1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include <linux/backing-dev.h> 8 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_trace.h" 16 #include "xfs_log.h" 17 #include "xfs_errortag.h" 18 #include "xfs_error.h" 19 20 static kmem_zone_t *xfs_buf_zone; 21 22 #define xb_to_gfp(flags) \ 23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 24 25 /* 26 * Locking orders 27 * 28 * xfs_buf_ioacct_inc: 29 * xfs_buf_ioacct_dec: 30 * b_sema (caller holds) 31 * b_lock 32 * 33 * xfs_buf_stale: 34 * b_sema (caller holds) 35 * b_lock 36 * lru_lock 37 * 38 * xfs_buf_rele: 39 * b_lock 40 * pag_buf_lock 41 * lru_lock 42 * 43 * xfs_buftarg_wait_rele 44 * lru_lock 45 * b_lock (trylock due to inversion) 46 * 47 * xfs_buftarg_isolate 48 * lru_lock 49 * b_lock (trylock due to inversion) 50 */ 51 52 static inline int 53 xfs_buf_is_vmapped( 54 struct xfs_buf *bp) 55 { 56 /* 57 * Return true if the buffer is vmapped. 58 * 59 * b_addr is null if the buffer is not mapped, but the code is clever 60 * enough to know it doesn't have to map a single page, so the check has 61 * to be both for b_addr and bp->b_page_count > 1. 62 */ 63 return bp->b_addr && bp->b_page_count > 1; 64 } 65 66 static inline int 67 xfs_buf_vmap_len( 68 struct xfs_buf *bp) 69 { 70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 71 } 72 73 /* 74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 75 * this buffer. The count is incremented once per buffer (per hold cycle) 76 * because the corresponding decrement is deferred to buffer release. Buffers 77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 78 * tracking adds unnecessary overhead. This is used for sychronization purposes 79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of 80 * in-flight buffers. 81 * 82 * Buffers that are never released (e.g., superblock, iclog buffers) must set 83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 84 * never reaches zero and unmount hangs indefinitely. 85 */ 86 static inline void 87 xfs_buf_ioacct_inc( 88 struct xfs_buf *bp) 89 { 90 if (bp->b_flags & XBF_NO_IOACCT) 91 return; 92 93 ASSERT(bp->b_flags & XBF_ASYNC); 94 spin_lock(&bp->b_lock); 95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { 96 bp->b_state |= XFS_BSTATE_IN_FLIGHT; 97 percpu_counter_inc(&bp->b_target->bt_io_count); 98 } 99 spin_unlock(&bp->b_lock); 100 } 101 102 /* 103 * Clear the in-flight state on a buffer about to be released to the LRU or 104 * freed and unaccount from the buftarg. 105 */ 106 static inline void 107 __xfs_buf_ioacct_dec( 108 struct xfs_buf *bp) 109 { 110 lockdep_assert_held(&bp->b_lock); 111 112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { 113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; 114 percpu_counter_dec(&bp->b_target->bt_io_count); 115 } 116 } 117 118 static inline void 119 xfs_buf_ioacct_dec( 120 struct xfs_buf *bp) 121 { 122 spin_lock(&bp->b_lock); 123 __xfs_buf_ioacct_dec(bp); 124 spin_unlock(&bp->b_lock); 125 } 126 127 /* 128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 129 * b_lru_ref count so that the buffer is freed immediately when the buffer 130 * reference count falls to zero. If the buffer is already on the LRU, we need 131 * to remove the reference that LRU holds on the buffer. 132 * 133 * This prevents build-up of stale buffers on the LRU. 134 */ 135 void 136 xfs_buf_stale( 137 struct xfs_buf *bp) 138 { 139 ASSERT(xfs_buf_islocked(bp)); 140 141 bp->b_flags |= XBF_STALE; 142 143 /* 144 * Clear the delwri status so that a delwri queue walker will not 145 * flush this buffer to disk now that it is stale. The delwri queue has 146 * a reference to the buffer, so this is safe to do. 147 */ 148 bp->b_flags &= ~_XBF_DELWRI_Q; 149 150 /* 151 * Once the buffer is marked stale and unlocked, a subsequent lookup 152 * could reset b_flags. There is no guarantee that the buffer is 153 * unaccounted (released to LRU) before that occurs. Drop in-flight 154 * status now to preserve accounting consistency. 155 */ 156 spin_lock(&bp->b_lock); 157 __xfs_buf_ioacct_dec(bp); 158 159 atomic_set(&bp->b_lru_ref, 0); 160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 162 atomic_dec(&bp->b_hold); 163 164 ASSERT(atomic_read(&bp->b_hold) >= 1); 165 spin_unlock(&bp->b_lock); 166 } 167 168 static int 169 xfs_buf_get_maps( 170 struct xfs_buf *bp, 171 int map_count) 172 { 173 ASSERT(bp->b_maps == NULL); 174 bp->b_map_count = map_count; 175 176 if (map_count == 1) { 177 bp->b_maps = &bp->__b_map; 178 return 0; 179 } 180 181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 182 KM_NOFS); 183 if (!bp->b_maps) 184 return -ENOMEM; 185 return 0; 186 } 187 188 /* 189 * Frees b_pages if it was allocated. 190 */ 191 static void 192 xfs_buf_free_maps( 193 struct xfs_buf *bp) 194 { 195 if (bp->b_maps != &bp->__b_map) { 196 kmem_free(bp->b_maps); 197 bp->b_maps = NULL; 198 } 199 } 200 201 static int 202 _xfs_buf_alloc( 203 struct xfs_buftarg *target, 204 struct xfs_buf_map *map, 205 int nmaps, 206 xfs_buf_flags_t flags, 207 struct xfs_buf **bpp) 208 { 209 struct xfs_buf *bp; 210 int error; 211 int i; 212 213 *bpp = NULL; 214 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 215 if (unlikely(!bp)) 216 return -ENOMEM; 217 218 /* 219 * We don't want certain flags to appear in b_flags unless they are 220 * specifically set by later operations on the buffer. 221 */ 222 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 223 224 atomic_set(&bp->b_hold, 1); 225 atomic_set(&bp->b_lru_ref, 1); 226 init_completion(&bp->b_iowait); 227 INIT_LIST_HEAD(&bp->b_lru); 228 INIT_LIST_HEAD(&bp->b_list); 229 INIT_LIST_HEAD(&bp->b_li_list); 230 sema_init(&bp->b_sema, 0); /* held, no waiters */ 231 spin_lock_init(&bp->b_lock); 232 bp->b_target = target; 233 bp->b_mount = target->bt_mount; 234 bp->b_flags = flags; 235 236 /* 237 * Set length and io_length to the same value initially. 238 * I/O routines should use io_length, which will be the same in 239 * most cases but may be reset (e.g. XFS recovery). 240 */ 241 error = xfs_buf_get_maps(bp, nmaps); 242 if (error) { 243 kmem_cache_free(xfs_buf_zone, bp); 244 return error; 245 } 246 247 bp->b_bn = map[0].bm_bn; 248 bp->b_length = 0; 249 for (i = 0; i < nmaps; i++) { 250 bp->b_maps[i].bm_bn = map[i].bm_bn; 251 bp->b_maps[i].bm_len = map[i].bm_len; 252 bp->b_length += map[i].bm_len; 253 } 254 255 atomic_set(&bp->b_pin_count, 0); 256 init_waitqueue_head(&bp->b_waiters); 257 258 XFS_STATS_INC(bp->b_mount, xb_create); 259 trace_xfs_buf_init(bp, _RET_IP_); 260 261 *bpp = bp; 262 return 0; 263 } 264 265 /* 266 * Allocate a page array capable of holding a specified number 267 * of pages, and point the page buf at it. 268 */ 269 STATIC int 270 _xfs_buf_get_pages( 271 xfs_buf_t *bp, 272 int page_count) 273 { 274 /* Make sure that we have a page list */ 275 if (bp->b_pages == NULL) { 276 bp->b_page_count = page_count; 277 if (page_count <= XB_PAGES) { 278 bp->b_pages = bp->b_page_array; 279 } else { 280 bp->b_pages = kmem_alloc(sizeof(struct page *) * 281 page_count, KM_NOFS); 282 if (bp->b_pages == NULL) 283 return -ENOMEM; 284 } 285 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 286 } 287 return 0; 288 } 289 290 /* 291 * Frees b_pages if it was allocated. 292 */ 293 STATIC void 294 _xfs_buf_free_pages( 295 xfs_buf_t *bp) 296 { 297 if (bp->b_pages != bp->b_page_array) { 298 kmem_free(bp->b_pages); 299 bp->b_pages = NULL; 300 } 301 } 302 303 /* 304 * Releases the specified buffer. 305 * 306 * The modification state of any associated pages is left unchanged. 