp->b_pages[offset >> PAGE_SHIFT];
1618 	return page_address(page) + (offset & (PAGE_SIZE-1));
1619 }
1620 
1621 /*
1622  *	Move data into or out of a buffer.
1623  */
1624 void
1625 xfs_buf_iomove(
1626 	xfs_buf_t		*bp,	/* buffer to process		*/
1627 	size_t			boff,	/* starting buffer offset	*/
1628 	size_t			bsize,	/* length to copy		*/
1629 	void			*data,	/* data address			*/
1630 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1631 {
1632 	size_t			bend;
1633 
1634 	bend = boff + bsize;
1635 	while (boff < bend) {
1636 		struct page	*page;
1637 		int		page_index, page_offset, csize;
1638 
1639 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1640 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1641 		page = bp->b_pages[page_index];
1642 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1643 				      BBTOB(bp->b_io_length) - boff);
1644 
1645 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1646 
1647 		switch (mode) {
1648 		case XBRW_ZERO:
1649 			memset(page_address(page) + page_offset, 0, csize);
1650 			break;
1651 		case XBRW_READ:
1652 			memcpy(data, page_address(page) + page_offset, csize);
1653 			break;
1654 		case XBRW_WRITE:
1655 			memcpy(page_address(page) + page_offset, data, csize);
1656 		}
1657 
1658 		boff += csize;
1659 		data += csize;
1660 	}
1661 }
1662 
1663 /*
1664  *	Handling of buffer targets (buftargs).
1665  */
1666 
1667 /*
1668  * Wait for any bufs with callbacks that have been submitted but have not yet
1669  * returned. These buffers will have an elevated hold count, so wait on those
1670  * while freeing all the buffers only held by the LRU.
1671  */
1672 static enum lru_status
1673 xfs_buftarg_wait_rele(
1674 	struct list_head	*item,
1675 	struct list_lru_one	*lru,
1676 	spinlock_t		*lru_lock,
1677 	void			*arg)
1678 
1679 {
1680 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1681 	struct list_head	*dispose = arg;
1682 
1683 	if (atomic_read(&bp->b_hold) > 1) {
1684 		/* need to wait, so skip it this pass */
1685 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1686 		return LRU_SKIP;
1687 	}
1688 	if (!spin_trylock(&bp->b_lock))
1689 		return LRU_SKIP;
1690 
1691 	/*
1692 	 * clear the LRU reference count so the buffer doesn't get
1693 	 * ignored in xfs_buf_rele().
1694 	 */
1695 	atomic_set(&bp->b_lru_ref, 0);
1696 	bp->b_state |= XFS_BSTATE_DISPOSE;
1697 	list_lru_isolate_move(lru, item, dispose);
1698 	spin_unlock(&bp->b_lock);
1699 	return LRU_REMOVED;
1700 }
1701 
1702 void
1703 xfs_wait_buftarg(
1704 	struct xfs_buftarg	*btp)
1705 {
1706 	LIST_HEAD(dispose);
1707 	int loop = 0;
1708 
1709 	/*
1710 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1711 	 * released. This is critical as new buffers do not make the LRU until
1712 	 * they are released.
1713 	 *
1714 	 * Next, flush the buffer workqueue to ensure all completion processing
1715 	 * has finished. Just waiting on buffer locks is not sufficient for
1716 	 * async IO as the reference count held over IO is not released until
1717 	 * after the buffer lock is dropped. Hence we need to ensure here that
1718 	 * all reference counts have been dropped before we start walking the
1719 	 * LRU list.
