1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 37 #include "xfs_format.h" 38 #include "xfs_log_format.h" 39 #include "xfs_trans_resv.h" 40 #include "xfs_sb.h" 41 #include "xfs_mount.h" 42 #include "xfs_trace.h" 43 #include "xfs_log.h" 44 45 static kmem_zone_t *xfs_buf_zone; 46 47 #ifdef XFS_BUF_LOCK_TRACKING 48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 51 #else 52 # define XB_SET_OWNER(bp) do { } while (0) 53 # define XB_CLEAR_OWNER(bp) do { } while (0) 54 # define XB_GET_OWNER(bp) do { } while (0) 55 #endif 56 57 #define xb_to_gfp(flags) \ 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 59 60 61 static inline int 62 xfs_buf_is_vmapped( 63 struct xfs_buf *bp) 64 { 65 /* 66 * Return true if the buffer is vmapped. 67 * 68 * b_addr is null if the buffer is not mapped, but the code is clever 69 * enough to know it doesn't have to map a single page, so the check has 70 * to be both for b_addr and bp->b_page_count > 1. 71 */ 72 return bp->b_addr && bp->b_page_count > 1; 73 } 74 75 static inline int 76 xfs_buf_vmap_len( 77 struct xfs_buf *bp) 78 { 79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 80 } 81 82 /* 83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 84 * this buffer. The count is incremented once per buffer (per hold cycle) 85 * because the corresponding decrement is deferred to buffer release. Buffers 86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 87 * tracking adds unnecessary overhead. This is used for sychronization purposes 88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of 89 * in-flight buffers. 90 * 91 * Buffers that are never released (e.g., superblock, iclog buffers) must set 92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 93 * never reaches zero and unmount hangs indefinitely. 94 */ 95 static inline void 96 xfs_buf_ioacct_inc( 97 struct xfs_buf *bp) 98 { 99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT)) 100 return; 101 102 ASSERT(bp->b_flags & XBF_ASYNC); 103 bp->b_flags |= _XBF_IN_FLIGHT; 104 percpu_counter_inc(&bp->b_target->bt_io_count); 105 } 106 107 /* 108 * Clear the in-flight state on a buffer about to be released to the LRU or 109 * freed and unaccount from the buftarg. 110 */ 111 static inline void 112 xfs_buf_ioacct_dec( 113 struct xfs_buf *bp) 114 { 115 if (!(bp->b_flags & _XBF_IN_FLIGHT)) 116 return; 117 118 ASSERT(bp->b_flags & XBF_ASYNC); 119 bp->b_flags &= ~_XBF_IN_FLIGHT; 120 percpu_counter_dec(&bp->b_target->bt_io_count); 121 } 122 123 /* 124 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 125 * b_lru_ref count so that the buffer is freed immediately when the buffer 126 * reference count falls to zero. If the buffer is already on the LRU, we need 127 * to remove the reference that LRU holds on the buffer. 128 * 129 * This prevents build-up of stale buffers on the LRU. 130 */ 131 void 132 xfs_buf_stale( 133 struct xfs_buf *bp) 134 { 135 ASSERT(xfs_buf_islocked(bp)); 136 137 bp->b_flags |= XBF_STALE; 138 139 /* 140 * Clear the delwri status so that a delwri queue walker will not 141 * flush this buffer to disk now that it is stale. The delwri queue has 142 * a reference to the buffer, so this is safe to do. 143 */ 144 bp->b_flags &= ~_XBF_DELWRI_Q; 145 146 /* 147 * Once the buffer is marked stale and unlocked, a subsequent lookup 148 * could reset b_flags. There is no guarantee that the buffer is 149 * unaccounted (released to LRU) before that occurs. Drop in-flight 150 * status now to preserve accounting consistency. 151 */ 152 xfs_buf_ioacct_dec(bp); 153 154 spin_lock(&bp->b_lock); 155 atomic_set(&bp->b_lru_ref, 0); 156 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 157 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 158 atomic_dec(&bp->b_hold); 159 160 ASSERT(atomic_read(&bp->b_hold) >= 1); 161 spin_unlock(&bp->b_lock); 162 } 163 164 static int 165 xfs_buf_get_maps( 166 struct xfs_buf *bp, 167 int map_count) 168 { 169 ASSERT(bp->b_maps == NULL); 170 bp->b_map_count = map_count; 171 172 if (map_count == 1) { 173 bp->b_maps = &bp->__b_map; 174 return 0; 175 } 176 177 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 178 KM_NOFS); 179 if (!bp->b_maps) 180 return -ENOMEM; 181 return 0; 182 } 183 184 /* 185 * Frees b_pages if it was allocated. 186 */ 187 static void 188 xfs_buf_free_maps( 189 struct xfs_buf *bp) 190 { 191 if (bp->b_maps != &bp->__b_map) { 192 kmem_free(bp->b_maps); 193 bp->b_maps = NULL; 194 } 195 } 196 197 struct xfs_buf * 198 _xfs_buf_alloc( 199 struct xfs_buftarg *target, 200 struct xfs_buf_map *map, 201 int nmaps, 202 xfs_buf_flags_t flags) 203 { 204 struct xfs_buf *bp; 205 int error; 206 int i; 207 208 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 209 if (unlikely(!bp)) 210 return NULL; 211 212 /* 213 * We don't want certain flags to appear in b_flags unless they are 214 * specifically set by later operations on the buffer. 215 */ 216 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 217 218 atomic_set(&bp->b_hold, 1); 219 atomic_set(&bp->b_lru_ref, 1); 220 init_completion(&bp->b_iowait); 221 INIT_LIST_HEAD(&bp->b_lru); 222 INIT_LIST_HEAD(&bp->b_list); 223 RB_CLEAR_NODE(&bp->b_rbnode); 224 sema_init(&bp->b_sema, 0); /* held, no waiters */ 225 spin_lock_init(&bp->b_lock); 226 XB_SET_OWNER(bp); 227 bp->b_target = target; 228 bp->b_flags = flags; 229 230 /* 231 * Set length and io_length to the same value initially. 232 * I/O routines should use io_length, which will be the same in 233 * most cases but may be reset (e.g. XFS recovery). 234 */ 235 error = xfs_buf_get_maps(bp, nmaps); 236 if (error) { 237 kmem_zone_free(xfs_buf_zone, bp); 238 return NULL; 239 } 240 241 bp->b_bn = map[0].bm_bn; 242 bp->b_length = 0; 243 for (i = 0; i < nmaps; i++) { 244 bp->b_maps[i].bm_bn = map[i].bm_bn; 245 bp->b_maps[i].bm_len = map[i].bm_len; 246 bp->b_length += map[i].bm_len; 247 } 248 bp->b_io_length = bp->b_length; 249 250 atomic_set(&bp->b_pin_count, 0); 251 init_waitqueue_head(&bp->b_waiters); 252 253 XFS_STATS_INC(target->bt_mount, xb_create); 254 trace_xfs_buf_init(bp, _RET_IP_); 255 256 return bp; 257 } 258 259 /* 260 * Allocate a page array capable of holding a specified number 261 * of pages, and point the page buf at it. 262 */ 263 STATIC int 264 _xfs_buf_get_pages( 265 xfs_buf_t *bp, 266 int page_count) 267 { 268 /* Make sure that we have a page list */ 269 if (bp->b_pages == NULL) { 270 bp->b_page_count = page_count; 271 if (page_count <= XB_PAGES) { 272 bp->b_pages = bp->b_page_array; 273 } else { 274 bp->b_pages = kmem_alloc(sizeof(struct page *) * 275 page_count, KM_NOFS); 276 if (bp->b_pages == NULL) 277 return -ENOMEM; 278 } 279 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 280 } 281 return 0; 282 } 283 284 /* 285 * Frees b_pages if it was allocated. 