1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 37 #include "xfs_log_format.h" 38 #include "xfs_trans_resv.h" 39 #include "xfs_sb.h" 40 #include "xfs_ag.h" 41 #include "xfs_mount.h" 42 #include "xfs_trace.h" 43 #include "xfs_log.h" 44 45 static kmem_zone_t *xfs_buf_zone; 46 47 static struct workqueue_struct *xfslogd_workqueue; 48 49 #ifdef XFS_BUF_LOCK_TRACKING 50 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 51 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 52 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 53 #else 54 # define XB_SET_OWNER(bp) do { } while (0) 55 # define XB_CLEAR_OWNER(bp) do { } while (0) 56 # define XB_GET_OWNER(bp) do { } while (0) 57 #endif 58 59 #define xb_to_gfp(flags) \ 60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 61 62 63 static inline int 64 xfs_buf_is_vmapped( 65 struct xfs_buf *bp) 66 { 67 /* 68 * Return true if the buffer is vmapped. 69 * 70 * b_addr is null if the buffer is not mapped, but the code is clever 71 * enough to know it doesn't have to map a single page, so the check has 72 * to be both for b_addr and bp->b_page_count > 1. 73 */ 74 return bp->b_addr && bp->b_page_count > 1; 75 } 76 77 static inline int 78 xfs_buf_vmap_len( 79 struct xfs_buf *bp) 80 { 81 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 82 } 83 84 /* 85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 86 * b_lru_ref count so that the buffer is freed immediately when the buffer 87 * reference count falls to zero. If the buffer is already on the LRU, we need 88 * to remove the reference that LRU holds on the buffer. 89 * 90 * This prevents build-up of stale buffers on the LRU. 91 */ 92 void 93 xfs_buf_stale( 94 struct xfs_buf *bp) 95 { 96 ASSERT(xfs_buf_islocked(bp)); 97 98 bp->b_flags |= XBF_STALE; 99 100 /* 101 * Clear the delwri status so that a delwri queue walker will not 102 * flush this buffer to disk now that it is stale. The delwri queue has 103 * a reference to the buffer, so this is safe to do. 104 */ 105 bp->b_flags &= ~_XBF_DELWRI_Q; 106 107 spin_lock(&bp->b_lock); 108 atomic_set(&bp->b_lru_ref, 0); 109 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 110 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 111 atomic_dec(&bp->b_hold); 112 113 ASSERT(atomic_read(&bp->b_hold) >= 1); 114 spin_unlock(&bp->b_lock); 115 } 116 117 static int 118 xfs_buf_get_maps( 119 struct xfs_buf *bp, 120 int map_count) 121 { 122 ASSERT(bp->b_maps == NULL); 123 bp->b_map_count = map_count; 124 125 if (map_count == 1) { 126 bp->b_maps = &bp->__b_map; 127 return 0; 128 } 129 130 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 131 KM_NOFS); 132 if (!bp->b_maps) 133 return ENOMEM; 134 return 0; 135 } 136 137 /* 138 * Frees b_pages if it was allocated. 139 */ 140 static void 141 xfs_buf_free_maps( 142 struct xfs_buf *bp) 143 { 144 if (bp->b_maps != &bp->__b_map) { 145 kmem_free(bp->b_maps); 146 bp->b_maps = NULL; 147 } 148 } 149 150 struct xfs_buf * 151 _xfs_buf_alloc( 152 struct xfs_buftarg *target, 153 struct xfs_buf_map *map, 154 int nmaps, 155 xfs_buf_flags_t flags) 156 { 157 struct xfs_buf *bp; 158 int error; 159 int i; 160 161 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 162 if (unlikely(!bp)) 163 return NULL; 164 165 /* 166 * We don't want certain flags to appear in b_flags unless they are 167 * specifically set by later operations on the buffer. 168 */ 169 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 170 171 atomic_set(&bp->b_hold, 1); 172 atomic_set(&bp->b_lru_ref, 1); 173 init_completion(&bp->b_iowait); 174 INIT_LIST_HEAD(&bp->b_lru); 175 INIT_LIST_HEAD(&bp->b_list); 176 RB_CLEAR_NODE(&bp->b_rbnode); 177 sema_init(&bp->b_sema, 0); /* held, no waiters */ 178 spin_lock_init(&bp->b_lock); 179 XB_SET_OWNER(bp); 180 bp->b_target = target; 181 bp->b_flags = flags; 182 183 /* 184 * Set length and io_length to the same value initially. 185 * I/O routines should use io_length, which will be the same in 186 * most cases but may be reset (e.g. XFS recovery). 187 */ 188 error = xfs_buf_get_maps(bp, nmaps); 189 if (error) { 190 kmem_zone_free(xfs_buf_zone, bp); 191 return NULL; 192 } 193 194 bp->b_bn = map[0].bm_bn; 195 bp->b_length = 0; 196 for (i = 0; i < nmaps; i++) { 197 bp->b_maps[i].bm_bn = map[i].bm_bn; 198 bp->b_maps[i].bm_len = map[i].bm_len; 199 bp->b_length += map[i].bm_len; 200 } 201 bp->b_io_length = bp->b_length; 202 203 atomic_set(&bp->b_pin_count, 0); 204 init_waitqueue_head(&bp->b_waiters); 205 206 XFS_STATS_INC(xb_create); 207 trace_xfs_buf_init(bp, _RET_IP_); 208 209 return bp; 210 } 211 212 /* 213 * Allocate a page array capable of holding a specified number 214 * of pages, and point the page buf at it. 215 */ 216 STATIC int 217 _xfs_buf_get_pages( 218 xfs_buf_t *bp, 219 int page_count, 220 xfs_buf_flags_t flags) 221 { 222 /* Make sure that we have a page list */ 223 if (bp->b_pages == NULL) { 224 bp->b_page_count = page_count; 225 if (page_count <= XB_PAGES) { 226 bp->b_pages = bp->b_page_array; 227 } else { 228 bp->b_pages = kmem_alloc(sizeof(struct page *) * 229 page_count, KM_NOFS); 230 if (bp->b_pages == NULL) 231 return -ENOMEM; 232 } 233 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 234 } 235 return 0; 236 } 237 238 /* 239 * Frees b_pages if it was allocated. 240 */ 241 STATIC void 242 _xfs_buf_free_pages( 243 xfs_buf_t *bp) 244 { 245 if (bp->b_pages != bp->b_page_array) { 246 kmem_free(bp->b_pages); 247 bp->b_pages = NULL; 248 } 249 } 250 251 /* 252 * Releases the specified buffer. 253 * 254 * The modification state of any associated pages is left unchanged. 