307 * The buffer must not be on any hash - use xfs_buf_rele instead for 308 * hashed and refcounted buffers 309 */ 310 static void 311 xfs_buf_free( 312 xfs_buf_t *bp) 313 { 314 trace_xfs_buf_free(bp, _RET_IP_); 315 316 ASSERT(list_empty(&bp->b_lru)); 317 318 if (bp->b_flags & _XBF_PAGES) { 319 uint i; 320 321 if (xfs_buf_is_vmapped(bp)) 322 vm_unmap_ram(bp->b_addr - bp->b_offset, 323 bp->b_page_count); 324 325 for (i = 0; i < bp->b_page_count; i++) { 326 struct page *page = bp->b_pages[i]; 327 328 __free_page(page); 329 } 330 if (current->reclaim_state) 331 current->reclaim_state->reclaimed_slab += 332 bp->b_page_count; 333 } else if (bp->b_flags & _XBF_KMEM) 334 kmem_free(bp->b_addr); 335 _xfs_buf_free_pages(bp); 336 xfs_buf_free_maps(bp); 337 kmem_cache_free(xfs_buf_zone, bp); 338 } 339 340 /* 341 * Allocates all the pages for buffer in question and builds it's page list. 342 */ 343 STATIC int 344 xfs_buf_allocate_memory( 345 xfs_buf_t *bp, 346 uint flags) 347 { 348 size_t size; 349 size_t nbytes, offset; 350 gfp_t gfp_mask = xb_to_gfp(flags); 351 unsigned short page_count, i; 352 xfs_off_t start, end; 353 int error; 354 xfs_km_flags_t kmflag_mask = 0; 355 356 /* 357 * assure zeroed buffer for non-read cases. 358 */ 359 if (!(flags & XBF_READ)) { 360 kmflag_mask |= KM_ZERO; 361 gfp_mask |= __GFP_ZERO; 362 } 363 364 /* 365 * for buffers that are contained within a single page, just allocate 366 * the memory from the heap - there's no need for the complexity of 367 * page arrays to keep allocation down to order 0. 368 */ 369 size = BBTOB(bp->b_length); 370 if (size < PAGE_SIZE) { 371 int align_mask = xfs_buftarg_dma_alignment(bp->b_target); 372 bp->b_addr = kmem_alloc_io(size, align_mask, 373 KM_NOFS | kmflag_mask); 374 if (!bp->b_addr) { 375 /* low memory - use alloc_page loop instead */ 376 goto use_alloc_page; 377 } 378 379 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 380 ((unsigned long)bp->b_addr & PAGE_MASK)) { 381 /* b_addr spans two pages - use alloc_page instead */ 382 kmem_free(bp->b_addr); 383 bp->b_addr = NULL; 384 goto use_alloc_page; 385 } 386 bp->b_offset = offset_in_page(bp->b_addr); 387 bp->b_pages = bp->b_page_array; 388 bp->b_pages[0] = kmem_to_page(bp->b_addr); 389 bp->b_page_count = 1; 390 bp->b_flags |= _XBF_KMEM; 391 return 0; 392 } 393 394 use_alloc_page: 395 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 396 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 397 >> PAGE_SHIFT; 398 page_count = end - start; 399 error = _xfs_buf_get_pages(bp, page_count); 400 if (unlikely(error)) 401 return error; 402 403 offset = bp->b_offset; 404 bp->b_flags |= _XBF_PAGES; 405 406 for (i = 0; i < bp->b_page_count; i++) { 407 struct page *page; 408 uint retries = 0; 409 retry: 410 page = alloc_page(gfp_mask); 411 if (unlikely(page == NULL)) { 412 if (flags & XBF_READ_AHEAD) { 413 bp->b_page_count = i; 414 error = -ENOMEM; 415 goto out_free_pages; 416 } 417 418 /* 419 * This could deadlock. 420 * 421 * But until all the XFS lowlevel code is revamped to 422 * handle buffer allocation failures we can't do much. 423 */ 424 if (!(++retries % 100)) 425 xfs_err(NULL, 426 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", 427 current->comm, current->pid, 428 __func__, gfp_mask); 429 430 XFS_STATS_INC(bp->b_mount, xb_page_retries); 431 congestion_wait(BLK_RW_ASYNC, HZ/50); 432 goto retry; 433 } 434 435 XFS_STATS_INC(bp->b_mount, xb_page_found); 436 437 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 438 size -= nbytes; 439 bp->b_pages[i] = page; 440 offset = 0; 441 } 442 return 0; 443 444 out_free_pages: 445 for (i = 0; i < bp->b_page_count; i++) 446 __free_page(bp->b_pages[i]); 447 bp->b_flags &= ~_XBF_PAGES; 448 return error; 449 } 450 451 /* 452 * Map buffer into kernel address-space if necessary. 453 */ 454 STATIC int 455 _xfs_buf_map_pages( 456 xfs_buf_t *bp, 457 uint flags) 458 { 459 ASSERT(bp->b_flags & _XBF_PAGES); 460 if (bp->b_page_count == 1) { 461 /* A single page buffer is always mappable */ 462 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 463 } else if (flags & XBF_UNMAPPED) { 464 bp->b_addr = NULL; 465 } else { 466 int retried = 0; 467 unsigned nofs_flag; 468 469 /* 470 * vm_map_ram() will allocate auxiliary structures (e.g. 471 * pagetables) with GFP_KERNEL, yet we are likely to be under 472 * GFP_NOFS context here. Hence we need to tell memory reclaim 473 * that we are in such a context via PF_MEMALLOC_NOFS to prevent 474 * memory reclaim re-entering the filesystem here and 475 * potentially deadlocking. 476 */ 477 nofs_flag = memalloc_nofs_save(); 478 do { 479 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 480 -1); 481 if (bp->b_addr) 482 break; 483 vm_unmap_aliases(); 484 } while (retried++ <= 1); 485 memalloc_nofs_restore(nofs_flag); 486 487 if (!bp->b_addr) 488 return -ENOMEM; 489 bp->b_addr += bp->b_offset; 490 } 491 492 return 0; 493 } 494 495 /* 496 * Finding and Reading Buffers 497 */ 498 static int 499 _xfs_buf_obj_cmp( 500 struct rhashtable_compare_arg *arg, 501 const void *obj) 502 { 503 const struct xfs_buf_map *map = arg->key; 504 const struct xfs_buf *bp = obj; 505 506 /* 507 * The key hashing in the lookup path depends on the key being the 508 * first element of the compare_arg, make sure to assert this. 509 */ 510 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 511 512 if (bp->b_bn != map->bm_bn) 513 return 1; 514 515 if (unlikely(bp->b_length != map->bm_len)) { 516 /* 517 * found a block number match. If the range doesn't 518 * match, the only way this is allowed is if the buffer 519 * in the cache is stale and the transaction that made 520 * it stale has not yet committed. i.e. we are 521 * reallocating a busy extent. Skip this buffer and 522 * continue searching for an exact match. 523 */ 524 ASSERT(bp->b_flags & XBF_STALE); 525 return 1; 526 } 527 return 0; 528 } 529 530 static const struct rhashtable_params xfs_buf_hash_params = { 531 .min_size = 32, /* empty AGs have minimal footprint */ 532 .nelem_hint = 16, 533 .key_len = sizeof(xfs_daddr_t), 534 .key_offset = offsetof(struct xfs_buf, b_bn), 535 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 536 .automatic_shrinking = true, 537 .obj_cmpfn = _xfs_buf_obj_cmp, 538 }; 539 540 int 541 xfs_buf_hash_init( 542 struct xfs_perag *pag) 543 { 544 spin_lock_init(&pag->pag_buf_lock); 545 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); 546 } 547 548 void 549 xfs_buf_hash_destroy( 550 struct xfs_perag *pag) 551 { 552 rhashtable_destroy(&pag->pag_buf_hash); 553 } 554 555 /* 556 * Look up a buffer in the buffer cache and return it referenced and locked 557 * in @found_bp. 558 * 559 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the 560 * cache. 561 * 562 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return 563 * -EAGAIN if we fail to lock it. 564 * 565 * Return values are: 566 * -EFSCORRUPTED if have been supplied with an invalid address 567 * -EAGAIN on trylock failure 568 * -ENOENT if we fail to find a match and @new_bp was NULL 569 * 0, with @found_bp: 570 * - @new_bp if we inserted it into the cache 571 * - the buffer we found and locked. 572 */ 573 static int 574 xfs_buf_find( 575 struct xfs_buftarg *btp, 576 struct xfs_buf_map *map, 577 int nmaps, 578 xfs_buf_flags_t flags, 579 struct xfs_buf *new_bp, 580 struct xfs_buf **found_bp) 581 { 582 struct xfs_perag *pag; 583 xfs_buf_t *bp; 584 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 585 xfs_daddr_t eofs; 586 int i; 587 588 *found_bp = NULL; 589 590 for (i = 0; i < nmaps; i++) 591 cmap.bm_len += map[i].bm_len; 592 593 /* Check for IOs smaller than the sector size / not sector aligned */ 594 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize)); 595 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 596 597 /* 598 * Corrupted block numbers can get through to here, unfortunately, so we 599 * have to check that the buffer falls within the filesystem bounds. 