xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 8ec90bfd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_trans.h"
19 #include "xfs_buf_item.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 
23 static kmem_zone_t *xfs_buf_zone;
24 
25 #define xb_to_gfp(flags) \
26 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
27 
28 /*
29  * Locking orders
30  *
31  * xfs_buf_ioacct_inc:
32  * xfs_buf_ioacct_dec:
33  *	b_sema (caller holds)
34  *	  b_lock
35  *
36  * xfs_buf_stale:
37  *	b_sema (caller holds)
38  *	  b_lock
39  *	    lru_lock
40  *
41  * xfs_buf_rele:
42  *	b_lock
43  *	  pag_buf_lock
44  *	    lru_lock
45  *
46  * xfs_buftarg_wait_rele
47  *	lru_lock
48  *	  b_lock (trylock due to inversion)
49  *
50  * xfs_buftarg_isolate
51  *	lru_lock
52  *	  b_lock (trylock due to inversion)
53  */
54 
55 static inline int
56 xfs_buf_is_vmapped(
57 	struct xfs_buf	*bp)
58 {
59 	/*
60 	 * Return true if the buffer is vmapped.
61 	 *
62 	 * b_addr is null if the buffer is not mapped, but the code is clever
63 	 * enough to know it doesn't have to map a single page, so the check has
64 	 * to be both for b_addr and bp->b_page_count > 1.
65 	 */
66 	return bp->b_addr && bp->b_page_count > 1;
67 }
68 
69 static inline int
70 xfs_buf_vmap_len(
71 	struct xfs_buf	*bp)
72 {
73 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
74 }
75 
76 /*
77  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
78  * this buffer. The count is incremented once per buffer (per hold cycle)
79  * because the corresponding decrement is deferred to buffer release. Buffers
80  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
81  * tracking adds unnecessary overhead. This is used for sychronization purposes
82  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
83  * in-flight buffers.
84  *
85  * Buffers that are never released (e.g., superblock, iclog buffers) must set
86  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
87  * never reaches zero and unmount hangs indefinitely.
88  */
89 static inline void
90 xfs_buf_ioacct_inc(
91 	struct xfs_buf	*bp)
92 {
93 	if (bp->b_flags & XBF_NO_IOACCT)
94 		return;
95 
96 	ASSERT(bp->b_flags & XBF_ASYNC);
97 	spin_lock(&bp->b_lock);
98 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
99 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
100 		percpu_counter_inc(&bp->b_target->bt_io_count);
101 	}
102 	spin_unlock(&bp->b_lock);
103 }
104 
105 /*
106  * Clear the in-flight state on a buffer about to be released to the LRU or
107  * freed and unaccount from the buftarg.
108  */
109 static inline void
110 __xfs_buf_ioacct_dec(
111 	struct xfs_buf	*bp)
112 {
113 	lockdep_assert_held(&bp->b_lock);
114 
115 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
116 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
117 		percpu_counter_dec(&bp->b_target->bt_io_count);
118 	}
119 }
120 
121 static inline void
122 xfs_buf_ioacct_dec(
123 	struct xfs_buf	*bp)
124 {
125 	spin_lock(&bp->b_lock);
126 	__xfs_buf_ioacct_dec(bp);
127 	spin_unlock(&bp->b_lock);
128 }
129 
130 /*
131  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132  * b_lru_ref count so that the buffer is freed immediately when the buffer
133  * reference count falls to zero. If the buffer is already on the LRU, we need
134  * to remove the reference that LRU holds on the buffer.
135  *
136  * This prevents build-up of stale buffers on the LRU.
137  */
138 void
139 xfs_buf_stale(
140 	struct xfs_buf	*bp)
141 {
142 	ASSERT(xfs_buf_islocked(bp));
143 
144 	bp->b_flags |= XBF_STALE;
145 
146 	/*
147 	 * Clear the delwri status so that a delwri queue walker will not
148 	 * flush this buffer to disk now that it is stale. The delwri queue has
149 	 * a reference to the buffer, so this is safe to do.
150 	 */
151 	bp->b_flags &= ~_XBF_DELWRI_Q;
152 
153 	/*
154 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
155 	 * could reset b_flags. There is no guarantee that the buffer is
156 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
157 	 * status now to preserve accounting consistency.
158 	 */
159 	spin_lock(&bp->b_lock);
160 	__xfs_buf_ioacct_dec(bp);
161 
162 	atomic_set(&bp->b_lru_ref, 0);
163 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
164 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
165 		atomic_dec(&bp->b_hold);
166 
167 	ASSERT(atomic_read(&bp->b_hold) >= 1);
168 	spin_unlock(&bp->b_lock);
169 }
170 
171 static int
172 xfs_buf_get_maps(
173 	struct xfs_buf		*bp,
174 	int			map_count)
175 {
176 	ASSERT(bp->b_maps == NULL);
177 	bp->b_map_count = map_count;
178 
179 	if (map_count == 1) {
180 		bp->b_maps = &bp->__b_map;
181 		return 0;
182 	}
183 
184 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
185 				KM_NOFS);
186 	if (!bp->b_maps)
187 		return -ENOMEM;
188 	return 0;
189 }
190 
191 /*
192  *	Frees b_pages if it was allocated.
193  */
194 static void
195 xfs_buf_free_maps(
196 	struct xfs_buf	*bp)
197 {
198 	if (bp->b_maps != &bp->__b_map) {
199 		kmem_free(bp->b_maps);
200 		bp->b_maps = NULL;
201 	}
202 }
203 
204 static int
205 _xfs_buf_alloc(
206 	struct xfs_buftarg	*target,
207 	struct xfs_buf_map	*map,
208 	int			nmaps,
209 	xfs_buf_flags_t		flags,
210 	struct xfs_buf		**bpp)
211 {
212 	struct xfs_buf		*bp;
213 	int			error;
214 	int			i;
215 
216 	*bpp = NULL;
217 	bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
218 
219 	/*
220 	 * We don't want certain flags to appear in b_flags unless they are
221 	 * specifically set by later operations on the buffer.
222 	 */
223 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
224 
225 	atomic_set(&bp->b_hold, 1);
226 	atomic_set(&bp->b_lru_ref, 1);
227 	init_completion(&bp->b_iowait);
228 	INIT_LIST_HEAD(&bp->b_lru);
229 	INIT_LIST_HEAD(&bp->b_list);
230 	INIT_LIST_HEAD(&bp->b_li_list);
231 	sema_init(&bp->b_sema, 0); /* held, no waiters */
232 	spin_lock_init(&bp->b_lock);
233 	bp->b_target = target;
234 	bp->b_mount = target->bt_mount;
235 	bp->b_flags = flags;
236 
237 	/*
238 	 * Set length and io_length to the same value initially.
239 	 * I/O routines should use io_length, which will be the same in
240 	 * most cases but may be reset (e.g. XFS recovery).
241 	 */
242 	error = xfs_buf_get_maps(bp, nmaps);
243 	if (error)  {
244 		kmem_cache_free(xfs_buf_zone, bp);
245 		return error;
246 	}
247 
248 	bp->b_bn = map[0].bm_bn;
249 	bp->b_length = 0;
250 	for (i = 0; i < nmaps; i++) {
251 		bp->b_maps[i].bm_bn = map[i].bm_bn;
252 		bp->b_maps[i].bm_len = map[i].bm_len;
253 		bp->b_length += map[i].bm_len;
254 	}
255 
256 	atomic_set(&bp->b_pin_count, 0);
257 	init_waitqueue_head(&bp->b_waiters);
258 
259 	XFS_STATS_INC(bp->b_mount, xb_create);
260 	trace_xfs_buf_init(bp, _RET_IP_);
261 
262 	*bpp = bp;
263 	return 0;
264 }
265 
266 /*
267  *	Allocate a page array capable of holding a specified number
268  *	of pages, and point the page buf at it.
269  */
270 STATIC int
271 _xfs_buf_get_pages(
272 	xfs_buf_t		*bp,
273 	int			page_count)
274 {
275 	/* Make sure that we have a page list */
276 	if (bp->b_pages == NULL) {
277 		bp->b_page_count = page_count;
278 		if (page_count <= XB_PAGES) {
279 			bp->b_pages = bp->b_page_array;
280 		} else {
281 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
282 						 page_count, KM_NOFS);
283 			if (bp->b_pages == NULL)
284 				return -ENOMEM;
285 		}
286 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
287 	}
288 	return 0;
289 }
290 
291 /*
292  *	Frees b_pages if it was allocated.
293  */
294 STATIC void
295 _xfs_buf_free_pages(
296 	xfs_buf_t	*bp)
297 {
298 	if (bp->b_pages != bp->b_page_array) {
299 		kmem_free(bp->b_pages);
300 		bp->b_pages = NULL;
301 	}
302 }
303 
304 /*
305  *	Releases the specified buffer.