1720 	 */
1721 	while (percpu_counter_sum(&btp->bt_io_count))
1722 		delay(100);
1723 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1724 
1725 	/* loop until there is nothing left on the lru list. */
1726 	while (list_lru_count(&btp->bt_lru)) {
1727 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1728 			      &dispose, LONG_MAX);
1729 
1730 		while (!list_empty(&dispose)) {
1731 			struct xfs_buf *bp;
1732 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1733 			list_del_init(&bp->b_lru);
1734 			if (bp->b_flags & XBF_WRITE_FAIL) {
1735 				xfs_alert(btp->bt_mount,
1736 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1737 					(long long)bp->b_bn);
1738 				xfs_alert(btp->bt_mount,
1739 "Please run xfs_repair to determine the extent of the problem.");
1740 			}
1741 			xfs_buf_rele(bp);
1742 		}
1743 		if (loop++ != 0)
1744 			delay(100);
1745 	}
1746 }
1747 
1748 static enum lru_status
1749 xfs_buftarg_isolate(
1750 	struct list_head	*item,
1751 	struct list_lru_one	*lru,
1752 	spinlock_t		*lru_lock,
1753 	void			*arg)
1754 {
1755 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1756 	struct list_head	*dispose = arg;
1757 
1758 	/*
1759 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1760 	 * If we fail to get the lock, just skip it.
1761 	 */
1762 	if (!spin_trylock(&bp->b_lock))
1763 		return LRU_SKIP;
1764 	/*
1765 	 * Decrement the b_lru_ref count unless the value is already
1766 	 * zero. If the value is already zero, we need to reclaim the
1767 	 * buffer, otherwise it gets another trip through the LRU.
1768 	 */
1769 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1770 		spin_unlock(&bp->b_lock);
1771 		return LRU_ROTATE;
1772 	}
1773 
1774 	bp->b_state |= XFS_BSTATE_DISPOSE;
1775 	list_lru_isolate_move(lru, item, dispose);
1776 	spin_unlock(&bp->b_lock);
1777 	return LRU_REMOVED;
1778 }
1779 
1780 static unsigned long
1781 xfs_buftarg_shrink_scan(
1782 	struct shrinker		*shrink,
1783 	struct shrink_control	*sc)
1784 {
1785 	struct xfs_buftarg	*btp = container_of(shrink,
1786 					struct xfs_buftarg, bt_shrinker);
1787 	LIST_HEAD(dispose);
1788 	unsigned long		freed;
1789 
1790 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1791 				     xfs_buftarg_isolate, &dispose);
1792 
1793 	while (!list_empty(&dispose)) {
1794 		struct xfs_buf *bp;
1795 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1796 		list_del_init(&bp->b_lru);
1797 		xfs_buf_rele(bp);
1798 	}
1799 
1800 	return freed;
1801 }
1802 
1803 static unsigned long
1804 xfs_buftarg_shrink_count(
1805 	struct shrinker		*shrink,
1806 	struct shrink_control	*sc)
1807 {
1808 	struct xfs_buftarg	*btp = container_of(shrink,
1809 					struct xfs_buftarg, bt_shrinker);
1810 	return list_lru_shrink_count(&btp->bt_lru, sc);
1811 }
1812 
1813 void
1814 xfs_free_buftarg(
1815 	struct xfs_buftarg	*btp)
1816 {
1817 	unregister_shrinker(&btp->bt_shrinker);
1818 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1819 	percpu_counter_destroy(&btp->bt_io_count);
1820 	list_lru_destroy(&btp->bt_lru);
1821 
1822 	xfs_blkdev_issue_flush(btp);
1823 
1824 	kmem_free(btp);
1825 }
1826 
1827 int
1828 xfs_setsize_buftarg(
1829 	xfs_buftarg_t		*btp,
1830 	unsigned int		sectorsize)
1831 {
1832 	/* Set up metadata sector size info */
1833 	btp->bt_meta_sectorsize = sectorsize;
1834 	btp->bt_meta_sectormask = sectorsize - 1;
1835 
1836 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1837 		xfs_warn(btp->bt_mount,
1838 			"Cannot set_blocksize to %u on device %pg",
1839 			sectorsize, btp->bt_bdev);
1840 		return -EINVAL;
1841 	}
1842 
1843 	/* Set up device logical sector size mask */
1844 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1845 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1846 
1847 	return 0;
1848 }
1849 
1850 /*
1851  * When allocating the initial buffer target we have not yet
1852  * read in the superblock, so don't know what sized sectors
1853  * are being used at this early stage.  Play safe.
