xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 77d84ff8)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_log_format.h"
38 #include "xfs_trans_resv.h"
39 #include "xfs_sb.h"
40 #include "xfs_ag.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44 
45 static kmem_zone_t *xfs_buf_zone;
46 
47 static struct workqueue_struct *xfslogd_workqueue;
48 
49 #ifdef XFS_BUF_LOCK_TRACKING
50 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
51 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
52 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
53 #else
54 # define XB_SET_OWNER(bp)	do { } while (0)
55 # define XB_CLEAR_OWNER(bp)	do { } while (0)
56 # define XB_GET_OWNER(bp)	do { } while (0)
57 #endif
58 
59 #define xb_to_gfp(flags) \
60 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
61 
62 
63 static inline int
64 xfs_buf_is_vmapped(
65 	struct xfs_buf	*bp)
66 {
67 	/*
68 	 * Return true if the buffer is vmapped.
69 	 *
70 	 * b_addr is null if the buffer is not mapped, but the code is clever
71 	 * enough to know it doesn't have to map a single page, so the check has
72 	 * to be both for b_addr and bp->b_page_count > 1.
73 	 */
74 	return bp->b_addr && bp->b_page_count > 1;
75 }
76 
77 static inline int
78 xfs_buf_vmap_len(
79 	struct xfs_buf	*bp)
80 {
81 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
82 }
83 
84 /*
85  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86  * b_lru_ref count so that the buffer is freed immediately when the buffer
87  * reference count falls to zero. If the buffer is already on the LRU, we need
88  * to remove the reference that LRU holds on the buffer.
89  *
90  * This prevents build-up of stale buffers on the LRU.
91  */
92 void
93 xfs_buf_stale(
94 	struct xfs_buf	*bp)
95 {
96 	ASSERT(xfs_buf_islocked(bp));
97 
98 	bp->b_flags |= XBF_STALE;
99 
100 	/*
101 	 * Clear the delwri status so that a delwri queue walker will not
102 	 * flush this buffer to disk now that it is stale. The delwri queue has
103 	 * a reference to the buffer, so this is safe to do.
104 	 */
105 	bp->b_flags &= ~_XBF_DELWRI_Q;
106 
107 	spin_lock(&bp->b_lock);
108 	atomic_set(&bp->b_lru_ref, 0);
109 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
110 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
111 		atomic_dec(&bp->b_hold);
112 
113 	ASSERT(atomic_read(&bp->b_hold) >= 1);
114 	spin_unlock(&bp->b_lock);
115 }
116 
117 static int
118 xfs_buf_get_maps(
119 	struct xfs_buf		*bp,
120 	int			map_count)
121 {
122 	ASSERT(bp->b_maps == NULL);
123 	bp->b_map_count = map_count;
124 
125 	if (map_count == 1) {
126 		bp->b_maps = &bp->__b_map;
127 		return 0;
128 	}
129 
130 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
131 				KM_NOFS);
132 	if (!bp->b_maps)
133 		return ENOMEM;
134 	return 0;
135 }
136 
137 /*
138  *	Frees b_pages if it was allocated.
139  */
140 static void
141 xfs_buf_free_maps(
142 	struct xfs_buf	*bp)
143 {
144 	if (bp->b_maps != &bp->__b_map) {
145 		kmem_free(bp->b_maps);
146 		bp->b_maps = NULL;
147 	}
148 }
149 
150 struct xfs_buf *
151 _xfs_buf_alloc(
152 	struct xfs_buftarg	*target,
153 	struct xfs_buf_map	*map,
154 	int			nmaps,
155 	xfs_buf_flags_t		flags)
156 {
157 	struct xfs_buf		*bp;
158 	int			error;
159 	int			i;
160 
161 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
162 	if (unlikely(!bp))
163 		return NULL;
164 
165 	/*
166 	 * We don't want certain flags to appear in b_flags unless they are
167 	 * specifically set by later operations on the buffer.
168 	 */
169 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
170 
171 	atomic_set(&bp->b_hold, 1);
172 	atomic_set(&bp->b_lru_ref, 1);
173 	init_completion(&bp->b_iowait);
174 	INIT_LIST_HEAD(&bp->b_lru);
175 	INIT_LIST_HEAD(&bp->b_list);
176 	RB_CLEAR_NODE(&bp->b_rbnode);
177 	sema_init(&bp->b_sema, 0); /* held, no waiters */
178 	spin_lock_init(&bp->b_lock);
179 	XB_SET_OWNER(bp);
180 	bp->b_target = target;
181 	bp->b_flags = flags;
182 
183 	/*
184 	 * Set length and io_length to the same value initially.
185 	 * I/O routines should use io_length, which will be the same in
186 	 * most cases but may be reset (e.g. XFS recovery).