306  *
307  * 	The modification state of any associated pages is left unchanged.
308  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
309  * 	hashed and refcounted buffers
310  */
311 static void
312 xfs_buf_free(
313 	xfs_buf_t		*bp)
314 {
315 	trace_xfs_buf_free(bp, _RET_IP_);
316 
317 	ASSERT(list_empty(&bp->b_lru));
318 
319 	if (bp->b_flags & _XBF_PAGES) {
320 		uint		i;
321 
322 		if (xfs_buf_is_vmapped(bp))
323 			vm_unmap_ram(bp->b_addr - bp->b_offset,
324 					bp->b_page_count);
325 
326 		for (i = 0; i < bp->b_page_count; i++) {
327 			struct page	*page = bp->b_pages[i];
328 
329 			__free_page(page);
330 		}
331 		if (current->reclaim_state)
332 			current->reclaim_state->reclaimed_slab +=
333 							bp->b_page_count;
334 	} else if (bp->b_flags & _XBF_KMEM)
335 		kmem_free(bp->b_addr);
336 	_xfs_buf_free_pages(bp);
337 	xfs_buf_free_maps(bp);
338 	kmem_cache_free(xfs_buf_zone, bp);
339 }
340 
341 /*
342  * Allocates all the pages for buffer in question and builds it's page list.
343  */
344 STATIC int
345 xfs_buf_allocate_memory(
346 	xfs_buf_t		*bp,
347 	uint			flags)
348 {
349 	size_t			size;
350 	size_t			nbytes, offset;
351 	gfp_t			gfp_mask = xb_to_gfp(flags);
352 	unsigned short		page_count, i;
353 	xfs_off_t		start, end;
354 	int			error;
355 	xfs_km_flags_t		kmflag_mask = 0;
356 
357 	/*
358 	 * assure zeroed buffer for non-read cases.
359 	 */
360 	if (!(flags & XBF_READ)) {
361 		kmflag_mask |= KM_ZERO;
362 		gfp_mask |= __GFP_ZERO;
363 	}
364 
365 	/*
366 	 * for buffers that are contained within a single page, just allocate
367 	 * the memory from the heap - there's no need for the complexity of
368 	 * page arrays to keep allocation down to order 0.
369 	 */
370 	size = BBTOB(bp->b_length);
371 	if (size < PAGE_SIZE) {
372 		int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
373 		bp->b_addr = kmem_alloc_io(size, align_mask,
374 					   KM_NOFS | kmflag_mask);
375 		if (!bp->b_addr) {
376 			/* low memory - use alloc_page loop instead */
377 			goto use_alloc_page;
378 		}
379 
380 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
381 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
382 			/* b_addr spans two pages - use alloc_page instead */
383 			kmem_free(bp->b_addr);
384 			bp->b_addr = NULL;
385 			goto use_alloc_page;
386 		}
387 		bp->b_offset = offset_in_page(bp->b_addr);
388 		bp->b_pages = bp->b_page_array;
389 		bp->b_pages[0] = kmem_to_page(bp->b_addr);
390 		bp->b_page_count = 1;
391 		bp->b_flags |= _XBF_KMEM;
392 		return 0;
393 	}
394 
395 use_alloc_page:
396 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
397 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
398 								>> PAGE_SHIFT;
399 	page_count = end - start;
400 	error = _xfs_buf_get_pages(bp, page_count);
401 	if (unlikely(error))
402 		return error;
403 
404 	offset = bp->b_offset;
405 	bp->b_flags |= _XBF_PAGES;
406 
407 	for (i = 0; i < bp->b_page_count; i++) {
408 		struct page	*page;
409 		uint		retries = 0;
410 retry:
411 		page = alloc_page(gfp_mask);
412 		if (unlikely(page == NULL)) {
413 			if (flags & XBF_READ_AHEAD) {
414 				bp->b_page_count = i;
415 				error = -ENOMEM;
416 				goto out_free_pages;
417 			}
418 
419 			/*
420 			 * This could deadlock.
421 			 *
422 			 * But until all the XFS lowlevel code is revamped to
423 			 * handle buffer allocation failures we can't do much.
424 			 */
425 			if (!(++retries % 100))
426 				xfs_err(NULL,
427 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
428 					current->comm, current->pid,
429 					__func__, gfp_mask);
430 
431 			XFS_STATS_INC(bp->b_mount, xb_page_retries);
432 			congestion_wait(BLK_RW_ASYNC, HZ/50);
433 			goto retry;
434 		}
435 
436 		XFS_STATS_INC(bp->b_mount, xb_page_found);
437 
438 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
439 		size -= nbytes;
440 		bp->b_pages[i] = page;
441 		offset = 0;
442 	}
443 	return 0;
444 
445 out_free_pages:
446 	for (i = 0; i < bp->b_page_count; i++)
447 		__free_page(bp->b_pages[i]);
448 	bp->b_flags &= ~_XBF_PAGES;
449 	return error;
450 }
451 
452 /*
453  *	Map buffer into kernel address-space if necessary.
454  */
455 STATIC int
456 _xfs_buf_map_pages(
457 	xfs_buf_t		*bp,
458 	uint			flags)
459 {
460 	ASSERT(bp->b_flags & _XBF_PAGES);
461 	if (bp->b_page_count == 1) {
462 		/* A single page buffer is always mappable */
463 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
464 	} else if (flags & XBF_UNMAPPED) {
465 		bp->b_addr = NULL;
466 	} else {
467 		int retried = 0;
468 		unsigned nofs_flag;
469 
470 		/*
471 		 * vm_map_ram() will allocate auxiliary structures (e.g.
472 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
473 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
474 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
475 		 * memory reclaim re-entering the filesystem here and
476 		 * potentially deadlocking.
477 		 */
478 		nofs_flag = memalloc_nofs_save();
479 		do {
480 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
481 						-1);
482 			if (bp->b_addr)
483 				break;
484 			vm_unmap_aliases();
485 		} while (retried++ <= 1);
486 		memalloc_nofs_restore(nofs_flag);
487 
488 		if (!bp->b_addr)
489 			return -ENOMEM;
490 		bp->b_addr += bp->b_offset;
491 	}
492 
493 	return 0;
494 }
495 
496 /*
497  *	Finding and Reading Buffers
498  */
499 static int
500 _xfs_buf_obj_cmp(
501 	struct rhashtable_compare_arg	*arg,
502 	const void			*obj)
503 {
504 	const struct xfs_buf_map	*map = arg->key;
505 	const struct xfs_buf		*bp = obj;
506 
507 	/*
508 	 * The key hashing in the lookup path depends on the key being the
509 	 * first element of the compare_arg, make sure to assert this.
510 	 */
511 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
512 
513 	if (bp->b_bn != map->bm_bn)
514 		return 1;
515 
516 	if (unlikely(bp->b_length != map->bm_len)) {
517 		/*
518 		 * found a block number match. If the range doesn't
519 		 * match, the only way this is allowed is if the buffer
520 		 * in the cache is stale and the transaction that made
521 		 * it stale has not yet committed. i.e. we are
522 		 * reallocating a busy extent. Skip this buffer and
523 		 * continue searching for an exact match.
524 		 */
525 		ASSERT(bp->b_flags & XBF_STALE);
526 		return 1;
527 	}
528 	return 0;
529 }
530 
531 static const struct rhashtable_params xfs_buf_hash_params = {
532 	.min_size		= 32,	/* empty AGs have minimal footprint */
533 	.nelem_hint		= 16,
534 	.key_len		= sizeof(xfs_daddr_t),
535 	.key_offset		= offsetof(struct xfs_buf, b_bn),
536 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
537 	.automatic_shrinking	= true,
538 	.obj_cmpfn		= _xfs_buf_obj_cmp,
539 };
540 
541 int
542 xfs_buf_hash_init(
543 	struct xfs_perag	*pag)
544 {
545 	spin_lock_init(&pag->pag_buf_lock);
546 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
547 }
548 
549 void
550 xfs_buf_hash_destroy(
551 	struct xfs_perag	*pag)
552 {
553 	rhashtable_destroy(&pag->pag_buf_hash);
554 }
555 
556 /*
557  * Look up a buffer in the buffer cache and return it referenced and locked
558  * in @found_bp.
559  *
560  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
561  * cache.
562  *
563  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
564  * -EAGAIN if we fail to lock it.
565  *
566  * Return values are:
567  *	-EFSCORRUPTED if have been supplied with an invalid address
568  *	-EAGAIN on trylock failure
569  *	-ENOENT if we fail to find a match and @new_bp was NULL
570  *	0, with @found_bp:
571  *		- @new_bp if we inserted it into the cache
572  *		- the buffer we found and locked.