1854  */
1855 STATIC int
1856 xfs_setsize_buftarg_early(
1857 	xfs_buftarg_t		*btp,
1858 	struct block_device	*bdev)
1859 {
1860 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1861 }
1862 
1863 xfs_buftarg_t *
1864 xfs_alloc_buftarg(
1865 	struct xfs_mount	*mp,
1866 	struct block_device	*bdev,
1867 	struct dax_device	*dax_dev)
1868 {
1869 	xfs_buftarg_t		*btp;
1870 
1871 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1872 
1873 	btp->bt_mount = mp;
1874 	btp->bt_dev =  bdev->bd_dev;
1875 	btp->bt_bdev = bdev;
1876 	btp->bt_daxdev = dax_dev;
1877 
1878 	if (xfs_setsize_buftarg_early(btp, bdev))
1879 		goto error_free;
1880 
1881 	if (list_lru_init(&btp->bt_lru))
1882 		goto error_free;
1883 
1884 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1885 		goto error_lru;
1886 
1887 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1888 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1889 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1890 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1891 	if (register_shrinker(&btp->bt_shrinker))
1892 		goto error_pcpu;
1893 	return btp;
1894 
1895 error_pcpu:
1896 	percpu_counter_destroy(&btp->bt_io_count);
1897 error_lru:
1898 	list_lru_destroy(&btp->bt_lru);
1899 error_free:
1900 	kmem_free(btp);
1901 	return NULL;
1902 }
1903 
1904 /*
1905  * Cancel a delayed write list.
1906  *
1907  * Remove each buffer from the list, clear the delwri queue flag and drop the
1908  * associated buffer reference.
1909  */
1910 void
1911 xfs_buf_delwri_cancel(
1912 	struct list_head	*list)
1913 {
1914 	struct xfs_buf		*bp;
1915 
1916 	while (!list_empty(list)) {
1917 		bp = list_first_entry(list, struct xfs_buf, b_list);
1918 
1919 		xfs_buf_lock(bp);
1920 		bp->b_flags &= ~_XBF_DELWRI_Q;
1921 		list_del_init(&bp->b_list);
1922 		xfs_buf_relse(bp);
1923 	}
1924 }
1925 
1926 /*
1927  * Add a buffer to the delayed write list.
1928  *
1929  * This queues a buffer for writeout if it hasn't already been.  Note that
1930  * neither this routine nor the buffer list submission functions perform
1931  * any internal synchronization.  It is expected that the lists are thread-local
1932  * to the callers.
1933  *
1934  * Returns true if we queued up the buffer, or false if it already had
1935  * been on the buffer list.
1936  */
1937 bool
1938 xfs_buf_delwri_queue(
1939 	struct xfs_buf		*bp,
1940 	struct list_head	*list)
1941 {
1942 	ASSERT(xfs_buf_islocked(bp));
1943 	ASSERT(!(bp->b_flags & XBF_READ));
1944 
1945 	/*
1946 	 * If the buffer is already marked delwri it already is queued up
1947 	 * by someone else for imediate writeout.  Just ignore it in that
1948 	 * case.
1949 	 */
1950 	if (bp->b_flags & _XBF_DELWRI_Q) {
1951 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1952 		return false;
1953 	}
1954 
1955 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1956 
1957 	/*
1958 	 * If a buffer gets written out synchronously or marked stale while it
1959 	 * is on a delwri list we lazily remove it. To do this, the other party
1960 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1961 	 * It remains referenced and on the list.  In a rare corner case it
1962 	 * might get readded to a delwri list after the synchronous writeout, in
1963 	 * which case we need just need to re-add the flag here.
