xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 80483c3a)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44 
45 static kmem_zone_t *xfs_buf_zone;
46 
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp)	do { } while (0)
53 # define XB_CLEAR_OWNER(bp)	do { } while (0)
54 # define XB_GET_OWNER(bp)	do { } while (0)
55 #endif
56 
57 #define xb_to_gfp(flags) \
58 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59 
60 
61 static inline int
62 xfs_buf_is_vmapped(
63 	struct xfs_buf	*bp)
64 {
65 	/*
66 	 * Return true if the buffer is vmapped.
67 	 *
68 	 * b_addr is null if the buffer is not mapped, but the code is clever
69 	 * enough to know it doesn't have to map a single page, so the check has
70 	 * to be both for b_addr and bp->b_page_count > 1.
71 	 */
72 	return bp->b_addr && bp->b_page_count > 1;
73 }
74 
75 static inline int
76 xfs_buf_vmap_len(
77 	struct xfs_buf	*bp)
78 {
79 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81 
82 /*
83  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84  * this buffer. The count is incremented once per buffer (per hold cycle)
85  * because the corresponding decrement is deferred to buffer release. Buffers
86  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87  * tracking adds unnecessary overhead. This is used for sychronization purposes
88  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89  * in-flight buffers.
90  *
91  * Buffers that are never released (e.g., superblock, iclog buffers) must set
92  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93  * never reaches zero and unmount hangs indefinitely.
94  */
95 static inline void
96 xfs_buf_ioacct_inc(
97 	struct xfs_buf	*bp)
98 {
99 	if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 		return;
101 
102 	ASSERT(bp->b_flags & XBF_ASYNC);
103 	bp->b_flags |= _XBF_IN_FLIGHT;
104 	percpu_counter_inc(&bp->b_target->bt_io_count);
105 }
106 
107 /*
108  * Clear the in-flight state on a buffer about to be released to the LRU or
109  * freed and unaccount from the buftarg.
110  */
111 static inline void
112 xfs_buf_ioacct_dec(
113 	struct xfs_buf	*bp)
114 {
115 	if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 		return;
117 
118 	ASSERT(bp->b_flags & XBF_ASYNC);
119 	bp->b_flags &= ~_XBF_IN_FLIGHT;
120 	percpu_counter_dec(&bp->b_target->bt_io_count);
121 }
122 
123 /*
124  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
125  * b_lru_ref count so that the buffer is freed immediately when the buffer
126  * reference count falls to zero. If the buffer is already on the LRU, we need
127  * to remove the reference that LRU holds on the buffer.
128  *
129  * This prevents build-up of stale buffers on the LRU.
130  */
131 void
132 xfs_buf_stale(
133 	struct xfs_buf	*bp)
134 {
135 	ASSERT(xfs_buf_islocked(bp));
136 
137 	bp->b_flags |= XBF_STALE;
138 
139 	/*
140 	 * Clear the delwri status so that a delwri queue walker will not
141 	 * flush this buffer to disk now that it is stale. The delwri queue has
142 	 * a reference to the buffer, so this is safe to do.
143 	 */
144 	bp->b_flags &= ~_XBF_DELWRI_Q;
145 
146 	/*
147 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
148 	 * could reset b_flags. There is no guarantee that the buffer is
149 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
150 	 * status now to preserve accounting consistency.
151 	 */
152 	xfs_buf_ioacct_dec(bp);
153 
154 	spin_lock(&bp->b_lock);
155 	atomic_set(&bp->b_lru_ref, 0);
156 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
157 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
158 		atomic_dec(&bp->b_hold);
159 
160 	ASSERT(atomic_read(&bp->b_hold) >= 1);
161 	spin_unlock(&bp->b_lock);
162 }
163 
164 static int
165 xfs_buf_get_maps(
166 	struct xfs_buf		*bp,
167 	int			map_count)
168 {
169 	ASSERT(bp->b_maps == NULL);
170 	bp->b_map_count = map_count;
171 
172 	if (map_count == 1) {
173 		bp->b_maps = &bp->__b_map;
174 		return 0;
175 	}
176 
177 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
178 				KM_NOFS);
179 	if (!bp->b_maps)
180 		return -ENOMEM;
181 	return 0;
182 }
183 
184 /*
185  *	Frees b_pages if it was allocated.
186  */
187 static void
188 xfs_buf_free_maps(
189 	struct xfs_buf	*bp)
190 {
191 	if (bp->b_maps != &bp->__b_map) {
192 		kmem_free(bp->b_maps);
193 		bp->b_maps = NULL;
194 	}
195 }
196 
197 struct xfs_buf *
198 _xfs_buf_alloc(
199 	struct xfs_buftarg	*target,
200 	struct xfs_buf_map	*map,
201 	int			nmaps,
202 	xfs_buf_flags_t		flags)
203 {
204 	struct xfs_buf		*bp;
205 	int			error;
206 	int			i;
207 
208 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
209 	if (unlikely(!bp))
210 		return NULL;
211 
212 	/*
213 	 * We don't want certain flags to appear in b_flags unless they are
214 	 * specifically set by later operations on the buffer.
215 	 */
216 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
217 
218 	atomic_set(&bp->b_hold, 1);
219 	atomic_set(&bp->b_lru_ref, 1);
220 	init_completion(&bp->b_iowait);
221 	INIT_LIST_HEAD(&bp->b_lru);
222 	INIT_LIST_HEAD(&bp->b_list);
223 	RB_CLEAR_NODE(&bp->b_rbnode);
224 	sema_init(&bp->b_sema, 0); /* held, no waiters */
225 	spin_lock_init(&bp->b_lock);
226 	XB_SET_OWNER(bp);
227 	bp->b_target = target;
228 	bp->b_flags = flags;
229 
230 	/*
231 	 * Set length and io_length to the same value initially.
232 	 * I/O routines should use io_length, which will be the same in
233 	 * most cases but may be reset (e.g. XFS recovery).
234 	 */
235 	error = xfs_buf_get_maps(bp, nmaps);
236 	if (error)  {
237 		kmem_zone_free(xfs_buf_zone, bp);
238 		return NULL;
239 	}
240 
241 	bp->b_bn = map[0].bm_bn;
242 	bp->b_length = 0;
243 	for (i = 0; i < nmaps; i++) {
244 		bp->b_maps[i].bm_bn = map[i].bm_bn;
245 		bp->b_maps[i].bm_len = map[i].bm_len;
246 		bp->b_length += map[i].bm_len;
247 	}
248 	bp->b_io_length = bp->b_length;
249 
250 	atomic_set(&bp->b_pin_count, 0);
251 	init_waitqueue_head(&bp->b_waiters);
252 
253 	XFS_STATS_INC(target->bt_mount, xb_create);
254 	trace_xfs_buf_init(bp, _RET_IP_);
255 
256 	return bp;
257 }
258 
259 /*
260  *	Allocate a page array capable of holding a specified number
261  *	of pages, and point the page buf at it.
262  */
263 STATIC int
264 _xfs_buf_get_pages(
265 	xfs_buf_t		*bp,
266 	int			page_count)
267 {
268 	/* Make sure that we have a page list */
269 	if (bp->b_pages == NULL) {
270 		bp->b_page_count = page_count;
271 		if (page_count <= XB_PAGES) {
272 			bp->b_pages = bp->b_page_array;
273 		} else {
274 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
275 						 page_count, KM_NOFS);
276 			if (bp->b_pages == NULL)
277 				return -ENOMEM;
278 		}
279 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
280 	}
281 	return 0;
282 }
283 
284 /*
285  *	Frees b_pages if it was allocated.
286  */
287 STATIC void
288 _xfs_buf_free_pages(
289 	xfs_buf_t	*bp)
290 {
291 	if (bp->b_pages != bp->b_page_array) {
292 		kmem_free(bp->b_pages);
293 		bp->b_pages = NULL;
294 	}
295 }
296 
297 /*
298  *	Releases the specified buffer.