286 */ 287 STATIC void 288 _xfs_buf_free_pages( 289 xfs_buf_t *bp) 290 { 291 if (bp->b_pages != bp->b_page_array) { 292 kmem_free(bp->b_pages); 293 bp->b_pages = NULL; 294 } 295 } 296 297 /* 298 * Releases the specified buffer. 299 * 300 * The modification state of any associated pages is left unchanged. 301 * The buffer must not be on any hash - use xfs_buf_rele instead for 302 * hashed and refcounted buffers 303 */ 304 void 305 xfs_buf_free( 306 xfs_buf_t *bp) 307 { 308 trace_xfs_buf_free(bp, _RET_IP_); 309 310 ASSERT(list_empty(&bp->b_lru)); 311 312 if (bp->b_flags & _XBF_PAGES) { 313 uint i; 314 315 if (xfs_buf_is_vmapped(bp)) 316 vm_unmap_ram(bp->b_addr - bp->b_offset, 317 bp->b_page_count); 318 319 for (i = 0; i < bp->b_page_count; i++) { 320 struct page *page = bp->b_pages[i]; 321 322 __free_page(page); 323 } 324 } else if (bp->b_flags & _XBF_KMEM) 325 kmem_free(bp->b_addr); 326 _xfs_buf_free_pages(bp); 327 xfs_buf_free_maps(bp); 328 kmem_zone_free(xfs_buf_zone, bp); 329 } 330 331 /* 332 * Allocates all the pages for buffer in question and builds it's page list. 333 */ 334 STATIC int 335 xfs_buf_allocate_memory( 336 xfs_buf_t *bp, 337 uint flags) 338 { 339 size_t size; 340 size_t nbytes, offset; 341 gfp_t gfp_mask = xb_to_gfp(flags); 342 unsigned short page_count, i; 343 xfs_off_t start, end; 344 int error; 345 346 /* 347 * for buffers that are contained within a single page, just allocate 348 * the memory from the heap - there's no need for the complexity of 349 * page arrays to keep allocation down to order 0. 350 */ 351 size = BBTOB(bp->b_length); 352 if (size < PAGE_SIZE) { 353 bp->b_addr = kmem_alloc(size, KM_NOFS); 354 if (!bp->b_addr) { 355 /* low memory - use alloc_page loop instead */ 356 goto use_alloc_page; 357 } 358 359 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 360 ((unsigned long)bp->b_addr & PAGE_MASK)) { 361 /* b_addr spans two pages - use alloc_page instead */ 362 kmem_free(bp->b_addr); 363 bp->b_addr = NULL; 364 goto use_alloc_page; 365 } 366 bp->b_offset = offset_in_page(bp->b_addr); 367 bp->b_pages = bp->b_page_array; 368 bp->b_pages[0] = virt_to_page(bp->b_addr); 369 bp->b_page_count = 1; 370 bp->b_flags |= _XBF_KMEM; 371 return 0; 372 } 373 374 use_alloc_page: 375 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 376 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 377 >> PAGE_SHIFT; 378 page_count = end - start; 379 error = _xfs_buf_get_pages(bp, page_count); 380 if (unlikely(error)) 381 return error; 382 383 offset = bp->b_offset; 384 bp->b_flags |= _XBF_PAGES; 385 386 for (i = 0; i < bp->b_page_count; i++) { 387 struct page *page; 388 uint retries = 0; 389 retry: 390 page = alloc_page(gfp_mask); 391 if (unlikely(page == NULL)) { 392 if (flags & XBF_READ_AHEAD) { 393 bp->b_page_count = i; 394 error = -ENOMEM; 395 goto out_free_pages; 396 } 397 398 /* 399 * This could deadlock. 400 * 401 * But until all the XFS lowlevel code is revamped to 402 * handle buffer allocation failures we can't do much. 403 */ 404 if (!(++retries % 100)) 405 xfs_err(NULL, 406 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", 407 current->comm, current->pid, 408 __func__, gfp_mask); 409 410 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries); 411 congestion_wait(BLK_RW_ASYNC, HZ/50); 412 goto retry; 413 } 414 415 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found); 416 417 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 418 size -= nbytes; 419 bp->b_pages[i] = page; 420 offset = 0; 421 } 422 return 0; 423 424 out_free_pages: 425 for (i = 0; i < bp->b_page_count; i++) 426 __free_page(bp->b_pages[i]); 427 return error; 428 } 429 430 /* 431 * Map buffer into kernel address-space if necessary. 432 */ 433 STATIC int 434 _xfs_buf_map_pages( 435 xfs_buf_t *bp, 436 uint flags) 437 { 438 ASSERT(bp->b_flags & _XBF_PAGES); 439 if (bp->b_page_count == 1) { 440 /* A single page buffer is always mappable */ 441 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 442 } else if (flags & XBF_UNMAPPED) { 443 bp->b_addr = NULL; 444 } else { 445 int retried = 0; 446 unsigned noio_flag; 447 448 /* 449 * vm_map_ram() will allocate auxillary structures (e.g. 450 * pagetables) with GFP_KERNEL, yet we are likely to be under 451 * GFP_NOFS context here. Hence we need to tell memory reclaim 452 * that we are in such a context via PF_MEMALLOC_NOIO to prevent 453 * memory reclaim re-entering the filesystem here and 454 * potentially deadlocking. 455 */ 456 noio_flag = memalloc_noio_save(); 457 do { 458 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 459 -1, PAGE_KERNEL); 460 if (bp->b_addr) 461 break; 462 vm_unmap_aliases(); 463 } while (retried++ <= 1); 464 memalloc_noio_restore(noio_flag); 465 466 if (!bp->b_addr) 467 return -ENOMEM; 468 bp->b_addr += bp->b_offset; 469 } 470 471 return 0; 472 } 473 474 /* 475 * Finding and Reading Buffers 476 */ 477 478 /* 479 * Look up, and creates if absent, a lockable buffer for 480 * a given range of an inode. The buffer is returned 481 * locked. No I/O is implied by this call. 482 */ 483 xfs_buf_t * 484 _xfs_buf_find( 485 struct xfs_buftarg *btp, 486 struct xfs_buf_map *map, 487 int nmaps, 488 xfs_buf_flags_t flags, 489 xfs_buf_t *new_bp) 490 { 491 struct xfs_perag *pag; 492 struct rb_node **rbp; 493 struct rb_node *parent; 494 xfs_buf_t *bp; 495 xfs_daddr_t blkno = map[0].bm_bn; 496 xfs_daddr_t eofs; 497 int numblks = 0; 498 int i; 499 500 for (i = 0; i < nmaps; i++) 501 numblks += map[i].bm_len; 502 503 /* Check for IOs smaller than the sector size / not sector aligned */ 504 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize)); 505 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask)); 506 507 /* 508 * Corrupted block numbers can get through to here, unfortunately, so we 509 * have to check that the buffer falls within the filesystem bounds. 510 */ 511 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 512 if (blkno < 0 || blkno >= eofs) { 513 /* 514 * XXX (dgc): we should really be returning -EFSCORRUPTED here, 515 * but none of the higher level infrastructure supports 516 * returning a specific error on buffer lookup failures. 