255 * The buffer must not be on any hash - use xfs_buf_rele instead for 256 * hashed and refcounted buffers 257 */ 258 void 259 xfs_buf_free( 260 xfs_buf_t *bp) 261 { 262 trace_xfs_buf_free(bp, _RET_IP_); 263 264 ASSERT(list_empty(&bp->b_lru)); 265 266 if (bp->b_flags & _XBF_PAGES) { 267 uint i; 268 269 if (xfs_buf_is_vmapped(bp)) 270 vm_unmap_ram(bp->b_addr - bp->b_offset, 271 bp->b_page_count); 272 273 for (i = 0; i < bp->b_page_count; i++) { 274 struct page *page = bp->b_pages[i]; 275 276 __free_page(page); 277 } 278 } else if (bp->b_flags & _XBF_KMEM) 279 kmem_free(bp->b_addr); 280 _xfs_buf_free_pages(bp); 281 xfs_buf_free_maps(bp); 282 kmem_zone_free(xfs_buf_zone, bp); 283 } 284 285 /* 286 * Allocates all the pages for buffer in question and builds it's page list. 287 */ 288 STATIC int 289 xfs_buf_allocate_memory( 290 xfs_buf_t *bp, 291 uint flags) 292 { 293 size_t size; 294 size_t nbytes, offset; 295 gfp_t gfp_mask = xb_to_gfp(flags); 296 unsigned short page_count, i; 297 xfs_off_t start, end; 298 int error; 299 300 /* 301 * for buffers that are contained within a single page, just allocate 302 * the memory from the heap - there's no need for the complexity of 303 * page arrays to keep allocation down to order 0. 304 */ 305 size = BBTOB(bp->b_length); 306 if (size < PAGE_SIZE) { 307 bp->b_addr = kmem_alloc(size, KM_NOFS); 308 if (!bp->b_addr) { 309 /* low memory - use alloc_page loop instead */ 310 goto use_alloc_page; 311 } 312 313 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 314 ((unsigned long)bp->b_addr & PAGE_MASK)) { 315 /* b_addr spans two pages - use alloc_page instead */ 316 kmem_free(bp->b_addr); 317 bp->b_addr = NULL; 318 goto use_alloc_page; 319 } 320 bp->b_offset = offset_in_page(bp->b_addr); 321 bp->b_pages = bp->b_page_array; 322 bp->b_pages[0] = virt_to_page(bp->b_addr); 323 bp->b_page_count = 1; 324 bp->b_flags |= _XBF_KMEM; 325 return 0; 326 } 327 328 use_alloc_page: 329 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 330 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 331 >> PAGE_SHIFT; 332 page_count = end - start; 333 error = _xfs_buf_get_pages(bp, page_count, flags); 334 if (unlikely(error)) 335 return error; 336 337 offset = bp->b_offset; 338 bp->b_flags |= _XBF_PAGES; 339 340 for (i = 0; i < bp->b_page_count; i++) { 341 struct page *page; 342 uint retries = 0; 343 retry: 344 page = alloc_page(gfp_mask); 345 if (unlikely(page == NULL)) { 346 if (flags & XBF_READ_AHEAD) { 347 bp->b_page_count = i; 348 error = ENOMEM; 349 goto out_free_pages; 350 } 351 352 /* 353 * This could deadlock. 354 * 355 * But until all the XFS lowlevel code is revamped to 356 * handle buffer allocation failures we can't do much. 357 */ 358 if (!(++retries % 100)) 359 xfs_err(NULL, 360 "possible memory allocation deadlock in %s (mode:0x%x)", 361 __func__, gfp_mask); 362 363 XFS_STATS_INC(xb_page_retries); 364 congestion_wait(BLK_RW_ASYNC, HZ/50); 365 goto retry; 366 } 367 368 XFS_STATS_INC(xb_page_found); 369 370 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 371 size -= nbytes; 372 bp->b_pages[i] = page; 373 offset = 0; 374 } 375 return 0; 376 377 out_free_pages: 378 for (i = 0; i < bp->b_page_count; i++) 379 __free_page(bp->b_pages[i]); 380 return error; 381 } 382 383 /* 384 * Map buffer into kernel address-space if necessary. 385 */ 386 STATIC int 387 _xfs_buf_map_pages( 388 xfs_buf_t *bp, 389 uint flags) 390 { 391 ASSERT(bp->b_flags & _XBF_PAGES); 392 if (bp->b_page_count == 1) { 393 /* A single page buffer is always mappable */ 394 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 395 } else if (flags & XBF_UNMAPPED) { 396 bp->b_addr = NULL; 397 } else { 398 int retried = 0; 399 unsigned noio_flag; 400 401 /* 402 * vm_map_ram() will allocate auxillary structures (e.g. 403 * pagetables) with GFP_KERNEL, yet we are likely to be under 404 * GFP_NOFS context here. Hence we need to tell memory reclaim 405 * that we are in such a context via PF_MEMALLOC_NOIO to prevent 406 * memory reclaim re-entering the filesystem here and 407 * potentially deadlocking. 408 */ 409 noio_flag = memalloc_noio_save(); 410 do { 411 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 412 -1, PAGE_KERNEL); 413 if (bp->b_addr) 414 break; 415 vm_unmap_aliases(); 416 } while (retried++ <= 1); 417 memalloc_noio_restore(noio_flag); 418 419 if (!bp->b_addr) 420 return -ENOMEM; 421 bp->b_addr += bp->b_offset; 422 } 423 424 return 0; 425 } 426 427 /* 428 * Finding and Reading Buffers 429 */ 430 431 /* 432 * Look up, and creates if absent, a lockable buffer for 433 * a given range of an inode. The buffer is returned 434 * locked. No I/O is implied by this call. 435 */ 436 xfs_buf_t * 437 _xfs_buf_find( 438 struct xfs_buftarg *btp, 439 struct xfs_buf_map *map, 440 int nmaps, 441 xfs_buf_flags_t flags, 442 xfs_buf_t *new_bp) 443 { 444 size_t numbytes; 445 struct xfs_perag *pag; 446 struct rb_node **rbp; 447 struct rb_node *parent; 448 xfs_buf_t *bp; 449 xfs_daddr_t blkno = map[0].bm_bn; 450 xfs_daddr_t eofs; 451 int numblks = 0; 452 int i; 453 454 for (i = 0; i < nmaps; i++) 455 numblks += map[i].bm_len; 456 numbytes = BBTOB(numblks); 457 458 /* Check for IOs smaller than the sector size / not sector aligned */ 459 ASSERT(!(numbytes < btp->bt_meta_sectorsize)); 460 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask)); 461 462 /* 463 * Corrupted block numbers can get through to here, unfortunately, so we 464 * have to check that the buffer falls within the filesystem bounds. 465 */ 466 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 467 if (blkno >= eofs) { 468 /* 469 * XXX (dgc): we should really be returning EFSCORRUPTED here, 470 * but none of the higher level infrastructure supports 471 * returning a specific error on buffer lookup failures. 472 */ 473 xfs_alert(btp->bt_mount, 474 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ", 475 __func__, blkno, eofs); 476 WARN_ON(1); 477 return NULL; 478 } 479 480 /* get tree root */ 481 pag = xfs_perag_get(btp->bt_mount, 482 xfs_daddr_to_agno(btp->bt_mount, blkno)); 483 484 /* walk tree */ 485 spin_lock(&pag->pag_buf_lock); 486 rbp = &pag->pag_buf_tree.rb_node; 487 parent = NULL; 488 bp = NULL; 489 while (*rbp) { 490 parent = *rbp; 491 bp = rb_entry(parent, struct xfs_buf, b_rbnode); 492 493 if (blkno < bp->b_bn) 494 rbp = &(*rbp)->rb_left; 495 else if (blkno > bp->b_bn) 496 rbp = &(*rbp)->rb_right; 497 else { 498 /* 499 * found a block number match. If the range doesn't 500 * match, the only way this is allowed is if the buffer 501 * in the cache is stale and the transaction that made 502 * it stale has not yet committed. i.e. we are 503 * reallocating a busy extent. Skip this buffer and 504 * continue searching to the right for an exact match. 