299  *
300  * 	The modification state of any associated pages is left unchanged.
301  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
302  * 	hashed and refcounted buffers
303  */
304 void
305 xfs_buf_free(
306 	xfs_buf_t		*bp)
307 {
308 	trace_xfs_buf_free(bp, _RET_IP_);
309 
310 	ASSERT(list_empty(&bp->b_lru));
311 
312 	if (bp->b_flags & _XBF_PAGES) {
313 		uint		i;
314 
315 		if (xfs_buf_is_vmapped(bp))
316 			vm_unmap_ram(bp->b_addr - bp->b_offset,
317 					bp->b_page_count);
318 
319 		for (i = 0; i < bp->b_page_count; i++) {
320 			struct page	*page = bp->b_pages[i];
321 
322 			__free_page(page);
323 		}
324 	} else if (bp->b_flags & _XBF_KMEM)
325 		kmem_free(bp->b_addr);
326 	_xfs_buf_free_pages(bp);
327 	xfs_buf_free_maps(bp);
328 	kmem_zone_free(xfs_buf_zone, bp);
329 }
330 
331 /*
332  * Allocates all the pages for buffer in question and builds it's page list.
333  */
334 STATIC int
335 xfs_buf_allocate_memory(
336 	xfs_buf_t		*bp,
337 	uint			flags)
338 {
339 	size_t			size;
340 	size_t			nbytes, offset;
341 	gfp_t			gfp_mask = xb_to_gfp(flags);
342 	unsigned short		page_count, i;
343 	xfs_off_t		start, end;
344 	int			error;
345 
346 	/*
347 	 * for buffers that are contained within a single page, just allocate
348 	 * the memory from the heap - there's no need for the complexity of
349 	 * page arrays to keep allocation down to order 0.
350 	 */
351 	size = BBTOB(bp->b_length);
352 	if (size < PAGE_SIZE) {
353 		bp->b_addr = kmem_alloc(size, KM_NOFS);
354 		if (!bp->b_addr) {
355 			/* low memory - use alloc_page loop instead */
356 			goto use_alloc_page;
357 		}
358 
359 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
360 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
361 			/* b_addr spans two pages - use alloc_page instead */
362 			kmem_free(bp->b_addr);
363 			bp->b_addr = NULL;
364 			goto use_alloc_page;
365 		}
366 		bp->b_offset = offset_in_page(bp->b_addr);
367 		bp->b_pages = bp->b_page_array;
368 		bp->b_pages[0] = virt_to_page(bp->b_addr);
369 		bp->b_page_count = 1;
370 		bp->b_flags |= _XBF_KMEM;
371 		return 0;
372 	}
373 
374 use_alloc_page:
375 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
376 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
377 								>> PAGE_SHIFT;
378 	page_count = end - start;
379 	error = _xfs_buf_get_pages(bp, page_count);
380 	if (unlikely(error))
381 		return error;
382 
383 	offset = bp->b_offset;
384 	bp->b_flags |= _XBF_PAGES;
385 
386 	for (i = 0; i < bp->b_page_count; i++) {
387 		struct page	*page;
388 		uint		retries = 0;
389 retry:
390 		page = alloc_page(gfp_mask);
391 		if (unlikely(page == NULL)) {
392 			if (flags & XBF_READ_AHEAD) {
393 				bp->b_page_count = i;
394 				error = -ENOMEM;
395 				goto out_free_pages;
396 			}
397 
398 			/*
399 			 * This could deadlock.
400 			 *
401 			 * But until all the XFS lowlevel code is revamped to
402 			 * handle buffer allocation failures we can't do much.
403 			 */
404 			if (!(++retries % 100))
405 				xfs_err(NULL,
406 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
407 					current->comm, current->pid,
408 					__func__, gfp_mask);
409 
410 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
411 			congestion_wait(BLK_RW_ASYNC, HZ/50);
412 			goto retry;
413 		}
414 
415 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
416 
417 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
418 		size -= nbytes;
419 		bp->b_pages[i] = page;
420 		offset = 0;
421 	}
422 	return 0;
423 
424 out_free_pages:
425 	for (i = 0; i < bp->b_page_count; i++)
426 		__free_page(bp->b_pages[i]);
427 	return error;
428 }
429 
430 /*
431  *	Map buffer into kernel address-space if necessary.
432  */
433 STATIC int
434 _xfs_buf_map_pages(
435 	xfs_buf_t		*bp,
436 	uint			flags)
437 {
438 	ASSERT(bp->b_flags & _XBF_PAGES);
439 	if (bp->b_page_count == 1) {
440 		/* A single page buffer is always mappable */
441 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
442 	} else if (flags & XBF_UNMAPPED) {
443 		bp->b_addr = NULL;
444 	} else {
445 		int retried = 0;
446 		unsigned noio_flag;
447 
448 		/*
449 		 * vm_map_ram() will allocate auxillary structures (e.g.
450 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
451 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
452 		 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
453 		 * memory reclaim re-entering the filesystem here and
454 		 * potentially deadlocking.
455 		 */
456 		noio_flag = memalloc_noio_save();
457 		do {
458 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
459 						-1, PAGE_KERNEL);
460 			if (bp->b_addr)
461 				break;
462 			vm_unmap_aliases();
463 		} while (retried++ <= 1);
464 		memalloc_noio_restore(noio_flag);
465 
466 		if (!bp->b_addr)
467 			return -ENOMEM;
468 		bp->b_addr += bp->b_offset;
469 	}
470 
471 	return 0;
472 }
473 
474 /*
475  *	Finding and Reading Buffers
476  */
477 
478 /*
479  *	Look up, and creates if absent, a lockable buffer for
480  *	a given range of an inode.  The buffer is returned
481  *	locked.	No I/O is implied by this call.
482  */
483 xfs_buf_t *
484 _xfs_buf_find(
485 	struct xfs_buftarg	*btp,
486 	struct xfs_buf_map	*map,
487 	int			nmaps,
488 	xfs_buf_flags_t		flags,
489 	xfs_buf_t		*new_bp)
490 {
491 	struct xfs_perag	*pag;
492 	struct rb_node		**rbp;
493 	struct rb_node		*parent;
494 	xfs_buf_t		*bp;
495 	xfs_daddr_t		blkno = map[0].bm_bn;
496 	xfs_daddr_t		eofs;
497 	int			numblks = 0;
498 	int			i;
499 
500 	for (i = 0; i < nmaps; i++)
501 		numblks += map[i].bm_len;
502 
503 	/* Check for IOs smaller than the sector size / not sector aligned */
504 	ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
505 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
506 
507 	/*
508 	 * Corrupted block numbers can get through to here, unfortunately, so we
509 	 * have to check that the buffer falls within the filesystem bounds.
510 	 */
511 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
512 	if (blkno < 0 || blkno >= eofs) {
513 		/*
514 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
515 		 * but none of the higher level infrastructure supports
516 		 * returning a specific error on buffer lookup failures.
517 		 */
518 		xfs_alert(btp->bt_mount,
519 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
520 			  __func__, blkno, eofs);
521 		WARN_ON(1);
522 		return NULL;
523 	}
524 
525 	/* get tree root */
526 	pag = xfs_perag_get(btp->bt_mount,
527 				xfs_daddr_to_agno(btp->bt_mount, blkno));
528 
529 	/* walk tree */
530 	spin_lock(&pag->pag_buf_lock);
531 	rbp = &pag->pag_buf_tree.rb_node;
532 	parent = NULL;
533 	bp = NULL;
534 	while (*rbp) {
535 		parent = *rbp;
536 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
537 
538 		if (blkno < bp->b_bn)
539 			rbp = &(*rbp)->rb_left;
540 		else if (blkno > bp->b_bn)
541 			rbp = &(*rbp)->rb_right;
542 		else {
543 			/*
544 			 * found a block number match. If the range doesn't
545 			 * match, the only way this is allowed is if the buffer
546 			 * in the cache is stale and the transaction that made
547 			 * it stale has not yet committed. i.e. we are
548 			 * reallocating a busy extent. Skip this buffer and
549 			 * continue searching to the right for an exact match.