187 	 */
188 	error = xfs_buf_get_maps(bp, nmaps);
189 	if (error)  {
190 		kmem_zone_free(xfs_buf_zone, bp);
191 		return NULL;
192 	}
193 
194 	bp->b_bn = map[0].bm_bn;
195 	bp->b_length = 0;
196 	for (i = 0; i < nmaps; i++) {
197 		bp->b_maps[i].bm_bn = map[i].bm_bn;
198 		bp->b_maps[i].bm_len = map[i].bm_len;
199 		bp->b_length += map[i].bm_len;
200 	}
201 	bp->b_io_length = bp->b_length;
202 
203 	atomic_set(&bp->b_pin_count, 0);
204 	init_waitqueue_head(&bp->b_waiters);
205 
206 	XFS_STATS_INC(xb_create);
207 	trace_xfs_buf_init(bp, _RET_IP_);
208 
209 	return bp;
210 }
211 
212 /*
213  *	Allocate a page array capable of holding a specified number
214  *	of pages, and point the page buf at it.
215  */
216 STATIC int
217 _xfs_buf_get_pages(
218 	xfs_buf_t		*bp,
219 	int			page_count,
220 	xfs_buf_flags_t		flags)
221 {
222 	/* Make sure that we have a page list */
223 	if (bp->b_pages == NULL) {
224 		bp->b_page_count = page_count;
225 		if (page_count <= XB_PAGES) {
226 			bp->b_pages = bp->b_page_array;
227 		} else {
228 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
229 						 page_count, KM_NOFS);
230 			if (bp->b_pages == NULL)
231 				return -ENOMEM;
232 		}
233 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
234 	}
235 	return 0;
236 }
237 
238 /*
239  *	Frees b_pages if it was allocated.
240  */
241 STATIC void
242 _xfs_buf_free_pages(
243 	xfs_buf_t	*bp)
244 {
245 	if (bp->b_pages != bp->b_page_array) {
246 		kmem_free(bp->b_pages);
247 		bp->b_pages = NULL;
248 	}
249 }
250 
251 /*
252  *	Releases the specified buffer.
253  *
254  * 	The modification state of any associated pages is left unchanged.
255  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
256  * 	hashed and refcounted buffers
257  */
258 void
259 xfs_buf_free(
260 	xfs_buf_t		*bp)
261 {
262 	trace_xfs_buf_free(bp, _RET_IP_);
263 
264 	ASSERT(list_empty(&bp->b_lru));
265 
266 	if (bp->b_flags & _XBF_PAGES) {
267 		uint		i;
268 
269 		if (xfs_buf_is_vmapped(bp))
270 			vm_unmap_ram(bp->b_addr - bp->b_offset,
271 					bp->b_page_count);
272 
273 		for (i = 0; i < bp->b_page_count; i++) {
274 			struct page	*page = bp->b_pages[i];
275 
276 			__free_page(page);
277 		}
278 	} else if (bp->b_flags & _XBF_KMEM)
279 		kmem_free(bp->b_addr);
280 	_xfs_buf_free_pages(bp);
281 	xfs_buf_free_maps(bp);
282 	kmem_zone_free(xfs_buf_zone, bp);
283 }
284 
285 /*
286  * Allocates all the pages for buffer in question and builds it's page list.
287  */
288 STATIC int
289 xfs_buf_allocate_memory(
290 	xfs_buf_t		*bp,
291 	uint			flags)
292 {
293 	size_t			size;
294 	size_t			nbytes, offset;
295 	gfp_t			gfp_mask = xb_to_gfp(flags);
296 	unsigned short		page_count, i;
297 	xfs_off_t		start, end;
298 	int			error;
299 
300 	/*
301 	 * for buffers that are contained within a single page, just allocate
302 	 * the memory from the heap - there's no need for the complexity of
303 	 * page arrays to keep allocation down to order 0.
304 	 */
305 	size = BBTOB(bp->b_length);
306 	if (size < PAGE_SIZE) {
307 		bp->b_addr = kmem_alloc(size, KM_NOFS);
308 		if (!bp->b_addr) {
309 			/* low memory - use alloc_page loop instead */
310 			goto use_alloc_page;
311 		}
312 
313 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
314 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
315 			/* b_addr spans two pages - use alloc_page instead */
316 			kmem_free(bp->b_addr);
317 			bp->b_addr = NULL;
318 			goto use_alloc_page;
319 		}
320 		bp->b_offset = offset_in_page(bp->b_addr);
321 		bp->b_pages = bp->b_page_array;
322 		bp->b_pages[0] = virt_to_page(bp->b_addr);
323 		bp->b_page_count = 1;
324 		bp->b_flags |= _XBF_KMEM;
325 		return 0;
326 	}
327 
328 use_alloc_page:
329 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
330 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
331 								>> PAGE_SHIFT;
332 	page_count = end - start;
333 	error = _xfs_buf_get_pages(bp, page_count, flags);
334 	if (unlikely(error))
335 		return error;
336 
337 	offset = bp->b_offset;
338 	bp->b_flags |= _XBF_PAGES;
339 
340 	for (i = 0; i < bp->b_page_count; i++) {
341 		struct page	*page;
342 		uint		retries = 0;
343 retry:
344 		page = alloc_page(gfp_mask);
345 		if (unlikely(page == NULL)) {
346 			if (flags & XBF_READ_AHEAD) {
347 				bp->b_page_count = i;
348 				error = ENOMEM;
349 				goto out_free_pages;
350 			}
351 
352 			/*
353 			 * This could deadlock.
