1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 37 #include "xfs_log_format.h" 38 #include "xfs_trans_resv.h" 39 #include "xfs_sb.h" 40 #include "xfs_ag.h" 41 #include "xfs_mount.h" 42 #include "xfs_trace.h" 43 #include "xfs_log.h" 44 45 static kmem_zone_t *xfs_buf_zone; 46 47 static struct workqueue_struct *xfslogd_workqueue; 48 49 #ifdef XFS_BUF_LOCK_TRACKING 50 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 51 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 52 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 53 #else 54 # define XB_SET_OWNER(bp) do { } while (0) 55 # define XB_CLEAR_OWNER(bp) do { } while (0) 56 # define XB_GET_OWNER(bp) do { } while (0) 57 #endif 58 59 #define xb_to_gfp(flags) \ 60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 61 62 63 static inline int 64 xfs_buf_is_vmapped( 65 struct xfs_buf *bp) 66 { 67 /* 68 * Return true if the buffer is vmapped. 69 * 70 * b_addr is null if the buffer is not mapped, but the code is clever 71 * enough to know it doesn't have to map a single page, so the check has 72 * to be both for b_addr and bp->b_page_count > 1. 73 */ 74 return bp->b_addr && bp->b_page_count > 1; 75 } 76 77 static inline int 78 xfs_buf_vmap_len( 79 struct xfs_buf *bp) 80 { 81 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 82 } 83 84 /* 85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 86 * b_lru_ref count so that the buffer is freed immediately when the buffer 87 * reference count falls to zero. If the buffer is already on the LRU, we need 88 * to remove the reference that LRU holds on the buffer. 89 * 90 * This prevents build-up of stale buffers on the LRU. 91 */ 92 void 93 xfs_buf_stale( 94 struct xfs_buf *bp) 95 { 96 ASSERT(xfs_buf_islocked(bp)); 97 98 bp->b_flags |= XBF_STALE; 99 100 /* 101 * Clear the delwri status so that a delwri queue walker will not 102 * flush this buffer to disk now that it is stale. The delwri queue has 103 * a reference to the buffer, so this is safe to do. 104 */ 105 bp->b_flags &= ~_XBF_DELWRI_Q; 106 107 spin_lock(&bp->b_lock); 108 atomic_set(&bp->b_lru_ref, 0); 109 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 110 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 111 atomic_dec(&bp->b_hold); 112 113 ASSERT(atomic_read(&bp->b_hold) >= 1); 114 spin_unlock(&bp->b_lock); 115 } 116 117 static int 118 xfs_buf_get_maps( 119 struct xfs_buf *bp, 120 int map_count) 121 { 122 ASSERT(bp->b_maps == NULL); 123 bp->b_map_count = map_count; 124 125 if (map_count == 1) { 126 bp->b_maps = &bp->__b_map; 127 return 0; 128 } 129 130 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 131 KM_NOFS); 132 if (!bp->b_maps) 133 return ENOMEM; 134 return 0; 135 } 136 137 /* 138 * Frees b_pages if it was allocated. 139 */ 140 static void 141 xfs_buf_free_maps( 142 struct xfs_buf *bp) 143 { 144 if (bp->b_maps != &bp->__b_map) { 145 kmem_free(bp->b_maps); 146 bp->b_maps = NULL; 147 } 148 } 149 150 struct xfs_buf * 151 _xfs_buf_alloc( 152 struct xfs_buftarg *target, 153 struct xfs_buf_map *map, 154 int nmaps, 155 xfs_buf_flags_t flags) 156 { 157 struct xfs_buf *bp; 158 int error; 159 int i; 160 161 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 162 if (unlikely(!bp)) 163 return NULL; 164 165 /* 166 * We don't want certain flags to appear in b_flags unless they are 167 * specifically set by later operations on the buffer. 168 */ 169 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 170 171 atomic_set(&bp->b_hold, 1); 172 atomic_set(&bp->b_lru_ref, 1); 173 init_completion(&bp->b_iowait); 174 INIT_LIST_HEAD(&bp->b_lru); 175 INIT_LIST_HEAD(&bp->b_list); 176 RB_CLEAR_NODE(&bp->b_rbnode); 177 sema_init(&bp->b_sema, 0); /* held, no waiters */ 178 spin_lock_init(&bp->b_lock); 179 XB_SET_OWNER(bp); 180 bp->b_target = target; 181 bp->b_flags = flags; 182 183 /* 184 * Set length and io_length to the same value initially. 185 * I/O routines should use io_length, which will be the same in 186 * most cases but may be reset (e.g. XFS recovery). 187 */ 188 error = xfs_buf_get_maps(bp, nmaps); 189 if (error) { 190 kmem_zone_free(xfs_buf_zone, bp); 191 return NULL; 192 } 193 194 bp->b_bn = map[0].bm_bn; 195 bp->b_length = 0; 196 for (i = 0; i < nmaps; i++) { 197 bp->b_maps[i].bm_bn = map[i].bm_bn; 198 bp->b_maps[i].bm_len = map[i].bm_len; 199 bp->b_length += map[i].bm_len; 200 } 201 bp->b_io_length = bp->b_length; 202 203 atomic_set(&bp->b_pin_count, 0); 204 init_waitqueue_head(&bp->b_waiters); 205 206 XFS_STATS_INC(xb_create); 207 trace_xfs_buf_init(bp, _RET_IP_); 208 209 return bp; 210 } 211 212 /* 213 * Allocate a page array capable of holding a specified number 214 * of pages, and point the page buf at it. 215 */ 216 STATIC int 217 _xfs_buf_get_pages( 218 xfs_buf_t *bp, 219 int page_count, 220 xfs_buf_flags_t flags) 221 { 222 /* Make sure that we have a page list */ 223 if (bp->b_pages == NULL) { 224 bp->b_page_count = page_count; 225 if (page_count <= XB_PAGES) { 226 bp->b_pages = bp->b_page_array; 227 } else { 228 bp->b_pages = kmem_alloc(sizeof(struct page *) * 229 page_count, KM_NOFS); 230 if (bp->b_pages == NULL) 231 return -ENOMEM; 232 } 233 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 234 } 235 return 0; 236 } 237 238 /* 239 * Frees b_pages if it was allocated. 240 */ 241 STATIC void 242 _xfs_buf_free_pages( 243 xfs_buf_t *bp) 244 { 245 if (bp->b_pages != bp->b_page_array) { 246 kmem_free(bp->b_pages); 247 bp->b_pages = NULL; 248 } 249 } 250 251 /* 252 * Releases the specified buffer. 253 * 254 * The modification state of any associated pages is left unchanged. 