550 			 */
551 			if (bp->b_length != numblks) {
552 				ASSERT(bp->b_flags & XBF_STALE);
553 				rbp = &(*rbp)->rb_right;
554 				continue;
555 			}
556 			atomic_inc(&bp->b_hold);
557 			goto found;
558 		}
559 	}
560 
561 	/* No match found */
562 	if (new_bp) {
563 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
564 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
565 		/* the buffer keeps the perag reference until it is freed */
566 		new_bp->b_pag = pag;
567 		spin_unlock(&pag->pag_buf_lock);
568 	} else {
569 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
570 		spin_unlock(&pag->pag_buf_lock);
571 		xfs_perag_put(pag);
572 	}
573 	return new_bp;
574 
575 found:
576 	spin_unlock(&pag->pag_buf_lock);
577 	xfs_perag_put(pag);
578 
579 	if (!xfs_buf_trylock(bp)) {
580 		if (flags & XBF_TRYLOCK) {
581 			xfs_buf_rele(bp);
582 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
583 			return NULL;
584 		}
585 		xfs_buf_lock(bp);
586 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
587 	}
588 
589 	/*
590 	 * if the buffer is stale, clear all the external state associated with
591 	 * it. We need to keep flags such as how we allocated the buffer memory
592 	 * intact here.
593 	 */
594 	if (bp->b_flags & XBF_STALE) {
595 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
596 		ASSERT(bp->b_iodone == NULL);
597 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
598 		bp->b_ops = NULL;
599 	}
600 
601 	trace_xfs_buf_find(bp, flags, _RET_IP_);
602 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
603 	return bp;
604 }
605 
606 /*
607  * Assembles a buffer covering the specified range. The code is optimised for
608  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
609  * more hits than misses.
610  */
611 struct xfs_buf *
612 xfs_buf_get_map(
613 	struct xfs_buftarg	*target,
614 	struct xfs_buf_map	*map,
615 	int			nmaps,
616 	xfs_buf_flags_t		flags)
617 {
618 	struct xfs_buf		*bp;
619 	struct xfs_buf		*new_bp;
620 	int			error = 0;
621 
622 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
623 	if (likely(bp))
624 		goto found;
625 
626 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
627 	if (unlikely(!new_bp))
628 		return NULL;
629 
630 	error = xfs_buf_allocate_memory(new_bp, flags);
631 	if (error) {
632 		xfs_buf_free(new_bp);
633 		return NULL;
634 	}
635 
636 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
637 	if (!bp) {
638 		xfs_buf_free(new_bp);
639 		return NULL;
640 	}
641 
642 	if (bp != new_bp)
643 		xfs_buf_free(new_bp);
644 
645 found:
646 	if (!bp->b_addr) {
647 		error = _xfs_buf_map_pages(bp, flags);
648 		if (unlikely(error)) {
649 			xfs_warn(target->bt_mount,
650 				"%s: failed to map pagesn", __func__);
651 			xfs_buf_relse(bp);
652 			return NULL;
653 		}
654 	}
655 
656 	/*
657 	 * Clear b_error if this is a lookup from a caller that doesn't expect
658 	 * valid data to be found in the buffer.
659 	 */
660 	if (!(flags & XBF_READ))
661 		xfs_buf_ioerror(bp, 0);
662 
663 	XFS_STATS_INC(target->bt_mount, xb_get);
664 	trace_xfs_buf_get(bp, flags, _RET_IP_);
665 	return bp;
666 }
667 
668 STATIC int
669 _xfs_buf_read(
670 	xfs_buf_t		*bp,
671 	xfs_buf_flags_t		flags)
672 {
673 	ASSERT(!(flags & XBF_WRITE));
674 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
675 
676 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
677 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
678 
679 	if (flags & XBF_ASYNC) {
680 		xfs_buf_submit(bp);
681 		return 0;
682 	}
683 	return xfs_buf_submit_wait(bp);
684 }
685 
686 xfs_buf_t *
687 xfs_buf_read_map(
688 	struct xfs_buftarg	*target,
689 	struct xfs_buf_map	*map,
690 	int			nmaps,
691 	xfs_buf_flags_t		flags,
692 	const struct xfs_buf_ops *ops)
693 {
694 	struct xfs_buf		*bp;
695 
696 	flags |= XBF_READ;
697 
698 	bp = xfs_buf_get_map(target, map, nmaps, flags);
699 	if (bp) {
700 		trace_xfs_buf_read(bp, flags, _RET_IP_);
701 
702 		if (!(bp->b_flags & XBF_DONE)) {
703 			XFS_STATS_INC(target->bt_mount, xb_get_read);
704 			bp->b_ops = ops;
705 			_xfs_buf_read(bp, flags);
706 		} else if (flags & XBF_ASYNC) {
707 			/*
708 			 * Read ahead call which is already satisfied,
709 			 * drop the buffer
710 			 */
711 			xfs_buf_relse(bp);
712 			return NULL;
713 		} else {
714 			/* We do not want read in the flags */
715 			bp->b_flags &= ~XBF_READ;
716 		}
717 	}
718 
719 	return bp;
720 }
721 
722 /*
723  *	If we are not low on memory then do the readahead in a deadlock
724  *	safe manner.
725  */
726 void
727 xfs_buf_readahead_map(
728 	struct xfs_buftarg	*target,
729 	struct xfs_buf_map	*map,
730 	int			nmaps,
731 	const struct xfs_buf_ops *ops)
732 {
733 	if (bdi_read_congested(target->bt_bdi))
734 		return;
735 
736 	xfs_buf_read_map(target, map, nmaps,
737 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
738 }
739 
740 /*
741  * Read an uncached buffer from disk. Allocates and returns a locked
742  * buffer containing the disk contents or nothing.
743  */
744 int
745 xfs_buf_read_uncached(
746 	struct xfs_buftarg	*target,
747 	xfs_daddr_t		daddr,
748 	size_t			numblks,
749 	int			flags,
750 	struct xfs_buf		**bpp,
751 	const struct xfs_buf_ops *ops)
752 {
753 	struct xfs_buf		*bp;
754 
755 	*bpp = NULL;
756 
757 	bp = xfs_buf_get_uncached(target, numblks, flags);
758 	if (!bp)
759 		return -ENOMEM;
760 
761 	/* set up the buffer for a read IO */
762 	ASSERT(bp->b_map_count == 1);
763 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
764 	bp->b_maps[0].bm_bn = daddr;
765 	bp->b_flags |= XBF_READ;
766 	bp->b_ops = ops;
767 
768 	xfs_buf_submit_wait(bp);
769 	if (bp->b_error) {
770 		int	error = bp->b_error;
771 		xfs_buf_relse(bp);
772 		return error;
773 	}
774 
775 	*bpp = bp;
776 	return 0;
777 }
778 
779 /*
780  * Return a buffer allocated as an empty buffer and associated to external
781  * memory via xfs_buf_associate_memory() back to it's empty state.