1964 	 */
1965 	bp->b_flags |= _XBF_DELWRI_Q;
1966 	if (list_empty(&bp->b_list)) {
1967 		atomic_inc(&bp->b_hold);
1968 		list_add_tail(&bp->b_list, list);
1969 	}
1970 
1971 	return true;
1972 }
1973 
1974 /*
1975  * Compare function is more complex than it needs to be because
1976  * the return value is only 32 bits and we are doing comparisons
1977  * on 64 bit values
1978  */
1979 static int
1980 xfs_buf_cmp(
1981 	void		*priv,
1982 	struct list_head *a,
1983 	struct list_head *b)
1984 {
1985 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1986 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1987 	xfs_daddr_t		diff;
1988 
1989 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1990 	if (diff < 0)
1991 		return -1;
1992 	if (diff > 0)
1993 		return 1;
1994 	return 0;
1995 }
1996 
1997 /*
1998  * Submit buffers for write. If wait_list is specified, the buffers are
1999  * submitted using sync I/O and placed on the wait list such that the caller can
2000  * iowait each buffer. Otherwise async I/O is used and the buffers are released
2001  * at I/O completion time. In either case, buffers remain locked until I/O
2002  * completes and the buffer is released from the queue.
2003  */
2004 static int
2005 xfs_buf_delwri_submit_buffers(
2006 	struct list_head	*buffer_list,
2007 	struct list_head	*wait_list)
2008 {
2009 	struct xfs_buf		*bp, *n;
2010 	int			pinned = 0;
2011 	struct blk_plug		plug;
2012 
2013 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2014 
2015 	blk_start_plug(&plug);
2016 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2017 		if (!wait_list) {
2018 			if (xfs_buf_ispinned(bp)) {
2019 				pinned++;
2020 				continue;
2021 			}
2022 			if (!xfs_buf_trylock(bp))
2023 				continue;
2024 		} else {
2025 			xfs_buf_lock(bp);
2026 		}
2027 
2028 		/*
2029 		 * Someone else might have written the buffer synchronously or
2030 		 * marked it stale in the meantime.  In that case only the
2031 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2032 		 * reference and remove it from the list here.
2033 		 */
2034 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2035 			list_del_init(&bp->b_list);
2036 			xfs_buf_relse(bp);
2037 			continue;
2038 		}
2039 
2040 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2041 
2042 		/*
2043 		 * If we have a wait list, each buffer (and associated delwri
2044 		 * queue reference) transfers to it and is submitted
2045 		 * synchronously. Otherwise, drop the buffer from the delwri
2046 		 * queue and submit async.
2047 		 */
2048 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
2049 		bp->b_flags |= XBF_WRITE;
2050 		if (wait_list) {
2051 			bp->b_flags &= ~XBF_ASYNC;
2052 			list_move_tail(&bp->b_list, wait_list);
2053 		} else {
2054 			bp->b_flags |= XBF_ASYNC;
2055 			list_del_init(&bp->b_list);
2056 		}
2057 		__xfs_buf_submit(bp, false);
2058 	}
2059 	blk_finish_plug(&plug);
2060 
2061 	return pinned;
2062 }
2063 
2064 /*
2065  * Write out a buffer list asynchronously.
2066  *
2067  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2068  * out and not wait for I/O completion on any of the buffers.  This interface
2069  * is only safely useable for callers that can track I/O completion by higher
2070  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2071  * function.
2072  *
2073  * Note: this function will skip buffers it would block on, and in doing so
2074  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2075  * it is up to the caller to ensure that the buffer list is fully submitted or
2076  * cancelled appropriately when they are finished with the list. Failure to
2077  * cancel or resubmit the list until it is empty will result in leaked buffers
2078  * at unmount time.
2079  */
2080 int
2081 xfs_buf_delwri_submit_nowait(
2082 	struct list_head	*buffer_list)
2083 {
2084 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2085 }
2086 
2087 /*
2088  * Write out a buffer list synchronously.