517 */ 518 xfs_alert(btp->bt_mount, 519 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ", 520 __func__, blkno, eofs); 521 WARN_ON(1); 522 return NULL; 523 } 524 525 /* get tree root */ 526 pag = xfs_perag_get(btp->bt_mount, 527 xfs_daddr_to_agno(btp->bt_mount, blkno)); 528 529 /* walk tree */ 530 spin_lock(&pag->pag_buf_lock); 531 rbp = &pag->pag_buf_tree.rb_node; 532 parent = NULL; 533 bp = NULL; 534 while (*rbp) { 535 parent = *rbp; 536 bp = rb_entry(parent, struct xfs_buf, b_rbnode); 537 538 if (blkno < bp->b_bn) 539 rbp = &(*rbp)->rb_left; 540 else if (blkno > bp->b_bn) 541 rbp = &(*rbp)->rb_right; 542 else { 543 /* 544 * found a block number match. If the range doesn't 545 * match, the only way this is allowed is if the buffer 546 * in the cache is stale and the transaction that made 547 * it stale has not yet committed. i.e. we are 548 * reallocating a busy extent. Skip this buffer and 549 * continue searching to the right for an exact match. 550 */ 551 if (bp->b_length != numblks) { 552 ASSERT(bp->b_flags & XBF_STALE); 553 rbp = &(*rbp)->rb_right; 554 continue; 555 } 556 atomic_inc(&bp->b_hold); 557 goto found; 558 } 559 } 560 561 /* No match found */ 562 if (new_bp) { 563 rb_link_node(&new_bp->b_rbnode, parent, rbp); 564 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); 565 /* the buffer keeps the perag reference until it is freed */ 566 new_bp->b_pag = pag; 567 spin_unlock(&pag->pag_buf_lock); 568 } else { 569 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 570 spin_unlock(&pag->pag_buf_lock); 571 xfs_perag_put(pag); 572 } 573 return new_bp; 574 575 found: 576 spin_unlock(&pag->pag_buf_lock); 577 xfs_perag_put(pag); 578 579 if (!xfs_buf_trylock(bp)) { 580 if (flags & XBF_TRYLOCK) { 581 xfs_buf_rele(bp); 582 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 583 return NULL; 584 } 585 xfs_buf_lock(bp); 586 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 587 } 588 589 /* 590 * if the buffer is stale, clear all the external state associated with 591 * it. We need to keep flags such as how we allocated the buffer memory 592 * intact here. 593 */ 594 if (bp->b_flags & XBF_STALE) { 595 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 596 ASSERT(bp->b_iodone == NULL); 597 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 598 bp->b_ops = NULL; 599 } 600 601 trace_xfs_buf_find(bp, flags, _RET_IP_); 602 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 603 return bp; 604 } 605 606 /* 607 * Assembles a buffer covering the specified range. The code is optimised for 608 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 609 * more hits than misses. 610 */ 611 struct xfs_buf * 612 xfs_buf_get_map( 613 struct xfs_buftarg *target, 614 struct xfs_buf_map *map, 615 int nmaps, 616 xfs_buf_flags_t flags) 617 { 618 struct xfs_buf *bp; 619 struct xfs_buf *new_bp; 620 int error = 0; 621 622 bp = _xfs_buf_find(target, map, nmaps, flags, NULL); 623 if (likely(bp)) 624 goto found; 625 626 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 627 if (unlikely(!new_bp)) 628 return NULL; 629 630 error = xfs_buf_allocate_memory(new_bp, flags); 631 if (error) { 632 xfs_buf_free(new_bp); 633 return NULL; 634 } 635 636 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); 637 if (!bp) { 638 xfs_buf_free(new_bp); 639 return NULL; 640 } 641 642 if (bp != new_bp) 643 xfs_buf_free(new_bp); 644 645 found: 646 if (!bp->b_addr) { 647 error = _xfs_buf_map_pages(bp, flags); 648 if (unlikely(error)) { 649 xfs_warn(target->bt_mount, 650 "%s: failed to map pagesn", __func__); 651 xfs_buf_relse(bp); 652 return NULL; 653 } 654 } 655 656 /* 657 * Clear b_error if this is a lookup from a caller that doesn't expect 658 * valid data to be found in the buffer. 659 */ 660 if (!(flags & XBF_READ)) 661 xfs_buf_ioerror(bp, 0); 662 663 XFS_STATS_INC(target->bt_mount, xb_get); 664 trace_xfs_buf_get(bp, flags, _RET_IP_); 665 return bp; 666 } 667 668 STATIC int 669 _xfs_buf_read( 670 xfs_buf_t *bp, 671 xfs_buf_flags_t flags) 672 { 673 ASSERT(!(flags & XBF_WRITE)); 674 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 675 676 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 677 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 678 679 if (flags & XBF_ASYNC) { 680 xfs_buf_submit(bp); 681 return 0; 682 } 683 return xfs_buf_submit_wait(bp); 684 } 685 686 xfs_buf_t * 687 xfs_buf_read_map( 688 struct xfs_buftarg *target, 689 struct xfs_buf_map *map, 690 int nmaps, 691 xfs_buf_flags_t flags, 692 const struct xfs_buf_ops *ops) 693 { 694 struct xfs_buf *bp; 695 696 flags |= XBF_READ; 697 698 bp = xfs_buf_get_map(target, map, nmaps, flags); 699 if (bp) { 700 trace_xfs_buf_read(bp, flags, _RET_IP_); 701 702 if (!(bp->b_flags & XBF_DONE)) { 703 XFS_STATS_INC(target->bt_mount, xb_get_read); 704 bp->b_ops = ops; 705 _xfs_buf_read(bp, flags); 706 } else if (flags & XBF_ASYNC) { 707 /* 708 * Read ahead call which is already satisfied, 709 * drop the buffer 710 */ 711 xfs_buf_relse(bp); 712 return NULL; 713 } else { 714 /* We do not want read in the flags */ 715 bp->b_flags &= ~XBF_READ; 716 } 717 } 718 719 return bp; 720 } 721 722 /* 723 * If we are not low on memory then do the readahead in a deadlock 724 * safe manner. 725 */ 726 void 727 xfs_buf_readahead_map( 728 struct xfs_buftarg *target, 729 struct xfs_buf_map *map, 730 int nmaps, 731 const struct xfs_buf_ops *ops) 732 { 733 if (bdi_read_congested(target->bt_bdi)) 734 return; 735 736 xfs_buf_read_map(target, map, nmaps, 737 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 738 } 739 740 /* 741 * Read an uncached buffer from disk. Allocates and returns a locked 742 * buffer containing the disk contents or nothing. 743 */ 744 int 745 xfs_buf_read_uncached( 746 struct xfs_buftarg *target, 747 xfs_daddr_t daddr, 748 size_t numblks, 749 int flags, 750 struct xfs_buf **bpp, 751 const struct xfs_buf_ops *ops) 752 { 753 struct xfs_buf *bp; 754 755 *bpp = NULL; 756 757 bp = xfs_buf_get_uncached(target, numblks, flags); 758 if (!bp) 759 return -ENOMEM; 760 761 /* set up the buffer for a read IO */ 762 ASSERT(bp->b_map_count == 1); 763 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 764 bp->b_maps[0].bm_bn = daddr; 765 bp->b_flags |= XBF_READ; 766 bp->b_ops = ops; 767 768 xfs_buf_submit_wait(bp); 769 if (bp->b_error) { 770 int error = bp->b_error; 771 xfs_buf_relse(bp); 772 return error; 773 } 774 775 *bpp = bp; 776 return 0; 777 } 778 779 /* 780 * Return a buffer allocated as an empty buffer and associated to external 781 * memory via xfs_buf_associate_memory() back to it's empty state. 