782  */
783 void
784 xfs_buf_set_empty(
785 	struct xfs_buf		*bp,
786 	size_t			numblks)
787 {
788 	if (bp->b_pages)
789 		_xfs_buf_free_pages(bp);
790 
791 	bp->b_pages = NULL;
792 	bp->b_page_count = 0;
793 	bp->b_addr = NULL;
794 	bp->b_length = numblks;
795 	bp->b_io_length = numblks;
796 
797 	ASSERT(bp->b_map_count == 1);
798 	bp->b_bn = XFS_BUF_DADDR_NULL;
799 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
800 	bp->b_maps[0].bm_len = bp->b_length;
801 }
802 
803 static inline struct page *
804 mem_to_page(
805 	void			*addr)
806 {
807 	if ((!is_vmalloc_addr(addr))) {
808 		return virt_to_page(addr);
809 	} else {
810 		return vmalloc_to_page(addr);
811 	}
812 }
813 
814 int
815 xfs_buf_associate_memory(
816 	xfs_buf_t		*bp,
817 	void			*mem,
818 	size_t			len)
819 {
820 	int			rval;
821 	int			i = 0;
822 	unsigned long		pageaddr;
823 	unsigned long		offset;
824 	size_t			buflen;
825 	int			page_count;
826 
827 	pageaddr = (unsigned long)mem & PAGE_MASK;
828 	offset = (unsigned long)mem - pageaddr;
829 	buflen = PAGE_ALIGN(len + offset);
830 	page_count = buflen >> PAGE_SHIFT;
831 
832 	/* Free any previous set of page pointers */
833 	if (bp->b_pages)
834 		_xfs_buf_free_pages(bp);
835 
836 	bp->b_pages = NULL;
837 	bp->b_addr = mem;
838 
839 	rval = _xfs_buf_get_pages(bp, page_count);
840 	if (rval)
841 		return rval;
842 
843 	bp->b_offset = offset;
844 
845 	for (i = 0; i < bp->b_page_count; i++) {
846 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
847 		pageaddr += PAGE_SIZE;
848 	}
849 
850 	bp->b_io_length = BTOBB(len);
851 	bp->b_length = BTOBB(buflen);
852 
853 	return 0;
854 }
855 
856 xfs_buf_t *
857 xfs_buf_get_uncached(
858 	struct xfs_buftarg	*target,
859 	size_t			numblks,
860 	int			flags)
861 {
862 	unsigned long		page_count;
863 	int			error, i;
864 	struct xfs_buf		*bp;
865 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
866 
867 	/* flags might contain irrelevant bits, pass only what we care about */
868 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
869 	if (unlikely(bp == NULL))
870 		goto fail;
871 
872 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
873 	error = _xfs_buf_get_pages(bp, page_count);
874 	if (error)
875 		goto fail_free_buf;
876 
877 	for (i = 0; i < page_count; i++) {
878 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
879 		if (!bp->b_pages[i])
880 			goto fail_free_mem;
881 	}
882 	bp->b_flags |= _XBF_PAGES;
883 
884 	error = _xfs_buf_map_pages(bp, 0);
885 	if (unlikely(error)) {
886 		xfs_warn(target->bt_mount,
887 			"%s: failed to map pages", __func__);
888 		goto fail_free_mem;
889 	}
890 
891 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
892 	return bp;
893 
894  fail_free_mem:
895 	while (--i >= 0)
896 		__free_page(bp->b_pages[i]);
897 	_xfs_buf_free_pages(bp);
898  fail_free_buf:
899 	xfs_buf_free_maps(bp);
900 	kmem_zone_free(xfs_buf_zone, bp);
901  fail:
902 	return NULL;
903 }
904 
905 /*
906  *	Increment reference count on buffer, to hold the buffer concurrently
907  *	with another thread which may release (free) the buffer asynchronously.
908  *	Must hold the buffer already to call this function.
909  */
910 void
911 xfs_buf_hold(
912 	xfs_buf_t		*bp)
913 {
914 	trace_xfs_buf_hold(bp, _RET_IP_);
915 	atomic_inc(&bp->b_hold);
916 }
917 
918 /*
919  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
920  * placed on LRU or freed (depending on b_lru_ref).
921  */
922 void
923 xfs_buf_rele(
924 	xfs_buf_t		*bp)
925 {
926 	struct xfs_perag	*pag = bp->b_pag;
927 	bool			release;
928 	bool			freebuf = false;
929 
930 	trace_xfs_buf_rele(bp, _RET_IP_);
931 
932 	if (!pag) {
933 		ASSERT(list_empty(&bp->b_lru));
934 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
935 		if (atomic_dec_and_test(&bp->b_hold)) {
936 			xfs_buf_ioacct_dec(bp);
937 			xfs_buf_free(bp);
938 		}
939 		return;
940 	}
941 
942 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
943 
944 	ASSERT(atomic_read(&bp->b_hold) > 0);
945 
946 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
947 	spin_lock(&bp->b_lock);
948 	if (!release) {
949 		/*
950 		 * Drop the in-flight state if the buffer is already on the LRU
951 		 * and it holds the only reference. This is racy because we
952 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
953 		 * ensures the decrement occurs only once per-buf.
954 		 */
955 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
956 			xfs_buf_ioacct_dec(bp);
957 		goto out_unlock;
958 	}
959 
960 	/* the last reference has been dropped ... */
961 	xfs_buf_ioacct_dec(bp);
962 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
963 		/*
964 		 * If the buffer is added to the LRU take a new reference to the
965 		 * buffer for the LRU and clear the (now stale) dispose list
966 		 * state flag
967 		 */
968 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
969 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
970 			atomic_inc(&bp->b_hold);
971 		}
972 		spin_unlock(&pag->pag_buf_lock);
973 	} else {
974 		/*
975 		 * most of the time buffers will already be removed from the
976 		 * LRU, so optimise that case by checking for the
977 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
978 		 * was on was the disposal list
979 		 */
980 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
981 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
982 		} else {
983 			ASSERT(list_empty(&bp->b_lru));
984 		}
985 
986 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
987 		rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
988 		spin_unlock(&pag->pag_buf_lock);
989 		xfs_perag_put(pag);
990 		freebuf = true;
991 	}
992 
993 out_unlock:
994 	spin_unlock(&bp->b_lock);
995 
996 	if (freebuf)
997 		xfs_buf_free(bp);
998 }
999 
1000 
1001 /*
1002  *	Lock a buffer object, if it is not already locked.
1003  *
1004  *	If we come across a stale, pinned, locked buffer, we know that we are
1005  *	being asked to lock a buffer that has been reallocated. Because it is
1006  *	pinned, we know that the log has not been pushed to disk and hence it
1007  *	will still be locked.  Rather than continuing to have trylock attempts
1008  *	fail until someone else pushes the log, push it ourselves before
1009  *	returning.  This means that the xfsaild will not get stuck trying
1010  *	to push on stale inode buffers.
1011  */
1012 int
1013 xfs_buf_trylock(
1014 	struct xfs_buf		*bp)
1015 {
1016 	int			locked;
1017 
1018 	locked = down_trylock(&bp->b_sema) == 0;
1019 	if (locked) {
1020 		XB_SET_OWNER(bp);
1021 		trace_xfs_buf_trylock(bp, _RET_IP_);
1022 	} else {
1023 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1024 	}
1025 	return locked;
1026 }
1027 
1028 /*
1029  *	Lock a buffer object.
1030  *
1031  *	If we come across a stale, pinned, locked buffer, we know that we
1032  *	are being asked to lock a buffer that has been reallocated. Because
1033  *	it is pinned, we know that the log has not been pushed to disk and
1034  *	hence it will still be locked. Rather than sleeping until someone
1035  *	else pushes the log, push it ourselves before trying to get the lock.