255 * The buffer must not be on any hash - use xfs_buf_rele instead for 256 * hashed and refcounted buffers 257 */ 258 void 259 xfs_buf_free( 260 xfs_buf_t *bp) 261 { 262 trace_xfs_buf_free(bp, _RET_IP_); 263 264 ASSERT(list_empty(&bp->b_lru)); 265 266 if (bp->b_flags & _XBF_PAGES) { 267 uint i; 268 269 if (xfs_buf_is_vmapped(bp)) 270 vm_unmap_ram(bp->b_addr - bp->b_offset, 271 bp->b_page_count); 272 273 for (i = 0; i < bp->b_page_count; i++) { 274 struct page *page = bp->b_pages[i]; 275 276 __free_page(page); 277 } 278 } else if (bp->b_flags & _XBF_KMEM) 279 kmem_free(bp->b_addr); 280 _xfs_buf_free_pages(bp); 281 xfs_buf_free_maps(bp); 282 kmem_zone_free(xfs_buf_zone, bp); 283 } 284 285 /* 286 * Allocates all the pages for buffer in question and builds it's page list. 287 */ 288 STATIC int 289 xfs_buf_allocate_memory( 290 xfs_buf_t *bp, 291 uint flags) 292 { 293 size_t size; 294 size_t nbytes, offset; 295 gfp_t gfp_mask = xb_to_gfp(flags); 296 unsigned short page_count, i; 297 xfs_off_t start, end; 298 int error; 299 300 /* 301 * for buffers that are contained within a single page, just allocate 302 * the memory from the heap - there's no need for the complexity of 303 * page arrays to keep allocation down to order 0. 304 */ 305 size = BBTOB(bp->b_length); 306 if (size < PAGE_SIZE) { 307 bp->b_addr = kmem_alloc(size, KM_NOFS); 308 if (!bp->b_addr) { 309 /* low memory - use alloc_page loop instead */ 310 goto use_alloc_page; 311 } 312 313 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 314 ((unsigned long)bp->b_addr & PAGE_MASK)) { 315 /* b_addr spans two pages - use alloc_page instead */ 316 kmem_free(bp->b_addr); 317 bp->b_addr = NULL; 318 goto use_alloc_page; 319 } 320 bp->b_offset = offset_in_page(bp->b_addr); 321 bp->b_pages = bp->b_page_array; 322 bp->b_pages[0] = virt_to_page(bp->b_addr); 323 bp->b_page_count = 1; 324 bp->b_flags |= _XBF_KMEM; 325 return 0; 326 } 327 328 use_alloc_page: 329 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 330 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 331 >> PAGE_SHIFT; 332 page_count = end - start; 333 error = _xfs_buf_get_pages(bp, page_count, flags); 334 if (unlikely(error)) 335 return error; 336 337 offset = bp->b_offset; 338 bp->b_flags |= _XBF_PAGES; 339 340 for (i = 0; i < bp->b_page_count; i++) { 341 struct page *page; 342 uint retries = 0; 343 retry: 344 page = alloc_page(gfp_mask); 345 if (unlikely(page == NULL)) { 346 if (flags & XBF_READ_AHEAD) { 347 bp->b_page_count = i; 348 error = ENOMEM; 349 goto out_free_pages; 350 } 351 352 /* 353 * This could deadlock. 354 * 355 * But until all the XFS lowlevel code is revamped to 356 * handle buffer allocation failures we can't do much. 357 */ 358 if (!(++retries % 100)) 359 xfs_err(NULL, 360 "possible memory allocation deadlock in %s (mode:0x%x)", 361 __func__, gfp_mask); 362 363 XFS_STATS_INC(xb_page_retries); 364 congestion_wait(BLK_RW_ASYNC, HZ/50); 365 goto retry; 366 } 367 368 XFS_STATS_INC(xb_page_found); 369 370 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 371 size -= nbytes; 372 bp->b_pages[i] = page; 373 offset = 0; 374 } 375 return 0; 376 377 out_free_pages: 378 for (i = 0; i < bp->b_page_count; i++) 379 __free_page(bp->b_pages[i]); 380 return error; 381 } 382 383 /* 384 * Map buffer into kernel address-space if necessary. 385 */ 386 STATIC int 387 _xfs_buf_map_pages( 388 xfs_buf_t *bp, 389 uint flags) 390 { 391 ASSERT(bp->b_flags & _XBF_PAGES); 392 if (bp->b_page_count == 1) { 393 /* A single page buffer is always mappable */ 394 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 395 } else if (flags & XBF_UNMAPPED) { 396 bp->b_addr = NULL; 397 } else { 398 int retried = 0; 399 400 do { 401 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 402 -1, PAGE_KERNEL); 403 if (bp->b_addr) 404 break; 405 vm_unmap_aliases(); 406 } while (retried++ <= 1); 407 408 if (!bp->b_addr) 409 return -ENOMEM; 410 bp->b_addr += bp->b_offset; 411 } 412 413 return 0; 414 } 415 416 /* 417 * Finding and Reading Buffers 418 */ 419 420 /* 421 * Look up, and creates if absent, a lockable buffer for 422 * a given range of an inode. The buffer is returned 423 * locked. No I/O is implied by this call. 424 */ 425 xfs_buf_t * 426 _xfs_buf_find( 427 struct xfs_buftarg *btp, 428 struct xfs_buf_map *map, 429 int nmaps, 430 xfs_buf_flags_t flags, 431 xfs_buf_t *new_bp) 432 { 433 size_t numbytes; 434 struct xfs_perag *pag; 435 struct rb_node **rbp; 436 struct rb_node *parent; 437 xfs_buf_t *bp; 438 xfs_daddr_t blkno = map[0].bm_bn; 439 xfs_daddr_t eofs; 440 int numblks = 0; 441 int i; 442 443 for (i = 0; i < nmaps; i++) 444 numblks += map[i].bm_len; 445 numbytes = BBTOB(numblks); 446 447 /* Check for IOs smaller than the sector size / not sector aligned */ 448 ASSERT(!(numbytes < (1 << btp->bt_sshift))); 449 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask)); 450 451 /* 452 * Corrupted block numbers can get through to here, unfortunately, so we 453 * have to check that the buffer falls within the filesystem bounds. 454 */ 455 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 456 if (blkno >= eofs) { 457 /* 458 * XXX (dgc): we should really be returning EFSCORRUPTED here, 459 * but none of the higher level infrastructure supports 460 * returning a specific error on buffer lookup failures. 461 */ 462 xfs_alert(btp->bt_mount, 463 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ", 464 __func__, blkno, eofs); 465 WARN_ON(1); 466 return NULL; 467 } 468 469 /* get tree root */ 470 pag = xfs_perag_get(btp->bt_mount, 471 xfs_daddr_to_agno(btp->bt_mount, blkno)); 472 473 /* walk tree */ 474 spin_lock(&pag->pag_buf_lock); 475 rbp = &pag->pag_buf_tree.rb_node; 476 parent = NULL; 477 bp = NULL; 478 while (*rbp) { 479 parent = *rbp; 480 bp = rb_entry(parent, struct xfs_buf, b_rbnode); 481 482 if (blkno < bp->b_bn) 483 rbp = &(*rbp)->rb_left; 484 else if (blkno > bp->b_bn) 485 rbp = &(*rbp)->rb_right; 486 else { 487 /* 488 * found a block number match. If the range doesn't 489 * match, the only way this is allowed is if the buffer 490 * in the cache is stale and the transaction that made 491 * it stale has not yet committed. i.e. we are 492 * reallocating a busy extent. Skip this buffer and 493 * continue searching to the right for an exact match. 