782 */ 783 void 784 xfs_buf_set_empty( 785 struct xfs_buf *bp, 786 size_t numblks) 787 { 788 if (bp->b_pages) 789 _xfs_buf_free_pages(bp); 790 791 bp->b_pages = NULL; 792 bp->b_page_count = 0; 793 bp->b_addr = NULL; 794 bp->b_length = numblks; 795 bp->b_io_length = numblks; 796 797 ASSERT(bp->b_map_count == 1); 798 bp->b_bn = XFS_BUF_DADDR_NULL; 799 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 800 bp->b_maps[0].bm_len = bp->b_length; 801 } 802 803 static inline struct page * 804 mem_to_page( 805 void *addr) 806 { 807 if ((!is_vmalloc_addr(addr))) { 808 return virt_to_page(addr); 809 } else { 810 return vmalloc_to_page(addr); 811 } 812 } 813 814 int 815 xfs_buf_associate_memory( 816 xfs_buf_t *bp, 817 void *mem, 818 size_t len) 819 { 820 int rval; 821 int i = 0; 822 unsigned long pageaddr; 823 unsigned long offset; 824 size_t buflen; 825 int page_count; 826 827 pageaddr = (unsigned long)mem & PAGE_MASK; 828 offset = (unsigned long)mem - pageaddr; 829 buflen = PAGE_ALIGN(len + offset); 830 page_count = buflen >> PAGE_SHIFT; 831 832 /* Free any previous set of page pointers */ 833 if (bp->b_pages) 834 _xfs_buf_free_pages(bp); 835 836 bp->b_pages = NULL; 837 bp->b_addr = mem; 838 839 rval = _xfs_buf_get_pages(bp, page_count); 840 if (rval) 841 return rval; 842 843 bp->b_offset = offset; 844 845 for (i = 0; i < bp->b_page_count; i++) { 846 bp->b_pages[i] = mem_to_page((void *)pageaddr); 847 pageaddr += PAGE_SIZE; 848 } 849 850 bp->b_io_length = BTOBB(len); 851 bp->b_length = BTOBB(buflen); 852 853 return 0; 854 } 855 856 xfs_buf_t * 857 xfs_buf_get_uncached( 858 struct xfs_buftarg *target, 859 size_t numblks, 860 int flags) 861 { 862 unsigned long page_count; 863 int error, i; 864 struct xfs_buf *bp; 865 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 866 867 /* flags might contain irrelevant bits, pass only what we care about */ 868 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT); 869 if (unlikely(bp == NULL)) 870 goto fail; 871 872 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 873 error = _xfs_buf_get_pages(bp, page_count); 874 if (error) 875 goto fail_free_buf; 876 877 for (i = 0; i < page_count; i++) { 878 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 879 if (!bp->b_pages[i]) 880 goto fail_free_mem; 881 } 882 bp->b_flags |= _XBF_PAGES; 883 884 error = _xfs_buf_map_pages(bp, 0); 885 if (unlikely(error)) { 886 xfs_warn(target->bt_mount, 887 "%s: failed to map pages", __func__); 888 goto fail_free_mem; 889 } 890 891 trace_xfs_buf_get_uncached(bp, _RET_IP_); 892 return bp; 893 894 fail_free_mem: 895 while (--i >= 0) 896 __free_page(bp->b_pages[i]); 897 _xfs_buf_free_pages(bp); 898 fail_free_buf: 899 xfs_buf_free_maps(bp); 900 kmem_zone_free(xfs_buf_zone, bp); 901 fail: 902 return NULL; 903 } 904 905 /* 906 * Increment reference count on buffer, to hold the buffer concurrently 907 * with another thread which may release (free) the buffer asynchronously. 908 * Must hold the buffer already to call this function. 909 */ 910 void 911 xfs_buf_hold( 912 xfs_buf_t *bp) 913 { 914 trace_xfs_buf_hold(bp, _RET_IP_); 915 atomic_inc(&bp->b_hold); 916 } 917 918 /* 919 * Release a hold on the specified buffer. If the hold count is 1, the buffer is 920 * placed on LRU or freed (depending on b_lru_ref). 921 */ 922 void 923 xfs_buf_rele( 924 xfs_buf_t *bp) 925 { 926 struct xfs_perag *pag = bp->b_pag; 927 bool release; 928 bool freebuf = false; 929 930 trace_xfs_buf_rele(bp, _RET_IP_); 931 932 if (!pag) { 933 ASSERT(list_empty(&bp->b_lru)); 934 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); 935 if (atomic_dec_and_test(&bp->b_hold)) { 936 xfs_buf_ioacct_dec(bp); 937 xfs_buf_free(bp); 938 } 939 return; 940 } 941 942 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); 943 944 ASSERT(atomic_read(&bp->b_hold) > 0); 945 946 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); 947 spin_lock(&bp->b_lock); 948 if (!release) { 949 /* 950 * Drop the in-flight state if the buffer is already on the LRU 951 * and it holds the only reference. This is racy because we 952 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 953 * ensures the decrement occurs only once per-buf. 954 */ 955 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 956 xfs_buf_ioacct_dec(bp); 957 goto out_unlock; 958 } 959 960 /* the last reference has been dropped ... */ 961 xfs_buf_ioacct_dec(bp); 962 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 963 /* 964 * If the buffer is added to the LRU take a new reference to the 965 * buffer for the LRU and clear the (now stale) dispose list 966 * state flag 967 */ 968 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 969 bp->b_state &= ~XFS_BSTATE_DISPOSE; 970 atomic_inc(&bp->b_hold); 971 } 972 spin_unlock(&pag->pag_buf_lock); 973 } else { 974 /* 975 * most of the time buffers will already be removed from the 976 * LRU, so optimise that case by checking for the 977 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 978 * was on was the disposal list 979 */ 980 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 981 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 982 } else { 983 ASSERT(list_empty(&bp->b_lru)); 984 } 985 986 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 987 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); 988 spin_unlock(&pag->pag_buf_lock); 989 xfs_perag_put(pag); 990 freebuf = true; 991 } 992 993 out_unlock: 994 spin_unlock(&bp->b_lock); 995 996 if (freebuf) 997 xfs_buf_free(bp); 998 } 999 1000 1001 /* 1002 * Lock a buffer object, if it is not already locked. 1003 * 1004 * If we come across a stale, pinned, locked buffer, we know that we are 1005 * being asked to lock a buffer that has been reallocated. Because it is 1006 * pinned, we know that the log has not been pushed to disk and hence it 1007 * will still be locked. Rather than continuing to have trylock attempts 1008 * fail until someone else pushes the log, push it ourselves before 1009 * returning. This means that the xfsaild will not get stuck trying 1010 * to push on stale inode buffers. 1011 */ 1012 int 1013 xfs_buf_trylock( 1014 struct xfs_buf *bp) 1015 { 1016 int locked; 1017 1018 locked = down_trylock(&bp->b_sema) == 0; 1019 if (locked) { 1020 XB_SET_OWNER(bp); 1021 trace_xfs_buf_trylock(bp, _RET_IP_); 1022 } else { 1023 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1024 } 1025 return locked; 1026 } 1027 1028 /* 1029 * Lock a buffer object. 