505 */ 506 if (bp->b_length != numblks) { 507 ASSERT(bp->b_flags & XBF_STALE); 508 rbp = &(*rbp)->rb_right; 509 continue; 510 } 511 atomic_inc(&bp->b_hold); 512 goto found; 513 } 514 } 515 516 /* No match found */ 517 if (new_bp) { 518 rb_link_node(&new_bp->b_rbnode, parent, rbp); 519 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); 520 /* the buffer keeps the perag reference until it is freed */ 521 new_bp->b_pag = pag; 522 spin_unlock(&pag->pag_buf_lock); 523 } else { 524 XFS_STATS_INC(xb_miss_locked); 525 spin_unlock(&pag->pag_buf_lock); 526 xfs_perag_put(pag); 527 } 528 return new_bp; 529 530 found: 531 spin_unlock(&pag->pag_buf_lock); 532 xfs_perag_put(pag); 533 534 if (!xfs_buf_trylock(bp)) { 535 if (flags & XBF_TRYLOCK) { 536 xfs_buf_rele(bp); 537 XFS_STATS_INC(xb_busy_locked); 538 return NULL; 539 } 540 xfs_buf_lock(bp); 541 XFS_STATS_INC(xb_get_locked_waited); 542 } 543 544 /* 545 * if the buffer is stale, clear all the external state associated with 546 * it. We need to keep flags such as how we allocated the buffer memory 547 * intact here. 548 */ 549 if (bp->b_flags & XBF_STALE) { 550 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 551 ASSERT(bp->b_iodone == NULL); 552 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 553 bp->b_ops = NULL; 554 } 555 556 trace_xfs_buf_find(bp, flags, _RET_IP_); 557 XFS_STATS_INC(xb_get_locked); 558 return bp; 559 } 560 561 /* 562 * Assembles a buffer covering the specified range. The code is optimised for 563 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 564 * more hits than misses. 565 */ 566 struct xfs_buf * 567 xfs_buf_get_map( 568 struct xfs_buftarg *target, 569 struct xfs_buf_map *map, 570 int nmaps, 571 xfs_buf_flags_t flags) 572 { 573 struct xfs_buf *bp; 574 struct xfs_buf *new_bp; 575 int error = 0; 576 577 bp = _xfs_buf_find(target, map, nmaps, flags, NULL); 578 if (likely(bp)) 579 goto found; 580 581 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 582 if (unlikely(!new_bp)) 583 return NULL; 584 585 error = xfs_buf_allocate_memory(new_bp, flags); 586 if (error) { 587 xfs_buf_free(new_bp); 588 return NULL; 589 } 590 591 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); 592 if (!bp) { 593 xfs_buf_free(new_bp); 594 return NULL; 595 } 596 597 if (bp != new_bp) 598 xfs_buf_free(new_bp); 599 600 found: 601 if (!bp->b_addr) { 602 error = _xfs_buf_map_pages(bp, flags); 603 if (unlikely(error)) { 604 xfs_warn(target->bt_mount, 605 "%s: failed to map pagesn", __func__); 606 xfs_buf_relse(bp); 607 return NULL; 608 } 609 } 610 611 XFS_STATS_INC(xb_get); 612 trace_xfs_buf_get(bp, flags, _RET_IP_); 613 return bp; 614 } 615 616 STATIC int 617 _xfs_buf_read( 618 xfs_buf_t *bp, 619 xfs_buf_flags_t flags) 620 { 621 ASSERT(!(flags & XBF_WRITE)); 622 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 623 624 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 625 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 626 627 xfs_buf_iorequest(bp); 628 if (flags & XBF_ASYNC) 629 return 0; 630 return xfs_buf_iowait(bp); 631 } 632 633 xfs_buf_t * 634 xfs_buf_read_map( 635 struct xfs_buftarg *target, 636 struct xfs_buf_map *map, 637 int nmaps, 638 xfs_buf_flags_t flags, 639 const struct xfs_buf_ops *ops) 640 { 641 struct xfs_buf *bp; 642 643 flags |= XBF_READ; 644 645 bp = xfs_buf_get_map(target, map, nmaps, flags); 646 if (bp) { 647 trace_xfs_buf_read(bp, flags, _RET_IP_); 648 649 if (!XFS_BUF_ISDONE(bp)) { 650 XFS_STATS_INC(xb_get_read); 651 bp->b_ops = ops; 652 _xfs_buf_read(bp, flags); 653 } else if (flags & XBF_ASYNC) { 654 /* 655 * Read ahead call which is already satisfied, 656 * drop the buffer 657 */ 658 xfs_buf_relse(bp); 659 return NULL; 660 } else { 661 /* We do not want read in the flags */ 662 bp->b_flags &= ~XBF_READ; 663 } 664 } 665 666 return bp; 667 } 668 669 /* 670 * If we are not low on memory then do the readahead in a deadlock 671 * safe manner. 672 */ 673 void 674 xfs_buf_readahead_map( 675 struct xfs_buftarg *target, 676 struct xfs_buf_map *map, 677 int nmaps, 678 const struct xfs_buf_ops *ops) 679 { 680 if (bdi_read_congested(target->bt_bdi)) 681 return; 682 683 xfs_buf_read_map(target, map, nmaps, 684 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 685 } 686 687 /* 688 * Read an uncached buffer from disk. Allocates and returns a locked 689 * buffer containing the disk contents or nothing. 690 */ 691 struct xfs_buf * 692 xfs_buf_read_uncached( 693 struct xfs_buftarg *target, 694 xfs_daddr_t daddr, 695 size_t numblks, 696 int flags, 697 const struct xfs_buf_ops *ops) 698 { 699 struct xfs_buf *bp; 700 701 bp = xfs_buf_get_uncached(target, numblks, flags); 702 if (!bp) 703 return NULL; 704 705 /* set up the buffer for a read IO */ 706 ASSERT(bp->b_map_count == 1); 707 bp->b_bn = daddr; 708 bp->b_maps[0].bm_bn = daddr; 709 bp->b_flags |= XBF_READ; 710 bp->b_ops = ops; 711 712 if (XFS_FORCED_SHUTDOWN(target->bt_mount)) { 713 xfs_buf_relse(bp); 714 return NULL; 715 } 716 xfs_buf_iorequest(bp); 717 xfs_buf_iowait(bp); 718 return bp; 719 } 720 721 /* 722 * Return a buffer allocated as an empty buffer and associated to external 723 * memory via xfs_buf_associate_memory() back to it's empty state. 