573  */
574 static int
575 xfs_buf_find(
576 	struct xfs_buftarg	*btp,
577 	struct xfs_buf_map	*map,
578 	int			nmaps,
579 	xfs_buf_flags_t		flags,
580 	struct xfs_buf		*new_bp,
581 	struct xfs_buf		**found_bp)
582 {
583 	struct xfs_perag	*pag;
584 	xfs_buf_t		*bp;
585 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
586 	xfs_daddr_t		eofs;
587 	int			i;
588 
589 	*found_bp = NULL;
590 
591 	for (i = 0; i < nmaps; i++)
592 		cmap.bm_len += map[i].bm_len;
593 
594 	/* Check for IOs smaller than the sector size / not sector aligned */
595 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
596 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
597 
598 	/*
599 	 * Corrupted block numbers can get through to here, unfortunately, so we
600 	 * have to check that the buffer falls within the filesystem bounds.
601 	 */
602 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
603 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
604 		xfs_alert(btp->bt_mount,
605 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
606 			  __func__, cmap.bm_bn, eofs);
607 		WARN_ON(1);
608 		return -EFSCORRUPTED;
609 	}
610 
611 	pag = xfs_perag_get(btp->bt_mount,
612 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
613 
614 	spin_lock(&pag->pag_buf_lock);
615 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
616 				    xfs_buf_hash_params);
617 	if (bp) {
618 		atomic_inc(&bp->b_hold);
619 		goto found;
620 	}
621 
622 	/* No match found */
623 	if (!new_bp) {
624 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
625 		spin_unlock(&pag->pag_buf_lock);
626 		xfs_perag_put(pag);
627 		return -ENOENT;
628 	}
629 
630 	/* the buffer keeps the perag reference until it is freed */
631 	new_bp->b_pag = pag;
632 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
633 			       xfs_buf_hash_params);
634 	spin_unlock(&pag->pag_buf_lock);
635 	*found_bp = new_bp;
636 	return 0;
637 
638 found:
639 	spin_unlock(&pag->pag_buf_lock);
640 	xfs_perag_put(pag);
641 
642 	if (!xfs_buf_trylock(bp)) {
643 		if (flags & XBF_TRYLOCK) {
644 			xfs_buf_rele(bp);
645 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
646 			return -EAGAIN;
647 		}
648 		xfs_buf_lock(bp);
649 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
650 	}
651 
652 	/*
653 	 * if the buffer is stale, clear all the external state associated with
654 	 * it. We need to keep flags such as how we allocated the buffer memory
655 	 * intact here.
656 	 */
657 	if (bp->b_flags & XBF_STALE) {
658 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
659 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
660 		bp->b_ops = NULL;
661 	}
662 
663 	trace_xfs_buf_find(bp, flags, _RET_IP_);
664 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
665 	*found_bp = bp;
666 	return 0;
667 }
668 
669 struct xfs_buf *
670 xfs_buf_incore(
671 	struct xfs_buftarg	*target,
672 	xfs_daddr_t		blkno,
673 	size_t			numblks,
674 	xfs_buf_flags_t		flags)
675 {
676 	struct xfs_buf		*bp;
677 	int			error;
678 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
679 
680 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
681 	if (error)
682 		return NULL;
683 	return bp;
684 }
685 
686 /*
687  * Assembles a buffer covering the specified range. The code is optimised for
688  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
689  * more hits than misses.
690  */
691 int
692 xfs_buf_get_map(
693 	struct xfs_buftarg	*target,
694 	struct xfs_buf_map	*map,
695 	int			nmaps,
696 	xfs_buf_flags_t		flags,
697 	struct xfs_buf		**bpp)
698 {
699 	struct xfs_buf		*bp;
700 	struct xfs_buf		*new_bp;
701 	int			error = 0;
702 
703 	*bpp = NULL;
704 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
705 	if (!error)
706 		goto found;
707 	if (error != -ENOENT)
708 		return error;
709 
710 	error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
711 	if (error)
712 		return error;
713 
714 	error = xfs_buf_allocate_memory(new_bp, flags);
715 	if (error) {
716 		xfs_buf_free(new_bp);
717 		return error;
718 	}
719 
720 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
721 	if (error) {
722 		xfs_buf_free(new_bp);
723 		return error;
724 	}
725 
726 	if (bp != new_bp)
727 		xfs_buf_free(new_bp);
728 
729 found:
730 	if (!bp->b_addr) {
731 		error = _xfs_buf_map_pages(bp, flags);
732 		if (unlikely(error)) {
733 			xfs_warn_ratelimited(target->bt_mount,
734 				"%s: failed to map %u pages", __func__,
735 				bp->b_page_count);
736 			xfs_buf_relse(bp);
737 			return error;
738 		}
739 	}
740 
741 	/*
742 	 * Clear b_error if this is a lookup from a caller that doesn't expect
743 	 * valid data to be found in the buffer.
744 	 */
745 	if (!(flags & XBF_READ))
746 		xfs_buf_ioerror(bp, 0);
747 
748 	XFS_STATS_INC(target->bt_mount, xb_get);
749 	trace_xfs_buf_get(bp, flags, _RET_IP_);
750 	*bpp = bp;
751 	return 0;
752 }
753 
754 STATIC int
755 _xfs_buf_read(
756 	xfs_buf_t		*bp,
757 	xfs_buf_flags_t		flags)
758 {
759 	ASSERT(!(flags & XBF_WRITE));
760 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
761 
762 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
763 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
764 
765 	return xfs_buf_submit(bp);
766 }
767 
768 /*
769  * Reverify a buffer found in cache without an attached ->b_ops.
770  *
771  * If the caller passed an ops structure and the buffer doesn't have ops
772  * assigned, set the ops and use it to verify the contents. If verification
773  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
774  * already in XBF_DONE state on entry.
775  *
776  * Under normal operations, every in-core buffer is verified on read I/O
777  * completion. There are two scenarios that can lead to in-core buffers without
778  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
779  * filesystem, though these buffers are purged at the end of recovery. The
780  * other is online repair, which intentionally reads with a NULL buffer ops to
781  * run several verifiers across an in-core buffer in order to establish buffer
782  * type.  If repair can't establish that, the buffer will be left in memory
783  * with NULL buffer ops.
784  */
785 int
786 xfs_buf_reverify(
787 	struct xfs_buf		*bp,
788 	const struct xfs_buf_ops *ops)
789 {
790 	ASSERT(bp->b_flags & XBF_DONE);
791 	ASSERT(bp->b_error == 0);
792 
793 	if (!ops || bp->b_ops)
794 		return 0;
795 
796 	bp->b_ops = ops;
797 	bp->b_ops->verify_read(bp);
798 	if (bp->b_error)
799 		bp->b_flags &= ~XBF_DONE;
800 	return bp->b_error;
801 }
802 
803 int
804 xfs_buf_read_map(
805 	struct xfs_buftarg	*target,
806 	struct xfs_buf_map	*map,
807 	int			nmaps,
808 	xfs_buf_flags_t		flags,
809 	struct xfs_buf		**bpp,
810 	const struct xfs_buf_ops *ops,
811 	xfs_failaddr_t		fa)
812 {
813 	struct xfs_buf		*bp;
814 	int			error;
815 
816 	flags |= XBF_READ;
817 	*bpp = NULL;
818 
819 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
820 	if (error)
821 		return error;
822 
823 	trace_xfs_buf_read(bp, flags, _RET_IP_);
824 
825 	if (!(bp->b_flags & XBF_DONE)) {
826 		/* Initiate the buffer read and wait. */
827 		XFS_STATS_INC(target->bt_mount, xb_get_read);
828 		bp->b_ops = ops;
829 		error = _xfs_buf_read(bp, flags);
830 
831 		/* Readahead iodone already dropped the buffer, so exit. */
832 		if (flags & XBF_ASYNC)
833 			return 0;
834 	} else {
835 		/* Buffer already read; all we need to do is check it. */
836 		error = xfs_buf_reverify(bp, ops);
837 
838 		/* Readahead already finished; drop the buffer and exit. */
839 		if (flags & XBF_ASYNC) {
840 			xfs_buf_relse(bp);
841 			return 0;
842 		}
843 
844 		/* We do not want read in the flags */
845 		bp->b_flags &= ~XBF_READ;
846 		ASSERT(bp->b_ops != NULL || ops == NULL);
847 	}
848 
849 	/*
850 	 * If we've had a read error, then the contents of the buffer are
851 	 * invalid and should not be used. To ensure that a followup read tries
852 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
853 	 * mark the buffer stale. This ensures that anyone who has a current
854 	 * reference to the buffer will interpret it's contents correctly and
855 	 * future cache lookups will also treat it as an empty, uninitialised
856 	 * buffer.