1030 * 1031 * If we come across a stale, pinned, locked buffer, we know that we 1032 * are being asked to lock a buffer that has been reallocated. Because 1033 * it is pinned, we know that the log has not been pushed to disk and 1034 * hence it will still be locked. Rather than sleeping until someone 1035 * else pushes the log, push it ourselves before trying to get the lock. 1036 */ 1037 void 1038 xfs_buf_lock( 1039 struct xfs_buf *bp) 1040 { 1041 trace_xfs_buf_lock(bp, _RET_IP_); 1042 1043 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1044 xfs_log_force(bp->b_target->bt_mount, 0); 1045 down(&bp->b_sema); 1046 XB_SET_OWNER(bp); 1047 1048 trace_xfs_buf_lock_done(bp, _RET_IP_); 1049 } 1050 1051 void 1052 xfs_buf_unlock( 1053 struct xfs_buf *bp) 1054 { 1055 XB_CLEAR_OWNER(bp); 1056 up(&bp->b_sema); 1057 1058 trace_xfs_buf_unlock(bp, _RET_IP_); 1059 } 1060 1061 STATIC void 1062 xfs_buf_wait_unpin( 1063 xfs_buf_t *bp) 1064 { 1065 DECLARE_WAITQUEUE (wait, current); 1066 1067 if (atomic_read(&bp->b_pin_count) == 0) 1068 return; 1069 1070 add_wait_queue(&bp->b_waiters, &wait); 1071 for (;;) { 1072 set_current_state(TASK_UNINTERRUPTIBLE); 1073 if (atomic_read(&bp->b_pin_count) == 0) 1074 break; 1075 io_schedule(); 1076 } 1077 remove_wait_queue(&bp->b_waiters, &wait); 1078 set_current_state(TASK_RUNNING); 1079 } 1080 1081 /* 1082 * Buffer Utility Routines 1083 */ 1084 1085 void 1086 xfs_buf_ioend( 1087 struct xfs_buf *bp) 1088 { 1089 bool read = bp->b_flags & XBF_READ; 1090 1091 trace_xfs_buf_iodone(bp, _RET_IP_); 1092 1093 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1094 1095 /* 1096 * Pull in IO completion errors now. We are guaranteed to be running 1097 * single threaded, so we don't need the lock to read b_io_error. 1098 */ 1099 if (!bp->b_error && bp->b_io_error) 1100 xfs_buf_ioerror(bp, bp->b_io_error); 1101 1102 /* Only validate buffers that were read without errors */ 1103 if (read && !bp->b_error && bp->b_ops) { 1104 ASSERT(!bp->b_iodone); 1105 bp->b_ops->verify_read(bp); 1106 } 1107 1108 if (!bp->b_error) 1109 bp->b_flags |= XBF_DONE; 1110 1111 if (bp->b_iodone) 1112 (*(bp->b_iodone))(bp); 1113 else if (bp->b_flags & XBF_ASYNC) 1114 xfs_buf_relse(bp); 1115 else 1116 complete(&bp->b_iowait); 1117 } 1118 1119 static void 1120 xfs_buf_ioend_work( 1121 struct work_struct *work) 1122 { 1123 struct xfs_buf *bp = 1124 container_of(work, xfs_buf_t, b_ioend_work); 1125 1126 xfs_buf_ioend(bp); 1127 } 1128 1129 static void 1130 xfs_buf_ioend_async( 1131 struct xfs_buf *bp) 1132 { 1133 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1134 queue_work(bp->b_ioend_wq, &bp->b_ioend_work); 1135 } 1136 1137 void 1138 xfs_buf_ioerror( 1139 xfs_buf_t *bp, 1140 int error) 1141 { 1142 ASSERT(error <= 0 && error >= -1000); 1143 bp->b_error = error; 1144 trace_xfs_buf_ioerror(bp, error, _RET_IP_); 1145 } 1146 1147 void 1148 xfs_buf_ioerror_alert( 1149 struct xfs_buf *bp, 1150 const char *func) 1151 { 1152 xfs_alert(bp->b_target->bt_mount, 1153 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d", 1154 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length); 1155 } 1156 1157 int 1158 xfs_bwrite( 1159 struct xfs_buf *bp) 1160 { 1161 int error; 1162 1163 ASSERT(xfs_buf_islocked(bp)); 1164 1165 bp->b_flags |= XBF_WRITE; 1166 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1167 XBF_WRITE_FAIL | XBF_DONE); 1168 1169 error = xfs_buf_submit_wait(bp); 1170 if (error) { 1171 xfs_force_shutdown(bp->b_target->bt_mount, 1172 SHUTDOWN_META_IO_ERROR); 1173 } 1174 return error; 1175 } 1176 1177 static void 1178 xfs_buf_bio_end_io( 1179 struct bio *bio) 1180 { 1181 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1182 1183 /* 1184 * don't overwrite existing errors - otherwise we can lose errors on 1185 * buffers that require multiple bios to complete. 1186 */ 1187 if (bio->bi_error) 1188 cmpxchg(&bp->b_io_error, 0, bio->bi_error); 1189 1190 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1191 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1192 1193 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1194 xfs_buf_ioend_async(bp); 1195 bio_put(bio); 1196 } 1197 1198 static void 1199 xfs_buf_ioapply_map( 1200 struct xfs_buf *bp, 1201 int map, 1202 int *buf_offset, 1203 int *count, 1204 int op, 1205 int op_flags) 1206 { 1207 int page_index; 1208 int total_nr_pages = bp->b_page_count; 1209 int nr_pages; 1210 struct bio *bio; 1211 sector_t sector = bp->b_maps[map].bm_bn; 1212 int size; 1213 int offset; 1214 1215 total_nr_pages = bp->b_page_count; 1216 1217 /* skip the pages in the buffer before the start offset */ 1218 page_index = 0; 1219 offset = *buf_offset; 1220 while (offset >= PAGE_SIZE) { 1221 page_index++; 1222 offset -= PAGE_SIZE; 1223 } 1224 1225 /* 1226 * Limit the IO size to the length of the current vector, and update the 1227 * remaining IO count for the next time around. 1228 */ 1229 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1230 *count -= size; 1231 *buf_offset += size; 1232 1233 next_chunk: 1234 atomic_inc(&bp->b_io_remaining); 1235 nr_pages = min(total_nr_pages, BIO_MAX_PAGES); 1236 1237 bio = bio_alloc(GFP_NOIO, nr_pages); 1238 bio->bi_bdev = bp->b_target->bt_bdev; 1239 bio->bi_iter.bi_sector = sector; 1240 bio->bi_end_io = xfs_buf_bio_end_io; 1241 bio->bi_private = bp; 1242 bio_set_op_attrs(bio, op, op_flags); 1243 1244 for (; size && nr_pages; nr_pages--, page_index++) { 1245 int rbytes, nbytes = PAGE_SIZE - offset; 1246 1247 if (nbytes > size) 1248 nbytes = size; 1249 1250 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1251 offset); 1252 if (rbytes < nbytes) 1253 break; 1254 1255 offset = 0; 1256 sector += BTOBB(nbytes); 1257 size -= nbytes; 1258 total_nr_pages--; 1259 } 1260 1261 if (likely(bio->bi_iter.bi_size)) { 1262 if (xfs_buf_is_vmapped(bp)) { 1263 flush_kernel_vmap_range(bp->b_addr, 1264 xfs_buf_vmap_len(bp)); 1265 } 1266 submit_bio(bio); 1267 if (size) 1268 goto next_chunk; 1269 } else { 1270 /* 1271 * This is guaranteed not to be the last io reference count 1272 * because the caller (xfs_buf_submit) holds a count itself. 1273 */ 1274 atomic_dec(&bp->b_io_remaining); 1275 xfs_buf_ioerror(bp, -EIO); 1276 bio_put(bio); 1277 } 1278 1279 } 1280 1281 STATIC void 1282 _xfs_buf_ioapply( 1283 struct xfs_buf *bp) 1284 { 1285 struct blk_plug plug; 1286 int op; 1287 int op_flags = 0; 1288 int offset; 1289 int size; 1290 int i; 1291 1292 /* 1293 * Make sure we capture only current IO errors rather than stale errors 1294 * left over from previous use of the buffer (e.g. failed readahead). 1295 */ 1296 bp->b_error = 0; 1297 1298 /* 1299 * Initialize the I/O completion workqueue if we haven't yet or the 1300 * submitter has not opted to specify a custom one. 1301 */ 1302 if (!bp->b_ioend_wq) 1303 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue; 1304 1305 if (bp->b_flags & XBF_WRITE) { 1306 op = REQ_OP_WRITE; 1307 if (bp->b_flags & XBF_SYNCIO) 1308 op_flags = WRITE_SYNC; 1309 if (bp->b_flags & XBF_FUA) 1310 op_flags |= REQ_FUA; 1311 if (bp->b_flags & XBF_FLUSH) 1312 op_flags |= REQ_PREFLUSH; 1313 1314 /* 1315 * Run the write verifier callback function if it exists. If 1316 * this function fails it will mark the buffer with an error and 1317 * the IO should not be dispatched. 