354 			 *
355 			 * But until all the XFS lowlevel code is revamped to
356 			 * handle buffer allocation failures we can't do much.
357 			 */
358 			if (!(++retries % 100))
359 				xfs_err(NULL,
360 		"possible memory allocation deadlock in %s (mode:0x%x)",
361 					__func__, gfp_mask);
362 
363 			XFS_STATS_INC(xb_page_retries);
364 			congestion_wait(BLK_RW_ASYNC, HZ/50);
365 			goto retry;
366 		}
367 
368 		XFS_STATS_INC(xb_page_found);
369 
370 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
371 		size -= nbytes;
372 		bp->b_pages[i] = page;
373 		offset = 0;
374 	}
375 	return 0;
376 
377 out_free_pages:
378 	for (i = 0; i < bp->b_page_count; i++)
379 		__free_page(bp->b_pages[i]);
380 	return error;
381 }
382 
383 /*
384  *	Map buffer into kernel address-space if necessary.
385  */
386 STATIC int
387 _xfs_buf_map_pages(
388 	xfs_buf_t		*bp,
389 	uint			flags)
390 {
391 	ASSERT(bp->b_flags & _XBF_PAGES);
392 	if (bp->b_page_count == 1) {
393 		/* A single page buffer is always mappable */
394 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
395 	} else if (flags & XBF_UNMAPPED) {
396 		bp->b_addr = NULL;
397 	} else {
398 		int retried = 0;
399 
400 		do {
401 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
402 						-1, PAGE_KERNEL);
403 			if (bp->b_addr)
404 				break;
405 			vm_unmap_aliases();
406 		} while (retried++ <= 1);
407 
408 		if (!bp->b_addr)
409 			return -ENOMEM;
410 		bp->b_addr += bp->b_offset;
411 	}
412 
413 	return 0;
414 }
415 
416 /*
417  *	Finding and Reading Buffers
418  */
419 
420 /*
421  *	Look up, and creates if absent, a lockable buffer for
422  *	a given range of an inode.  The buffer is returned
423  *	locked.	No I/O is implied by this call.
424  */
425 xfs_buf_t *
426 _xfs_buf_find(
427 	struct xfs_buftarg	*btp,
428 	struct xfs_buf_map	*map,
429 	int			nmaps,
430 	xfs_buf_flags_t		flags,
431 	xfs_buf_t		*new_bp)
432 {
433 	size_t			numbytes;
434 	struct xfs_perag	*pag;
435 	struct rb_node		**rbp;
436 	struct rb_node		*parent;
437 	xfs_buf_t		*bp;
438 	xfs_daddr_t		blkno = map[0].bm_bn;
439 	xfs_daddr_t		eofs;
440 	int			numblks = 0;
441 	int			i;
442 
443 	for (i = 0; i < nmaps; i++)
444 		numblks += map[i].bm_len;
445 	numbytes = BBTOB(numblks);
446 
447 	/* Check for IOs smaller than the sector size / not sector aligned */
448 	ASSERT(!(numbytes < (1 << btp->bt_sshift)));
449 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
450 
451 	/*
452 	 * Corrupted block numbers can get through to here, unfortunately, so we
453 	 * have to check that the buffer falls within the filesystem bounds.
454 	 */
455 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
456 	if (blkno >= eofs) {
457 		/*
458 		 * XXX (dgc): we should really be returning EFSCORRUPTED here,
459 		 * but none of the higher level infrastructure supports
460 		 * returning a specific error on buffer lookup failures.