857 	 */
858 	if (error) {
859 		if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
860 			xfs_buf_ioerror_alert(bp, fa);
861 
862 		bp->b_flags &= ~XBF_DONE;
863 		xfs_buf_stale(bp);
864 		xfs_buf_relse(bp);
865 
866 		/* bad CRC means corrupted metadata */
867 		if (error == -EFSBADCRC)
868 			error = -EFSCORRUPTED;
869 		return error;
870 	}
871 
872 	*bpp = bp;
873 	return 0;
874 }
875 
876 /*
877  *	If we are not low on memory then do the readahead in a deadlock
878  *	safe manner.
879  */
880 void
881 xfs_buf_readahead_map(
882 	struct xfs_buftarg	*target,
883 	struct xfs_buf_map	*map,
884 	int			nmaps,
885 	const struct xfs_buf_ops *ops)
886 {
887 	struct xfs_buf		*bp;
888 
889 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
890 		return;
891 
892 	xfs_buf_read_map(target, map, nmaps,
893 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
894 		     __this_address);
895 }
896 
897 /*
898  * Read an uncached buffer from disk. Allocates and returns a locked
899  * buffer containing the disk contents or nothing.
900  */
901 int
902 xfs_buf_read_uncached(
903 	struct xfs_buftarg	*target,
904 	xfs_daddr_t		daddr,
905 	size_t			numblks,
906 	int			flags,
907 	struct xfs_buf		**bpp,
908 	const struct xfs_buf_ops *ops)
909 {
910 	struct xfs_buf		*bp;
911 	int			error;
912 
913 	*bpp = NULL;
914 
915 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
916 	if (error)
917 		return error;
918 
919 	/* set up the buffer for a read IO */
920 	ASSERT(bp->b_map_count == 1);
921 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
922 	bp->b_maps[0].bm_bn = daddr;
923 	bp->b_flags |= XBF_READ;
924 	bp->b_ops = ops;
925 
926 	xfs_buf_submit(bp);
927 	if (bp->b_error) {
928 		error = bp->b_error;
929 		xfs_buf_relse(bp);
930 		return error;
931 	}
932 
933 	*bpp = bp;
934 	return 0;
935 }
936 
937 int
938 xfs_buf_get_uncached(
939 	struct xfs_buftarg	*target,
940 	size_t			numblks,
941 	int			flags,
942 	struct xfs_buf		**bpp)
943 {
944 	unsigned long		page_count;
945 	int			error, i;
946 	struct xfs_buf		*bp;
947 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
948 
949 	*bpp = NULL;
950 
951 	/* flags might contain irrelevant bits, pass only what we care about */
952 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
953 	if (error)
954 		goto fail;
955 
956 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
957 	error = _xfs_buf_get_pages(bp, page_count);
958 	if (error)
959 		goto fail_free_buf;
960 
961 	for (i = 0; i < page_count; i++) {
962 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
963 		if (!bp->b_pages[i]) {
964 			error = -ENOMEM;
965 			goto fail_free_mem;
966 		}
967 	}
968 	bp->b_flags |= _XBF_PAGES;
969 
970 	error = _xfs_buf_map_pages(bp, 0);
971 	if (unlikely(error)) {
972 		xfs_warn(target->bt_mount,
973 			"%s: failed to map pages", __func__);
974 		goto fail_free_mem;
975 	}
976 
977 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
978 	*bpp = bp;
979 	return 0;
980 
981  fail_free_mem:
982 	while (--i >= 0)
983 		__free_page(bp->b_pages[i]);
984 	_xfs_buf_free_pages(bp);
985  fail_free_buf:
986 	xfs_buf_free_maps(bp);
987 	kmem_cache_free(xfs_buf_zone, bp);
988  fail:
989 	return error;
990 }
991 
992 /*
993  *	Increment reference count on buffer, to hold the buffer concurrently
994  *	with another thread which may release (free) the buffer asynchronously.
995  *	Must hold the buffer already to call this function.
996  */
997 void
998 xfs_buf_hold(
999 	xfs_buf_t		*bp)
1000 {
1001 	trace_xfs_buf_hold(bp, _RET_IP_);
1002 	atomic_inc(&bp->b_hold);
1003 }
1004 
1005 /*
1006  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1007  * placed on LRU or freed (depending on b_lru_ref).
1008  */
1009 void
1010 xfs_buf_rele(
1011 	xfs_buf_t		*bp)
1012 {
1013 	struct xfs_perag	*pag = bp->b_pag;
1014 	bool			release;
1015 	bool			freebuf = false;
1016 
1017 	trace_xfs_buf_rele(bp, _RET_IP_);
1018 
1019 	if (!pag) {
1020 		ASSERT(list_empty(&bp->b_lru));
1021 		if (atomic_dec_and_test(&bp->b_hold)) {
1022 			xfs_buf_ioacct_dec(bp);
1023 			xfs_buf_free(bp);
1024 		}
1025 		return;
1026 	}
1027 
1028 	ASSERT(atomic_read(&bp->b_hold) > 0);
1029 
1030 	/*
1031 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1032 	 * calls. The pag_buf_lock being taken on the last reference only
1033 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1034 	 * to last reference we drop here is not serialised against the last
1035 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1036 	 * first, the last "release" reference can win the race to the lock and
1037 	 * free the buffer before the second-to-last reference is processed,
1038 	 * leading to a use-after-free scenario.
1039 	 */
1040 	spin_lock(&bp->b_lock);
1041 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1042 	if (!release) {
1043 		/*
1044 		 * Drop the in-flight state if the buffer is already on the LRU
1045 		 * and it holds the only reference. This is racy because we
1046 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1047 		 * ensures the decrement occurs only once per-buf.
1048 		 */
1049 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1050 			__xfs_buf_ioacct_dec(bp);
1051 		goto out_unlock;
1052 	}
1053 
1054 	/* the last reference has been dropped ... */
1055 	__xfs_buf_ioacct_dec(bp);
1056 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1057 		/*
1058 		 * If the buffer is added to the LRU take a new reference to the
1059 		 * buffer for the LRU and clear the (now stale) dispose list
1060 		 * state flag
1061 		 */
1062 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1063 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1064 			atomic_inc(&bp->b_hold);
1065 		}
1066 		spin_unlock(&pag->pag_buf_lock);
1067 	} else {
1068 		/*
1069 		 * most of the time buffers will already be removed from the
1070 		 * LRU, so optimise that case by checking for the
1071 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1072 		 * was on was the disposal list
1073 		 */
1074 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1075 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1076 		} else {
1077 			ASSERT(list_empty(&bp->b_lru));
1078 		}
1079 
1080 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1081 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1082 				       xfs_buf_hash_params);
1083 		spin_unlock(&pag->pag_buf_lock);
1084 		xfs_perag_put(pag);
1085 		freebuf = true;
1086 	}
1087 
1088 out_unlock:
1089 	spin_unlock(&bp->b_lock);
1090 
1091 	if (freebuf)
1092 		xfs_buf_free(bp);
1093 }
1094 
1095 
1096 /*
1097  *	Lock a buffer object, if it is not already locked.
1098  *
1099  *	If we come across a stale, pinned, locked buffer, we know that we are
1100  *	being asked to lock a buffer that has been reallocated. Because it is
1101  *	pinned, we know that the log has not been pushed to disk and hence it
1102  *	will still be locked.  Rather than continuing to have trylock attempts
1103  *	fail until someone else pushes the log, push it ourselves before
1104  *	returning.  This means that the xfsaild will not get stuck trying
1105  *	to push on stale inode buffers.
1106  */
1107 int
1108 xfs_buf_trylock(
1109 	struct xfs_buf		*bp)
1110 {
1111 	int			locked;
1112 
1113 	locked = down_trylock(&bp->b_sema) == 0;
1114 	if (locked)
1115 		trace_xfs_buf_trylock(bp, _RET_IP_);
1116 	else
1117 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1118 	return locked;
1119 }
1120 
1121 /*
1122  *	Lock a buffer object.
1123  *
1124  *	If we come across a stale, pinned, locked buffer, we know that we
1125  *	are being asked to lock a buffer that has been reallocated. Because
1126  *	it is pinned, we know that the log has not been pushed to disk and
1127  *	hence it will still be locked. Rather than sleeping until someone
1128  *	else pushes the log, push it ourselves before trying to get the lock.