724 */ 725 void 726 xfs_buf_set_empty( 727 struct xfs_buf *bp, 728 size_t numblks) 729 { 730 if (bp->b_pages) 731 _xfs_buf_free_pages(bp); 732 733 bp->b_pages = NULL; 734 bp->b_page_count = 0; 735 bp->b_addr = NULL; 736 bp->b_length = numblks; 737 bp->b_io_length = numblks; 738 739 ASSERT(bp->b_map_count == 1); 740 bp->b_bn = XFS_BUF_DADDR_NULL; 741 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 742 bp->b_maps[0].bm_len = bp->b_length; 743 } 744 745 static inline struct page * 746 mem_to_page( 747 void *addr) 748 { 749 if ((!is_vmalloc_addr(addr))) { 750 return virt_to_page(addr); 751 } else { 752 return vmalloc_to_page(addr); 753 } 754 } 755 756 int 757 xfs_buf_associate_memory( 758 xfs_buf_t *bp, 759 void *mem, 760 size_t len) 761 { 762 int rval; 763 int i = 0; 764 unsigned long pageaddr; 765 unsigned long offset; 766 size_t buflen; 767 int page_count; 768 769 pageaddr = (unsigned long)mem & PAGE_MASK; 770 offset = (unsigned long)mem - pageaddr; 771 buflen = PAGE_ALIGN(len + offset); 772 page_count = buflen >> PAGE_SHIFT; 773 774 /* Free any previous set of page pointers */ 775 if (bp->b_pages) 776 _xfs_buf_free_pages(bp); 777 778 bp->b_pages = NULL; 779 bp->b_addr = mem; 780 781 rval = _xfs_buf_get_pages(bp, page_count, 0); 782 if (rval) 783 return rval; 784 785 bp->b_offset = offset; 786 787 for (i = 0; i < bp->b_page_count; i++) { 788 bp->b_pages[i] = mem_to_page((void *)pageaddr); 789 pageaddr += PAGE_SIZE; 790 } 791 792 bp->b_io_length = BTOBB(len); 793 bp->b_length = BTOBB(buflen); 794 795 return 0; 796 } 797 798 xfs_buf_t * 799 xfs_buf_get_uncached( 800 struct xfs_buftarg *target, 801 size_t numblks, 802 int flags) 803 { 804 unsigned long page_count; 805 int error, i; 806 struct xfs_buf *bp; 807 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 808 809 bp = _xfs_buf_alloc(target, &map, 1, 0); 810 if (unlikely(bp == NULL)) 811 goto fail; 812 813 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 814 error = _xfs_buf_get_pages(bp, page_count, 0); 815 if (error) 816 goto fail_free_buf; 817 818 for (i = 0; i < page_count; i++) { 819 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 820 if (!bp->b_pages[i]) 821 goto fail_free_mem; 822 } 823 bp->b_flags |= _XBF_PAGES; 824 825 error = _xfs_buf_map_pages(bp, 0); 826 if (unlikely(error)) { 827 xfs_warn(target->bt_mount, 828 "%s: failed to map pages", __func__); 829 goto fail_free_mem; 830 } 831 832 trace_xfs_buf_get_uncached(bp, _RET_IP_); 833 return bp; 834 835 fail_free_mem: 836 while (--i >= 0) 837 __free_page(bp->b_pages[i]); 838 _xfs_buf_free_pages(bp); 839 fail_free_buf: 840 xfs_buf_free_maps(bp); 841 kmem_zone_free(xfs_buf_zone, bp); 842 fail: 843 return NULL; 844 } 845 846 /* 847 * Increment reference count on buffer, to hold the buffer concurrently 848 * with another thread which may release (free) the buffer asynchronously. 849 * Must hold the buffer already to call this function. 850 */ 851 void 852 xfs_buf_hold( 853 xfs_buf_t *bp) 854 { 855 trace_xfs_buf_hold(bp, _RET_IP_); 856 atomic_inc(&bp->b_hold); 857 } 858 859 /* 860 * Releases a hold on the specified buffer. If the 861 * the hold count is 1, calls xfs_buf_free. 862 */ 863 void 864 xfs_buf_rele( 865 xfs_buf_t *bp) 866 { 867 struct xfs_perag *pag = bp->b_pag; 868 869 trace_xfs_buf_rele(bp, _RET_IP_); 870 871 if (!pag) { 872 ASSERT(list_empty(&bp->b_lru)); 873 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); 874 if (atomic_dec_and_test(&bp->b_hold)) 875 xfs_buf_free(bp); 876 return; 877 } 878 879 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); 880 881 ASSERT(atomic_read(&bp->b_hold) > 0); 882 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { 883 spin_lock(&bp->b_lock); 884 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 885 /* 886 * If the buffer is added to the LRU take a new 887 * reference to the buffer for the LRU and clear the 888 * (now stale) dispose list state flag 889 */ 890 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 891 bp->b_state &= ~XFS_BSTATE_DISPOSE; 892 atomic_inc(&bp->b_hold); 893 } 894 spin_unlock(&bp->b_lock); 895 spin_unlock(&pag->pag_buf_lock); 896 } else { 897 /* 898 * most of the time buffers will already be removed from 899 * the LRU, so optimise that case by checking for the 900 * XFS_BSTATE_DISPOSE flag indicating the last list the 901 * buffer was on was the disposal list 902 */ 903 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 904 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 905 } else { 906 ASSERT(list_empty(&bp->b_lru)); 907 } 908 spin_unlock(&bp->b_lock); 909 910 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 911 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); 912 spin_unlock(&pag->pag_buf_lock); 913 xfs_perag_put(pag); 914 xfs_buf_free(bp); 915 } 916 } 917 } 918 919 920 /* 921 * Lock a buffer object, if it is not already locked. 922 * 923 * If we come across a stale, pinned, locked buffer, we know that we are 924 * being asked to lock a buffer that has been reallocated. Because it is 925 * pinned, we know that the log has not been pushed to disk and hence it 926 * will still be locked. Rather than continuing to have trylock attempts 927 * fail until someone else pushes the log, push it ourselves before 928 * returning. This means that the xfsaild will not get stuck trying 929 * to push on stale inode buffers. 930 */ 931 int 932 xfs_buf_trylock( 933 struct xfs_buf *bp) 934 { 935 int locked; 936 937 locked = down_trylock(&bp->b_sema) == 0; 938 if (locked) 939 XB_SET_OWNER(bp); 940 941 trace_xfs_buf_trylock(bp, _RET_IP_); 942 return locked; 943 } 944 945 /* 946 * Lock a buffer object. 947 * 948 * If we come across a stale, pinned, locked buffer, we know that we 949 * are being asked to lock a buffer that has been reallocated. Because 950 * it is pinned, we know that the log has not been pushed to disk and 951 * hence it will still be locked. Rather than sleeping until someone 952 * else pushes the log, push it ourselves before trying to get the lock. 953 */ 954 void 955 xfs_buf_lock( 956 struct xfs_buf *bp) 957 { 958 trace_xfs_buf_lock(bp, _RET_IP_); 959 960 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 961 xfs_log_force(bp->b_target->bt_mount, 0); 962 down(&bp->b_sema); 963 XB_SET_OWNER(bp); 964 965 trace_xfs_buf_lock_done(bp, _RET_IP_); 966 } 967 968 void 969 xfs_buf_unlock( 970 struct xfs_buf *bp) 971 { 972 XB_CLEAR_OWNER(bp); 973 up(&bp->b_sema); 974 975 trace_xfs_buf_unlock(bp, _RET_IP_); 976 } 977 978 STATIC void 979 xfs_buf_wait_unpin( 980 xfs_buf_t *bp) 981 { 982 DECLARE_WAITQUEUE (wait, current); 983 984 if (atomic_read(&bp->b_pin_count) == 0) 985 return; 986 987 add_wait_queue(&bp->b_waiters, &wait); 988 for (;;) { 989 set_current_state(TASK_UNINTERRUPTIBLE); 990 if (atomic_read(&bp->b_pin_count) == 0) 991 break; 992 io_schedule(); 993 } 994 remove_wait_queue(&bp->b_waiters, &wait); 995 set_current_state(TASK_RUNNING); 996 } 997 998 /* 999 * Buffer Utility Routines 1000 */ 1001 1002 STATIC void 1003 xfs_buf_iodone_work( 1004 struct work_struct *work) 1005 { 1006 struct xfs_buf *bp = 1007 container_of(work, xfs_buf_t, b_iodone_work); 1008 bool read = !!