1318 */ 1319 if (bp->b_ops) { 1320 bp->b_ops->verify_write(bp); 1321 if (bp->b_error) { 1322 xfs_force_shutdown(bp->b_target->bt_mount, 1323 SHUTDOWN_CORRUPT_INCORE); 1324 return; 1325 } 1326 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1327 struct xfs_mount *mp = bp->b_target->bt_mount; 1328 1329 /* 1330 * non-crc filesystems don't attach verifiers during 1331 * log recovery, so don't warn for such filesystems. 1332 */ 1333 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1334 xfs_warn(mp, 1335 "%s: no ops on block 0x%llx/0x%x", 1336 __func__, bp->b_bn, bp->b_length); 1337 xfs_hex_dump(bp->b_addr, 64); 1338 dump_stack(); 1339 } 1340 } 1341 } else if (bp->b_flags & XBF_READ_AHEAD) { 1342 op = REQ_OP_READ; 1343 op_flags = REQ_RAHEAD; 1344 } else { 1345 op = REQ_OP_READ; 1346 } 1347 1348 /* we only use the buffer cache for meta-data */ 1349 op_flags |= REQ_META; 1350 1351 /* 1352 * Walk all the vectors issuing IO on them. Set up the initial offset 1353 * into the buffer and the desired IO size before we start - 1354 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1355 * subsequent call. 1356 */ 1357 offset = bp->b_offset; 1358 size = BBTOB(bp->b_io_length); 1359 blk_start_plug(&plug); 1360 for (i = 0; i < bp->b_map_count; i++) { 1361 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags); 1362 if (bp->b_error) 1363 break; 1364 if (size <= 0) 1365 break; /* all done */ 1366 } 1367 blk_finish_plug(&plug); 1368 } 1369 1370 /* 1371 * Asynchronous IO submission path. This transfers the buffer lock ownership and 1372 * the current reference to the IO. It is not safe to reference the buffer after 1373 * a call to this function unless the caller holds an additional reference 1374 * itself. 1375 */ 1376 void 1377 xfs_buf_submit( 1378 struct xfs_buf *bp) 1379 { 1380 trace_xfs_buf_submit(bp, _RET_IP_); 1381 1382 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1383 ASSERT(bp->b_flags & XBF_ASYNC); 1384 1385 /* on shutdown we stale and complete the buffer immediately */ 1386 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1387 xfs_buf_ioerror(bp, -EIO); 1388 bp->b_flags &= ~XBF_DONE; 1389 xfs_buf_stale(bp); 1390 xfs_buf_ioend(bp); 1391 return; 1392 } 1393 1394 if (bp->b_flags & XBF_WRITE) 1395 xfs_buf_wait_unpin(bp); 1396 1397 /* clear the internal error state to avoid spurious errors */ 1398 bp->b_io_error = 0; 1399 1400 /* 1401 * The caller's reference is released during I/O completion. 1402 * This occurs some time after the last b_io_remaining reference is 1403 * released, so after we drop our Io reference we have to have some 1404 * other reference to ensure the buffer doesn't go away from underneath 1405 * us. Take a direct reference to ensure we have safe access to the 1406 * buffer until we are finished with it. 1407 */ 1408 xfs_buf_hold(bp); 1409 1410 /* 1411 * Set the count to 1 initially, this will stop an I/O completion 1412 * callout which happens before we have started all the I/O from calling 1413 * xfs_buf_ioend too early. 1414 */ 1415 atomic_set(&bp->b_io_remaining, 1); 1416 xfs_buf_ioacct_inc(bp); 1417 _xfs_buf_ioapply(bp); 1418 1419 /* 1420 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1421 * reference we took above. If we drop it to zero, run completion so 1422 * that we don't return to the caller with completion still pending. 1423 */ 1424 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1425 if (bp->b_error) 1426 xfs_buf_ioend(bp); 1427 else 1428 xfs_buf_ioend_async(bp); 1429 } 1430 1431 xfs_buf_rele(bp); 1432 /* Note: it is not safe to reference bp now we've dropped our ref */ 1433 } 1434 1435 /* 1436 * Synchronous buffer IO submission path, read or write. 1437 */ 1438 int 1439 xfs_buf_submit_wait( 1440 struct xfs_buf *bp) 1441 { 1442 int error; 1443 1444 trace_xfs_buf_submit_wait(bp, _RET_IP_); 1445 1446 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC))); 1447 1448 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1449 xfs_buf_ioerror(bp, -EIO); 1450 xfs_buf_stale(bp); 1451 bp->b_flags &= ~XBF_DONE; 1452 return -EIO; 1453 } 1454 1455 if (bp->b_flags & XBF_WRITE) 1456 xfs_buf_wait_unpin(bp); 1457 1458 /* clear the internal error state to avoid spurious errors */ 1459 bp->b_io_error = 0; 1460 1461 /* 1462 * For synchronous IO, the IO does not inherit the submitters reference 1463 * count, nor the buffer lock. Hence we cannot release the reference we 1464 * are about to take until we've waited for all IO completion to occur, 1465 * including any xfs_buf_ioend_async() work that may be pending. 1466 */ 1467 xfs_buf_hold(bp); 1468 1469 /* 1470 * Set the count to 1 initially, this will stop an I/O completion 1471 * callout which happens before we have started all the I/O from calling 1472 * xfs_buf_ioend too early. 1473 */ 1474 atomic_set(&bp->b_io_remaining, 1); 1475 _xfs_buf_ioapply(bp); 1476 1477 /* 1478 * make sure we run completion synchronously if it raced with us and is 1479 * already complete. 1480 */ 1481 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1482 xfs_buf_ioend(bp); 1483 1484 /* wait for completion before gathering the error from the buffer */ 1485 trace_xfs_buf_iowait(bp, _RET_IP_); 1486 wait_for_completion(&bp->b_iowait); 1487 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1488 error = bp->b_error; 1489 1490 /* 1491 * all done now, we can release the hold that keeps the buffer 1492 * referenced for the entire IO. 1493 */ 1494 xfs_buf_rele(bp); 1495 return error; 1496 } 1497 1498 void * 1499 xfs_buf_offset( 1500 struct xfs_buf *bp, 1501 size_t offset) 1502 { 1503 struct page *page; 1504 1505 if (bp->b_addr) 1506 return bp->b_addr + offset; 1507 1508 offset += bp->b_offset; 1509 page = bp->b_pages[offset >> PAGE_SHIFT]; 1510 return page_address(page) + (offset & (PAGE_SIZE-1)); 1511 } 1512 1513 /* 1514 * Move data into or out of a buffer. 1515 */ 1516 void 1517 xfs_buf_iomove( 1518 xfs_buf_t *bp, /* buffer to process */ 1519 size_t boff, /* starting buffer offset */ 1520 size_t bsize, /* length to copy */ 1521 void *data, /* data address */ 1522 xfs_buf_rw_t mode) /* read/write/zero flag */ 1523 { 1524 size_t bend; 1525 1526 bend = boff + bsize; 1527 while (boff < bend) { 1528 struct page *page; 1529 int page_index, page_offset, csize; 1530 1531 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1532 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1533 page = bp->b_pages[page_index]; 1534 csize = min_t(size_t, PAGE_SIZE - page_offset, 1535 BBTOB(bp->b_io_length) - boff); 1536 1537 ASSERT((csize + page_offset) <= PAGE_SIZE); 1538 1539 switch (mode) { 1540 case XBRW_ZERO: 1541 memset(page_address(page) + page_offset, 0, csize); 1542 break; 1543 case XBRW_READ: 1544 memcpy(data, page_address(page) + page_offset, csize); 1545 break; 1546 case XBRW_WRITE: 1547 memcpy(page_address(page) + page_offset, data, csize); 1548 } 1549 1550 boff += csize; 1551 data += csize; 1552 } 1553 } 1554 1555 /* 1556 * Handling of buffer targets (buftargs). 