494 */ 495 if (bp->b_length != numblks) { 496 ASSERT(bp->b_flags & XBF_STALE); 497 rbp = &(*rbp)->rb_right; 498 continue; 499 } 500 atomic_inc(&bp->b_hold); 501 goto found; 502 } 503 } 504 505 /* No match found */ 506 if (new_bp) { 507 rb_link_node(&new_bp->b_rbnode, parent, rbp); 508 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); 509 /* the buffer keeps the perag reference until it is freed */ 510 new_bp->b_pag = pag; 511 spin_unlock(&pag->pag_buf_lock); 512 } else { 513 XFS_STATS_INC(xb_miss_locked); 514 spin_unlock(&pag->pag_buf_lock); 515 xfs_perag_put(pag); 516 } 517 return new_bp; 518 519 found: 520 spin_unlock(&pag->pag_buf_lock); 521 xfs_perag_put(pag); 522 523 if (!xfs_buf_trylock(bp)) { 524 if (flags & XBF_TRYLOCK) { 525 xfs_buf_rele(bp); 526 XFS_STATS_INC(xb_busy_locked); 527 return NULL; 528 } 529 xfs_buf_lock(bp); 530 XFS_STATS_INC(xb_get_locked_waited); 531 } 532 533 /* 534 * if the buffer is stale, clear all the external state associated with 535 * it. We need to keep flags such as how we allocated the buffer memory 536 * intact here. 537 */ 538 if (bp->b_flags & XBF_STALE) { 539 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 540 ASSERT(bp->b_iodone == NULL); 541 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 542 bp->b_ops = NULL; 543 } 544 545 trace_xfs_buf_find(bp, flags, _RET_IP_); 546 XFS_STATS_INC(xb_get_locked); 547 return bp; 548 } 549 550 /* 551 * Assembles a buffer covering the specified range. The code is optimised for 552 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 553 * more hits than misses. 554 */ 555 struct xfs_buf * 556 xfs_buf_get_map( 557 struct xfs_buftarg *target, 558 struct xfs_buf_map *map, 559 int nmaps, 560 xfs_buf_flags_t flags) 561 { 562 struct xfs_buf *bp; 563 struct xfs_buf *new_bp; 564 int error = 0; 565 566 bp = _xfs_buf_find(target, map, nmaps, flags, NULL); 567 if (likely(bp)) 568 goto found; 569 570 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 571 if (unlikely(!new_bp)) 572 return NULL; 573 574 error = xfs_buf_allocate_memory(new_bp, flags); 575 if (error) { 576 xfs_buf_free(new_bp); 577 return NULL; 578 } 579 580 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); 581 if (!bp) { 582 xfs_buf_free(new_bp); 583 return NULL; 584 } 585 586 if (bp != new_bp) 587 xfs_buf_free(new_bp); 588 589 found: 590 if (!bp->b_addr) { 591 error = _xfs_buf_map_pages(bp, flags); 592 if (unlikely(error)) { 593 xfs_warn(target->bt_mount, 594 "%s: failed to map pagesn", __func__); 595 xfs_buf_relse(bp); 596 return NULL; 597 } 598 } 599 600 XFS_STATS_INC(xb_get); 601 trace_xfs_buf_get(bp, flags, _RET_IP_); 602 return bp; 603 } 604 605 STATIC int 606 _xfs_buf_read( 607 xfs_buf_t *bp, 608 xfs_buf_flags_t flags) 609 { 610 ASSERT(!(flags & XBF_WRITE)); 611 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 612 613 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 614 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 615 616 xfs_buf_iorequest(bp); 617 if (flags & XBF_ASYNC) 618 return 0; 619 return xfs_buf_iowait(bp); 620 } 621 622 xfs_buf_t * 623 xfs_buf_read_map( 624 struct xfs_buftarg *target, 625 struct xfs_buf_map *map, 626 int nmaps, 627 xfs_buf_flags_t flags, 628 const struct xfs_buf_ops *ops) 629 { 630 struct xfs_buf *bp; 631 632 flags |= XBF_READ; 633 634 bp = xfs_buf_get_map(target, map, nmaps, flags); 635 if (bp) { 636 trace_xfs_buf_read(bp, flags, _RET_IP_); 637 638 if (!XFS_BUF_ISDONE(bp)) { 639 XFS_STATS_INC(xb_get_read); 640 bp->b_ops = ops; 641 _xfs_buf_read(bp, flags); 642 } else if (flags & XBF_ASYNC) { 643 /* 644 * Read ahead call which is already satisfied, 645 * drop the buffer 646 */ 647 xfs_buf_relse(bp); 648 return NULL; 649 } else { 650 /* We do not want read in the flags */ 651 bp->b_flags &= ~XBF_READ; 652 } 653 } 654 655 return bp; 656 } 657 658 /* 659 * If we are not low on memory then do the readahead in a deadlock 660 * safe manner. 661 */ 662 void 663 xfs_buf_readahead_map( 664 struct xfs_buftarg *target, 665 struct xfs_buf_map *map, 666 int nmaps, 667 const struct xfs_buf_ops *ops) 668 { 669 if (bdi_read_congested(target->bt_bdi)) 670 return; 671 672 xfs_buf_read_map(target, map, nmaps, 673 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 674 } 675 676 /* 677 * Read an uncached buffer from disk. Allocates and returns a locked 678 * buffer containing the disk contents or nothing. 679 */ 680 struct xfs_buf * 681 xfs_buf_read_uncached( 682 struct xfs_buftarg *target, 683 xfs_daddr_t daddr, 684 size_t numblks, 685 int flags, 686 const struct xfs_buf_ops *ops) 687 { 688 struct xfs_buf *bp; 689 690 bp = xfs_buf_get_uncached(target, numblks, flags); 691 if (!bp) 692 return NULL; 693 694 /* set up the buffer for a read IO */ 695 ASSERT(bp->b_map_count == 1); 696 bp->b_bn = daddr; 697 bp->b_maps[0].bm_bn = daddr; 698 bp->b_flags |= XBF_READ; 699 bp->b_ops = ops; 700 701 xfsbdstrat(target->bt_mount, bp); 702 xfs_buf_iowait(bp); 703 return bp; 704 } 705 706 /* 707 * Return a buffer allocated as an empty buffer and associated to external 708 * memory via xfs_buf_associate_memory() back to it's empty state. 