(bp->b_flags & XBF_READ); 1009 1010 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1011 1012 /* only validate buffers that were read without errors */ 1013 if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE)) 1014 bp->b_ops->verify_read(bp); 1015 1016 if (bp->b_iodone) 1017 (*(bp->b_iodone))(bp); 1018 else if (bp->b_flags & XBF_ASYNC) 1019 xfs_buf_relse(bp); 1020 else { 1021 ASSERT(read && bp->b_ops); 1022 complete(&bp->b_iowait); 1023 } 1024 } 1025 1026 void 1027 xfs_buf_ioend( 1028 struct xfs_buf *bp, 1029 int schedule) 1030 { 1031 bool read = !!(bp->b_flags & XBF_READ); 1032 1033 trace_xfs_buf_iodone(bp, _RET_IP_); 1034 1035 if (bp->b_error == 0) 1036 bp->b_flags |= XBF_DONE; 1037 1038 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) { 1039 if (schedule) { 1040 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work); 1041 queue_work(xfslogd_workqueue, &bp->b_iodone_work); 1042 } else { 1043 xfs_buf_iodone_work(&bp->b_iodone_work); 1044 } 1045 } else { 1046 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1047 complete(&bp->b_iowait); 1048 } 1049 } 1050 1051 void 1052 xfs_buf_ioerror( 1053 xfs_buf_t *bp, 1054 int error) 1055 { 1056 ASSERT(error >= 0 && error <= 0xffff); 1057 bp->b_error = (unsigned short)error; 1058 trace_xfs_buf_ioerror(bp, error, _RET_IP_); 1059 } 1060 1061 void 1062 xfs_buf_ioerror_alert( 1063 struct xfs_buf *bp, 1064 const char *func) 1065 { 1066 xfs_alert(bp->b_target->bt_mount, 1067 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d", 1068 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length); 1069 } 1070 1071 /* 1072 * Called when we want to stop a buffer from getting written or read. 1073 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend 1074 * so that the proper iodone callbacks get called. 1075 */ 1076 STATIC int 1077 xfs_bioerror( 1078 xfs_buf_t *bp) 1079 { 1080 #ifdef XFSERRORDEBUG 1081 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone); 1082 #endif 1083 1084 /* 1085 * No need to wait until the buffer is unpinned, we aren't flushing it. 1086 */ 1087 xfs_buf_ioerror(bp, EIO); 1088 1089 /* 1090 * We're calling xfs_buf_ioend, so delete XBF_DONE flag. 1091 */ 1092 XFS_BUF_UNREAD(bp); 1093 XFS_BUF_UNDONE(bp); 1094 xfs_buf_stale(bp); 1095 1096 xfs_buf_ioend(bp, 0); 1097 1098 return EIO; 1099 } 1100 1101 /* 1102 * Same as xfs_bioerror, except that we are releasing the buffer 1103 * here ourselves, and avoiding the xfs_buf_ioend call. 1104 * This is meant for userdata errors; metadata bufs come with 1105 * iodone functions attached, so that we can track down errors. 1106 */ 1107 int 1108 xfs_bioerror_relse( 1109 struct xfs_buf *bp) 1110 { 1111 int64_t fl = bp->b_flags; 1112 /* 1113 * No need to wait until the buffer is unpinned. 1114 * We aren't flushing it. 1115 * 1116 * chunkhold expects B_DONE to be set, whether 1117 * we actually finish the I/O or not. We don't want to 1118 * change that interface. 1119 */ 1120 XFS_BUF_UNREAD(bp); 1121 XFS_BUF_DONE(bp); 1122 xfs_buf_stale(bp); 1123 bp->b_iodone = NULL; 1124 if (!(fl & XBF_ASYNC)) { 1125 /* 1126 * Mark b_error and B_ERROR _both_. 1127 * Lot's of chunkcache code assumes that. 1128 * There's no reason to mark error for 1129 * ASYNC buffers. 1130 */ 1131 xfs_buf_ioerror(bp, EIO); 1132 complete(&bp->b_iowait); 1133 } else { 1134 xfs_buf_relse(bp); 1135 } 1136 1137 return EIO; 1138 } 1139 1140 STATIC int 1141 xfs_bdstrat_cb( 1142 struct xfs_buf *bp) 1143 { 1144 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1145 trace_xfs_bdstrat_shut(bp, _RET_IP_); 1146 /* 1147 * Metadata write that didn't get logged but 1148 * written delayed anyway. These aren't associated 1149 * with a transaction, and can be ignored. 1150 */ 1151 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp)) 1152 return xfs_bioerror_relse(bp); 1153 else 1154 return xfs_bioerror(bp); 1155 } 1156 1157 xfs_buf_iorequest(bp); 1158 return 0; 1159 } 1160 1161 int 1162 xfs_bwrite( 1163 struct xfs_buf *bp) 1164 { 1165 int error; 1166 1167 ASSERT(xfs_buf_islocked(bp)); 1168 1169 bp->b_flags |= XBF_WRITE; 1170 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL); 1171 1172 xfs_bdstrat_cb(bp); 1173 1174 error = xfs_buf_iowait(bp); 1175 if (error) { 1176 xfs_force_shutdown(bp->b_target->bt_mount, 1177 SHUTDOWN_META_IO_ERROR); 1178 } 1179 return error; 1180 } 1181 1182 STATIC void 1183 _xfs_buf_ioend( 1184 xfs_buf_t *bp, 1185 int schedule) 1186 { 1187 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1188 xfs_buf_ioend(bp, schedule); 1189 } 1190 1191 STATIC void 1192 xfs_buf_bio_end_io( 1193 struct bio *bio, 1194 int error) 1195 { 1196 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private; 1197 1198 /* 1199 * don't overwrite existing errors - otherwise we can lose errors on 1200 * buffers that require multiple bios to complete. 1201 */ 1202 if (!bp->b_error) 1203 xfs_buf_ioerror(bp, -error); 1204 1205 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1206 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1207 1208 _xfs_buf_ioend(bp, 1); 1209 bio_put(bio); 1210 } 1211 1212 static void 1213 xfs_buf_ioapply_map( 1214 struct xfs_buf *bp, 1215 int map, 1216 int *buf_offset, 1217 int *count, 1218 int rw) 1219 { 1220 int page_index; 1221 int total_nr_pages = bp->b_page_count; 1222 int nr_pages; 1223 struct bio *bio; 1224 sector_t sector = bp->b_maps[map].bm_bn; 1225 int size; 1226 int offset; 1227 1228 total_nr_pages = bp->b_page_count; 1229 1230 /* skip the pages in the buffer before the start offset */ 1231 page_index = 0; 1232 offset = *buf_offset; 1233 while (offset >= PAGE_SIZE) { 1234 page_index++; 1235 offset -= PAGE_SIZE; 1236 } 1237 1238 /* 1239 * Limit the IO size to the length of the current vector, and update the 1240 * remaining IO count for the next time around. 