1557 */ 1558 1559 /* 1560 * Wait for any bufs with callbacks that have been submitted but have not yet 1561 * returned. These buffers will have an elevated hold count, so wait on those 1562 * while freeing all the buffers only held by the LRU. 1563 */ 1564 static enum lru_status 1565 xfs_buftarg_wait_rele( 1566 struct list_head *item, 1567 struct list_lru_one *lru, 1568 spinlock_t *lru_lock, 1569 void *arg) 1570 1571 { 1572 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1573 struct list_head *dispose = arg; 1574 1575 if (atomic_read(&bp->b_hold) > 1) { 1576 /* need to wait, so skip it this pass */ 1577 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1578 return LRU_SKIP; 1579 } 1580 if (!spin_trylock(&bp->b_lock)) 1581 return LRU_SKIP; 1582 1583 /* 1584 * clear the LRU reference count so the buffer doesn't get 1585 * ignored in xfs_buf_rele(). 1586 */ 1587 atomic_set(&bp->b_lru_ref, 0); 1588 bp->b_state |= XFS_BSTATE_DISPOSE; 1589 list_lru_isolate_move(lru, item, dispose); 1590 spin_unlock(&bp->b_lock); 1591 return LRU_REMOVED; 1592 } 1593 1594 void 1595 xfs_wait_buftarg( 1596 struct xfs_buftarg *btp) 1597 { 1598 LIST_HEAD(dispose); 1599 int loop = 0; 1600 1601 /* 1602 * First wait on the buftarg I/O count for all in-flight buffers to be 1603 * released. This is critical as new buffers do not make the LRU until 1604 * they are released. 1605 * 1606 * Next, flush the buffer workqueue to ensure all completion processing 1607 * has finished. Just waiting on buffer locks is not sufficient for 1608 * async IO as the reference count held over IO is not released until 1609 * after the buffer lock is dropped. Hence we need to ensure here that 1610 * all reference counts have been dropped before we start walking the 1611 * LRU list. 1612 */ 1613 while (percpu_counter_sum(&btp->bt_io_count)) 1614 delay(100); 1615 drain_workqueue(btp->bt_mount->m_buf_workqueue); 1616 1617 /* loop until there is nothing left on the lru list. */ 1618 while (list_lru_count(&btp->bt_lru)) { 1619 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1620 &dispose, LONG_MAX); 1621 1622 while (!list_empty(&dispose)) { 1623 struct xfs_buf *bp; 1624 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1625 list_del_init(&bp->b_lru); 1626 if (bp->b_flags & XBF_WRITE_FAIL) { 1627 xfs_alert(btp->bt_mount, 1628 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!", 1629 (long long)bp->b_bn); 1630 xfs_alert(btp->bt_mount, 1631 "Please run xfs_repair to determine the extent of the problem."); 1632 } 1633 xfs_buf_rele(bp); 1634 } 1635 if (loop++ != 0) 1636 delay(100); 1637 } 1638 } 1639 1640 static enum lru_status 1641 xfs_buftarg_isolate( 1642 struct list_head *item, 1643 struct list_lru_one *lru, 1644 spinlock_t *lru_lock, 1645 void *arg) 1646 { 1647 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1648 struct list_head *dispose = arg; 1649 1650 /* 1651 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1652 * If we fail to get the lock, just skip it. 1653 */ 1654 if (!spin_trylock(&bp->b_lock)) 1655 return LRU_SKIP; 1656 /* 1657 * Decrement the b_lru_ref count unless the value is already 1658 * zero. If the value is already zero, we need to reclaim the 1659 * buffer, otherwise it gets another trip through the LRU. 1660 */ 1661 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1662 spin_unlock(&bp->b_lock); 1663 return LRU_ROTATE; 1664 } 1665 1666 bp->b_state |= XFS_BSTATE_DISPOSE; 1667 list_lru_isolate_move(lru, item, dispose); 1668 spin_unlock(&bp->b_lock); 1669 return LRU_REMOVED; 1670 } 1671 1672 static unsigned long 1673 xfs_buftarg_shrink_scan( 1674 struct shrinker *shrink, 1675 struct shrink_control *sc) 1676 { 1677 struct xfs_buftarg *btp = container_of(shrink, 1678 struct xfs_buftarg, bt_shrinker); 1679 LIST_HEAD(dispose); 1680 unsigned long freed; 1681 1682 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1683 xfs_buftarg_isolate, &dispose); 1684 1685 while (!list_empty(&dispose)) { 1686 struct xfs_buf *bp; 1687 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1688 list_del_init(&bp->b_lru); 1689 xfs_buf_rele(bp); 1690 } 1691 1692 return freed; 1693 } 1694 1695 static unsigned long 1696 xfs_buftarg_shrink_count( 1697 struct shrinker *shrink, 1698 struct shrink_control *sc) 1699 { 1700 struct xfs_buftarg *btp = container_of(shrink, 1701 struct xfs_buftarg, bt_shrinker); 1702 return list_lru_shrink_count(&btp->bt_lru, sc); 1703 } 1704 1705 void 1706 xfs_free_buftarg( 1707 struct xfs_mount *mp, 1708 struct xfs_buftarg *btp) 1709 { 1710 unregister_shrinker(&btp->bt_shrinker); 1711 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1712 percpu_counter_destroy(&btp->bt_io_count); 1713 list_lru_destroy(&btp->bt_lru); 1714 1715 if (mp->m_flags & XFS_MOUNT_BARRIER) 1716 xfs_blkdev_issue_flush(btp); 1717 1718 kmem_free(btp); 1719 } 1720 1721 int 1722 xfs_setsize_buftarg( 1723 xfs_buftarg_t *btp, 1724 unsigned int sectorsize) 1725 { 1726 /* Set up metadata sector size info */ 1727 btp->bt_meta_sectorsize = sectorsize; 1728 btp->bt_meta_sectormask = sectorsize - 1; 1729 1730 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1731 xfs_warn(btp->bt_mount, 1732 "Cannot set_blocksize to %u on device %pg", 1733 sectorsize, btp->bt_bdev); 1734 return -EINVAL; 1735 } 1736 1737 /* Set up device logical sector size mask */ 1738 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1739 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1740 1741 return 0; 1742 } 1743 1744 /* 1745 * When allocating the initial buffer target we have not yet 1746 * read in the superblock, so don't know what sized sectors 1747 * are being used at this early stage. Play safe. 1748 */ 1749 STATIC int 1750 xfs_setsize_buftarg_early( 1751 xfs_buftarg_t *btp, 1752 struct block_device *bdev) 1753 { 1754 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1755 } 1756 1757 xfs_buftarg_t * 1758 xfs_alloc_buftarg( 1759 struct xfs_mount *mp, 1760 struct block_device *bdev) 1761 { 1762 xfs_buftarg_t *btp; 1763 1764 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); 1765 1766 btp->bt_mount = mp; 1767 btp->bt_dev = bdev->bd_dev; 1768 btp->bt_bdev = bdev; 1769 btp->bt_bdi = blk_get_backing_dev_info(bdev); 1770 1771 if (xfs_setsize_buftarg_early(btp, bdev)) 1772 goto error; 1773 1774 if (list_lru_init(&btp->bt_lru)) 1775 goto error; 1776 1777 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 1778 goto error; 1779 1780 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1781 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1782 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1783 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1784 register_shrinker(&btp->bt_shrinker); 1785 return btp; 1786 1787 error: 1788 kmem_free(btp); 1789 return NULL; 1790 } 1791 1792 /* 1793 * Add a buffer to the delayed write list. 1794 * 1795 * This queues a buffer for writeout if it hasn't already been. Note that 1796 * neither this routine nor the buffer list submission functions perform 1797 * any internal synchronization. It is expected that the lists are thread-local 1798 * to the callers. 