1129  */
1130 void
1131 xfs_buf_lock(
1132 	struct xfs_buf		*bp)
1133 {
1134 	trace_xfs_buf_lock(bp, _RET_IP_);
1135 
1136 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1137 		xfs_log_force(bp->b_mount, 0);
1138 	down(&bp->b_sema);
1139 
1140 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1141 }
1142 
1143 void
1144 xfs_buf_unlock(
1145 	struct xfs_buf		*bp)
1146 {
1147 	ASSERT(xfs_buf_islocked(bp));
1148 
1149 	up(&bp->b_sema);
1150 	trace_xfs_buf_unlock(bp, _RET_IP_);
1151 }
1152 
1153 STATIC void
1154 xfs_buf_wait_unpin(
1155 	xfs_buf_t		*bp)
1156 {
1157 	DECLARE_WAITQUEUE	(wait, current);
1158 
1159 	if (atomic_read(&bp->b_pin_count) == 0)
1160 		return;
1161 
1162 	add_wait_queue(&bp->b_waiters, &wait);
1163 	for (;;) {
1164 		set_current_state(TASK_UNINTERRUPTIBLE);
1165 		if (atomic_read(&bp->b_pin_count) == 0)
1166 			break;
1167 		io_schedule();
1168 	}
1169 	remove_wait_queue(&bp->b_waiters, &wait);
1170 	set_current_state(TASK_RUNNING);
1171 }
1172 
1173 /*
1174  *	Buffer Utility Routines
1175  */
1176 
1177 void
1178 xfs_buf_ioend(
1179 	struct xfs_buf	*bp)
1180 {
1181 	bool		read = bp->b_flags & XBF_READ;
1182 
1183 	trace_xfs_buf_iodone(bp, _RET_IP_);
1184 
1185 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1186 
1187 	/*
1188 	 * Pull in IO completion errors now. We are guaranteed to be running
1189 	 * single threaded, so we don't need the lock to read b_io_error.
1190 	 */
1191 	if (!bp->b_error && bp->b_io_error)
1192 		xfs_buf_ioerror(bp, bp->b_io_error);
1193 
1194 	if (read) {
1195 		if (!bp->b_error && bp->b_ops)
1196 			bp->b_ops->verify_read(bp);
1197 		if (!bp->b_error)
1198 			bp->b_flags |= XBF_DONE;
1199 		xfs_buf_ioend_finish(bp);
1200 		return;
1201 	}
1202 
1203 	if (!bp->b_error) {
1204 		bp->b_flags &= ~XBF_WRITE_FAIL;
1205 		bp->b_flags |= XBF_DONE;
1206 	}
1207 
1208 	/*
1209 	 * If this is a log recovery buffer, we aren't doing transactional IO
1210 	 * yet so we need to let it handle IO completions.
1211 	 */
1212 	if (bp->b_flags & _XBF_LOGRECOVERY) {
1213 		xlog_recover_iodone(bp);
1214 		return;
1215 	}
1216 
1217 	if (bp->b_flags & _XBF_INODES) {
1218 		xfs_buf_inode_iodone(bp);
1219 		return;
1220 	}
1221 
1222 	if (bp->b_flags & _XBF_DQUOTS) {
1223 		xfs_buf_dquot_iodone(bp);
1224 		return;
1225 	}
1226 	xfs_buf_iodone(bp);
1227 }
1228 
1229 static void
1230 xfs_buf_ioend_work(
1231 	struct work_struct	*work)
1232 {
1233 	struct xfs_buf		*bp =
1234 		container_of(work, xfs_buf_t, b_ioend_work);
1235 
1236 	xfs_buf_ioend(bp);
1237 }
1238 
1239 static void
1240 xfs_buf_ioend_async(
1241 	struct xfs_buf	*bp)
1242 {
1243 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1244 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1245 }
1246 
1247 void
1248 __xfs_buf_ioerror(
1249 	xfs_buf_t		*bp,
1250 	int			error,
1251 	xfs_failaddr_t		failaddr)
1252 {
1253 	ASSERT(error <= 0 && error >= -1000);
1254 	bp->b_error = error;
1255 	trace_xfs_buf_ioerror(bp, error, failaddr);
1256 }
1257 
1258 void
1259 xfs_buf_ioerror_alert(
1260 	struct xfs_buf		*bp,
1261 	xfs_failaddr_t		func)
1262 {
1263 	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1264 		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1265 				  func, (uint64_t)XFS_BUF_ADDR(bp),
1266 				  bp->b_length, -bp->b_error);
1267 }
1268 
1269 /*
1270  * To simulate an I/O failure, the buffer must be locked and held with at least
1271  * three references. The LRU reference is dropped by the stale call. The buf
1272  * item reference is dropped via ioend processing. The third reference is owned
1273  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1274  */
1275 void
1276 xfs_buf_ioend_fail(
1277 	struct xfs_buf	*bp)
1278 {
1279 	bp->b_flags &= ~XBF_DONE;
1280 	xfs_buf_stale(bp);
1281 	xfs_buf_ioerror(bp, -EIO);
1282 	xfs_buf_ioend(bp);
1283 }
1284 
1285 int
1286 xfs_bwrite(
1287 	struct xfs_buf		*bp)
1288 {
1289 	int			error;
1290 
1291 	ASSERT(xfs_buf_islocked(bp));
1292 
1293 	bp->b_flags |= XBF_WRITE;
1294 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1295 			 XBF_DONE);
1296 
1297 	error = xfs_buf_submit(bp);
1298 	if (error)
1299 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1300 	return error;
1301 }
1302 
1303 static void
1304 xfs_buf_bio_end_io(
1305 	struct bio		*bio)
1306 {
1307 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1308 
1309 	if (!bio->bi_status &&
1310 	    (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1311 	    XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1312 		bio->bi_status = BLK_STS_IOERR;
1313 
1314 	/*
1315 	 * don't overwrite existing errors - otherwise we can lose errors on
1316 	 * buffers that require multiple bios to complete.
1317 	 */
1318 	if (bio->bi_status) {
1319 		int error = blk_status_to_errno(bio->bi_status);
1320 
1321 		cmpxchg(&bp->b_io_error, 0, error);
1322 	}
1323 
1324 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1325 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1326 
1327 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1328 		xfs_buf_ioend_async(bp);
1329 	bio_put(bio);
1330 }
1331 
1332 static void
1333 xfs_buf_ioapply_map(
1334 	struct xfs_buf	*bp,
1335 	int		map,
1336 	int		*buf_offset,
1337 	int		*count,
1338 	int		op)
1339 {
1340 	int		page_index;
1341 	int		total_nr_pages = bp->b_page_count;
1342 	int		nr_pages;
1343 	struct bio	*bio;
1344 	sector_t	sector =  bp->b_maps[map].bm_bn;
1345 	int		size;
1346 	int		offset;
1347 
1348 	/* skip the pages in the buffer before the start offset */
1349 	page_index = 0;
1350 	offset = *buf_offset;
1351 	while (offset >= PAGE_SIZE) {
1352 		page_index++;
1353 		offset -= PAGE_SIZE;
1354 	}
1355 
1356 	/*
1357 	 * Limit the IO size to the length of the current vector, and update the
1358 	 * remaining IO count for the next time around.
1359 	 */
1360 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1361 	*count -= size;
1362 	*buf_offset += size;
1363 
1364 next_chunk:
1365 	atomic_inc(&bp->b_io_remaining);
1366 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1367 
1368 	bio = bio_alloc(GFP_NOIO, nr_pages);
1369 	bio_set_dev(bio, bp->b_target->bt_bdev);
1370 	bio->bi_iter.bi_sector = sector;
1371 	bio->bi_end_io = xfs_buf_bio_end_io;
1372 	bio->bi_private = bp;
1373 	bio->bi_opf = op;
1374 
1375 	for (; size && nr_pages; nr_pages--, page_index++) {
1376 		int	rbytes, nbytes = PAGE_SIZE - offset;
1377 
1378 		if (nbytes > size)
1379 			nbytes = size;
1380 
1381 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1382 				      offset);
1383 		if (rbytes < nbytes)
1384 			break;
1385 
1386 		offset = 0;
1387 		sector += BTOBB(nbytes);
1388 		size -= nbytes;
1389 		total_nr_pages--;
1390 	}
1391 
1392 	if (likely(bio->bi_iter.bi_size)) {
1393 		if (xfs_buf_is_vmapped(bp)) {
1394 			flush_kernel_vmap_range(bp->b_addr,
1395 						xfs_buf_vmap_len(bp));
1396 		}
1397 		submit_bio(bio);
1398 		if (size)
1399 			goto next_chunk;
1400 	} else {
1401 		/*
1402 		 * This is guaranteed not to be the last io reference count
1403 		 * because the caller (xfs_buf_submit) holds a count itself.
1404 		 */
1405 		atomic_dec(&bp->b_io_remaining);
1406 		xfs_buf_ioerror(bp, -EIO);
1407 		bio_put(bio);
1408 	}
1409 
1410 }
1411 
1412 STATIC void
1413 _xfs_buf_ioapply(
1414 	struct xfs_buf	*bp)
1415 {
1416 	struct blk_plug	plug;
1417 	int		op;
1418 	int		offset;
1419 	int		size;
1420 	int		i;
1421 
1422 	/*
1423 	 * Make sure we capture only current IO errors rather than stale errors
1424 	 * left over from previous use of the buffer (e.g. failed readahead).
1425 	 */
1426 	bp->b_error = 0;
1427 
1428 	if (bp->b_flags & XBF_WRITE) {
1429 		op = REQ_OP_WRITE;
1430 
1431 		/*
1432 		 * Run the write verifier callback function if it exists. If
1433 		 * this function fails it will mark the buffer with an error and
1434 		 * the IO should not be dispatched.