1036  */
1037 void
1038 xfs_buf_lock(
1039 	struct xfs_buf		*bp)
1040 {
1041 	trace_xfs_buf_lock(bp, _RET_IP_);
1042 
1043 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1044 		xfs_log_force(bp->b_target->bt_mount, 0);
1045 	down(&bp->b_sema);
1046 	XB_SET_OWNER(bp);
1047 
1048 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1049 }
1050 
1051 void
1052 xfs_buf_unlock(
1053 	struct xfs_buf		*bp)
1054 {
1055 	XB_CLEAR_OWNER(bp);
1056 	up(&bp->b_sema);
1057 
1058 	trace_xfs_buf_unlock(bp, _RET_IP_);
1059 }
1060 
1061 STATIC void
1062 xfs_buf_wait_unpin(
1063 	xfs_buf_t		*bp)
1064 {
1065 	DECLARE_WAITQUEUE	(wait, current);
1066 
1067 	if (atomic_read(&bp->b_pin_count) == 0)
1068 		return;
1069 
1070 	add_wait_queue(&bp->b_waiters, &wait);
1071 	for (;;) {
1072 		set_current_state(TASK_UNINTERRUPTIBLE);
1073 		if (atomic_read(&bp->b_pin_count) == 0)
1074 			break;
1075 		io_schedule();
1076 	}
1077 	remove_wait_queue(&bp->b_waiters, &wait);
1078 	set_current_state(TASK_RUNNING);
1079 }
1080 
1081 /*
1082  *	Buffer Utility Routines
1083  */
1084 
1085 void
1086 xfs_buf_ioend(
1087 	struct xfs_buf	*bp)
1088 {
1089 	bool		read = bp->b_flags & XBF_READ;
1090 
1091 	trace_xfs_buf_iodone(bp, _RET_IP_);
1092 
1093 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1094 
1095 	/*
1096 	 * Pull in IO completion errors now. We are guaranteed to be running
1097 	 * single threaded, so we don't need the lock to read b_io_error.
1098 	 */
1099 	if (!bp->b_error && bp->b_io_error)
1100 		xfs_buf_ioerror(bp, bp->b_io_error);
1101 
1102 	/* Only validate buffers that were read without errors */
1103 	if (read && !bp->b_error && bp->b_ops) {
1104 		ASSERT(!bp->b_iodone);
1105 		bp->b_ops->verify_read(bp);
1106 	}
1107 
1108 	if (!bp->b_error)
1109 		bp->b_flags |= XBF_DONE;
1110 
1111 	if (bp->b_iodone)
1112 		(*(bp->b_iodone))(bp);
1113 	else if (bp->b_flags & XBF_ASYNC)
1114 		xfs_buf_relse(bp);
1115 	else
1116 		complete(&bp->b_iowait);
1117 }
1118 
1119 static void
1120 xfs_buf_ioend_work(
1121 	struct work_struct	*work)
1122 {
1123 	struct xfs_buf		*bp =
1124 		container_of(work, xfs_buf_t, b_ioend_work);
1125 
1126 	xfs_buf_ioend(bp);
1127 }
1128 
1129 static void
1130 xfs_buf_ioend_async(
1131 	struct xfs_buf	*bp)
1132 {
1133 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1134 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1135 }
1136 
1137 void
1138 xfs_buf_ioerror(
1139 	xfs_buf_t		*bp,
1140 	int			error)
1141 {
1142 	ASSERT(error <= 0 && error >= -1000);
1143 	bp->b_error = error;
1144 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1145 }
1146 
1147 void
1148 xfs_buf_ioerror_alert(
1149 	struct xfs_buf		*bp,
1150 	const char		*func)
1151 {
1152 	xfs_alert(bp->b_target->bt_mount,
1153 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1154 		(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1155 }
1156 
1157 int
1158 xfs_bwrite(
1159 	struct xfs_buf		*bp)
1160 {
1161 	int			error;
1162 
1163 	ASSERT(xfs_buf_islocked(bp));
1164 
1165 	bp->b_flags |= XBF_WRITE;
1166 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1167 			 XBF_WRITE_FAIL | XBF_DONE);
1168 
1169 	error = xfs_buf_submit_wait(bp);
1170 	if (error) {
1171 		xfs_force_shutdown(bp->b_target->bt_mount,
1172 				   SHUTDOWN_META_IO_ERROR);
1173 	}
1174 	return error;
1175 }
1176 
1177 static void
1178 xfs_buf_bio_end_io(
1179 	struct bio		*bio)
1180 {
1181 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1182 
1183 	/*
1184 	 * don't overwrite existing errors - otherwise we can lose errors on
1185 	 * buffers that require multiple bios to complete.
1186 	 */
1187 	if (bio->bi_error)
1188 		cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1189 
1190 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1191 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1192 
1193 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1194 		xfs_buf_ioend_async(bp);
1195 	bio_put(bio);
1196 }
1197 
1198 static void
1199 xfs_buf_ioapply_map(
1200 	struct xfs_buf	*bp,
1201 	int		map,
1202 	int		*buf_offset,
1203 	int		*count,
1204 	int		op,
1205 	int		op_flags)
1206 {
1207 	int		page_index;
1208 	int		total_nr_pages = bp->b_page_count;
1209 	int		nr_pages;
1210 	struct bio	*bio;
1211 	sector_t	sector =  bp->b_maps[map].bm_bn;
1212 	int		size;
1213 	int		offset;
1214 
1215 	total_nr_pages = bp->b_page_count;
1216 
1217 	/* skip the pages in the buffer before the start offset */
1218 	page_index = 0;
1219 	offset = *buf_offset;
1220 	while (offset >= PAGE_SIZE) {
1221 		page_index++;
1222 		offset -= PAGE_SIZE;
1223 	}
1224 
1225 	/*
1226 	 * Limit the IO size to the length of the current vector, and update the
1227 	 * remaining IO count for the next time around.
1228 	 */
1229 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1230 	*count -= size;
1231 	*buf_offset += size;
1232 
1233 next_chunk:
1234 	atomic_inc(&bp->b_io_remaining);
1235 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1236 
1237 	bio = bio_alloc(GFP_NOIO, nr_pages);
1238 	bio->bi_bdev = bp->b_target->bt_bdev;
1239 	bio->bi_iter.bi_sector = sector;
1240 	bio->bi_end_io = xfs_buf_bio_end_io;
1241 	bio->bi_private = bp;
1242 	bio_set_op_attrs(bio, op, op_flags);
1243 
1244 	for (; size && nr_pages; nr_pages--, page_index++) {
1245 		int	rbytes, nbytes = PAGE_SIZE - offset;
1246 
1247 		if (nbytes > size)
1248 			nbytes = size;
1249 
1250 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1251 				      offset);
1252 		if (rbytes < nbytes)
1253 			break;
1254 
1255 		offset = 0;
1256 		sector += BTOBB(nbytes);
1257 		size -= nbytes;
1258 		total_nr_pages--;
1259 	}
1260 
1261 	if (likely(bio->bi_iter.bi_size)) {
1262 		if (xfs_buf_is_vmapped(bp)) {
1263 			flush_kernel_vmap_range(bp->b_addr,
1264 						xfs_buf_vmap_len(bp));
1265 		}
1266 		submit_bio(bio);
1267 		if (size)
1268 			goto next_chunk;
1269 	} else {
1270 		/*
1271 		 * This is guaranteed not to be the last io reference count
1272 		 * because the caller (xfs_buf_submit) holds a count itself.
1273 		 */
1274 		atomic_dec(&bp->b_io_remaining);
1275 		xfs_buf_ioerror(bp, -EIO);
1276 		bio_put(bio);
1277 	}
1278 
1279 }
1280 
1281 STATIC void
1282 _xfs_buf_ioapply(
1283 	struct xfs_buf	*bp)
1284 {
1285 	struct blk_plug	plug;
1286 	int		op;
1287 	int		op_flags = 0;
1288 	int		offset;
1289 	int		size;
1290 	int		i;
1291 
1292 	/*
1293 	 * Make sure we capture only current IO errors rather than stale errors
1294 	 * left over from previous use of the buffer (e.g. failed readahead).