1241 */ 1242 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1243 *count -= size; 1244 *buf_offset += size; 1245 1246 next_chunk: 1247 atomic_inc(&bp->b_io_remaining); 1248 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); 1249 if (nr_pages > total_nr_pages) 1250 nr_pages = total_nr_pages; 1251 1252 bio = bio_alloc(GFP_NOIO, nr_pages); 1253 bio->bi_bdev = bp->b_target->bt_bdev; 1254 bio->bi_iter.bi_sector = sector; 1255 bio->bi_end_io = xfs_buf_bio_end_io; 1256 bio->bi_private = bp; 1257 1258 1259 for (; size && nr_pages; nr_pages--, page_index++) { 1260 int rbytes, nbytes = PAGE_SIZE - offset; 1261 1262 if (nbytes > size) 1263 nbytes = size; 1264 1265 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1266 offset); 1267 if (rbytes < nbytes) 1268 break; 1269 1270 offset = 0; 1271 sector += BTOBB(nbytes); 1272 size -= nbytes; 1273 total_nr_pages--; 1274 } 1275 1276 if (likely(bio->bi_iter.bi_size)) { 1277 if (xfs_buf_is_vmapped(bp)) { 1278 flush_kernel_vmap_range(bp->b_addr, 1279 xfs_buf_vmap_len(bp)); 1280 } 1281 submit_bio(rw, bio); 1282 if (size) 1283 goto next_chunk; 1284 } else { 1285 /* 1286 * This is guaranteed not to be the last io reference count 1287 * because the caller (xfs_buf_iorequest) holds a count itself. 1288 */ 1289 atomic_dec(&bp->b_io_remaining); 1290 xfs_buf_ioerror(bp, EIO); 1291 bio_put(bio); 1292 } 1293 1294 } 1295 1296 STATIC void 1297 _xfs_buf_ioapply( 1298 struct xfs_buf *bp) 1299 { 1300 struct blk_plug plug; 1301 int rw; 1302 int offset; 1303 int size; 1304 int i; 1305 1306 /* 1307 * Make sure we capture only current IO errors rather than stale errors 1308 * left over from previous use of the buffer (e.g. failed readahead). 1309 */ 1310 bp->b_error = 0; 1311 1312 if (bp->b_flags & XBF_WRITE) { 1313 if (bp->b_flags & XBF_SYNCIO) 1314 rw = WRITE_SYNC; 1315 else 1316 rw = WRITE; 1317 if (bp->b_flags & XBF_FUA) 1318 rw |= REQ_FUA; 1319 if (bp->b_flags & XBF_FLUSH) 1320 rw |= REQ_FLUSH; 1321 1322 /* 1323 * Run the write verifier callback function if it exists. If 1324 * this function fails it will mark the buffer with an error and 1325 * the IO should not be dispatched. 1326 */ 1327 if (bp->b_ops) { 1328 bp->b_ops->verify_write(bp); 1329 if (bp->b_error) { 1330 xfs_force_shutdown(bp->b_target->bt_mount, 1331 SHUTDOWN_CORRUPT_INCORE); 1332 return; 1333 } 1334 } 1335 } else if (bp->b_flags & XBF_READ_AHEAD) { 1336 rw = READA; 1337 } else { 1338 rw = READ; 1339 } 1340 1341 /* we only use the buffer cache for meta-data */ 1342 rw |= REQ_META; 1343 1344 /* 1345 * Walk all the vectors issuing IO on them. Set up the initial offset 1346 * into the buffer and the desired IO size before we start - 1347 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1348 * subsequent call. 1349 */ 1350 offset = bp->b_offset; 1351 size = BBTOB(bp->b_io_length); 1352 blk_start_plug(&plug); 1353 for (i = 0; i < bp->b_map_count; i++) { 1354 xfs_buf_ioapply_map(bp, i, &offset, &size, rw); 1355 if (bp->b_error) 1356 break; 1357 if (size <= 0) 1358 break; /* all done */ 1359 } 1360 blk_finish_plug(&plug); 1361 } 1362 1363 void 1364 xfs_buf_iorequest( 1365 xfs_buf_t *bp) 1366 { 1367 trace_xfs_buf_iorequest(bp, _RET_IP_); 1368 1369 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1370 1371 if (bp->b_flags & XBF_WRITE) 1372 xfs_buf_wait_unpin(bp); 1373 xfs_buf_hold(bp); 1374 1375 /* 1376 * Set the count to 1 initially, this will stop an I/O 1377 * completion callout which happens before we have started 1378 * all the I/O from calling xfs_buf_ioend too early. 1379 */ 1380 atomic_set(&bp->b_io_remaining, 1); 1381 _xfs_buf_ioapply(bp); 1382 /* 1383 * If _xfs_buf_ioapply failed, we'll get back here with 1384 * only the reference we took above. _xfs_buf_ioend will 1385 * drop it to zero, so we'd better not queue it for later, 1386 * or we'll free it before it's done. 1387 */ 1388 _xfs_buf_ioend(bp, bp->b_error ? 0 : 1); 1389 1390 xfs_buf_rele(bp); 1391 } 1392 1393 /* 1394 * Waits for I/O to complete on the buffer supplied. It returns immediately if 1395 * no I/O is pending or there is already a pending error on the buffer, in which 1396 * case nothing will ever complete. It returns the I/O error code, if any, or 1397 * 0 if there was no error. 1398 */ 1399 int 1400 xfs_buf_iowait( 1401 xfs_buf_t *bp) 1402 { 1403 trace_xfs_buf_iowait(bp, _RET_IP_); 1404 1405 if (!bp->b_error) 1406 wait_for_completion(&bp->b_iowait); 1407 1408 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1409 return bp->b_error; 1410 } 1411 1412 xfs_caddr_t 1413 xfs_buf_offset( 1414 xfs_buf_t *bp, 1415 size_t offset) 1416 { 1417 struct page *page; 1418 1419 if (bp->b_addr) 1420 return bp->b_addr + offset; 1421 1422 offset += bp->b_offset; 1423 page = bp->b_pages[offset >> PAGE_SHIFT]; 1424 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); 1425 } 1426 1427 /* 1428 * Move data into or out of a buffer. 1429 */ 1430 void 1431 xfs_buf_iomove( 1432 xfs_buf_t *bp, /* buffer to process */ 1433 size_t boff, /* starting buffer offset */ 1434 size_t bsize, /* length to copy */ 1435 void *data, /* data address */ 1436 xfs_buf_rw_t mode) /* read/write/zero flag */ 1437 { 1438 size_t bend; 1439 1440 bend = boff + bsize; 1441 while (boff < bend) { 1442 struct page *page; 1443 int page_index, page_offset, csize; 1444 1445 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1446 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1447 page = bp->b_pages[page_index]; 1448 csize = min_t(size_t, PAGE_SIZE - page_offset, 1449 BBTOB(bp->b_io_length) - boff); 1450 1451 ASSERT((csize + page_offset) <= PAGE_SIZE); 1452 1453 switch (mode) { 1454 case XBRW_ZERO: 1455 memset(page_address(page) + page_offset, 0, csize); 1456 break; 1457 case XBRW_READ: 1458 memcpy(data, page_address(page) + page_offset, csize); 1459 break; 1460 case XBRW_WRITE: 1461 memcpy(page_address(page) + page_offset, data, csize); 1462 } 1463 1464 boff += csize; 1465 data += csize; 1466 } 1467 } 1468 1469 /* 1470 * Handling of buffer targets (buftargs). 