600 */ 601 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 602 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) { 603 xfs_alert(btp->bt_mount, 604 "%s: daddr 0x%llx out of range, EOFS 0x%llx", 605 __func__, cmap.bm_bn, eofs); 606 WARN_ON(1); 607 return -EFSCORRUPTED; 608 } 609 610 pag = xfs_perag_get(btp->bt_mount, 611 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); 612 613 spin_lock(&pag->pag_buf_lock); 614 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap, 615 xfs_buf_hash_params); 616 if (bp) { 617 atomic_inc(&bp->b_hold); 618 goto found; 619 } 620 621 /* No match found */ 622 if (!new_bp) { 623 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 624 spin_unlock(&pag->pag_buf_lock); 625 xfs_perag_put(pag); 626 return -ENOENT; 627 } 628 629 /* the buffer keeps the perag reference until it is freed */ 630 new_bp->b_pag = pag; 631 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head, 632 xfs_buf_hash_params); 633 spin_unlock(&pag->pag_buf_lock); 634 *found_bp = new_bp; 635 return 0; 636 637 found: 638 spin_unlock(&pag->pag_buf_lock); 639 xfs_perag_put(pag); 640 641 if (!xfs_buf_trylock(bp)) { 642 if (flags & XBF_TRYLOCK) { 643 xfs_buf_rele(bp); 644 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 645 return -EAGAIN; 646 } 647 xfs_buf_lock(bp); 648 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 649 } 650 651 /* 652 * if the buffer is stale, clear all the external state associated with 653 * it. We need to keep flags such as how we allocated the buffer memory 654 * intact here. 655 */ 656 if (bp->b_flags & XBF_STALE) { 657 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 658 ASSERT(bp->b_iodone == NULL); 659 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 660 bp->b_ops = NULL; 661 } 662 663 trace_xfs_buf_find(bp, flags, _RET_IP_); 664 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 665 *found_bp = bp; 666 return 0; 667 } 668 669 struct xfs_buf * 670 xfs_buf_incore( 671 struct xfs_buftarg *target, 672 xfs_daddr_t blkno, 673 size_t numblks, 674 xfs_buf_flags_t flags) 675 { 676 struct xfs_buf *bp; 677 int error; 678 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks); 679 680 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp); 681 if (error) 682 return NULL; 683 return bp; 684 } 685 686 /* 687 * Assembles a buffer covering the specified range. The code is optimised for 688 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 689 * more hits than misses. 690 */ 691 int 692 xfs_buf_get_map( 693 struct xfs_buftarg *target, 694 struct xfs_buf_map *map, 695 int nmaps, 696 xfs_buf_flags_t flags, 697 struct xfs_buf **bpp) 698 { 699 struct xfs_buf *bp; 700 struct xfs_buf *new_bp; 701 int error = 0; 702 703 *bpp = NULL; 704 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp); 705 if (!error) 706 goto found; 707 if (error != -ENOENT) 708 return error; 709 710 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp); 711 if (error) 712 return error; 713 714 error = xfs_buf_allocate_memory(new_bp, flags); 715 if (error) { 716 xfs_buf_free(new_bp); 717 return error; 718 } 719 720 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp); 721 if (error) { 722 xfs_buf_free(new_bp); 723 return error; 724 } 725 726 if (bp != new_bp) 727 xfs_buf_free(new_bp); 728 729 found: 730 if (!bp->b_addr) { 731 error = _xfs_buf_map_pages(bp, flags); 732 if (unlikely(error)) { 733 xfs_warn_ratelimited(target->bt_mount, 734 "%s: failed to map %u pages", __func__, 735 bp->b_page_count); 736 xfs_buf_relse(bp); 737 return error; 738 } 739 } 740 741 /* 742 * Clear b_error if this is a lookup from a caller that doesn't expect 743 * valid data to be found in the buffer. 744 */ 745 if (!(flags & XBF_READ)) 746 xfs_buf_ioerror(bp, 0); 747 748 XFS_STATS_INC(target->bt_mount, xb_get); 749 trace_xfs_buf_get(bp, flags, _RET_IP_); 750 *bpp = bp; 751 return 0; 752 } 753 754 STATIC int 755 _xfs_buf_read( 756 xfs_buf_t *bp, 757 xfs_buf_flags_t flags) 758 { 759 ASSERT(!(flags & XBF_WRITE)); 760 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 761 762 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 763 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 764 765 return xfs_buf_submit(bp); 766 } 767 768 /* 769 * Reverify a buffer found in cache without an attached ->b_ops. 770 * 771 * If the caller passed an ops structure and the buffer doesn't have ops 772 * assigned, set the ops and use it to verify the contents. If verification 773 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is 774 * already in XBF_DONE state on entry. 775 * 776 * Under normal operations, every in-core buffer is verified on read I/O 777 * completion. There are two scenarios that can lead to in-core buffers without 778 * an assigned ->b_ops. The first is during log recovery of buffers on a V4 779 * filesystem, though these buffers are purged at the end of recovery. The 780 * other is online repair, which intentionally reads with a NULL buffer ops to 781 * run several verifiers across an in-core buffer in order to establish buffer 782 * type. If repair can't establish that, the buffer will be left in memory 783 * with NULL buffer ops. 784 */ 785 int 786 xfs_buf_reverify( 787 struct xfs_buf *bp, 788 const struct xfs_buf_ops *ops) 789 { 790 ASSERT(bp->b_flags & XBF_DONE); 791 ASSERT(bp->b_error == 0); 792 793 if (!ops || bp->b_ops) 794 return 0; 795 796 bp->b_ops = ops; 797 bp->b_ops->verify_read(bp); 798 if (bp->b_error) 799 bp->b_flags &= ~XBF_DONE; 800 return bp->b_error; 801 } 802 803 int 804 xfs_buf_read_map( 805 struct xfs_buftarg *target, 806 struct xfs_buf_map *map, 807 int nmaps, 808 xfs_buf_flags_t flags, 809 struct xfs_buf **bpp, 810 const struct xfs_buf_ops *ops, 811 xfs_failaddr_t fa) 812 { 813 struct xfs_buf *bp; 814 int error; 815 816 flags |= XBF_READ; 817 *bpp = NULL; 818 819 error = xfs_buf_get_map(target, map, nmaps, flags, &bp); 820 if (error) 821 return error; 822 823 trace_xfs_buf_read(bp, flags, _RET_IP_); 824 825 if (!(bp->b_flags & XBF_DONE)) { 826 /* Initiate the buffer read and wait. */ 827 XFS_STATS_INC(target->bt_mount, xb_get_read); 828 bp->b_ops = ops; 829 error = _xfs_buf_read(bp, flags); 830 831 /* Readahead iodone already dropped the buffer, so exit. */ 832 if (flags & XBF_ASYNC) 833 return 0; 834 } else { 835 /* Buffer already read; all we need to do is check it. */ 836 error = xfs_buf_reverify(bp, ops); 837 838 /* Readahead already finished; drop the buffer and exit. */ 839 if (flags & XBF_ASYNC) { 840 xfs_buf_relse(bp); 841 return 0; 842 } 843 844 /* We do not want read in the flags */ 845 bp->b_flags &= ~XBF_READ; 846 ASSERT(bp->b_ops != NULL || ops == NULL); 847 } 848 849 /* 850 * If we've had a read error, then the contents of the buffer are 851 * invalid and should not be used. To ensure that a followup read tries 852 * to pull the buffer from disk again, we clear the XBF_DONE flag and 853 * mark the buffer stale. This ensures that anyone who has a current 854 * reference to the buffer will interpret it's contents correctly and 855 * future cache lookups will also treat it as an empty, uninitialised 856 * buffer. 857 */ 858 if (error) { 859 if (!XFS_FORCED_SHUTDOWN(target->bt_mount)) 860 xfs_buf_ioerror_alert(bp, fa); 861 862 bp->b_flags &= ~XBF_DONE; 863 xfs_buf_stale(bp); 864 xfs_buf_relse(bp); 865 866 /* bad CRC means corrupted metadata */ 867 if (error == -EFSBADCRC) 868 error = -EFSCORRUPTED; 869 return error; 870 } 871 872 *bpp = bp; 873 return 0; 874 } 875 876 /* 877 * If we are not low on memory then do the readahead in a deadlock 878 * safe manner. 