709 */ 710 void 711 xfs_buf_set_empty( 712 struct xfs_buf *bp, 713 size_t numblks) 714 { 715 if (bp->b_pages) 716 _xfs_buf_free_pages(bp); 717 718 bp->b_pages = NULL; 719 bp->b_page_count = 0; 720 bp->b_addr = NULL; 721 bp->b_length = numblks; 722 bp->b_io_length = numblks; 723 724 ASSERT(bp->b_map_count == 1); 725 bp->b_bn = XFS_BUF_DADDR_NULL; 726 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 727 bp->b_maps[0].bm_len = bp->b_length; 728 } 729 730 static inline struct page * 731 mem_to_page( 732 void *addr) 733 { 734 if ((!is_vmalloc_addr(addr))) { 735 return virt_to_page(addr); 736 } else { 737 return vmalloc_to_page(addr); 738 } 739 } 740 741 int 742 xfs_buf_associate_memory( 743 xfs_buf_t *bp, 744 void *mem, 745 size_t len) 746 { 747 int rval; 748 int i = 0; 749 unsigned long pageaddr; 750 unsigned long offset; 751 size_t buflen; 752 int page_count; 753 754 pageaddr = (unsigned long)mem & PAGE_MASK; 755 offset = (unsigned long)mem - pageaddr; 756 buflen = PAGE_ALIGN(len + offset); 757 page_count = buflen >> PAGE_SHIFT; 758 759 /* Free any previous set of page pointers */ 760 if (bp->b_pages) 761 _xfs_buf_free_pages(bp); 762 763 bp->b_pages = NULL; 764 bp->b_addr = mem; 765 766 rval = _xfs_buf_get_pages(bp, page_count, 0); 767 if (rval) 768 return rval; 769 770 bp->b_offset = offset; 771 772 for (i = 0; i < bp->b_page_count; i++) { 773 bp->b_pages[i] = mem_to_page((void *)pageaddr); 774 pageaddr += PAGE_SIZE; 775 } 776 777 bp->b_io_length = BTOBB(len); 778 bp->b_length = BTOBB(buflen); 779 780 return 0; 781 } 782 783 xfs_buf_t * 784 xfs_buf_get_uncached( 785 struct xfs_buftarg *target, 786 size_t numblks, 787 int flags) 788 { 789 unsigned long page_count; 790 int error, i; 791 struct xfs_buf *bp; 792 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 793 794 bp = _xfs_buf_alloc(target, &map, 1, 0); 795 if (unlikely(bp == NULL)) 796 goto fail; 797 798 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 799 error = _xfs_buf_get_pages(bp, page_count, 0); 800 if (error) 801 goto fail_free_buf; 802 803 for (i = 0; i < page_count; i++) { 804 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 805 if (!bp->b_pages[i]) 806 goto fail_free_mem; 807 } 808 bp->b_flags |= _XBF_PAGES; 809 810 error = _xfs_buf_map_pages(bp, 0); 811 if (unlikely(error)) { 812 xfs_warn(target->bt_mount, 813 "%s: failed to map pages", __func__); 814 goto fail_free_mem; 815 } 816 817 trace_xfs_buf_get_uncached(bp, _RET_IP_); 818 return bp; 819 820 fail_free_mem: 821 while (--i >= 0) 822 __free_page(bp->b_pages[i]); 823 _xfs_buf_free_pages(bp); 824 fail_free_buf: 825 xfs_buf_free_maps(bp); 826 kmem_zone_free(xfs_buf_zone, bp); 827 fail: 828 return NULL; 829 } 830 831 /* 832 * Increment reference count on buffer, to hold the buffer concurrently 833 * with another thread which may release (free) the buffer asynchronously. 834 * Must hold the buffer already to call this function. 835 */ 836 void 837 xfs_buf_hold( 838 xfs_buf_t *bp) 839 { 840 trace_xfs_buf_hold(bp, _RET_IP_); 841 atomic_inc(&bp->b_hold); 842 } 843 844 /* 845 * Releases a hold on the specified buffer. If the 846 * the hold count is 1, calls xfs_buf_free. 847 */ 848 void 849 xfs_buf_rele( 850 xfs_buf_t *bp) 851 { 852 struct xfs_perag *pag = bp->b_pag; 853 854 trace_xfs_buf_rele(bp, _RET_IP_); 855 856 if (!pag) { 857 ASSERT(list_empty(&bp->b_lru)); 858 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); 859 if (atomic_dec_and_test(&bp->b_hold)) 860 xfs_buf_free(bp); 861 return; 862 } 863 864 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); 865 866 ASSERT(atomic_read(&bp->b_hold) > 0); 867 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { 868 spin_lock(&bp->b_lock); 869 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 870 /* 871 * If the buffer is added to the LRU take a new 872 * reference to the buffer for the LRU and clear the 873 * (now stale) dispose list state flag 874 */ 875 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 876 bp->b_state &= ~XFS_BSTATE_DISPOSE; 877 atomic_inc(&bp->b_hold); 878 } 879 spin_unlock(&bp->b_lock); 880 spin_unlock(&pag->pag_buf_lock); 881 } else { 882 /* 883 * most of the time buffers will already be removed from 884 * the LRU, so optimise that case by checking for the 885 * XFS_BSTATE_DISPOSE flag indicating the last list the 886 * buffer was on was the disposal list 887 */ 888 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 889 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 890 } else { 891 ASSERT(list_empty(&bp->b_lru)); 892 } 893 spin_unlock(&bp->b_lock); 894 895 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 896 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); 897 spin_unlock(&pag->pag_buf_lock); 898 xfs_perag_put(pag); 899 xfs_buf_free(bp); 900 } 901 } 902 } 903 904 905 /* 906 * Lock a buffer object, if it is not already locked. 907 * 908 * If we come across a stale, pinned, locked buffer, we know that we are 909 * being asked to lock a buffer that has been reallocated. Because it is 910 * pinned, we know that the log has not been pushed to disk and hence it 911 * will still be locked. Rather than continuing to have trylock attempts 912 * fail until someone else pushes the log, push it ourselves before 913 * returning. This means that the xfsaild will not get stuck trying 914 * to push on stale inode buffers. 915 */ 916 int 917 xfs_buf_trylock( 918 struct xfs_buf *bp) 919 { 920 int locked; 921 922 locked = down_trylock(&bp->b_sema) == 0; 923 if (locked) 924 XB_SET_OWNER(bp); 925 926 trace_xfs_buf_trylock(bp, _RET_IP_); 927 return locked; 928 } 929 930 /* 931 * Lock a buffer object. 932 * 933 * If we come across a stale, pinned, locked buffer, we know that we 934 * are being asked to lock a buffer that has been reallocated. Because 935 * it is pinned, we know that the log has not been pushed to disk and 936 * hence it will still be locked. Rather than sleeping until someone 937 * else pushes the log, push it ourselves before trying to get the lock. 938 */ 939 void 940 xfs_buf_lock( 941 struct xfs_buf *bp) 942 { 943 trace_xfs_buf_lock(bp, _RET_IP_); 944 945 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 946 xfs_log_force(bp->b_target->bt_mount, 0); 947 down(&bp->b_sema); 948 XB_SET_OWNER(bp); 949 950 trace_xfs_buf_lock_done(bp, _RET_IP_); 951 } 952 953 void 954 xfs_buf_unlock( 955 struct xfs_buf *bp) 956 { 957 XB_CLEAR_OWNER(bp); 958 up(&bp->b_sema); 959 960 trace_xfs_buf_unlock(bp, _RET_IP_); 961 } 962 963 STATIC void 964 xfs_buf_wait_unpin( 965 xfs_buf_t *bp) 966 { 967 DECLARE_WAITQUEUE (wait, current); 968 969 if (atomic_read(&bp->b_pin_count) == 0) 970 return; 971 972 add_wait_queue(&bp->b_waiters, &wait); 973 for (;;) { 974 set_current_state(TASK_UNINTERRUPTIBLE); 975 if (atomic_read(&bp->b_pin_count) == 0) 976 break; 977 io_schedule(); 978 } 979 remove_wait_queue(&bp->b_waiters, &wait); 980 set_current_state(TASK_RUNNING); 981 } 982 983 /* 984 * Buffer Utility Routines 985 */ 986 987 STATIC void 988 xfs_buf_iodone_work( 989 struct work_struct *work) 990 { 991 struct xfs_buf *bp = 992 container_of(work, xfs_buf_t, b_iodone_work); 993 bool read = !!