1471 */ 1472 1473 /* 1474 * Wait for any bufs with callbacks that have been submitted but have not yet 1475 * returned. These buffers will have an elevated hold count, so wait on those 1476 * while freeing all the buffers only held by the LRU. 1477 */ 1478 static enum lru_status 1479 xfs_buftarg_wait_rele( 1480 struct list_head *item, 1481 spinlock_t *lru_lock, 1482 void *arg) 1483 1484 { 1485 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1486 struct list_head *dispose = arg; 1487 1488 if (atomic_read(&bp->b_hold) > 1) { 1489 /* need to wait, so skip it this pass */ 1490 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1491 return LRU_SKIP; 1492 } 1493 if (!spin_trylock(&bp->b_lock)) 1494 return LRU_SKIP; 1495 1496 /* 1497 * clear the LRU reference count so the buffer doesn't get 1498 * ignored in xfs_buf_rele(). 1499 */ 1500 atomic_set(&bp->b_lru_ref, 0); 1501 bp->b_state |= XFS_BSTATE_DISPOSE; 1502 list_move(item, dispose); 1503 spin_unlock(&bp->b_lock); 1504 return LRU_REMOVED; 1505 } 1506 1507 void 1508 xfs_wait_buftarg( 1509 struct xfs_buftarg *btp) 1510 { 1511 LIST_HEAD(dispose); 1512 int loop = 0; 1513 1514 /* loop until there is nothing left on the lru list. */ 1515 while (list_lru_count(&btp->bt_lru)) { 1516 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1517 &dispose, LONG_MAX); 1518 1519 while (!list_empty(&dispose)) { 1520 struct xfs_buf *bp; 1521 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1522 list_del_init(&bp->b_lru); 1523 if (bp->b_flags & XBF_WRITE_FAIL) { 1524 xfs_alert(btp->bt_mount, 1525 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n" 1526 "Please run xfs_repair to determine the extent of the problem.", 1527 (long long)bp->b_bn); 1528 } 1529 xfs_buf_rele(bp); 1530 } 1531 if (loop++ != 0) 1532 delay(100); 1533 } 1534 } 1535 1536 static enum lru_status 1537 xfs_buftarg_isolate( 1538 struct list_head *item, 1539 spinlock_t *lru_lock, 1540 void *arg) 1541 { 1542 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1543 struct list_head *dispose = arg; 1544 1545 /* 1546 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1547 * If we fail to get the lock, just skip it. 1548 */ 1549 if (!spin_trylock(&bp->b_lock)) 1550 return LRU_SKIP; 1551 /* 1552 * Decrement the b_lru_ref count unless the value is already 1553 * zero. If the value is already zero, we need to reclaim the 1554 * buffer, otherwise it gets another trip through the LRU. 1555 */ 1556 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1557 spin_unlock(&bp->b_lock); 1558 return LRU_ROTATE; 1559 } 1560 1561 bp->b_state |= XFS_BSTATE_DISPOSE; 1562 list_move(item, dispose); 1563 spin_unlock(&bp->b_lock); 1564 return LRU_REMOVED; 1565 } 1566 1567 static unsigned long 1568 xfs_buftarg_shrink_scan( 1569 struct shrinker *shrink, 1570 struct shrink_control *sc) 1571 { 1572 struct xfs_buftarg *btp = container_of(shrink, 1573 struct xfs_buftarg, bt_shrinker); 1574 LIST_HEAD(dispose); 1575 unsigned long freed; 1576 unsigned long nr_to_scan = sc->nr_to_scan; 1577 1578 freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate, 1579 &dispose, &nr_to_scan); 1580 1581 while (!list_empty(&dispose)) { 1582 struct xfs_buf *bp; 1583 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1584 list_del_init(&bp->b_lru); 1585 xfs_buf_rele(bp); 1586 } 1587 1588 return freed; 1589 } 1590 1591 static unsigned long 1592 xfs_buftarg_shrink_count( 1593 struct shrinker *shrink, 1594 struct shrink_control *sc) 1595 { 1596 struct xfs_buftarg *btp = container_of(shrink, 1597 struct xfs_buftarg, bt_shrinker); 1598 return list_lru_count_node(&btp->bt_lru, sc->nid); 1599 } 1600 1601 void 1602 xfs_free_buftarg( 1603 struct xfs_mount *mp, 1604 struct xfs_buftarg *btp) 1605 { 1606 unregister_shrinker(&btp->bt_shrinker); 1607 list_lru_destroy(&btp->bt_lru); 1608 1609 if (mp->m_flags & XFS_MOUNT_BARRIER) 1610 xfs_blkdev_issue_flush(btp); 1611 1612 kmem_free(btp); 1613 } 1614 1615 int 1616 xfs_setsize_buftarg( 1617 xfs_buftarg_t *btp, 1618 unsigned int blocksize, 1619 unsigned int sectorsize) 1620 { 1621 /* Set up metadata sector size info */ 1622 btp->bt_meta_sectorsize = sectorsize; 1623 btp->bt_meta_sectormask = sectorsize - 1; 1624 1625 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1626 char name[BDEVNAME_SIZE]; 1627 1628 bdevname(btp->bt_bdev, name); 1629 1630 xfs_warn(btp->bt_mount, 1631 "Cannot set_blocksize to %u on device %s", 1632 sectorsize, name); 1633 return EINVAL; 1634 } 1635 1636 /* Set up device logical sector size mask */ 1637 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1638 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1639 1640 return 0; 1641 } 1642 1643 /* 1644 * When allocating the initial buffer target we have not yet 1645 * read in the superblock, so don't know what sized sectors 1646 * are being used at this early stage. Play safe. 1647 */ 1648 STATIC int 1649 xfs_setsize_buftarg_early( 1650 xfs_buftarg_t *btp, 1651 struct block_device *bdev) 1652 { 1653 return xfs_setsize_buftarg(btp, PAGE_SIZE, 1654 bdev_logical_block_size(bdev)); 1655 } 1656 1657 xfs_buftarg_t * 1658 xfs_alloc_buftarg( 1659 struct xfs_mount *mp, 1660 struct block_device *bdev, 1661 int external, 1662 const char *fsname) 1663 { 1664 xfs_buftarg_t *btp; 1665 1666 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); 1667 1668 btp->bt_mount = mp; 1669 btp->bt_dev = bdev->bd_dev; 1670 btp->bt_bdev = bdev; 1671 btp->bt_bdi = blk_get_backing_dev_info(bdev); 1672 if (!btp->bt_bdi) 1673 goto error; 1674 1675 if (xfs_setsize_buftarg_early(btp, bdev)) 1676 goto error; 1677 1678 if (list_lru_init(&btp->bt_lru)) 1679 goto error; 1680 1681 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1682 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1683 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1684 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1685 register_shrinker(&btp->bt_shrinker); 1686 return btp; 1687 1688 error: 1689 kmem_free(btp); 1690 return NULL; 1691 } 1692 1693 /* 1694 * Add a buffer to the delayed write list. 1695 * 1696 * This queues a buffer for writeout if it hasn't already been. Note that 1697 * neither this routine nor the buffer list submission functions perform 1698 * any internal synchronization. It is expected that the lists are thread-local 1699 * to the callers. 