879 */ 880 void 881 xfs_buf_readahead_map( 882 struct xfs_buftarg *target, 883 struct xfs_buf_map *map, 884 int nmaps, 885 const struct xfs_buf_ops *ops) 886 { 887 struct xfs_buf *bp; 888 889 if (bdi_read_congested(target->bt_bdev->bd_bdi)) 890 return; 891 892 xfs_buf_read_map(target, map, nmaps, 893 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops, 894 __this_address); 895 } 896 897 /* 898 * Read an uncached buffer from disk. Allocates and returns a locked 899 * buffer containing the disk contents or nothing. 900 */ 901 int 902 xfs_buf_read_uncached( 903 struct xfs_buftarg *target, 904 xfs_daddr_t daddr, 905 size_t numblks, 906 int flags, 907 struct xfs_buf **bpp, 908 const struct xfs_buf_ops *ops) 909 { 910 struct xfs_buf *bp; 911 int error; 912 913 *bpp = NULL; 914 915 error = xfs_buf_get_uncached(target, numblks, flags, &bp); 916 if (error) 917 return error; 918 919 /* set up the buffer for a read IO */ 920 ASSERT(bp->b_map_count == 1); 921 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 922 bp->b_maps[0].bm_bn = daddr; 923 bp->b_flags |= XBF_READ; 924 bp->b_ops = ops; 925 926 xfs_buf_submit(bp); 927 if (bp->b_error) { 928 error = bp->b_error; 929 xfs_buf_relse(bp); 930 return error; 931 } 932 933 *bpp = bp; 934 return 0; 935 } 936 937 int 938 xfs_buf_get_uncached( 939 struct xfs_buftarg *target, 940 size_t numblks, 941 int flags, 942 struct xfs_buf **bpp) 943 { 944 unsigned long page_count; 945 int error, i; 946 struct xfs_buf *bp; 947 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 948 949 *bpp = NULL; 950 951 /* flags might contain irrelevant bits, pass only what we care about */ 952 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp); 953 if (error) 954 goto fail; 955 956 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 957 error = _xfs_buf_get_pages(bp, page_count); 958 if (error) 959 goto fail_free_buf; 960 961 for (i = 0; i < page_count; i++) { 962 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 963 if (!bp->b_pages[i]) { 964 error = -ENOMEM; 965 goto fail_free_mem; 966 } 967 } 968 bp->b_flags |= _XBF_PAGES; 969 970 error = _xfs_buf_map_pages(bp, 0); 971 if (unlikely(error)) { 972 xfs_warn(target->bt_mount, 973 "%s: failed to map pages", __func__); 974 goto fail_free_mem; 975 } 976 977 trace_xfs_buf_get_uncached(bp, _RET_IP_); 978 *bpp = bp; 979 return 0; 980 981 fail_free_mem: 982 while (--i >= 0) 983 __free_page(bp->b_pages[i]); 984 _xfs_buf_free_pages(bp); 985 fail_free_buf: 986 xfs_buf_free_maps(bp); 987 kmem_cache_free(xfs_buf_zone, bp); 988 fail: 989 return error; 990 } 991 992 /* 993 * Increment reference count on buffer, to hold the buffer concurrently 994 * with another thread which may release (free) the buffer asynchronously. 995 * Must hold the buffer already to call this function. 996 */ 997 void 998 xfs_buf_hold( 999 xfs_buf_t *bp) 1000 { 1001 trace_xfs_buf_hold(bp, _RET_IP_); 1002 atomic_inc(&bp->b_hold); 1003 } 1004 1005 /* 1006 * Release a hold on the specified buffer. If the hold count is 1, the buffer is 1007 * placed on LRU or freed (depending on b_lru_ref). 1008 */ 1009 void 1010 xfs_buf_rele( 1011 xfs_buf_t *bp) 1012 { 1013 struct xfs_perag *pag = bp->b_pag; 1014 bool release; 1015 bool freebuf = false; 1016 1017 trace_xfs_buf_rele(bp, _RET_IP_); 1018 1019 if (!pag) { 1020 ASSERT(list_empty(&bp->b_lru)); 1021 if (atomic_dec_and_test(&bp->b_hold)) { 1022 xfs_buf_ioacct_dec(bp); 1023 xfs_buf_free(bp); 1024 } 1025 return; 1026 } 1027 1028 ASSERT(atomic_read(&bp->b_hold) > 0); 1029 1030 /* 1031 * We grab the b_lock here first to serialise racing xfs_buf_rele() 1032 * calls. The pag_buf_lock being taken on the last reference only 1033 * serialises against racing lookups in xfs_buf_find(). IOWs, the second 1034 * to last reference we drop here is not serialised against the last 1035 * reference until we take bp->b_lock. Hence if we don't grab b_lock 1036 * first, the last "release" reference can win the race to the lock and 1037 * free the buffer before the second-to-last reference is processed, 1038 * leading to a use-after-free scenario. 1039 */ 1040 spin_lock(&bp->b_lock); 1041 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); 1042 if (!release) { 1043 /* 1044 * Drop the in-flight state if the buffer is already on the LRU 1045 * and it holds the only reference. This is racy because we 1046 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 1047 * ensures the decrement occurs only once per-buf. 1048 */ 1049 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 1050 __xfs_buf_ioacct_dec(bp); 1051 goto out_unlock; 1052 } 1053 1054 /* the last reference has been dropped ... */ 1055 __xfs_buf_ioacct_dec(bp); 1056 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 1057 /* 1058 * If the buffer is added to the LRU take a new reference to the 1059 * buffer for the LRU and clear the (now stale) dispose list 1060 * state flag 1061 */ 1062 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 1063 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1064 atomic_inc(&bp->b_hold); 1065 } 1066 spin_unlock(&pag->pag_buf_lock); 1067 } else { 1068 /* 1069 * most of the time buffers will already be removed from the 1070 * LRU, so optimise that case by checking for the 1071 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1072 * was on was the disposal list 1073 */ 1074 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1075 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 1076 } else { 1077 ASSERT(list_empty(&bp->b_lru)); 1078 } 1079 1080 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1081 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, 1082 xfs_buf_hash_params); 1083 spin_unlock(&pag->pag_buf_lock); 1084 xfs_perag_put(pag); 1085 freebuf = true; 1086 } 1087 1088 out_unlock: 1089 spin_unlock(&bp->b_lock); 1090 1091 if (freebuf) 1092 xfs_buf_free(bp); 1093 } 1094 1095 1096 /* 1097 * Lock a buffer object, if it is not already locked. 1098 * 1099 * If we come across a stale, pinned, locked buffer, we know that we are 1100 * being asked to lock a buffer that has been reallocated. Because it is 1101 * pinned, we know that the log has not been pushed to disk and hence it 1102 * will still be locked. Rather than continuing to have trylock attempts 1103 * fail until someone else pushes the log, push it ourselves before 1104 * returning. This means that the xfsaild will not get stuck trying 1105 * to push on stale inode buffers. 1106 */ 1107 int 1108 xfs_buf_trylock( 1109 struct xfs_buf *bp) 1110 { 1111 int locked; 1112 1113 locked = down_trylock(&bp->b_sema) == 0; 1114 if (locked) 1115 trace_xfs_buf_trylock(bp, _RET_IP_); 1116 else 1117 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1118 return locked; 1119 } 1120 1121 /* 1122 * Lock a buffer object. 