(bp->b_flags & XBF_READ); 994 995 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 996 997 /* only validate buffers that were read without errors */ 998 if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE)) 999 bp->b_ops->verify_read(bp); 1000 1001 if (bp->b_iodone) 1002 (*(bp->b_iodone))(bp); 1003 else if (bp->b_flags & XBF_ASYNC) 1004 xfs_buf_relse(bp); 1005 else { 1006 ASSERT(read && bp->b_ops); 1007 complete(&bp->b_iowait); 1008 } 1009 } 1010 1011 void 1012 xfs_buf_ioend( 1013 struct xfs_buf *bp, 1014 int schedule) 1015 { 1016 bool read = !!(bp->b_flags & XBF_READ); 1017 1018 trace_xfs_buf_iodone(bp, _RET_IP_); 1019 1020 if (bp->b_error == 0) 1021 bp->b_flags |= XBF_DONE; 1022 1023 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) { 1024 if (schedule) { 1025 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work); 1026 queue_work(xfslogd_workqueue, &bp->b_iodone_work); 1027 } else { 1028 xfs_buf_iodone_work(&bp->b_iodone_work); 1029 } 1030 } else { 1031 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1032 complete(&bp->b_iowait); 1033 } 1034 } 1035 1036 void 1037 xfs_buf_ioerror( 1038 xfs_buf_t *bp, 1039 int error) 1040 { 1041 ASSERT(error >= 0 && error <= 0xffff); 1042 bp->b_error = (unsigned short)error; 1043 trace_xfs_buf_ioerror(bp, error, _RET_IP_); 1044 } 1045 1046 void 1047 xfs_buf_ioerror_alert( 1048 struct xfs_buf *bp, 1049 const char *func) 1050 { 1051 xfs_alert(bp->b_target->bt_mount, 1052 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d", 1053 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length); 1054 } 1055 1056 /* 1057 * Called when we want to stop a buffer from getting written or read. 1058 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend 1059 * so that the proper iodone callbacks get called. 1060 */ 1061 STATIC int 1062 xfs_bioerror( 1063 xfs_buf_t *bp) 1064 { 1065 #ifdef XFSERRORDEBUG 1066 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone); 1067 #endif 1068 1069 /* 1070 * No need to wait until the buffer is unpinned, we aren't flushing it. 1071 */ 1072 xfs_buf_ioerror(bp, EIO); 1073 1074 /* 1075 * We're calling xfs_buf_ioend, so delete XBF_DONE flag. 1076 */ 1077 XFS_BUF_UNREAD(bp); 1078 XFS_BUF_UNDONE(bp); 1079 xfs_buf_stale(bp); 1080 1081 xfs_buf_ioend(bp, 0); 1082 1083 return EIO; 1084 } 1085 1086 /* 1087 * Same as xfs_bioerror, except that we are releasing the buffer 1088 * here ourselves, and avoiding the xfs_buf_ioend call. 1089 * This is meant for userdata errors; metadata bufs come with 1090 * iodone functions attached, so that we can track down errors. 1091 */ 1092 STATIC int 1093 xfs_bioerror_relse( 1094 struct xfs_buf *bp) 1095 { 1096 int64_t fl = bp->b_flags; 1097 /* 1098 * No need to wait until the buffer is unpinned. 1099 * We aren't flushing it. 1100 * 1101 * chunkhold expects B_DONE to be set, whether 1102 * we actually finish the I/O or not. We don't want to 1103 * change that interface. 1104 */ 1105 XFS_BUF_UNREAD(bp); 1106 XFS_BUF_DONE(bp); 1107 xfs_buf_stale(bp); 1108 bp->b_iodone = NULL; 1109 if (!(fl & XBF_ASYNC)) { 1110 /* 1111 * Mark b_error and B_ERROR _both_. 1112 * Lot's of chunkcache code assumes that. 1113 * There's no reason to mark error for 1114 * ASYNC buffers. 1115 */ 1116 xfs_buf_ioerror(bp, EIO); 1117 complete(&bp->b_iowait); 1118 } else { 1119 xfs_buf_relse(bp); 1120 } 1121 1122 return EIO; 1123 } 1124 1125 STATIC int 1126 xfs_bdstrat_cb( 1127 struct xfs_buf *bp) 1128 { 1129 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1130 trace_xfs_bdstrat_shut(bp, _RET_IP_); 1131 /* 1132 * Metadata write that didn't get logged but 1133 * written delayed anyway. These aren't associated 1134 * with a transaction, and can be ignored. 1135 */ 1136 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp)) 1137 return xfs_bioerror_relse(bp); 1138 else 1139 return xfs_bioerror(bp); 1140 } 1141 1142 xfs_buf_iorequest(bp); 1143 return 0; 1144 } 1145 1146 int 1147 xfs_bwrite( 1148 struct xfs_buf *bp) 1149 { 1150 int error; 1151 1152 ASSERT(xfs_buf_islocked(bp)); 1153 1154 bp->b_flags |= XBF_WRITE; 1155 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q); 1156 1157 xfs_bdstrat_cb(bp); 1158 1159 error = xfs_buf_iowait(bp); 1160 if (error) { 1161 xfs_force_shutdown(bp->b_target->bt_mount, 1162 SHUTDOWN_META_IO_ERROR); 1163 } 1164 return error; 1165 } 1166 1167 /* 1168 * Wrapper around bdstrat so that we can stop data from going to disk in case 1169 * we are shutting down the filesystem. Typically user data goes thru this 1170 * path; one of the exceptions is the superblock. 1171 */ 1172 void 1173 xfsbdstrat( 1174 struct xfs_mount *mp, 1175 struct xfs_buf *bp) 1176 { 1177 if (XFS_FORCED_SHUTDOWN(mp)) { 1178 trace_xfs_bdstrat_shut(bp, _RET_IP_); 1179 xfs_bioerror_relse(bp); 1180 return; 1181 } 1182 1183 xfs_buf_iorequest(bp); 1184 } 1185 1186 STATIC void 1187 _xfs_buf_ioend( 1188 xfs_buf_t *bp, 1189 int schedule) 1190 { 1191 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1192 xfs_buf_ioend(bp, schedule); 1193 } 1194 1195 STATIC void 1196 xfs_buf_bio_end_io( 1197 struct bio *bio, 1198 int error) 1199 { 1200 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private; 1201 1202 /* 1203 * don't overwrite existing errors - otherwise we can lose errors on 1204 * buffers that require multiple bios to complete. 