2089  *
2090  * This will take the @buffer_list, write all buffers out and wait for I/O
2091  * completion on all of the buffers. @buffer_list is consumed by the function,
2092  * so callers must have some other way of tracking buffers if they require such
2093  * functionality.
2094  */
2095 int
2096 xfs_buf_delwri_submit(
2097 	struct list_head	*buffer_list)
2098 {
2099 	LIST_HEAD		(wait_list);
2100 	int			error = 0, error2;
2101 	struct xfs_buf		*bp;
2102 
2103 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2104 
2105 	/* Wait for IO to complete. */
2106 	while (!list_empty(&wait_list)) {
2107 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2108 
2109 		list_del_init(&bp->b_list);
2110 
2111 		/*
2112 		 * Wait on the locked buffer, check for errors and unlock and
2113 		 * release the delwri queue reference.
2114 		 */
2115 		error2 = xfs_buf_iowait(bp);
2116 		xfs_buf_relse(bp);
2117 		if (!error)
2118 			error = error2;
2119 	}
2120 
2121 	return error;
2122 }
2123 
2124 /*
2125  * Push a single buffer on a delwri queue.
2126  *
2127  * The purpose of this function is to submit a single buffer of a delwri queue
2128  * and return with the buffer still on the original queue. The waiting delwri
2129  * buffer submission infrastructure guarantees transfer of the delwri queue
2130  * buffer reference to a temporary wait list. We reuse this infrastructure to
2131  * transfer the buffer back to the original queue.
2132  *
2133  * Note the buffer transitions from the queued state, to the submitted and wait
2134  * listed state and back to the queued state during this call. The buffer
2135  * locking and queue management logic between _delwri_pushbuf() and
2136  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2137  * before returning.
2138  */
2139 int
2140 xfs_buf_delwri_pushbuf(
2141 	struct xfs_buf		*bp,
2142 	struct list_head	*buffer_list)
2143 {
2144 	LIST_HEAD		(submit_list);
2145 	int			error;
2146 
2147 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2148 
2149 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2150 
2151 	/*
2152 	 * Isolate the buffer to a new local list so we can submit it for I/O
2153 	 * independently from the rest of the original list.
2154 	 */
2155 	xfs_buf_lock(bp);
2156 	list_move(&bp->b_list, &submit_list);
2157 	xfs_buf_unlock(bp);
2158 
2159 	/*
2160 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2161 	 * the buffer on the wait list with the original reference. Rather than
2162 	 * bounce the buffer from a local wait list back to the original list
2163 	 * after I/O completion, reuse the original list as the wait list.
2164 	 */
2165 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2166 
2167 	/*
2168 	 * The buffer is now locked, under I/O and wait listed on the original
2169 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2170 	 * return with the buffer unlocked and on the original queue.
2171 	 */
2172 	error = xfs_buf_iowait(bp);
2173 	bp->b_flags |= _XBF_DELWRI_Q;
2174 	xfs_buf_unlock(bp);
2175 
2176 	return error;
2177 }
2178 
2179 int __init
2180 xfs_buf_init(void)
2181 {
2182 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2183 						KM_ZONE_HWALIGN, NULL);
2184 	if (!xfs_buf_zone)
2185 		goto out;
2186 
2187 	return 0;
2188 
2189  out:
2190 	return -ENOMEM;
2191 }
2192 
2193 void
2194 xfs_buf_terminate(void)
2195 {
2196 	kmem_zone_destroy(xfs_buf_zone);
2197 }
2198 
2199 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2200 {
2201 	/*
2202 	 * Set the lru reference count to 0 based on the error injection tag.
2203 	 * This allows userspace to disrupt buffer caching for debug/testing
2204 	 * purposes.
2205 	 */
2206 	if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2207 			   XFS_ERRTAG_BUF_LRU_REF))
2208 		lru_ref = 0;
2209 
2210 	atomic_set(&bp->b_lru_ref, lru_ref);
2211 }
2212