1123 * 1124 * If we come across a stale, pinned, locked buffer, we know that we 1125 * are being asked to lock a buffer that has been reallocated. Because 1126 * it is pinned, we know that the log has not been pushed to disk and 1127 * hence it will still be locked. Rather than sleeping until someone 1128 * else pushes the log, push it ourselves before trying to get the lock. 1129 */ 1130 void 1131 xfs_buf_lock( 1132 struct xfs_buf *bp) 1133 { 1134 trace_xfs_buf_lock(bp, _RET_IP_); 1135 1136 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1137 xfs_log_force(bp->b_mount, 0); 1138 down(&bp->b_sema); 1139 1140 trace_xfs_buf_lock_done(bp, _RET_IP_); 1141 } 1142 1143 void 1144 xfs_buf_unlock( 1145 struct xfs_buf *bp) 1146 { 1147 ASSERT(xfs_buf_islocked(bp)); 1148 1149 up(&bp->b_sema); 1150 trace_xfs_buf_unlock(bp, _RET_IP_); 1151 } 1152 1153 STATIC void 1154 xfs_buf_wait_unpin( 1155 xfs_buf_t *bp) 1156 { 1157 DECLARE_WAITQUEUE (wait, current); 1158 1159 if (atomic_read(&bp->b_pin_count) == 0) 1160 return; 1161 1162 add_wait_queue(&bp->b_waiters, &wait); 1163 for (;;) { 1164 set_current_state(TASK_UNINTERRUPTIBLE); 1165 if (atomic_read(&bp->b_pin_count) == 0) 1166 break; 1167 io_schedule(); 1168 } 1169 remove_wait_queue(&bp->b_waiters, &wait); 1170 set_current_state(TASK_RUNNING); 1171 } 1172 1173 /* 1174 * Buffer Utility Routines 1175 */ 1176 1177 void 1178 xfs_buf_ioend( 1179 struct xfs_buf *bp) 1180 { 1181 bool read = bp->b_flags & XBF_READ; 1182 1183 trace_xfs_buf_iodone(bp, _RET_IP_); 1184 1185 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1186 1187 /* 1188 * Pull in IO completion errors now. We are guaranteed to be running 1189 * single threaded, so we don't need the lock to read b_io_error. 1190 */ 1191 if (!bp->b_error && bp->b_io_error) 1192 xfs_buf_ioerror(bp, bp->b_io_error); 1193 1194 /* Only validate buffers that were read without errors */ 1195 if (read && !bp->b_error && bp->b_ops) { 1196 ASSERT(!bp->b_iodone); 1197 bp->b_ops->verify_read(bp); 1198 } 1199 1200 if (!bp->b_error) { 1201 bp->b_flags &= ~XBF_WRITE_FAIL; 1202 bp->b_flags |= XBF_DONE; 1203 } 1204 1205 if (bp->b_iodone) 1206 (*(bp->b_iodone))(bp); 1207 else if (bp->b_flags & XBF_ASYNC) 1208 xfs_buf_relse(bp); 1209 else 1210 complete(&bp->b_iowait); 1211 } 1212 1213 static void 1214 xfs_buf_ioend_work( 1215 struct work_struct *work) 1216 { 1217 struct xfs_buf *bp = 1218 container_of(work, xfs_buf_t, b_ioend_work); 1219 1220 xfs_buf_ioend(bp); 1221 } 1222 1223 static void 1224 xfs_buf_ioend_async( 1225 struct xfs_buf *bp) 1226 { 1227 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1228 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); 1229 } 1230 1231 void 1232 __xfs_buf_ioerror( 1233 xfs_buf_t *bp, 1234 int error, 1235 xfs_failaddr_t failaddr) 1236 { 1237 ASSERT(error <= 0 && error >= -1000); 1238 bp->b_error = error; 1239 trace_xfs_buf_ioerror(bp, error, failaddr); 1240 } 1241 1242 void 1243 xfs_buf_ioerror_alert( 1244 struct xfs_buf *bp, 1245 xfs_failaddr_t func) 1246 { 1247 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error", 1248 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d", 1249 func, (uint64_t)XFS_BUF_ADDR(bp), 1250 bp->b_length, -bp->b_error); 1251 } 1252 1253 /* 1254 * To simulate an I/O failure, the buffer must be locked and held with at least 1255 * three references. The LRU reference is dropped by the stale call. The buf 1256 * item reference is dropped via ioend processing. The third reference is owned 1257 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC. 1258 */ 1259 void 1260 xfs_buf_ioend_fail( 1261 struct xfs_buf *bp) 1262 { 1263 bp->b_flags &= ~XBF_DONE; 1264 xfs_buf_stale(bp); 1265 xfs_buf_ioerror(bp, -EIO); 1266 xfs_buf_ioend(bp); 1267 } 1268 1269 int 1270 xfs_bwrite( 1271 struct xfs_buf *bp) 1272 { 1273 int error; 1274 1275 ASSERT(xfs_buf_islocked(bp)); 1276 1277 bp->b_flags |= XBF_WRITE; 1278 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1279 XBF_DONE); 1280 1281 error = xfs_buf_submit(bp); 1282 if (error) 1283 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 1284 return error; 1285 } 1286 1287 static void 1288 xfs_buf_bio_end_io( 1289 struct bio *bio) 1290 { 1291 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1292 1293 if (!bio->bi_status && 1294 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) && 1295 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR)) 1296 bio->bi_status = BLK_STS_IOERR; 1297 1298 /* 1299 * don't overwrite existing errors - otherwise we can lose errors on 1300 * buffers that require multiple bios to complete. 1301 */ 1302 if (bio->bi_status) { 1303 int error = blk_status_to_errno(bio->bi_status); 1304 1305 cmpxchg(&bp->b_io_error, 0, error); 1306 } 1307 1308 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1309 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1310 1311 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1312 xfs_buf_ioend_async(bp); 1313 bio_put(bio); 1314 } 1315 1316 static void 1317 xfs_buf_ioapply_map( 1318 struct xfs_buf *bp, 1319 int map, 1320 int *buf_offset, 1321 int *count, 1322 int op) 1323 { 1324 int page_index; 1325 int total_nr_pages = bp->b_page_count; 1326 int nr_pages; 1327 struct bio *bio; 1328 sector_t sector = bp->b_maps[map].bm_bn; 1329 int size; 1330 int offset; 1331 1332 /* skip the pages in the buffer before the start offset */ 1333 page_index = 0; 1334 offset = *buf_offset; 1335 while (offset >= PAGE_SIZE) { 1336 page_index++; 1337 offset -= PAGE_SIZE; 1338 } 1339 1340 /* 1341 * Limit the IO size to the length of the current vector, and update the 1342 * remaining IO count for the next time around. 1343 */ 1344 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1345 *count -= size; 1346 *buf_offset += size; 1347 1348 next_chunk: 1349 atomic_inc(&bp->b_io_remaining); 1350 nr_pages = min(total_nr_pages, BIO_MAX_PAGES); 1351 1352 bio = bio_alloc(GFP_NOIO, nr_pages); 1353 bio_set_dev(bio, bp->b_target->bt_bdev); 1354 bio->bi_iter.bi_sector = sector; 1355 bio->bi_end_io = xfs_buf_bio_end_io; 1356 bio->bi_private = bp; 1357 bio->bi_opf = op; 1358 1359 for (; size && nr_pages; nr_pages--, page_index++) { 1360 int rbytes, nbytes = PAGE_SIZE - offset; 1361 1362 if (nbytes > size) 1363 nbytes = size; 1364 1365 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1366 offset); 1367 if (rbytes < nbytes) 1368 break; 1369 1370 offset = 0; 1371 sector += BTOBB(nbytes); 1372 size -= nbytes; 1373 total_nr_pages--; 1374 } 1375 1376 if (likely(bio->bi_iter.bi_size)) { 1377 if (xfs_buf_is_vmapped(bp)) { 1378 flush_kernel_vmap_range(bp->b_addr, 1379 xfs_buf_vmap_len(bp)); 1380 } 1381 submit_bio(bio); 1382 if (size) 1383 goto next_chunk; 1384 } else { 1385 /* 1386 * This is guaranteed not to be the last io reference count 1387 * because the caller (xfs_buf_submit) holds a count itself. 1388 */ 1389 atomic_dec(&bp->b_io_remaining); 1390 xfs_buf_ioerror(bp, -EIO); 1391 bio_put(bio); 1392 } 1393 1394 } 1395 1396 STATIC void 1397 _xfs_buf_ioapply( 1398 struct xfs_buf *bp) 1399 { 1400 struct blk_plug plug; 1401 int op; 1402 int offset; 1403 int size; 1404 int i; 1405 1406 /* 1407 * Make sure we capture only current IO errors rather than stale errors 1408 * left over from previous use of the buffer (e.g. failed readahead). 1409 */ 1410 bp->b_error = 0; 1411 1412 if (bp->b_flags & XBF_WRITE) { 1413 op = REQ_OP_WRITE; 1414 1415 /* 1416 * Run the write verifier callback function if it exists. If 1417 * this function fails it will mark the buffer with an error and 1418 * the IO should not be dispatched. 1419 */ 1420 if (bp->b_ops) { 1421 bp->b_ops->verify_write(bp); 1422 if (bp->b_error) { 1423 xfs_force_shutdown(bp->b_mount, 1424 SHUTDOWN_CORRUPT_INCORE); 1425 return; 1426 } 1427 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1428 struct xfs_mount *mp = bp->b_mount; 1429 1430 /* 1431 * non-crc filesystems don't attach verifiers during 1432 * log recovery, so don't warn for such filesystems. 