1205 */ 1206 if (!bp->b_error) 1207 xfs_buf_ioerror(bp, -error); 1208 1209 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1210 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1211 1212 _xfs_buf_ioend(bp, 1); 1213 bio_put(bio); 1214 } 1215 1216 static void 1217 xfs_buf_ioapply_map( 1218 struct xfs_buf *bp, 1219 int map, 1220 int *buf_offset, 1221 int *count, 1222 int rw) 1223 { 1224 int page_index; 1225 int total_nr_pages = bp->b_page_count; 1226 int nr_pages; 1227 struct bio *bio; 1228 sector_t sector = bp->b_maps[map].bm_bn; 1229 int size; 1230 int offset; 1231 1232 total_nr_pages = bp->b_page_count; 1233 1234 /* skip the pages in the buffer before the start offset */ 1235 page_index = 0; 1236 offset = *buf_offset; 1237 while (offset >= PAGE_SIZE) { 1238 page_index++; 1239 offset -= PAGE_SIZE; 1240 } 1241 1242 /* 1243 * Limit the IO size to the length of the current vector, and update the 1244 * remaining IO count for the next time around. 1245 */ 1246 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1247 *count -= size; 1248 *buf_offset += size; 1249 1250 next_chunk: 1251 atomic_inc(&bp->b_io_remaining); 1252 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); 1253 if (nr_pages > total_nr_pages) 1254 nr_pages = total_nr_pages; 1255 1256 bio = bio_alloc(GFP_NOIO, nr_pages); 1257 bio->bi_bdev = bp->b_target->bt_bdev; 1258 bio->bi_sector = sector; 1259 bio->bi_end_io = xfs_buf_bio_end_io; 1260 bio->bi_private = bp; 1261 1262 1263 for (; size && nr_pages; nr_pages--, page_index++) { 1264 int rbytes, nbytes = PAGE_SIZE - offset; 1265 1266 if (nbytes > size) 1267 nbytes = size; 1268 1269 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1270 offset); 1271 if (rbytes < nbytes) 1272 break; 1273 1274 offset = 0; 1275 sector += BTOBB(nbytes); 1276 size -= nbytes; 1277 total_nr_pages--; 1278 } 1279 1280 if (likely(bio->bi_size)) { 1281 if (xfs_buf_is_vmapped(bp)) { 1282 flush_kernel_vmap_range(bp->b_addr, 1283 xfs_buf_vmap_len(bp)); 1284 } 1285 submit_bio(rw, bio); 1286 if (size) 1287 goto next_chunk; 1288 } else { 1289 /* 1290 * This is guaranteed not to be the last io reference count 1291 * because the caller (xfs_buf_iorequest) holds a count itself. 1292 */ 1293 atomic_dec(&bp->b_io_remaining); 1294 xfs_buf_ioerror(bp, EIO); 1295 bio_put(bio); 1296 } 1297 1298 } 1299 1300 STATIC void 1301 _xfs_buf_ioapply( 1302 struct xfs_buf *bp) 1303 { 1304 struct blk_plug plug; 1305 int rw; 1306 int offset; 1307 int size; 1308 int i; 1309 1310 /* 1311 * Make sure we capture only current IO errors rather than stale errors 1312 * left over from previous use of the buffer (e.g. failed readahead). 1313 */ 1314 bp->b_error = 0; 1315 1316 if (bp->b_flags & XBF_WRITE) { 1317 if (bp->b_flags & XBF_SYNCIO) 1318 rw = WRITE_SYNC; 1319 else 1320 rw = WRITE; 1321 if (bp->b_flags & XBF_FUA) 1322 rw |= REQ_FUA; 1323 if (bp->b_flags & XBF_FLUSH) 1324 rw |= REQ_FLUSH; 1325 1326 /* 1327 * Run the write verifier callback function if it exists. If 1328 * this function fails it will mark the buffer with an error and 1329 * the IO should not be dispatched. 1330 */ 1331 if (bp->b_ops) { 1332 bp->b_ops->verify_write(bp); 1333 if (bp->b_error) { 1334 xfs_force_shutdown(bp->b_target->bt_mount, 1335 SHUTDOWN_CORRUPT_INCORE); 1336 return; 1337 } 1338 } 1339 } else if (bp->b_flags & XBF_READ_AHEAD) { 1340 rw = READA; 1341 } else { 1342 rw = READ; 1343 } 1344 1345 /* we only use the buffer cache for meta-data */ 1346 rw |= REQ_META; 1347 1348 /* 1349 * Walk all the vectors issuing IO on them. Set up the initial offset 1350 * into the buffer and the desired IO size before we start - 1351 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1352 * subsequent call. 1353 */ 1354 offset = bp->b_offset; 1355 size = BBTOB(bp->b_io_length); 1356 blk_start_plug(&plug); 1357 for (i = 0; i < bp->b_map_count; i++) { 1358 xfs_buf_ioapply_map(bp, i, &offset, &size, rw); 1359 if (bp->b_error) 1360 break; 1361 if (size <= 0) 1362 break; /* all done */ 1363 } 1364 blk_finish_plug(&plug); 1365 } 1366 1367 void 1368 xfs_buf_iorequest( 1369 xfs_buf_t *bp) 1370 { 1371 trace_xfs_buf_iorequest(bp, _RET_IP_); 1372 1373 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1374 1375 if (bp->b_flags & XBF_WRITE) 1376 xfs_buf_wait_unpin(bp); 1377 xfs_buf_hold(bp); 1378 1379 /* Set the count to 1 initially, this will stop an I/O 1380 * completion callout which happens before we have started 1381 * all the I/O from calling xfs_buf_ioend too early. 1382 */ 1383 atomic_set(&bp->b_io_remaining, 1); 1384 _xfs_buf_ioapply(bp); 1385 _xfs_buf_ioend(bp, 1); 1386 1387 xfs_buf_rele(bp); 1388 } 1389 1390 /* 1391 * Waits for I/O to complete on the buffer supplied. It returns immediately if 1392 * no I/O is pending or there is already a pending error on the buffer. It 1393 * returns the I/O error code, if any, or 0 if there was no error. 1394 */ 1395 int 1396 xfs_buf_iowait( 1397 xfs_buf_t *bp) 1398 { 1399 trace_xfs_buf_iowait(bp, _RET_IP_); 1400 1401 if (!bp->b_error) 1402 wait_for_completion(&bp->b_iowait); 1403 1404 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1405 return bp->b_error; 1406 } 1407 1408 xfs_caddr_t 1409 xfs_buf_offset( 1410 xfs_buf_t *bp, 1411 size_t offset) 1412 { 1413 struct page *page; 1414 1415 if (bp->b_addr) 1416 return bp->b_addr + offset; 1417 1418 offset += bp->b_offset; 1419 page = bp->b_pages[offset >> PAGE_SHIFT]; 1420 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); 1421 } 1422 1423 /* 1424 * Move data into or out of a buffer. 1425 */ 1426 void 1427 xfs_buf_iomove( 1428 xfs_buf_t *bp, /* buffer to process */ 1429 size_t boff, /* starting buffer offset */ 1430 size_t bsize, /* length to copy */ 1431 void *data, /* data address */ 1432 xfs_buf_rw_t mode) /* read/write/zero flag */ 1433 { 1434 size_t bend; 1435 1436 bend = boff + bsize; 1437 while (boff < bend) { 1438 struct page *page; 1439 int page_index, page_offset, csize; 1440 1441 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1442 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1443 page = bp->b_pages[page_index]; 1444 csize = min_t(size_t, PAGE_SIZE - page_offset, 1445 BBTOB(bp->b_io_length) - boff); 1446 1447 ASSERT((csize + page_offset) <= PAGE_SIZE); 1448 1449 switch (mode) { 1450 case XBRW_ZERO: 1451 memset(page_address(page) + page_offset, 0, csize); 1452 break; 1453 case XBRW_READ: 1454 memcpy(data, page_address(page) + page_offset, csize); 1455 break; 1456 case XBRW_WRITE: 1457 memcpy(page_address(page) + page_offset, data, csize); 1458 } 1459 1460 boff += csize; 1461 data += csize; 1462 } 1463 } 1464 1465 /* 1466 * Handling of buffer targets (buftargs). 