1295 	 */
1296 	bp->b_error = 0;
1297 
1298 	/*
1299 	 * Initialize the I/O completion workqueue if we haven't yet or the
1300 	 * submitter has not opted to specify a custom one.
1301 	 */
1302 	if (!bp->b_ioend_wq)
1303 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1304 
1305 	if (bp->b_flags & XBF_WRITE) {
1306 		op = REQ_OP_WRITE;
1307 		if (bp->b_flags & XBF_SYNCIO)
1308 			op_flags = WRITE_SYNC;
1309 		if (bp->b_flags & XBF_FUA)
1310 			op_flags |= REQ_FUA;
1311 		if (bp->b_flags & XBF_FLUSH)
1312 			op_flags |= REQ_PREFLUSH;
1313 
1314 		/*
1315 		 * Run the write verifier callback function if it exists. If
1316 		 * this function fails it will mark the buffer with an error and
1317 		 * the IO should not be dispatched.
1318 		 */
1319 		if (bp->b_ops) {
1320 			bp->b_ops->verify_write(bp);
1321 			if (bp->b_error) {
1322 				xfs_force_shutdown(bp->b_target->bt_mount,
1323 						   SHUTDOWN_CORRUPT_INCORE);
1324 				return;
1325 			}
1326 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1327 			struct xfs_mount *mp = bp->b_target->bt_mount;
1328 
1329 			/*
1330 			 * non-crc filesystems don't attach verifiers during
1331 			 * log recovery, so don't warn for such filesystems.
1332 			 */
1333 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1334 				xfs_warn(mp,
1335 					"%s: no ops on block 0x%llx/0x%x",
1336 					__func__, bp->b_bn, bp->b_length);
1337 				xfs_hex_dump(bp->b_addr, 64);
1338 				dump_stack();
1339 			}
1340 		}
1341 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1342 		op = REQ_OP_READ;
1343 		op_flags = REQ_RAHEAD;
1344 	} else {
1345 		op = REQ_OP_READ;
1346 	}
1347 
1348 	/* we only use the buffer cache for meta-data */
1349 	op_flags |= REQ_META;
1350 
1351 	/*
1352 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1353 	 * into the buffer and the desired IO size before we start -
1354 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1355 	 * subsequent call.
1356 	 */
1357 	offset = bp->b_offset;
1358 	size = BBTOB(bp->b_io_length);
1359 	blk_start_plug(&plug);
1360 	for (i = 0; i < bp->b_map_count; i++) {
1361 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1362 		if (bp->b_error)
1363 			break;
1364 		if (size <= 0)
1365 			break;	/* all done */
1366 	}
1367 	blk_finish_plug(&plug);
1368 }
1369 
1370 /*
1371  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1372  * the current reference to the IO. It is not safe to reference the buffer after
1373  * a call to this function unless the caller holds an additional reference
1374  * itself.
1375  */
1376 void
1377 xfs_buf_submit(
1378 	struct xfs_buf	*bp)
1379 {
1380 	trace_xfs_buf_submit(bp, _RET_IP_);
1381 
1382 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1383 	ASSERT(bp->b_flags & XBF_ASYNC);
1384 
1385 	/* on shutdown we stale and complete the buffer immediately */
1386 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1387 		xfs_buf_ioerror(bp, -EIO);
1388 		bp->b_flags &= ~XBF_DONE;
1389 		xfs_buf_stale(bp);
1390 		xfs_buf_ioend(bp);
1391 		return;
1392 	}
1393 
1394 	if (bp->b_flags & XBF_WRITE)
1395 		xfs_buf_wait_unpin(bp);
1396 
1397 	/* clear the internal error state to avoid spurious errors */
1398 	bp->b_io_error = 0;
1399 
1400 	/*
1401 	 * The caller's reference is released during I/O completion.
1402 	 * This occurs some time after the last b_io_remaining reference is
1403 	 * released, so after we drop our Io reference we have to have some
1404 	 * other reference to ensure the buffer doesn't go away from underneath
1405 	 * us. Take a direct reference to ensure we have safe access to the
1406 	 * buffer until we are finished with it.
1407 	 */
1408 	xfs_buf_hold(bp);
1409 
1410 	/*
1411 	 * Set the count to 1 initially, this will stop an I/O completion
1412 	 * callout which happens before we have started all the I/O from calling
1413 	 * xfs_buf_ioend too early.
1414 	 */
1415 	atomic_set(&bp->b_io_remaining, 1);
1416 	xfs_buf_ioacct_inc(bp);
1417 	_xfs_buf_ioapply(bp);
1418 
1419 	/*
1420 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1421 	 * reference we took above. If we drop it to zero, run completion so
1422 	 * that we don't return to the caller with completion still pending.
1423 	 */
1424 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1425 		if (bp->b_error)
1426 			xfs_buf_ioend(bp);
1427 		else
1428 			xfs_buf_ioend_async(bp);
1429 	}
1430 
1431 	xfs_buf_rele(bp);
1432 	/* Note: it is not safe to reference bp now we've dropped our ref */
1433 }
1434 
1435 /*
1436  * Synchronous buffer IO submission path, read or write.
1437  */
1438 int
1439 xfs_buf_submit_wait(
1440 	struct xfs_buf	*bp)
1441 {
1442 	int		error;
1443 
1444 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1445 
1446 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1447 
1448 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1449 		xfs_buf_ioerror(bp, -EIO);
1450 		xfs_buf_stale(bp);
1451 		bp->b_flags &= ~XBF_DONE;
1452 		return -EIO;
1453 	}
1454 
1455 	if (bp->b_flags & XBF_WRITE)
1456 		xfs_buf_wait_unpin(bp);
1457 
1458 	/* clear the internal error state to avoid spurious errors */
1459 	bp->b_io_error = 0;
1460 
1461 	/*
1462 	 * For synchronous IO, the IO does not inherit the submitters reference
1463 	 * count, nor the buffer lock. Hence we cannot release the reference we
1464 	 * are about to take until we've waited for all IO completion to occur,
1465 	 * including any xfs_buf_ioend_async() work that may be pending.
1466 	 */
1467 	xfs_buf_hold(bp);
1468 
1469 	/*
1470 	 * Set the count to 1 initially, this will stop an I/O completion
1471 	 * callout which happens before we have started all the I/O from calling
1472 	 * xfs_buf_ioend too early.
1473 	 */
1474 	atomic_set(&bp->b_io_remaining, 1);
1475 	_xfs_buf_ioapply(bp);
1476 
1477 	/*
1478 	 * make sure we run completion synchronously if it raced with us and is
1479 	 * already complete.
1480 	 */
1481 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1482 		xfs_buf_ioend(bp);
1483 
1484 	/* wait for completion before gathering the error from the buffer */
1485 	trace_xfs_buf_iowait(bp, _RET_IP_);
1486 	wait_for_completion(&bp->b_iowait);
1487 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1488 	error = bp->b_error;
1489 
1490 	/*
1491 	 * all done now, we can release the hold that keeps the buffer
1492 	 * referenced for the entire IO.
1493 	 */
1494 	xfs_buf_rele(bp);
1495 	return error;
1496 }
1497 
1498 void *
1499 xfs_buf_offset(
1500 	struct xfs_buf		*bp,
1501 	size_t			offset)
1502 {
1503 	struct page		*page;
1504 
1505 	if (bp->b_addr)
1506 		return bp->b_addr + offset;
1507 
1508 	offset += bp->b_offset;
1509 	page = bp->b_pages[offset >> PAGE_SHIFT];
1510 	return page_address(page) + (offset & (PAGE_SIZE-1));
1511 }
1512 
1513 /*
1514  *	Move data into or out of a buffer.