1433 */ 1434 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1435 xfs_warn(mp, 1436 "%s: no buf ops on daddr 0x%llx len %d", 1437 __func__, bp->b_bn, bp->b_length); 1438 xfs_hex_dump(bp->b_addr, 1439 XFS_CORRUPTION_DUMP_LEN); 1440 dump_stack(); 1441 } 1442 } 1443 } else { 1444 op = REQ_OP_READ; 1445 if (bp->b_flags & XBF_READ_AHEAD) 1446 op |= REQ_RAHEAD; 1447 } 1448 1449 /* we only use the buffer cache for meta-data */ 1450 op |= REQ_META; 1451 1452 /* 1453 * Walk all the vectors issuing IO on them. Set up the initial offset 1454 * into the buffer and the desired IO size before we start - 1455 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1456 * subsequent call. 1457 */ 1458 offset = bp->b_offset; 1459 size = BBTOB(bp->b_length); 1460 blk_start_plug(&plug); 1461 for (i = 0; i < bp->b_map_count; i++) { 1462 xfs_buf_ioapply_map(bp, i, &offset, &size, op); 1463 if (bp->b_error) 1464 break; 1465 if (size <= 0) 1466 break; /* all done */ 1467 } 1468 blk_finish_plug(&plug); 1469 } 1470 1471 /* 1472 * Wait for I/O completion of a sync buffer and return the I/O error code. 1473 */ 1474 static int 1475 xfs_buf_iowait( 1476 struct xfs_buf *bp) 1477 { 1478 ASSERT(!(bp->b_flags & XBF_ASYNC)); 1479 1480 trace_xfs_buf_iowait(bp, _RET_IP_); 1481 wait_for_completion(&bp->b_iowait); 1482 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1483 1484 return bp->b_error; 1485 } 1486 1487 /* 1488 * Buffer I/O submission path, read or write. Asynchronous submission transfers 1489 * the buffer lock ownership and the current reference to the IO. It is not 1490 * safe to reference the buffer after a call to this function unless the caller 1491 * holds an additional reference itself. 1492 */ 1493 int 1494 __xfs_buf_submit( 1495 struct xfs_buf *bp, 1496 bool wait) 1497 { 1498 int error = 0; 1499 1500 trace_xfs_buf_submit(bp, _RET_IP_); 1501 1502 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1503 1504 /* on shutdown we stale and complete the buffer immediately */ 1505 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) { 1506 xfs_buf_ioend_fail(bp); 1507 return -EIO; 1508 } 1509 1510 /* 1511 * Grab a reference so the buffer does not go away underneath us. For 1512 * async buffers, I/O completion drops the callers reference, which 1513 * could occur before submission returns. 1514 */ 1515 xfs_buf_hold(bp); 1516 1517 if (bp->b_flags & XBF_WRITE) 1518 xfs_buf_wait_unpin(bp); 1519 1520 /* clear the internal error state to avoid spurious errors */ 1521 bp->b_io_error = 0; 1522 1523 /* 1524 * Set the count to 1 initially, this will stop an I/O completion 1525 * callout which happens before we have started all the I/O from calling 1526 * xfs_buf_ioend too early. 1527 */ 1528 atomic_set(&bp->b_io_remaining, 1); 1529 if (bp->b_flags & XBF_ASYNC) 1530 xfs_buf_ioacct_inc(bp); 1531 _xfs_buf_ioapply(bp); 1532 1533 /* 1534 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1535 * reference we took above. If we drop it to zero, run completion so 1536 * that we don't return to the caller with completion still pending. 1537 */ 1538 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1539 if (bp->b_error || !(bp->b_flags & XBF_ASYNC)) 1540 xfs_buf_ioend(bp); 1541 else 1542 xfs_buf_ioend_async(bp); 1543 } 1544 1545 if (wait) 1546 error = xfs_buf_iowait(bp); 1547 1548 /* 1549 * Release the hold that keeps the buffer referenced for the entire 1550 * I/O. Note that if the buffer is async, it is not safe to reference 1551 * after this release. 1552 */ 1553 xfs_buf_rele(bp); 1554 return error; 1555 } 1556 1557 void * 1558 xfs_buf_offset( 1559 struct xfs_buf *bp, 1560 size_t offset) 1561 { 1562 struct page *page; 1563 1564 if (bp->b_addr) 1565 return bp->b_addr + offset; 1566 1567 offset += bp->b_offset; 1568 page = bp->b_pages[offset >> PAGE_SHIFT]; 1569 return page_address(page) + (offset & (PAGE_SIZE-1)); 1570 } 1571 1572 void 1573 xfs_buf_zero( 1574 struct xfs_buf *bp, 1575 size_t boff, 1576 size_t bsize) 1577 { 1578 size_t bend; 1579 1580 bend = boff + bsize; 1581 while (boff < bend) { 1582 struct page *page; 1583 int page_index, page_offset, csize; 1584 1585 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1586 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1587 page = bp->b_pages[page_index]; 1588 csize = min_t(size_t, PAGE_SIZE - page_offset, 1589 BBTOB(bp->b_length) - boff); 1590 1591 ASSERT((csize + page_offset) <= PAGE_SIZE); 1592 1593 memset(page_address(page) + page_offset, 0, csize); 1594 1595 boff += csize; 1596 } 1597 } 1598 1599 /* 1600 * Log a message about and stale a buffer that a caller has decided is corrupt. 1601 * 1602 * This function should be called for the kinds of metadata corruption that 1603 * cannot be detect from a verifier, such as incorrect inter-block relationship 1604 * data. Do /not/ call this function from a verifier function. 1605 * 1606 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will 1607 * be marked stale, but b_error will not be set. The caller is responsible for 1608 * releasing the buffer or fixing it. 1609 */ 1610 void 1611 __xfs_buf_mark_corrupt( 1612 struct xfs_buf *bp, 1613 xfs_failaddr_t fa) 1614 { 1615 ASSERT(bp->b_flags & XBF_DONE); 1616 1617 xfs_buf_corruption_error(bp, fa); 1618 xfs_buf_stale(bp); 1619 } 1620 1621 /* 1622 * Handling of buffer targets (buftargs). 1623 */ 1624 1625 /* 1626 * Wait for any bufs with callbacks that have been submitted but have not yet 1627 * returned. These buffers will have an elevated hold count, so wait on those 1628 * while freeing all the buffers only held by the LRU. 1629 */ 1630 static enum lru_status 1631 xfs_buftarg_wait_rele( 1632 struct list_head *item, 1633 struct list_lru_one *lru, 1634 spinlock_t *lru_lock, 1635 void *arg) 1636 1637 { 1638 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1639 struct list_head *dispose = arg; 1640 1641 if (atomic_read(&bp->b_hold) > 1) { 1642 /* need to wait, so skip it this pass */ 1643 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1644 return LRU_SKIP; 1645 } 1646 if (!spin_trylock(&bp->b_lock)) 1647 return LRU_SKIP; 1648 1649 /* 1650 * clear the LRU reference count so the buffer doesn't get 1651 * ignored in xfs_buf_rele(). 1652 */ 1653 atomic_set(&bp->b_lru_ref, 0); 1654 bp->b_state |= XFS_BSTATE_DISPOSE; 1655 list_lru_isolate_move(lru, item, dispose); 1656 spin_unlock(&bp->b_lock); 1657 return LRU_REMOVED; 1658 } 1659 1660 void 1661 xfs_wait_buftarg( 1662 struct xfs_buftarg *btp) 1663 { 1664 LIST_HEAD(dispose); 1665 int loop = 0; 1666 bool write_fail = false; 1667 1668 /* 1669 * First wait on the buftarg I/O count for all in-flight buffers to be 1670 * released. This is critical as new buffers do not make the LRU until 1671 * they are released. 1672 * 1673 * Next, flush the buffer workqueue to ensure all completion processing 1674 * has finished. Just waiting on buffer locks is not sufficient for 1675 * async IO as the reference count held over IO is not released until 1676 * after the buffer lock is dropped. Hence we need to ensure here that 1677 * all reference counts have been dropped before we start walking the 1678 * LRU list. 1679 */ 1680 while (percpu_counter_sum(&btp->bt_io_count)) 1681 delay(100); 1682 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1683 1684 /* loop until there is nothing left on the lru list. */ 1685 while (list_lru_count(&btp->bt_lru)) { 1686 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1687 &dispose, LONG_MAX); 1688 1689 while (!list_empty(&dispose)) { 1690 struct xfs_buf *bp; 1691 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1692 list_del_init(&bp->b_lru); 1693 if (bp->b_flags & XBF_WRITE_FAIL) { 1694 write_fail = true; 1695 xfs_buf_alert_ratelimited(bp, 1696 "XFS: Corruption Alert", 1697 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", 1698 (long long)bp->b_bn); 1699 } 1700 xfs_buf_rele(bp); 1701 } 1702 if (loop++ != 0) 1703 delay(100); 1704 } 1705 1706 /* 1707 * If one or more failed buffers were freed, that means dirty metadata 1708 * was thrown away. This should only ever happen after I/O completion 1709 * handling has elevated I/O error(s) to permanent failures and shuts 1710 * down the fs. 1711 */ 1712 if (write_fail) { 1713 ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount)); 1714 xfs_alert(btp->bt_mount, 1715 "Please run xfs_repair to determine the extent of the problem."); 1716 } 1717 } 1718 1719 static enum lru_status 1720 xfs_buftarg_isolate( 1721 struct list_head *item, 1722 struct list_lru_one *lru, 1723 spinlock_t *lru_lock, 1724 void *arg) 1725 { 1726 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1727 struct list_head *dispose = arg; 1728 1729 /* 1730 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1731 * If we fail to get the lock, just skip it. 1732 */ 1733 if (!spin_trylock(&bp->b_lock)) 1734 return LRU_SKIP; 1735 /* 1736 * Decrement the b_lru_ref count unless the value is already 1737 * zero. If the value is already zero, we need to reclaim the 1738 * buffer, otherwise it gets another trip through the LRU. 1739 */ 1740 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1741 spin_unlock(&bp->b_lock); 1742 return LRU_ROTATE; 1743 } 1744 1745 bp->b_state |= XFS_BSTATE_DISPOSE; 1746 list_lru_isolate_move(lru, item, dispose); 1747 spin_unlock(&bp->b_lock); 1748 return LRU_REMOVED; 1749 } 1750 1751 static unsigned long 1752 xfs_buftarg_shrink_scan( 1753 struct shrinker *shrink, 1754 struct shrink_control *sc) 1755 { 1756 struct xfs_buftarg *btp = container_of(shrink, 1757 struct xfs_buftarg, bt_shrinker); 1758 LIST_HEAD(dispose); 1759 unsigned long freed; 1760 1761 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1762 xfs_buftarg_isolate, &dispose); 1763 1764 while (!list_empty(&dispose)) { 1765 struct xfs_buf *bp; 1766 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1767 list_del_init(&bp->b_lru); 1768 xfs_buf_rele(bp); 1769 } 1770 1771 return freed; 1772 } 1773 1774 static unsigned long 1775 xfs_buftarg_shrink_count( 1776 struct shrinker *shrink, 1777 struct shrink_control *sc) 1778 { 1779 struct xfs_buftarg *btp = container_of(shrink, 1780 struct xfs_buftarg, bt_shrinker); 1781 return list_lru_shrink_count(&btp->bt_lru, sc); 1782 } 1783 1784 void 1785 xfs_free_buftarg( 1786 struct xfs_buftarg *btp) 1787 { 1788 unregister_shrinker(&btp->bt_shrinker); 1789 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1790 percpu_counter_destroy(&btp->bt_io_count); 1791 list_lru_destroy(&btp->bt_lru); 1792 1793 xfs_blkdev_issue_flush(btp); 1794 1795 kmem_free(btp); 1796 } 1797 1798 int 1799 xfs_setsize_buftarg( 1800 xfs_buftarg_t *btp, 1801 unsigned int sectorsize) 1802 { 1803 /* Set up metadata sector size info */ 1804 btp->bt_meta_sectorsize = sectorsize; 1805 btp->bt_meta_sectormask = sectorsize - 1; 1806 1807 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1808 xfs_warn(btp->bt_mount, 1809 "Cannot set_blocksize to %u on device %pg", 1810 sectorsize, btp->bt_bdev); 1811 return -EINVAL; 1812 } 1813 1814 /* Set up device logical sector size mask */ 1815 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1816 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1817 1818 return 0; 1819 } 1820 1821 /* 1822 * When allocating the initial buffer target we have not yet 1823 * read in the superblock, so don't know what sized sectors 1824 * are being used at this early stage. Play safe. 1825 */ 1826 STATIC int 1827 xfs_setsize_buftarg_early( 1828 xfs_buftarg_t *btp, 1829 struct block_device *bdev) 1830 { 1831 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1832 } 1833 1834 xfs_buftarg_t * 1835 xfs_alloc_buftarg( 1836 struct xfs_mount *mp, 1837 struct block_device *bdev, 1838 struct dax_device *dax_dev) 1839 { 1840 xfs_buftarg_t *btp; 1841 1842 btp = kmem_zalloc(sizeof(*btp), KM_NOFS); 1843 1844 btp->bt_mount = mp; 1845 btp->bt_dev = bdev->bd_dev; 1846 btp->bt_bdev = bdev; 1847 btp->bt_daxdev = dax_dev; 1848 1849 /* 1850 * Buffer IO error rate limiting. Limit it to no more than 10 messages 1851 * per 30 seconds so as to not spam logs too much on repeated errors. 1852 */ 1853 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ, 1854 DEFAULT_RATELIMIT_BURST); 1855 1856 if (xfs_setsize_buftarg_early(btp, bdev)) 1857 goto error_free; 1858 1859 if (list_lru_init(&btp->bt_lru)) 1860 goto error_free; 1861 1862 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 1863 goto error_lru; 1864 1865 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1866 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1867 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1868 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1869 if (register_shrinker(&btp->bt_shrinker)) 1870 goto error_pcpu; 1871 return btp; 1872 1873 error_pcpu: 1874 percpu_counter_destroy(&btp->bt_io_count); 1875 error_lru: 1876 list_lru_destroy(&btp->bt_lru); 1877 error_free: 1878 kmem_free(btp); 1879 return NULL; 1880 } 1881 1882 /* 1883 * Cancel a delayed write list. 1884 * 1885 * Remove each buffer from the list, clear the delwri queue flag and drop the 1886 * associated buffer reference. 1887 */ 1888 void 1889 xfs_buf_delwri_cancel( 1890 struct list_head *list) 1891 { 1892 struct xfs_buf *bp; 1893 1894 while (!list_empty(list)) { 1895 bp = list_first_entry(list, struct xfs_buf, b_list); 1896 1897 xfs_buf_lock(bp); 1898 bp->b_flags &= ~_XBF_DELWRI_Q; 1899 list_del_init(&bp->b_list); 1900 xfs_buf_relse(bp); 1901 } 1902 } 1903 1904 /* 1905 * Add a buffer to the delayed write list. 1906 * 1907 * This queues a buffer for writeout if it hasn't already been. Note that 1908 * neither this routine nor the buffer list submission functions perform 1909 * any internal synchronization. It is expected that the lists are thread-local 1910 * to the callers. 1911 * 1912 * Returns true if we queued up the buffer, or false if it already had 1913 * been on the buffer list. 1914 */ 1915 bool 1916 xfs_buf_delwri_queue( 1917 struct xfs_buf *bp, 1918 struct list_head *list) 1919 { 1920 ASSERT(xfs_buf_islocked(bp)); 1921 ASSERT(!(bp->b_flags & XBF_READ)); 1922 1923 /* 1924 * If the buffer is already marked delwri it already is queued up 1925 * by someone else for imediate writeout. Just ignore it in that 1926 * case. 1927 */ 1928 if (bp->b_flags & _XBF_DELWRI_Q) { 1929 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1930 return false; 1931 } 1932 1933 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1934 1935 /* 1936 * If a buffer gets written out synchronously or marked stale while it 1937 * is on a delwri list we lazily remove it. To do this, the other party 1938 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1939 * It remains referenced and on the list. In a rare corner case it 1940 * might get readded to a delwri list after the synchronous writeout, in 1941 * which case we need just need to re-add the flag here. 1942 */ 1943 bp->b_flags |= _XBF_DELWRI_Q; 1944 if (list_empty(&bp->b_list)) { 1945 atomic_inc(&bp->b_hold); 1946 list_add_tail(&bp->b_list, list); 1947 } 1948 1949 return true; 1950 } 1951 1952 /* 1953 * Compare function is more complex than it needs to be because 1954 * the return value is only 32 bits and we are doing comparisons 1955 * on 64 bit values 1956 */ 1957 static int 1958 xfs_buf_cmp( 1959 void *priv, 1960 struct list_head *a, 1961 struct list_head *b) 1962 { 1963 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1964 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1965 xfs_daddr_t diff; 1966 1967 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1968 if (diff < 0) 1969 return -1; 1970 if (diff > 0) 1971 return 1; 1972 return 0; 1973 } 1974 1975 /* 1976 * Submit buffers for write. If wait_list is specified, the buffers are 1977 * submitted using sync I/O and placed on the wait list such that the caller can 1978 * iowait each buffer. Otherwise async I/O is used and the buffers are released 1979 * at I/O completion time. In either case, buffers remain locked until I/O 1980 * completes and the buffer is released from the queue. 