1467 */ 1468 1469 /* 1470 * Wait for any bufs with callbacks that have been submitted but have not yet 1471 * returned. These buffers will have an elevated hold count, so wait on those 1472 * while freeing all the buffers only held by the LRU. 1473 */ 1474 static enum lru_status 1475 xfs_buftarg_wait_rele( 1476 struct list_head *item, 1477 spinlock_t *lru_lock, 1478 void *arg) 1479 1480 { 1481 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1482 struct list_head *dispose = arg; 1483 1484 if (atomic_read(&bp->b_hold) > 1) { 1485 /* need to wait, so skip it this pass */ 1486 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1487 return LRU_SKIP; 1488 } 1489 if (!spin_trylock(&bp->b_lock)) 1490 return LRU_SKIP; 1491 1492 /* 1493 * clear the LRU reference count so the buffer doesn't get 1494 * ignored in xfs_buf_rele(). 1495 */ 1496 atomic_set(&bp->b_lru_ref, 0); 1497 bp->b_state |= XFS_BSTATE_DISPOSE; 1498 list_move(item, dispose); 1499 spin_unlock(&bp->b_lock); 1500 return LRU_REMOVED; 1501 } 1502 1503 void 1504 xfs_wait_buftarg( 1505 struct xfs_buftarg *btp) 1506 { 1507 LIST_HEAD(dispose); 1508 int loop = 0; 1509 1510 /* loop until there is nothing left on the lru list. */ 1511 while (list_lru_count(&btp->bt_lru)) { 1512 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1513 &dispose, LONG_MAX); 1514 1515 while (!list_empty(&dispose)) { 1516 struct xfs_buf *bp; 1517 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1518 list_del_init(&bp->b_lru); 1519 xfs_buf_rele(bp); 1520 } 1521 if (loop++ != 0) 1522 delay(100); 1523 } 1524 } 1525 1526 static enum lru_status 1527 xfs_buftarg_isolate( 1528 struct list_head *item, 1529 spinlock_t *lru_lock, 1530 void *arg) 1531 { 1532 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1533 struct list_head *dispose = arg; 1534 1535 /* 1536 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1537 * If we fail to get the lock, just skip it. 1538 */ 1539 if (!spin_trylock(&bp->b_lock)) 1540 return LRU_SKIP; 1541 /* 1542 * Decrement the b_lru_ref count unless the value is already 1543 * zero. If the value is already zero, we need to reclaim the 1544 * buffer, otherwise it gets another trip through the LRU. 1545 */ 1546 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1547 spin_unlock(&bp->b_lock); 1548 return LRU_ROTATE; 1549 } 1550 1551 bp->b_state |= XFS_BSTATE_DISPOSE; 1552 list_move(item, dispose); 1553 spin_unlock(&bp->b_lock); 1554 return LRU_REMOVED; 1555 } 1556 1557 static unsigned long 1558 xfs_buftarg_shrink_scan( 1559 struct shrinker *shrink, 1560 struct shrink_control *sc) 1561 { 1562 struct xfs_buftarg *btp = container_of(shrink, 1563 struct xfs_buftarg, bt_shrinker); 1564 LIST_HEAD(dispose); 1565 unsigned long freed; 1566 unsigned long nr_to_scan = sc->nr_to_scan; 1567 1568 freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate, 1569 &dispose, &nr_to_scan); 1570 1571 while (!list_empty(&dispose)) { 1572 struct xfs_buf *bp; 1573 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1574 list_del_init(&bp->b_lru); 1575 xfs_buf_rele(bp); 1576 } 1577 1578 return freed; 1579 } 1580 1581 static unsigned long 1582 xfs_buftarg_shrink_count( 1583 struct shrinker *shrink, 1584 struct shrink_control *sc) 1585 { 1586 struct xfs_buftarg *btp = container_of(shrink, 1587 struct xfs_buftarg, bt_shrinker); 1588 return list_lru_count_node(&btp->bt_lru, sc->nid); 1589 } 1590 1591 void 1592 xfs_free_buftarg( 1593 struct xfs_mount *mp, 1594 struct xfs_buftarg *btp) 1595 { 1596 unregister_shrinker(&btp->bt_shrinker); 1597 list_lru_destroy(&btp->bt_lru); 1598 1599 if (mp->m_flags & XFS_MOUNT_BARRIER) 1600 xfs_blkdev_issue_flush(btp); 1601 1602 kmem_free(btp); 1603 } 1604 1605 STATIC int 1606 xfs_setsize_buftarg_flags( 1607 xfs_buftarg_t *btp, 1608 unsigned int blocksize, 1609 unsigned int sectorsize, 1610 int verbose) 1611 { 1612 btp->bt_bsize = blocksize; 1613 btp->bt_sshift = ffs(sectorsize) - 1; 1614 btp->bt_smask = sectorsize - 1; 1615 1616 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1617 char name[BDEVNAME_SIZE]; 1618 1619 bdevname(btp->bt_bdev, name); 1620 1621 xfs_warn(btp->bt_mount, 1622 "Cannot set_blocksize to %u on device %s", 1623 sectorsize, name); 1624 return EINVAL; 1625 } 1626 1627 return 0; 1628 } 1629 1630 /* 1631 * When allocating the initial buffer target we have not yet 1632 * read in the superblock, so don't know what sized sectors 1633 * are being used at this early stage. Play safe. 1634 */ 1635 STATIC int 1636 xfs_setsize_buftarg_early( 1637 xfs_buftarg_t *btp, 1638 struct block_device *bdev) 1639 { 1640 return xfs_setsize_buftarg_flags(btp, 1641 PAGE_SIZE, bdev_logical_block_size(bdev), 0); 1642 } 1643 1644 int 1645 xfs_setsize_buftarg( 1646 xfs_buftarg_t *btp, 1647 unsigned int blocksize, 1648 unsigned int sectorsize) 1649 { 1650 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); 1651 } 1652 1653 xfs_buftarg_t * 1654 xfs_alloc_buftarg( 1655 struct xfs_mount *mp, 1656 struct block_device *bdev, 1657 int external, 1658 const char *fsname) 1659 { 1660 xfs_buftarg_t *btp; 1661 1662 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); 1663 1664 btp->bt_mount = mp; 1665 btp->bt_dev = bdev->bd_dev; 1666 btp->bt_bdev = bdev; 1667 btp->bt_bdi = blk_get_backing_dev_info(bdev); 1668 if (!btp->bt_bdi) 1669 goto error; 1670 1671 if (xfs_setsize_buftarg_early(btp, bdev)) 1672 goto error; 1673 1674 if (list_lru_init(&btp->bt_lru)) 1675 goto error; 1676 1677 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1678 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1679 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1680 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1681 register_shrinker(&btp->bt_shrinker); 1682 return btp; 1683 1684 error: 1685 kmem_free(btp); 1686 return NULL; 1687 } 1688 1689 /* 1690 * Add a buffer to the delayed write list. 1691 * 1692 * This queues a buffer for writeout if it hasn't already been. Note that 1693 * neither this routine nor the buffer list submission functions perform 1694 * any internal synchronization. It is expected that the lists are thread-local 1695 * to the callers. 