1515  */
1516 void
1517 xfs_buf_iomove(
1518 	xfs_buf_t		*bp,	/* buffer to process		*/
1519 	size_t			boff,	/* starting buffer offset	*/
1520 	size_t			bsize,	/* length to copy		*/
1521 	void			*data,	/* data address			*/
1522 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1523 {
1524 	size_t			bend;
1525 
1526 	bend = boff + bsize;
1527 	while (boff < bend) {
1528 		struct page	*page;
1529 		int		page_index, page_offset, csize;
1530 
1531 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1532 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1533 		page = bp->b_pages[page_index];
1534 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1535 				      BBTOB(bp->b_io_length) - boff);
1536 
1537 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1538 
1539 		switch (mode) {
1540 		case XBRW_ZERO:
1541 			memset(page_address(page) + page_offset, 0, csize);
1542 			break;
1543 		case XBRW_READ:
1544 			memcpy(data, page_address(page) + page_offset, csize);
1545 			break;
1546 		case XBRW_WRITE:
1547 			memcpy(page_address(page) + page_offset, data, csize);
1548 		}
1549 
1550 		boff += csize;
1551 		data += csize;
1552 	}
1553 }
1554 
1555 /*
1556  *	Handling of buffer targets (buftargs).
1557  */
1558 
1559 /*
1560  * Wait for any bufs with callbacks that have been submitted but have not yet
1561  * returned. These buffers will have an elevated hold count, so wait on those
1562  * while freeing all the buffers only held by the LRU.
1563  */
1564 static enum lru_status
1565 xfs_buftarg_wait_rele(
1566 	struct list_head	*item,
1567 	struct list_lru_one	*lru,
1568 	spinlock_t		*lru_lock,
1569 	void			*arg)
1570 
1571 {
1572 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1573 	struct list_head	*dispose = arg;
1574 
1575 	if (atomic_read(&bp->b_hold) > 1) {
1576 		/* need to wait, so skip it this pass */
1577 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1578 		return LRU_SKIP;
1579 	}
1580 	if (!spin_trylock(&bp->b_lock))
1581 		return LRU_SKIP;
1582 
1583 	/*
1584 	 * clear the LRU reference count so the buffer doesn't get
1585 	 * ignored in xfs_buf_rele().
1586 	 */
1587 	atomic_set(&bp->b_lru_ref, 0);
1588 	bp->b_state |= XFS_BSTATE_DISPOSE;
1589 	list_lru_isolate_move(lru, item, dispose);
1590 	spin_unlock(&bp->b_lock);
1591 	return LRU_REMOVED;
1592 }
1593 
1594 void
1595 xfs_wait_buftarg(
1596 	struct xfs_buftarg	*btp)
1597 {
1598 	LIST_HEAD(dispose);
1599 	int loop = 0;
1600 
1601 	/*
1602 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1603 	 * released. This is critical as new buffers do not make the LRU until
1604 	 * they are released.
1605 	 *
1606 	 * Next, flush the buffer workqueue to ensure all completion processing
1607 	 * has finished. Just waiting on buffer locks is not sufficient for
1608 	 * async IO as the reference count held over IO is not released until
1609 	 * after the buffer lock is dropped. Hence we need to ensure here that
1610 	 * all reference counts have been dropped before we start walking the
1611 	 * LRU list.
1612 	 */
1613 	while (percpu_counter_sum(&btp->bt_io_count))
1614 		delay(100);
1615 	drain_workqueue(btp->bt_mount->m_buf_workqueue);
1616 
1617 	/* loop until there is nothing left on the lru list. */
1618 	while (list_lru_count(&btp->bt_lru)) {
1619 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1620 			      &dispose, LONG_MAX);
1621 
1622 		while (!list_empty(&dispose)) {
1623 			struct xfs_buf *bp;
1624 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1625 			list_del_init(&bp->b_lru);
1626 			if (bp->b_flags & XBF_WRITE_FAIL) {
1627 				xfs_alert(btp->bt_mount,
1628 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1629 					(long long)bp->b_bn);
1630 				xfs_alert(btp->bt_mount,
1631 "Please run xfs_repair to determine the extent of the problem.");
1632 			}
1633 			xfs_buf_rele(bp);
1634 		}
1635 		if (loop++ != 0)
1636 			delay(100);
1637 	}
1638 }
1639 
1640 static enum lru_status
1641 xfs_buftarg_isolate(
1642 	struct list_head	*item,
1643 	struct list_lru_one	*lru,
1644 	spinlock_t		*lru_lock,
1645 	void			*arg)
1646 {
1647 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1648 	struct list_head	*dispose = arg;
1649 
1650 	/*
1651 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1652 	 * If we fail to get the lock, just skip it.
1653 	 */
1654 	if (!spin_trylock(&bp->b_lock))
1655 		return LRU_SKIP;
1656 	/*
1657 	 * Decrement the b_lru_ref count unless the value is already
1658 	 * zero. If the value is already zero, we need to reclaim the
1659 	 * buffer, otherwise it gets another trip through the LRU.
1660 	 */
1661 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1662 		spin_unlock(&bp->b_lock);
1663 		return LRU_ROTATE;
1664 	}
1665 
1666 	bp->b_state |= XFS_BSTATE_DISPOSE;
1667 	list_lru_isolate_move(lru, item, dispose);
1668 	spin_unlock(&bp->b_lock);
1669 	return LRU_REMOVED;
1670 }
1671 
1672 static unsigned long
1673 xfs_buftarg_shrink_scan(
1674 	struct shrinker		*shrink,
1675 	struct shrink_control	*sc)
1676 {
1677 	struct xfs_buftarg	*btp = container_of(shrink,
1678 					struct xfs_buftarg, bt_shrinker);
1679 	LIST_HEAD(dispose);
1680 	unsigned long		freed;
1681 
1682 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1683 				     xfs_buftarg_isolate, &dispose);
1684 
1685 	while (!list_empty(&dispose)) {
1686 		struct xfs_buf *bp;
1687 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1688 		list_del_init(&bp->b_lru);
1689 		xfs_buf_rele(bp);
1690 	}
1691 
1692 	return freed;
1693 }
1694 
1695 static unsigned long
1696 xfs_buftarg_shrink_count(
1697 	struct shrinker		*shrink,
1698 	struct shrink_control	*sc)
1699 {
1700 	struct xfs_buftarg	*btp = container_of(shrink,
1701 					struct xfs_buftarg, bt_shrinker);
1702 	return list_lru_shrink_count(&btp->bt_lru, sc);
1703 }
1704 
1705 void
1706 xfs_free_buftarg(
1707 	struct xfs_mount	*mp,
1708 	struct xfs_buftarg	*btp)
1709 {
1710 	unregister_shrinker(&btp->bt_shrinker);
1711 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1712 	percpu_counter_destroy(&btp->bt_io_count);
1713 	list_lru_destroy(&btp->bt_lru);
1714 
1715 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1716 		xfs_blkdev_issue_flush(btp);
1717 
1718 	kmem_free(btp);
1719 }
1720 
1721 int
1722 xfs_setsize_buftarg(
1723 	xfs_buftarg_t		*btp,
1724 	unsigned int		sectorsize)
1725 {
1726 	/* Set up metadata sector size info */
1727 	btp->bt_meta_sectorsize = sectorsize;
1728 	btp->bt_meta_sectormask = sectorsize - 1;
1729 
1730 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1731 		xfs_warn(btp->bt_mount,
1732 			"Cannot set_blocksize to %u on device %pg",
1733 			sectorsize, btp->bt_bdev);
1734 		return -EINVAL;
1735 	}
1736 
1737 	/* Set up device logical sector size mask */
1738 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1739 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1740 
1741 	return 0;
1742 }
1743 
1744 /*
1745  * When allocating the initial buffer target we have not yet
1746  * read in the superblock, so don't know what sized sectors
1747  * are being used at this early stage.  Play safe.