1700 * 1701 * Returns true if we queued up the buffer, or false if it already had 1702 * been on the buffer list. 1703 */ 1704 bool 1705 xfs_buf_delwri_queue( 1706 struct xfs_buf *bp, 1707 struct list_head *list) 1708 { 1709 ASSERT(xfs_buf_islocked(bp)); 1710 ASSERT(!(bp->b_flags & XBF_READ)); 1711 1712 /* 1713 * If the buffer is already marked delwri it already is queued up 1714 * by someone else for imediate writeout. Just ignore it in that 1715 * case. 1716 */ 1717 if (bp->b_flags & _XBF_DELWRI_Q) { 1718 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1719 return false; 1720 } 1721 1722 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1723 1724 /* 1725 * If a buffer gets written out synchronously or marked stale while it 1726 * is on a delwri list we lazily remove it. To do this, the other party 1727 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1728 * It remains referenced and on the list. In a rare corner case it 1729 * might get readded to a delwri list after the synchronous writeout, in 1730 * which case we need just need to re-add the flag here. 1731 */ 1732 bp->b_flags |= _XBF_DELWRI_Q; 1733 if (list_empty(&bp->b_list)) { 1734 atomic_inc(&bp->b_hold); 1735 list_add_tail(&bp->b_list, list); 1736 } 1737 1738 return true; 1739 } 1740 1741 /* 1742 * Compare function is more complex than it needs to be because 1743 * the return value is only 32 bits and we are doing comparisons 1744 * on 64 bit values 1745 */ 1746 static int 1747 xfs_buf_cmp( 1748 void *priv, 1749 struct list_head *a, 1750 struct list_head *b) 1751 { 1752 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1753 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1754 xfs_daddr_t diff; 1755 1756 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1757 if (diff < 0) 1758 return -1; 1759 if (diff > 0) 1760 return 1; 1761 return 0; 1762 } 1763 1764 static int 1765 __xfs_buf_delwri_submit( 1766 struct list_head *buffer_list, 1767 struct list_head *io_list, 1768 bool wait) 1769 { 1770 struct blk_plug plug; 1771 struct xfs_buf *bp, *n; 1772 int pinned = 0; 1773 1774 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1775 if (!wait) { 1776 if (xfs_buf_ispinned(bp)) { 1777 pinned++; 1778 continue; 1779 } 1780 if (!xfs_buf_trylock(bp)) 1781 continue; 1782 } else { 1783 xfs_buf_lock(bp); 1784 } 1785 1786 /* 1787 * Someone else might have written the buffer synchronously or 1788 * marked it stale in the meantime. In that case only the 1789 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1790 * reference and remove it from the list here. 1791 */ 1792 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1793 list_del_init(&bp->b_list); 1794 xfs_buf_relse(bp); 1795 continue; 1796 } 1797 1798 list_move_tail(&bp->b_list, io_list); 1799 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1800 } 1801 1802 list_sort(NULL, io_list, xfs_buf_cmp); 1803 1804 blk_start_plug(&plug); 1805 list_for_each_entry_safe(bp, n, io_list, b_list) { 1806 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL); 1807 bp->b_flags |= XBF_WRITE; 1808 1809 if (!wait) { 1810 bp->b_flags |= XBF_ASYNC; 1811 list_del_init(&bp->b_list); 1812 } 1813 xfs_bdstrat_cb(bp); 1814 } 1815 blk_finish_plug(&plug); 1816 1817 return pinned; 1818 } 1819 1820 /* 1821 * Write out a buffer list asynchronously. 1822 * 1823 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1824 * out and not wait for I/O completion on any of the buffers. This interface 1825 * is only safely useable for callers that can track I/O completion by higher 1826 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1827 * function. 1828 */ 1829 int 1830 xfs_buf_delwri_submit_nowait( 1831 struct list_head *buffer_list) 1832 { 1833 LIST_HEAD (io_list); 1834 return __xfs_buf_delwri_submit(buffer_list, &io_list, false); 1835 } 1836 1837 /* 1838 * Write out a buffer list synchronously. 1839 * 1840 * This will take the @buffer_list, write all buffers out and wait for I/O 1841 * completion on all of the buffers. @buffer_list is consumed by the function, 1842 * so callers must have some other way of tracking buffers if they require such 1843 * functionality. 1844 */ 1845 int 1846 xfs_buf_delwri_submit( 1847 struct list_head *buffer_list) 1848 { 1849 LIST_HEAD (io_list); 1850 int error = 0, error2; 1851 struct xfs_buf *bp; 1852 1853 __xfs_buf_delwri_submit(buffer_list, &io_list, true); 1854 1855 /* Wait for IO to complete. */ 1856 while (!list_empty(&io_list)) { 1857 bp = list_first_entry(&io_list, struct xfs_buf, b_list); 1858 1859 list_del_init(&bp->b_list); 1860 error2 = xfs_buf_iowait(bp); 1861 xfs_buf_relse(bp); 1862 if (!error) 1863 error = error2; 1864 } 1865 1866 return error; 1867 } 1868 1869 int __init 1870 xfs_buf_init(void) 1871 { 1872 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 1873 KM_ZONE_HWALIGN, NULL); 1874 if (!xfs_buf_zone) 1875 goto out; 1876 1877 xfslogd_workqueue = alloc_workqueue("xfslogd", 1878 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1); 1879 if (!xfslogd_workqueue) 1880 goto out_free_buf_zone; 1881 1882 return 0; 1883 1884 out_free_buf_zone: 1885 kmem_zone_destroy(xfs_buf_zone); 1886 out: 1887 return -ENOMEM; 1888 } 1889 1890 void 1891 xfs_buf_terminate(void) 1892 { 1893 destroy_workqueue(xfslogd_workqueue); 1894 kmem_zone_destroy(xfs_buf_zone); 1895 } 1896