1435 		 */
1436 		if (bp->b_ops) {
1437 			bp->b_ops->verify_write(bp);
1438 			if (bp->b_error) {
1439 				xfs_force_shutdown(bp->b_mount,
1440 						   SHUTDOWN_CORRUPT_INCORE);
1441 				return;
1442 			}
1443 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1444 			struct xfs_mount *mp = bp->b_mount;
1445 
1446 			/*
1447 			 * non-crc filesystems don't attach verifiers during
1448 			 * log recovery, so don't warn for such filesystems.
1449 			 */
1450 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1451 				xfs_warn(mp,
1452 					"%s: no buf ops on daddr 0x%llx len %d",
1453 					__func__, bp->b_bn, bp->b_length);
1454 				xfs_hex_dump(bp->b_addr,
1455 						XFS_CORRUPTION_DUMP_LEN);
1456 				dump_stack();
1457 			}
1458 		}
1459 	} else {
1460 		op = REQ_OP_READ;
1461 		if (bp->b_flags & XBF_READ_AHEAD)
1462 			op |= REQ_RAHEAD;
1463 	}
1464 
1465 	/* we only use the buffer cache for meta-data */
1466 	op |= REQ_META;
1467 
1468 	/*
1469 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1470 	 * into the buffer and the desired IO size before we start -
1471 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1472 	 * subsequent call.
1473 	 */
1474 	offset = bp->b_offset;
1475 	size = BBTOB(bp->b_length);
1476 	blk_start_plug(&plug);
1477 	for (i = 0; i < bp->b_map_count; i++) {
1478 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1479 		if (bp->b_error)
1480 			break;
1481 		if (size <= 0)
1482 			break;	/* all done */
1483 	}
1484 	blk_finish_plug(&plug);
1485 }
1486 
1487 /*
1488  * Wait for I/O completion of a sync buffer and return the I/O error code.
1489  */
1490 static int
1491 xfs_buf_iowait(
1492 	struct xfs_buf	*bp)
1493 {
1494 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1495 
1496 	trace_xfs_buf_iowait(bp, _RET_IP_);
1497 	wait_for_completion(&bp->b_iowait);
1498 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1499 
1500 	return bp->b_error;
1501 }
1502 
1503 /*
1504  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1505  * the buffer lock ownership and the current reference to the IO. It is not
1506  * safe to reference the buffer after a call to this function unless the caller
1507  * holds an additional reference itself.
1508  */
1509 int
1510 __xfs_buf_submit(
1511 	struct xfs_buf	*bp,
1512 	bool		wait)
1513 {
1514 	int		error = 0;
1515 
1516 	trace_xfs_buf_submit(bp, _RET_IP_);
1517 
1518 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1519 
1520 	/* on shutdown we stale and complete the buffer immediately */
1521 	if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1522 		xfs_buf_ioend_fail(bp);
1523 		return -EIO;
1524 	}
1525 
1526 	/*
1527 	 * Grab a reference so the buffer does not go away underneath us. For
1528 	 * async buffers, I/O completion drops the callers reference, which
1529 	 * could occur before submission returns.
1530 	 */
1531 	xfs_buf_hold(bp);
1532 
1533 	if (bp->b_flags & XBF_WRITE)
1534 		xfs_buf_wait_unpin(bp);
1535 
1536 	/* clear the internal error state to avoid spurious errors */
1537 	bp->b_io_error = 0;
1538 
1539 	/*
1540 	 * Set the count to 1 initially, this will stop an I/O completion
1541 	 * callout which happens before we have started all the I/O from calling
1542 	 * xfs_buf_ioend too early.
1543 	 */
1544 	atomic_set(&bp->b_io_remaining, 1);
1545 	if (bp->b_flags & XBF_ASYNC)
1546 		xfs_buf_ioacct_inc(bp);
1547 	_xfs_buf_ioapply(bp);
1548 
1549 	/*
1550 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1551 	 * reference we took above. If we drop it to zero, run completion so
1552 	 * that we don't return to the caller with completion still pending.
1553 	 */
1554 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1555 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1556 			xfs_buf_ioend(bp);
1557 		else
1558 			xfs_buf_ioend_async(bp);
1559 	}
1560 
1561 	if (wait)
1562 		error = xfs_buf_iowait(bp);
1563 
1564 	/*
1565 	 * Release the hold that keeps the buffer referenced for the entire
1566 	 * I/O. Note that if the buffer is async, it is not safe to reference
1567 	 * after this release.
1568 	 */
1569 	xfs_buf_rele(bp);
1570 	return error;
1571 }
1572 
1573 void *
1574 xfs_buf_offset(
1575 	struct xfs_buf		*bp,
1576 	size_t			offset)
1577 {
1578 	struct page		*page;
1579 
1580 	if (bp->b_addr)
1581 		return bp->b_addr + offset;
1582 
1583 	offset += bp->b_offset;
1584 	page = bp->b_pages[offset >> PAGE_SHIFT];
1585 	return page_address(page) + (offset & (PAGE_SIZE-1));
1586 }
1587 
1588 void
1589 xfs_buf_zero(
1590 	struct xfs_buf		*bp,
1591 	size_t			boff,
1592 	size_t			bsize)
1593 {
1594 	size_t			bend;
1595 
1596 	bend = boff + bsize;
1597 	while (boff < bend) {
1598 		struct page	*page;
1599 		int		page_index, page_offset, csize;
1600 
1601 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1602 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1603 		page = bp->b_pages[page_index];
1604 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1605 				      BBTOB(bp->b_length) - boff);
1606 
1607 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1608 
1609 		memset(page_address(page) + page_offset, 0, csize);
1610 
1611 		boff += csize;
1612 	}
1613 }
1614 
1615 /*
1616  * Log a message about and stale a buffer that a caller has decided is corrupt.
1617  *
1618  * This function should be called for the kinds of metadata corruption that
1619  * cannot be detect from a verifier, such as incorrect inter-block relationship
1620  * data.  Do /not/ call this function from a verifier function.
1621  *
1622  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1623  * be marked stale, but b_error will not be set.  The caller is responsible for
1624  * releasing the buffer or fixing it.
1625  */
1626 void
1627 __xfs_buf_mark_corrupt(
1628 	struct xfs_buf		*bp,
1629 	xfs_failaddr_t		fa)
1630 {
1631 	ASSERT(bp->b_flags & XBF_DONE);
1632 
1633 	xfs_buf_corruption_error(bp, fa);
1634 	xfs_buf_stale(bp);
1635 }
1636 
1637 /*
1638  *	Handling of buffer targets (buftargs).
1639  */
1640 
1641 /*
1642  * Wait for any bufs with callbacks that have been submitted but have not yet
1643  * returned. These buffers will have an elevated hold count, so wait on those
1644  * while freeing all the buffers only held by the LRU.
1645  */
1646 static enum lru_status
1647 xfs_buftarg_wait_rele(
1648 	struct list_head	*item,
1649 	struct list_lru_one	*lru,
1650 	spinlock_t		*lru_lock,
1651 	void			*arg)
1652 
1653 {
1654 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1655 	struct list_head	*dispose = arg;
1656 
1657 	if (atomic_read(&bp->b_hold) > 1) {
1658 		/* need to wait, so skip it this pass */
1659 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1660 		return LRU_SKIP;
1661 	}
1662 	if (!spin_trylock(&bp->b_lock))
1663 		return LRU_SKIP;
1664 
1665 	/*
1666 	 * clear the LRU reference count so the buffer doesn't get
1667 	 * ignored in xfs_buf_rele().
1668 	 */
1669 	atomic_set(&bp->b_lru_ref, 0);
1670 	bp->b_state |= XFS_BSTATE_DISPOSE;
1671 	list_lru_isolate_move(lru, item, dispose);
1672 	spin_unlock(&bp->b_lock);
1673 	return LRU_REMOVED;
1674 }
1675 
1676 void
1677 xfs_wait_buftarg(
1678 	struct xfs_buftarg	*btp)
1679 {
1680 	LIST_HEAD(dispose);
1681 	int			loop = 0;
1682 	bool			write_fail = false;
1683 
1684 	/*
1685 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1686 	 * released. This is critical as new buffers do not make the LRU until
1687 	 * they are released.
1688 	 *
1689 	 * Next, flush the buffer workqueue to ensure all completion processing
1690 	 * has finished. Just waiting on buffer locks is not sufficient for
1691 	 * async IO as the reference count held over IO is not released until
1692 	 * after the buffer lock is dropped. Hence we need to ensure here that
1693 	 * all reference counts have been dropped before we start walking the
1694 	 * LRU list.