1799 * 1800 * Returns true if we queued up the buffer, or false if it already had 1801 * been on the buffer list. 1802 */ 1803 bool 1804 xfs_buf_delwri_queue( 1805 struct xfs_buf *bp, 1806 struct list_head *list) 1807 { 1808 ASSERT(xfs_buf_islocked(bp)); 1809 ASSERT(!(bp->b_flags & XBF_READ)); 1810 1811 /* 1812 * If the buffer is already marked delwri it already is queued up 1813 * by someone else for imediate writeout. Just ignore it in that 1814 * case. 1815 */ 1816 if (bp->b_flags & _XBF_DELWRI_Q) { 1817 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1818 return false; 1819 } 1820 1821 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1822 1823 /* 1824 * If a buffer gets written out synchronously or marked stale while it 1825 * is on a delwri list we lazily remove it. To do this, the other party 1826 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1827 * It remains referenced and on the list. In a rare corner case it 1828 * might get readded to a delwri list after the synchronous writeout, in 1829 * which case we need just need to re-add the flag here. 1830 */ 1831 bp->b_flags |= _XBF_DELWRI_Q; 1832 if (list_empty(&bp->b_list)) { 1833 atomic_inc(&bp->b_hold); 1834 list_add_tail(&bp->b_list, list); 1835 } 1836 1837 return true; 1838 } 1839 1840 /* 1841 * Compare function is more complex than it needs to be because 1842 * the return value is only 32 bits and we are doing comparisons 1843 * on 64 bit values 1844 */ 1845 static int 1846 xfs_buf_cmp( 1847 void *priv, 1848 struct list_head *a, 1849 struct list_head *b) 1850 { 1851 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1852 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1853 xfs_daddr_t diff; 1854 1855 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1856 if (diff < 0) 1857 return -1; 1858 if (diff > 0) 1859 return 1; 1860 return 0; 1861 } 1862 1863 /* 1864 * submit buffers for write. 1865 * 1866 * When we have a large buffer list, we do not want to hold all the buffers 1867 * locked while we block on the request queue waiting for IO dispatch. To avoid 1868 * this problem, we lock and submit buffers in groups of 50, thereby minimising 1869 * the lock hold times for lists which may contain thousands of objects. 1870 * 1871 * To do this, we sort the buffer list before we walk the list to lock and 1872 * submit buffers, and we plug and unplug around each group of buffers we 1873 * submit. 1874 */ 1875 static int 1876 xfs_buf_delwri_submit_buffers( 1877 struct list_head *buffer_list, 1878 struct list_head *wait_list) 1879 { 1880 struct xfs_buf *bp, *n; 1881 LIST_HEAD (submit_list); 1882 int pinned = 0; 1883 struct blk_plug plug; 1884 1885 list_sort(NULL, buffer_list, xfs_buf_cmp); 1886 1887 blk_start_plug(&plug); 1888 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1889 if (!wait_list) { 1890 if (xfs_buf_ispinned(bp)) { 1891 pinned++; 1892 continue; 1893 } 1894 if (!xfs_buf_trylock(bp)) 1895 continue; 1896 } else { 1897 xfs_buf_lock(bp); 1898 } 1899 1900 /* 1901 * Someone else might have written the buffer synchronously or 1902 * marked it stale in the meantime. In that case only the 1903 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1904 * reference and remove it from the list here. 1905 */ 1906 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1907 list_del_init(&bp->b_list); 1908 xfs_buf_relse(bp); 1909 continue; 1910 } 1911 1912 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1913 1914 /* 1915 * We do all IO submission async. This means if we need 1916 * to wait for IO completion we need to take an extra 1917 * reference so the buffer is still valid on the other 1918 * side. We need to move the buffer onto the io_list 1919 * at this point so the caller can still access it. 1920 */ 1921 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL); 1922 bp->b_flags |= XBF_WRITE | XBF_ASYNC; 1923 if (wait_list) { 1924 xfs_buf_hold(bp); 1925 list_move_tail(&bp->b_list, wait_list); 1926 } else 1927 list_del_init(&bp->b_list); 1928 1929 xfs_buf_submit(bp); 1930 } 1931 blk_finish_plug(&plug); 1932 1933 return pinned; 1934 } 1935 1936 /* 1937 * Write out a buffer list asynchronously. 1938 * 1939 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1940 * out and not wait for I/O completion on any of the buffers. This interface 1941 * is only safely useable for callers that can track I/O completion by higher 1942 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1943 * function. 1944 */ 1945 int 1946 xfs_buf_delwri_submit_nowait( 1947 struct list_head *buffer_list) 1948 { 1949 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 1950 } 1951 1952 /* 1953 * Write out a buffer list synchronously. 1954 * 1955 * This will take the @buffer_list, write all buffers out and wait for I/O 1956 * completion on all of the buffers. @buffer_list is consumed by the function, 1957 * so callers must have some other way of tracking buffers if they require such 1958 * functionality. 1959 */ 1960 int 1961 xfs_buf_delwri_submit( 1962 struct list_head *buffer_list) 1963 { 1964 LIST_HEAD (wait_list); 1965 int error = 0, error2; 1966 struct xfs_buf *bp; 1967 1968 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 1969 1970 /* Wait for IO to complete. */ 1971 while (!list_empty(&wait_list)) { 1972 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 1973 1974 list_del_init(&bp->b_list); 1975 1976 /* locking the buffer will wait for async IO completion. */ 1977 xfs_buf_lock(bp); 1978 error2 = bp->b_error; 1979 xfs_buf_relse(bp); 1980 if (!error) 1981 error = error2; 1982 } 1983 1984 return error; 1985 } 1986 1987 int __init 1988 xfs_buf_init(void) 1989 { 1990 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 1991 KM_ZONE_HWALIGN, NULL); 1992 if (!xfs_buf_zone) 1993 goto out; 1994 1995 return 0; 1996 1997 out: 1998 return -ENOMEM; 1999 } 2000 2001 void 2002 xfs_buf_terminate(void) 2003 { 2004 kmem_zone_destroy(xfs_buf_zone); 2005 } 2006