1696 * 1697 * Returns true if we queued up the buffer, or false if it already had 1698 * been on the buffer list. 1699 */ 1700 bool 1701 xfs_buf_delwri_queue( 1702 struct xfs_buf *bp, 1703 struct list_head *list) 1704 { 1705 ASSERT(xfs_buf_islocked(bp)); 1706 ASSERT(!(bp->b_flags & XBF_READ)); 1707 1708 /* 1709 * If the buffer is already marked delwri it already is queued up 1710 * by someone else for imediate writeout. Just ignore it in that 1711 * case. 1712 */ 1713 if (bp->b_flags & _XBF_DELWRI_Q) { 1714 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1715 return false; 1716 } 1717 1718 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1719 1720 /* 1721 * If a buffer gets written out synchronously or marked stale while it 1722 * is on a delwri list we lazily remove it. To do this, the other party 1723 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1724 * It remains referenced and on the list. In a rare corner case it 1725 * might get readded to a delwri list after the synchronous writeout, in 1726 * which case we need just need to re-add the flag here. 1727 */ 1728 bp->b_flags |= _XBF_DELWRI_Q; 1729 if (list_empty(&bp->b_list)) { 1730 atomic_inc(&bp->b_hold); 1731 list_add_tail(&bp->b_list, list); 1732 } 1733 1734 return true; 1735 } 1736 1737 /* 1738 * Compare function is more complex than it needs to be because 1739 * the return value is only 32 bits and we are doing comparisons 1740 * on 64 bit values 1741 */ 1742 static int 1743 xfs_buf_cmp( 1744 void *priv, 1745 struct list_head *a, 1746 struct list_head *b) 1747 { 1748 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1749 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1750 xfs_daddr_t diff; 1751 1752 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1753 if (diff < 0) 1754 return -1; 1755 if (diff > 0) 1756 return 1; 1757 return 0; 1758 } 1759 1760 static int 1761 __xfs_buf_delwri_submit( 1762 struct list_head *buffer_list, 1763 struct list_head *io_list, 1764 bool wait) 1765 { 1766 struct blk_plug plug; 1767 struct xfs_buf *bp, *n; 1768 int pinned = 0; 1769 1770 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1771 if (!wait) { 1772 if (xfs_buf_ispinned(bp)) { 1773 pinned++; 1774 continue; 1775 } 1776 if (!xfs_buf_trylock(bp)) 1777 continue; 1778 } else { 1779 xfs_buf_lock(bp); 1780 } 1781 1782 /* 1783 * Someone else might have written the buffer synchronously or 1784 * marked it stale in the meantime. In that case only the 1785 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1786 * reference and remove it from the list here. 1787 */ 1788 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1789 list_del_init(&bp->b_list); 1790 xfs_buf_relse(bp); 1791 continue; 1792 } 1793 1794 list_move_tail(&bp->b_list, io_list); 1795 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1796 } 1797 1798 list_sort(NULL, io_list, xfs_buf_cmp); 1799 1800 blk_start_plug(&plug); 1801 list_for_each_entry_safe(bp, n, io_list, b_list) { 1802 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC); 1803 bp->b_flags |= XBF_WRITE; 1804 1805 if (!wait) { 1806 bp->b_flags |= XBF_ASYNC; 1807 list_del_init(&bp->b_list); 1808 } 1809 xfs_bdstrat_cb(bp); 1810 } 1811 blk_finish_plug(&plug); 1812 1813 return pinned; 1814 } 1815 1816 /* 1817 * Write out a buffer list asynchronously. 1818 * 1819 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1820 * out and not wait for I/O completion on any of the buffers. This interface 1821 * is only safely useable for callers that can track I/O completion by higher 1822 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1823 * function. 1824 */ 1825 int 1826 xfs_buf_delwri_submit_nowait( 1827 struct list_head *buffer_list) 1828 { 1829 LIST_HEAD (io_list); 1830 return __xfs_buf_delwri_submit(buffer_list, &io_list, false); 1831 } 1832 1833 /* 1834 * Write out a buffer list synchronously. 1835 * 1836 * This will take the @buffer_list, write all buffers out and wait for I/O 1837 * completion on all of the buffers. @buffer_list is consumed by the function, 1838 * so callers must have some other way of tracking buffers if they require such 1839 * functionality. 1840 */ 1841 int 1842 xfs_buf_delwri_submit( 1843 struct list_head *buffer_list) 1844 { 1845 LIST_HEAD (io_list); 1846 int error = 0, error2; 1847 struct xfs_buf *bp; 1848 1849 __xfs_buf_delwri_submit(buffer_list, &io_list, true); 1850 1851 /* Wait for IO to complete. */ 1852 while (!list_empty(&io_list)) { 1853 bp = list_first_entry(&io_list, struct xfs_buf, b_list); 1854 1855 list_del_init(&bp->b_list); 1856 error2 = xfs_buf_iowait(bp); 1857 xfs_buf_relse(bp); 1858 if (!error) 1859 error = error2; 1860 } 1861 1862 return error; 1863 } 1864 1865 int __init 1866 xfs_buf_init(void) 1867 { 1868 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 1869 KM_ZONE_HWALIGN, NULL); 1870 if (!xfs_buf_zone) 1871 goto out; 1872 1873 xfslogd_workqueue = alloc_workqueue("xfslogd", 1874 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1); 1875 if (!xfslogd_workqueue) 1876 goto out_free_buf_zone; 1877 1878 return 0; 1879 1880 out_free_buf_zone: 1881 kmem_zone_destroy(xfs_buf_zone); 1882 out: 1883 return -ENOMEM; 1884 } 1885 1886 void 1887 xfs_buf_terminate(void) 1888 { 1889 destroy_workqueue(xfslogd_workqueue); 1890 kmem_zone_destroy(xfs_buf_zone); 1891 } 1892