1981 */ 1982 static int 1983 xfs_buf_delwri_submit_buffers( 1984 struct list_head *buffer_list, 1985 struct list_head *wait_list) 1986 { 1987 struct xfs_buf *bp, *n; 1988 int pinned = 0; 1989 struct blk_plug plug; 1990 1991 list_sort(NULL, buffer_list, xfs_buf_cmp); 1992 1993 blk_start_plug(&plug); 1994 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1995 if (!wait_list) { 1996 if (xfs_buf_ispinned(bp)) { 1997 pinned++; 1998 continue; 1999 } 2000 if (!xfs_buf_trylock(bp)) 2001 continue; 2002 } else { 2003 xfs_buf_lock(bp); 2004 } 2005 2006 /* 2007 * Someone else might have written the buffer synchronously or 2008 * marked it stale in the meantime. In that case only the 2009 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 2010 * reference and remove it from the list here. 2011 */ 2012 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 2013 list_del_init(&bp->b_list); 2014 xfs_buf_relse(bp); 2015 continue; 2016 } 2017 2018 trace_xfs_buf_delwri_split(bp, _RET_IP_); 2019 2020 /* 2021 * If we have a wait list, each buffer (and associated delwri 2022 * queue reference) transfers to it and is submitted 2023 * synchronously. Otherwise, drop the buffer from the delwri 2024 * queue and submit async. 2025 */ 2026 bp->b_flags &= ~_XBF_DELWRI_Q; 2027 bp->b_flags |= XBF_WRITE; 2028 if (wait_list) { 2029 bp->b_flags &= ~XBF_ASYNC; 2030 list_move_tail(&bp->b_list, wait_list); 2031 } else { 2032 bp->b_flags |= XBF_ASYNC; 2033 list_del_init(&bp->b_list); 2034 } 2035 __xfs_buf_submit(bp, false); 2036 } 2037 blk_finish_plug(&plug); 2038 2039 return pinned; 2040 } 2041 2042 /* 2043 * Write out a buffer list asynchronously. 2044 * 2045 * This will take the @buffer_list, write all non-locked and non-pinned buffers 2046 * out and not wait for I/O completion on any of the buffers. This interface 2047 * is only safely useable for callers that can track I/O completion by higher 2048 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 2049 * function. 2050 * 2051 * Note: this function will skip buffers it would block on, and in doing so 2052 * leaves them on @buffer_list so they can be retried on a later pass. As such, 2053 * it is up to the caller to ensure that the buffer list is fully submitted or 2054 * cancelled appropriately when they are finished with the list. Failure to 2055 * cancel or resubmit the list until it is empty will result in leaked buffers 2056 * at unmount time. 2057 */ 2058 int 2059 xfs_buf_delwri_submit_nowait( 2060 struct list_head *buffer_list) 2061 { 2062 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 2063 } 2064 2065 /* 2066 * Write out a buffer list synchronously. 2067 * 2068 * This will take the @buffer_list, write all buffers out and wait for I/O 2069 * completion on all of the buffers. @buffer_list is consumed by the function, 2070 * so callers must have some other way of tracking buffers if they require such 2071 * functionality. 2072 */ 2073 int 2074 xfs_buf_delwri_submit( 2075 struct list_head *buffer_list) 2076 { 2077 LIST_HEAD (wait_list); 2078 int error = 0, error2; 2079 struct xfs_buf *bp; 2080 2081 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 2082 2083 /* Wait for IO to complete. */ 2084 while (!list_empty(&wait_list)) { 2085 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 2086 2087 list_del_init(&bp->b_list); 2088 2089 /* 2090 * Wait on the locked buffer, check for errors and unlock and 2091 * release the delwri queue reference. 2092 */ 2093 error2 = xfs_buf_iowait(bp); 2094 xfs_buf_relse(bp); 2095 if (!error) 2096 error = error2; 2097 } 2098 2099 return error; 2100 } 2101 2102 /* 2103 * Push a single buffer on a delwri queue. 2104 * 2105 * The purpose of this function is to submit a single buffer of a delwri queue 2106 * and return with the buffer still on the original queue. The waiting delwri 2107 * buffer submission infrastructure guarantees transfer of the delwri queue 2108 * buffer reference to a temporary wait list. We reuse this infrastructure to 2109 * transfer the buffer back to the original queue. 2110 * 2111 * Note the buffer transitions from the queued state, to the submitted and wait 2112 * listed state and back to the queued state during this call. The buffer 2113 * locking and queue management logic between _delwri_pushbuf() and 2114 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2115 * before returning. 2116 */ 2117 int 2118 xfs_buf_delwri_pushbuf( 2119 struct xfs_buf *bp, 2120 struct list_head *buffer_list) 2121 { 2122 LIST_HEAD (submit_list); 2123 int error; 2124 2125 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2126 2127 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2128 2129 /* 2130 * Isolate the buffer to a new local list so we can submit it for I/O 2131 * independently from the rest of the original list. 2132 */ 2133 xfs_buf_lock(bp); 2134 list_move(&bp->b_list, &submit_list); 2135 xfs_buf_unlock(bp); 2136 2137 /* 2138 * Delwri submission clears the DELWRI_Q buffer flag and returns with 2139 * the buffer on the wait list with the original reference. Rather than 2140 * bounce the buffer from a local wait list back to the original list 2141 * after I/O completion, reuse the original list as the wait list. 2142 */ 2143 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); 2144 2145 /* 2146 * The buffer is now locked, under I/O and wait listed on the original 2147 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and 2148 * return with the buffer unlocked and on the original queue. 2149 */ 2150 error = xfs_buf_iowait(bp); 2151 bp->b_flags |= _XBF_DELWRI_Q; 2152 xfs_buf_unlock(bp); 2153 2154 return error; 2155 } 2156 2157 int __init 2158 xfs_buf_init(void) 2159 { 2160 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0, 2161 SLAB_HWCACHE_ALIGN | 2162 SLAB_RECLAIM_ACCOUNT | 2163 SLAB_MEM_SPREAD, 2164 NULL); 2165 if (!xfs_buf_zone) 2166 goto out; 2167 2168 return 0; 2169 2170 out: 2171 return -ENOMEM; 2172 } 2173 2174 void 2175 xfs_buf_terminate(void) 2176 { 2177 kmem_cache_destroy(xfs_buf_zone); 2178 } 2179 2180 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) 2181 { 2182 /* 2183 * Set the lru reference count to 0 based on the error injection tag. 2184 * This allows userspace to disrupt buffer caching for debug/testing 2185 * purposes. 2186 */ 2187 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) 2188 lru_ref = 0; 2189 2190 atomic_set(&bp->b_lru_ref, lru_ref); 2191 } 2192 2193 /* 2194 * Verify an on-disk magic value against the magic value specified in the 2195 * verifier structure. The verifier magic is in disk byte order so the caller is 2196 * expected to pass the value directly from disk. 2197 */ 2198 bool 2199 xfs_verify_magic( 2200 struct xfs_buf *bp, 2201 __be32 dmagic) 2202 { 2203 struct xfs_mount *mp = bp->b_mount; 2204 int idx; 2205 2206 idx = xfs_sb_version_hascrc(&mp->m_sb); 2207 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])) 2208 return false; 2209 return dmagic == bp->b_ops->magic[idx]; 2210 } 2211 /* 2212 * Verify an on-disk magic value against the magic value specified in the 2213 * verifier structure. The verifier magic is in disk byte order so the caller is 2214 * expected to pass the value directly from disk. 2215 */ 2216 bool 2217 xfs_verify_magic16( 2218 struct xfs_buf *bp, 2219 __be16 dmagic) 2220 { 2221 struct xfs_mount *mp = bp->b_mount; 2222 int idx; 2223 2224 idx = xfs_sb_version_hascrc(&mp->m_sb); 2225 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])) 2226 return false; 2227 return dmagic == bp->b_ops->magic16[idx]; 2228 } 2229