1695 	 */
1696 	while (percpu_counter_sum(&btp->bt_io_count))
1697 		delay(100);
1698 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1699 
1700 	/* loop until there is nothing left on the lru list. */
1701 	while (list_lru_count(&btp->bt_lru)) {
1702 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1703 			      &dispose, LONG_MAX);
1704 
1705 		while (!list_empty(&dispose)) {
1706 			struct xfs_buf *bp;
1707 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1708 			list_del_init(&bp->b_lru);
1709 			if (bp->b_flags & XBF_WRITE_FAIL) {
1710 				write_fail = true;
1711 				xfs_buf_alert_ratelimited(bp,
1712 					"XFS: Corruption Alert",
1713 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1714 					(long long)bp->b_bn);
1715 			}
1716 			xfs_buf_rele(bp);
1717 		}
1718 		if (loop++ != 0)
1719 			delay(100);
1720 	}
1721 
1722 	/*
1723 	 * If one or more failed buffers were freed, that means dirty metadata
1724 	 * was thrown away. This should only ever happen after I/O completion
1725 	 * handling has elevated I/O error(s) to permanent failures and shuts
1726 	 * down the fs.
1727 	 */
1728 	if (write_fail) {
1729 		ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount));
1730 		xfs_alert(btp->bt_mount,
1731 	      "Please run xfs_repair to determine the extent of the problem.");
1732 	}
1733 }
1734 
1735 static enum lru_status
1736 xfs_buftarg_isolate(
1737 	struct list_head	*item,
1738 	struct list_lru_one	*lru,
1739 	spinlock_t		*lru_lock,
1740 	void			*arg)
1741 {
1742 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1743 	struct list_head	*dispose = arg;
1744 
1745 	/*
1746 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1747 	 * If we fail to get the lock, just skip it.
1748 	 */
1749 	if (!spin_trylock(&bp->b_lock))
1750 		return LRU_SKIP;
1751 	/*
1752 	 * Decrement the b_lru_ref count unless the value is already
1753 	 * zero. If the value is already zero, we need to reclaim the
1754 	 * buffer, otherwise it gets another trip through the LRU.
1755 	 */
1756 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1757 		spin_unlock(&bp->b_lock);
1758 		return LRU_ROTATE;
1759 	}
1760 
1761 	bp->b_state |= XFS_BSTATE_DISPOSE;
1762 	list_lru_isolate_move(lru, item, dispose);
1763 	spin_unlock(&bp->b_lock);
1764 	return LRU_REMOVED;
1765 }
1766 
1767 static unsigned long
1768 xfs_buftarg_shrink_scan(
1769 	struct shrinker		*shrink,
1770 	struct shrink_control	*sc)
1771 {
1772 	struct xfs_buftarg	*btp = container_of(shrink,
1773 					struct xfs_buftarg, bt_shrinker);
1774 	LIST_HEAD(dispose);
1775 	unsigned long		freed;
1776 
1777 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1778 				     xfs_buftarg_isolate, &dispose);
1779 
1780 	while (!list_empty(&dispose)) {
1781 		struct xfs_buf *bp;
1782 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1783 		list_del_init(&bp->b_lru);
1784 		xfs_buf_rele(bp);
1785 	}
1786 
1787 	return freed;
1788 }
1789 
1790 static unsigned long
1791 xfs_buftarg_shrink_count(
1792 	struct shrinker		*shrink,
1793 	struct shrink_control	*sc)
1794 {
1795 	struct xfs_buftarg	*btp = container_of(shrink,
1796 					struct xfs_buftarg, bt_shrinker);
1797 	return list_lru_shrink_count(&btp->bt_lru, sc);
1798 }
1799 
1800 void
1801 xfs_free_buftarg(
1802 	struct xfs_buftarg	*btp)
1803 {
1804 	unregister_shrinker(&btp->bt_shrinker);
1805 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1806 	percpu_counter_destroy(&btp->bt_io_count);
1807 	list_lru_destroy(&btp->bt_lru);
1808 
1809 	xfs_blkdev_issue_flush(btp);
1810 
1811 	kmem_free(btp);
1812 }
1813 
1814 int
1815 xfs_setsize_buftarg(
1816 	xfs_buftarg_t		*btp,
1817 	unsigned int		sectorsize)
1818 {
1819 	/* Set up metadata sector size info */
1820 	btp->bt_meta_sectorsize = sectorsize;
1821 	btp->bt_meta_sectormask = sectorsize - 1;
1822 
1823 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1824 		xfs_warn(btp->bt_mount,
1825 			"Cannot set_blocksize to %u on device %pg",
1826 			sectorsize, btp->bt_bdev);
1827 		return -EINVAL;
1828 	}
1829 
1830 	/* Set up device logical sector size mask */
1831 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1832 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1833 
1834 	return 0;
1835 }
1836 
1837 /*
1838  * When allocating the initial buffer target we have not yet
1839  * read in the superblock, so don't know what sized sectors
1840  * are being used at this early stage.  Play safe.
1841  */
1842 STATIC int
1843 xfs_setsize_buftarg_early(
1844 	xfs_buftarg_t		*btp,
1845 	struct block_device	*bdev)
1846 {
1847 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1848 }
1849 
1850 xfs_buftarg_t *
1851 xfs_alloc_buftarg(
1852 	struct xfs_mount	*mp,
1853 	struct block_device	*bdev,
1854 	struct dax_device	*dax_dev)
1855 {
1856 	xfs_buftarg_t		*btp;
1857 
1858 	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1859 
1860 	btp->bt_mount = mp;
1861 	btp->bt_dev =  bdev->bd_dev;
1862 	btp->bt_bdev = bdev;
1863 	btp->bt_daxdev = dax_dev;
1864 
1865 	/*
1866 	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1867 	 * per 30 seconds so as to not spam logs too much on repeated errors.
1868 	 */
1869 	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1870 			     DEFAULT_RATELIMIT_BURST);
1871 
1872 	if (xfs_setsize_buftarg_early(btp, bdev))
1873 		goto error_free;
1874 
1875 	if (list_lru_init(&btp->bt_lru))
1876 		goto error_free;
1877 
1878 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1879 		goto error_lru;
1880 
1881 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1882 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1883 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1884 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1885 	if (register_shrinker(&btp->bt_shrinker))
1886 		goto error_pcpu;
1887 	return btp;
1888 
1889 error_pcpu:
1890 	percpu_counter_destroy(&btp->bt_io_count);
1891 error_lru:
1892 	list_lru_destroy(&btp->bt_lru);
1893 error_free:
1894 	kmem_free(btp);
1895 	return NULL;
1896 }
1897 
1898 /*
1899  * Cancel a delayed write list.
1900  *
1901  * Remove each buffer from the list, clear the delwri queue flag and drop the
1902  * associated buffer reference.
1903  */
1904 void
1905 xfs_buf_delwri_cancel(
1906 	struct list_head	*list)
1907 {
1908 	struct xfs_buf		*bp;
1909 
1910 	while (!list_empty(list)) {
1911 		bp = list_first_entry(list, struct xfs_buf, b_list);
1912 
1913 		xfs_buf_lock(bp);
1914 		bp->b_flags &= ~_XBF_DELWRI_Q;
1915 		list_del_init(&bp->b_list);
1916 		xfs_buf_relse(bp);
1917 	}
1918 }
1919 
1920 /*
1921  * Add a buffer to the delayed write list.
1922  *
1923  * This queues a buffer for writeout if it hasn't already been.  Note that
1924  * neither this routine nor the buffer list submission functions perform
1925  * any internal synchronization.  It is expected that the lists are thread-local
1926  * to the callers.
1927  *
1928  * Returns true if we queued up the buffer, or false if it already had
1929  * been on the buffer list.
1930  */
1931 bool
1932 xfs_buf_delwri_queue(
1933 	struct xfs_buf		*bp,
1934 	struct list_head	*list)
1935 {
1936 	ASSERT(xfs_buf_islocked(bp));
1937 	ASSERT(!(bp->b_flags & XBF_READ));
1938 
1939 	/*
1940 	 * If the buffer is already marked delwri it already is queued up
1941 	 * by someone else for imediate writeout.  Just ignore it in that
1942 	 * case.
1943 	 */
1944 	if (bp->b_flags & _XBF_DELWRI_Q) {
1945 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1946 		return false;
1947 	}
1948 
1949 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1950 
1951 	/*
1952 	 * If a buffer gets written out synchronously or marked stale while it
1953 	 * is on a delwri list we lazily remove it. To do this, the other party
1954 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1955 	 * It remains referenced and on the list.  In a rare corner case it
1956 	 * might get readded to a delwri list after the synchronous writeout, in
1957 	 * which case we need just need to re-add the flag here.