1748  */
1749 STATIC int
1750 xfs_setsize_buftarg_early(
1751 	xfs_buftarg_t		*btp,
1752 	struct block_device	*bdev)
1753 {
1754 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1755 }
1756 
1757 xfs_buftarg_t *
1758 xfs_alloc_buftarg(
1759 	struct xfs_mount	*mp,
1760 	struct block_device	*bdev)
1761 {
1762 	xfs_buftarg_t		*btp;
1763 
1764 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1765 
1766 	btp->bt_mount = mp;
1767 	btp->bt_dev =  bdev->bd_dev;
1768 	btp->bt_bdev = bdev;
1769 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1770 
1771 	if (xfs_setsize_buftarg_early(btp, bdev))
1772 		goto error;
1773 
1774 	if (list_lru_init(&btp->bt_lru))
1775 		goto error;
1776 
1777 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1778 		goto error;
1779 
1780 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1781 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1782 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1783 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1784 	register_shrinker(&btp->bt_shrinker);
1785 	return btp;
1786 
1787 error:
1788 	kmem_free(btp);
1789 	return NULL;
1790 }
1791 
1792 /*
1793  * Add a buffer to the delayed write list.
1794  *
1795  * This queues a buffer for writeout if it hasn't already been.  Note that
1796  * neither this routine nor the buffer list submission functions perform
1797  * any internal synchronization.  It is expected that the lists are thread-local
1798  * to the callers.
1799  *
1800  * Returns true if we queued up the buffer, or false if it already had
1801  * been on the buffer list.
1802  */
1803 bool
1804 xfs_buf_delwri_queue(
1805 	struct xfs_buf		*bp,
1806 	struct list_head	*list)
1807 {
1808 	ASSERT(xfs_buf_islocked(bp));
1809 	ASSERT(!(bp->b_flags & XBF_READ));
1810 
1811 	/*
1812 	 * If the buffer is already marked delwri it already is queued up
1813 	 * by someone else for imediate writeout.  Just ignore it in that
1814 	 * case.
1815 	 */
1816 	if (bp->b_flags & _XBF_DELWRI_Q) {
1817 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1818 		return false;
1819 	}
1820 
1821 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1822 
1823 	/*
1824 	 * If a buffer gets written out synchronously or marked stale while it
1825 	 * is on a delwri list we lazily remove it. To do this, the other party
1826 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1827 	 * It remains referenced and on the list.  In a rare corner case it
1828 	 * might get readded to a delwri list after the synchronous writeout, in
1829 	 * which case we need just need to re-add the flag here.
1830 	 */
1831 	bp->b_flags |= _XBF_DELWRI_Q;
1832 	if (list_empty(&bp->b_list)) {
1833 		atomic_inc(&bp->b_hold);
1834 		list_add_tail(&bp->b_list, list);
1835 	}
1836 
1837 	return true;
1838 }
1839 
1840 /*
1841  * Compare function is more complex than it needs to be because
1842  * the return value is only 32 bits and we are doing comparisons
1843  * on 64 bit values
1844  */
1845 static int
1846 xfs_buf_cmp(
1847 	void		*priv,
1848 	struct list_head *a,
1849 	struct list_head *b)
1850 {
1851 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1852 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1853 	xfs_daddr_t		diff;
1854 
1855 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1856 	if (diff < 0)
1857 		return -1;
1858 	if (diff > 0)
1859 		return 1;
1860 	return 0;
1861 }
1862 
1863 /*
1864  * submit buffers for write.
1865  *
1866  * When we have a large buffer list, we do not want to hold all the buffers
1867  * locked while we block on the request queue waiting for IO dispatch. To avoid
1868  * this problem, we lock and submit buffers in groups of 50, thereby minimising
1869  * the lock hold times for lists which may contain thousands of objects.
1870  *
1871  * To do this, we sort the buffer list before we walk the list to lock and
1872  * submit buffers, and we plug and unplug around each group of buffers we
1873  * submit.
1874  */
1875 static int
1876 xfs_buf_delwri_submit_buffers(
1877 	struct list_head	*buffer_list,
1878 	struct list_head	*wait_list)
1879 {
1880 	struct xfs_buf		*bp, *n;
1881 	LIST_HEAD		(submit_list);
1882 	int			pinned = 0;
1883 	struct blk_plug		plug;
1884 
1885 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1886 
1887 	blk_start_plug(&plug);
1888 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1889 		if (!wait_list) {
1890 			if (xfs_buf_ispinned(bp)) {
1891 				pinned++;
1892 				continue;
1893 			}
1894 			if (!xfs_buf_trylock(bp))
1895 				continue;
1896 		} else {
1897 			xfs_buf_lock(bp);
1898 		}
1899 
1900 		/*
1901 		 * Someone else might have written the buffer synchronously or
1902 		 * marked it stale in the meantime.  In that case only the
1903 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1904 		 * reference and remove it from the list here.
1905 		 */
1906 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1907 			list_del_init(&bp->b_list);
1908 			xfs_buf_relse(bp);
1909 			continue;
1910 		}
1911 
1912 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1913 
1914 		/*
1915 		 * We do all IO submission async. This means if we need
1916 		 * to wait for IO completion we need to take an extra
1917 		 * reference so the buffer is still valid on the other
1918 		 * side. We need to move the buffer onto the io_list
1919 		 * at this point so the caller can still access it.
1920 		 */
1921 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1922 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1923 		if (wait_list) {
1924 			xfs_buf_hold(bp);
1925 			list_move_tail(&bp->b_list, wait_list);
1926 		} else
1927 			list_del_init(&bp->b_list);
1928 
1929 		xfs_buf_submit(bp);
1930 	}
1931 	blk_finish_plug(&plug);
1932 
1933 	return pinned;
1934 }
1935 
1936 /*
1937  * Write out a buffer list asynchronously.
1938  *
1939  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1940  * out and not wait for I/O completion on any of the buffers.  This interface
1941  * is only safely useable for callers that can track I/O completion by higher
1942  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1943  * function.
1944  */
1945 int
1946 xfs_buf_delwri_submit_nowait(
1947 	struct list_head	*buffer_list)
1948 {
1949 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1950 }
1951 
1952 /*
1953  * Write out a buffer list synchronously.
1954  *
1955  * This will take the @buffer_list, write all buffers out and wait for I/O
1956  * completion on all of the buffers. @buffer_list is consumed by the function,
1957  * so callers must have some other way of tracking buffers if they require such
1958  * functionality.
1959  */
1960 int
1961 xfs_buf_delwri_submit(
1962 	struct list_head	*buffer_list)
1963 {
1964 	LIST_HEAD		(wait_list);
1965 	int			error = 0, error2;
1966 	struct xfs_buf		*bp;
1967 
1968 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1969 
1970 	/* Wait for IO to complete. */
1971 	while (!list_empty(&wait_list)) {
1972 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1973 
1974 		list_del_init(&bp->b_list);
1975 
1976 		/* locking the buffer will wait for async IO completion. */
1977 		xfs_buf_lock(bp);
1978 		error2 = bp->b_error;
1979 		xfs_buf_relse(bp);
1980 		if (!error)
1981 			error = error2;
1982 	}
1983 
1984 	return error;
1985 }
1986 
1987 int __init
1988 xfs_buf_init(void)
1989 {
1990 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1991 						KM_ZONE_HWALIGN, NULL);
1992 	if (!xfs_buf_zone)
1993 		goto out;
1994 
1995 	return 0;
1996 
1997  out:
1998 	return -ENOMEM;
1999 }
2000 
2001 void
2002 xfs_buf_terminate(void)
2003 {
2004 	kmem_zone_destroy(xfs_buf_zone);
2005 }
2006