1958 	 */
1959 	bp->b_flags |= _XBF_DELWRI_Q;
1960 	if (list_empty(&bp->b_list)) {
1961 		atomic_inc(&bp->b_hold);
1962 		list_add_tail(&bp->b_list, list);
1963 	}
1964 
1965 	return true;
1966 }
1967 
1968 /*
1969  * Compare function is more complex than it needs to be because
1970  * the return value is only 32 bits and we are doing comparisons
1971  * on 64 bit values
1972  */
1973 static int
1974 xfs_buf_cmp(
1975 	void		*priv,
1976 	struct list_head *a,
1977 	struct list_head *b)
1978 {
1979 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1980 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1981 	xfs_daddr_t		diff;
1982 
1983 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1984 	if (diff < 0)
1985 		return -1;
1986 	if (diff > 0)
1987 		return 1;
1988 	return 0;
1989 }
1990 
1991 /*
1992  * Submit buffers for write. If wait_list is specified, the buffers are
1993  * submitted using sync I/O and placed on the wait list such that the caller can
1994  * iowait each buffer. Otherwise async I/O is used and the buffers are released
1995  * at I/O completion time. In either case, buffers remain locked until I/O
1996  * completes and the buffer is released from the queue.
1997  */
1998 static int
1999 xfs_buf_delwri_submit_buffers(
2000 	struct list_head	*buffer_list,
2001 	struct list_head	*wait_list)
2002 {
2003 	struct xfs_buf		*bp, *n;
2004 	int			pinned = 0;
2005 	struct blk_plug		plug;
2006 
2007 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2008 
2009 	blk_start_plug(&plug);
2010 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2011 		if (!wait_list) {
2012 			if (xfs_buf_ispinned(bp)) {
2013 				pinned++;
2014 				continue;
2015 			}
2016 			if (!xfs_buf_trylock(bp))
2017 				continue;
2018 		} else {
2019 			xfs_buf_lock(bp);
2020 		}
2021 
2022 		/*
2023 		 * Someone else might have written the buffer synchronously or
2024 		 * marked it stale in the meantime.  In that case only the
2025 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2026 		 * reference and remove it from the list here.
2027 		 */
2028 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2029 			list_del_init(&bp->b_list);
2030 			xfs_buf_relse(bp);
2031 			continue;
2032 		}
2033 
2034 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2035 
2036 		/*
2037 		 * If we have a wait list, each buffer (and associated delwri
2038 		 * queue reference) transfers to it and is submitted
2039 		 * synchronously. Otherwise, drop the buffer from the delwri
2040 		 * queue and submit async.
2041 		 */
2042 		bp->b_flags &= ~_XBF_DELWRI_Q;
2043 		bp->b_flags |= XBF_WRITE;
2044 		if (wait_list) {
2045 			bp->b_flags &= ~XBF_ASYNC;
2046 			list_move_tail(&bp->b_list, wait_list);
2047 		} else {
2048 			bp->b_flags |= XBF_ASYNC;
2049 			list_del_init(&bp->b_list);
2050 		}
2051 		__xfs_buf_submit(bp, false);
2052 	}
2053 	blk_finish_plug(&plug);
2054 
2055 	return pinned;
2056 }
2057 
2058 /*
2059  * Write out a buffer list asynchronously.
2060  *
2061  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2062  * out and not wait for I/O completion on any of the buffers.  This interface
2063  * is only safely useable for callers that can track I/O completion by higher
2064  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2065  * function.
2066  *
2067  * Note: this function will skip buffers it would block on, and in doing so
2068  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2069  * it is up to the caller to ensure that the buffer list is fully submitted or
2070  * cancelled appropriately when they are finished with the list. Failure to
2071  * cancel or resubmit the list until it is empty will result in leaked buffers
2072  * at unmount time.
2073  */
2074 int
2075 xfs_buf_delwri_submit_nowait(
2076 	struct list_head	*buffer_list)
2077 {
2078 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2079 }
2080 
2081 /*
2082  * Write out a buffer list synchronously.
2083  *
2084  * This will take the @buffer_list, write all buffers out and wait for I/O
2085  * completion on all of the buffers. @buffer_list is consumed by the function,
2086  * so callers must have some other way of tracking buffers if they require such
2087  * functionality.
2088  */
2089 int
2090 xfs_buf_delwri_submit(
2091 	struct list_head	*buffer_list)
2092 {
2093 	LIST_HEAD		(wait_list);
2094 	int			error = 0, error2;
2095 	struct xfs_buf		*bp;
2096 
2097 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2098 
2099 	/* Wait for IO to complete. */
2100 	while (!list_empty(&wait_list)) {
2101 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2102 
2103 		list_del_init(&bp->b_list);
2104 
2105 		/*
2106 		 * Wait on the locked buffer, check for errors and unlock and
2107 		 * release the delwri queue reference.
2108 		 */
2109 		error2 = xfs_buf_iowait(bp);
2110 		xfs_buf_relse(bp);
2111 		if (!error)
2112 			error = error2;
2113 	}
2114 
2115 	return error;
2116 }
2117 
2118 /*
2119  * Push a single buffer on a delwri queue.
2120  *
2121  * The purpose of this function is to submit a single buffer of a delwri queue
2122  * and return with the buffer still on the original queue. The waiting delwri
2123  * buffer submission infrastructure guarantees transfer of the delwri queue
2124  * buffer reference to a temporary wait list. We reuse this infrastructure to
2125  * transfer the buffer back to the original queue.
2126  *
2127  * Note the buffer transitions from the queued state, to the submitted and wait
2128  * listed state and back to the queued state during this call. The buffer
2129  * locking and queue management logic between _delwri_pushbuf() and
2130  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2131  * before returning.
2132  */
2133 int
2134 xfs_buf_delwri_pushbuf(
2135 	struct xfs_buf		*bp,
2136 	struct list_head	*buffer_list)
2137 {
2138 	LIST_HEAD		(submit_list);
2139 	int			error;
2140 
2141 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2142 
2143 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2144 
2145 	/*
2146 	 * Isolate the buffer to a new local list so we can submit it for I/O
2147 	 * independently from the rest of the original list.
2148 	 */
2149 	xfs_buf_lock(bp);
2150 	list_move(&bp->b_list, &submit_list);
2151 	xfs_buf_unlock(bp);
2152 
2153 	/*
2154 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2155 	 * the buffer on the wait list with the original reference. Rather than
2156 	 * bounce the buffer from a local wait list back to the original list
2157 	 * after I/O completion, reuse the original list as the wait list.
2158 	 */
2159 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2160 
2161 	/*
2162 	 * The buffer is now locked, under I/O and wait listed on the original
2163 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2164 	 * return with the buffer unlocked and on the original queue.
2165 	 */
2166 	error = xfs_buf_iowait(bp);
2167 	bp->b_flags |= _XBF_DELWRI_Q;
2168 	xfs_buf_unlock(bp);
2169 
2170 	return error;
2171 }
2172 
2173 int __init
2174 xfs_buf_init(void)
2175 {
2176 	xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2177 					 SLAB_HWCACHE_ALIGN |
2178 					 SLAB_RECLAIM_ACCOUNT |
2179 					 SLAB_MEM_SPREAD,
2180 					 NULL);
2181 	if (!xfs_buf_zone)
2182 		goto out;
2183 
2184 	return 0;
2185 
2186  out:
2187 	return -ENOMEM;
2188 }
2189 
2190 void
2191 xfs_buf_terminate(void)
2192 {
2193 	kmem_cache_destroy(xfs_buf_zone);
2194 }
2195 
2196 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2197 {
2198 	/*
2199 	 * Set the lru reference count to 0 based on the error injection tag.
2200 	 * This allows userspace to disrupt buffer caching for debug/testing
2201 	 * purposes.
2202 	 */
2203 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2204 		lru_ref = 0;
2205 
2206 	atomic_set(&bp->b_lru_ref, lru_ref);
2207 }
2208 
2209 /*
2210  * Verify an on-disk magic value against the magic value specified in the
2211  * verifier structure. The verifier magic is in disk byte order so the caller is
2212  * expected to pass the value directly from disk.
2213  */
2214 bool
2215 xfs_verify_magic(
2216 	struct xfs_buf		*bp,
2217 	__be32			dmagic)
2218 {
2219 	struct xfs_mount	*mp = bp->b_mount;
2220 	int			idx;
2221 
2222 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2223 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2224 		return false;
2225 	return dmagic == bp->b_ops->magic[idx];
2226 }
2227 /*
2228  * Verify an on-disk magic value against the magic value specified in the
2229  * verifier structure. The verifier magic is in disk byte order so the caller is
2230  * expected to pass the value directly from disk.
2231  */
2232 bool
2233 xfs_verify_magic16(
2234 	struct xfs_buf		*bp,
2235 	__be16			dmagic)
2236 {
2237 	struct xfs_mount	*mp = bp->b_mount;
2238 	int			idx;
2239 
2240 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2241 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2242 		return false;
2243 	return dmagic == bp->b_ops->magic16[idx];
2244 }
2245