461 		 */
462 		xfs_alert(btp->bt_mount,
463 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
464 			  __func__, blkno, eofs);
465 		WARN_ON(1);
466 		return NULL;
467 	}
468 
469 	/* get tree root */
470 	pag = xfs_perag_get(btp->bt_mount,
471 				xfs_daddr_to_agno(btp->bt_mount, blkno));
472 
473 	/* walk tree */
474 	spin_lock(&pag->pag_buf_lock);
475 	rbp = &pag->pag_buf_tree.rb_node;
476 	parent = NULL;
477 	bp = NULL;
478 	while (*rbp) {
479 		parent = *rbp;
480 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
481 
482 		if (blkno < bp->b_bn)
483 			rbp = &(*rbp)->rb_left;
484 		else if (blkno > bp->b_bn)
485 			rbp = &(*rbp)->rb_right;
486 		else {
487 			/*
488 			 * found a block number match. If the range doesn't
489 			 * match, the only way this is allowed is if the buffer
490 			 * in the cache is stale and the transaction that made
491 			 * it stale has not yet committed. i.e. we are
492 			 * reallocating a busy extent. Skip this buffer and
493 			 * continue searching to the right for an exact match.
494 			 */
495 			if (bp->b_length != numblks) {
496 				ASSERT(bp->b_flags & XBF_STALE);
497 				rbp = &(*rbp)->rb_right;
498 				continue;
499 			}
500 			atomic_inc(&bp->b_hold);
501 			goto found;
502 		}
503 	}
504 
505 	/* No match found */
506 	if (new_bp) {
507 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
508 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
509 		/* the buffer keeps the perag reference until it is freed */
510 		new_bp->b_pag = pag;
511 		spin_unlock(&pag->pag_buf_lock);
512 	} else {
513 		XFS_STATS_INC(xb_miss_locked);
514 		spin_unlock(&pag->pag_buf_lock);
515 		xfs_perag_put(pag);
516 	}
517 	return new_bp;
518 
519 found:
520 	spin_unlock(&pag->pag_buf_lock);
521 	xfs_perag_put(pag);
522 
523 	if (!xfs_buf_trylock(bp)) {
524 		if (flags & XBF_TRYLOCK) {
525 			xfs_buf_rele(bp);
526 			XFS_STATS_INC(xb_busy_locked);
527 			return NULL;
528 		}
529 		xfs_buf_lock(bp);
530 		XFS_STATS_INC(xb_get_locked_waited);
531 	}
532 
533 	/*
534 	 * if the buffer is stale, clear all the external state associated with
535 	 * it. We need to keep flags such as how we allocated the buffer memory
536 	 * intact here.
537 	 */
538 	if (bp->b_flags & XBF_STALE) {
539 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
540 		ASSERT(bp->b_iodone == NULL);
541 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
542 		bp->b_ops = NULL;
543 	}
544 
545 	trace_xfs_buf_find(bp, flags, _RET_IP_);
546 	XFS_STATS_INC(xb_get_locked);
547 	return bp;
548 }
549 
550 /*
551  * Assembles a buffer covering the specified range. The code is optimised for
552  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
553  * more hits than misses.
554  */
555 struct xfs_buf *
556 xfs_buf_get_map(
557 	struct xfs_buftarg	*target,
558 	struct xfs_buf_map	*map,
559 	int			nmaps,
560 	xfs_buf_flags_t		flags)
561 {
562 	struct xfs_buf		*bp;
563 	struct xfs_buf		*new_bp;
564 	int			error = 0;
565 
566 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
567 	if (likely(bp))
568 		goto found;
569 
570 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
571 	if (unlikely(!new_bp))
572 		return NULL;
573 
574 	error = xfs_buf_allocate_memory(new_bp, flags);
575 	if (error) {
576 		xfs_buf_free(new_bp);
577 		return NULL;
578 	}
579 
580 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
581 	if (!bp) {
582 		xfs_buf_free(new_bp);
583 		return NULL;
584 	}
585 
586 	if (bp != new_bp)
587 		xfs_buf_free(new_bp);
588 
589 found:
590 	if (!bp->b_addr) {
591 		error = _xfs_buf_map_pages(bp, flags);
592 		if (unlikely(error)) {
593 			xfs_warn(target->bt_mount,
594 				"%s: failed to map pagesn", __func__);
595 			xfs_buf_relse(bp);
596 			return NULL;
597 		}
598 	}
599 
600 	XFS_STATS_INC(xb_get);
601 	trace_xfs_buf_get(bp, flags, _RET_IP_);
602 	return bp;
603 }
604 
605 STATIC int
606 _xfs_buf_read(
607 	xfs_buf_t		*bp,
608 	xfs_buf_flags_t		flags)
609 {
610 	ASSERT(!(flags & XBF_WRITE));
611 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
612 
613 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
614 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
615 
616 	xfs_buf_iorequest(bp);
617 	if (flags & XBF_ASYNC)
618 		return 0;
619 	return xfs_buf_iowait(bp);
620 }
621 
622 xfs_buf_t *
623 xfs_buf_read_map(
624 	struct xfs_buftarg	*target,
625 	struct xfs_buf_map	*map,
626 	int			nmaps,
627 	xfs_buf_flags_t		flags,
628 	const struct xfs_buf_ops *ops)
629 {
630 	struct xfs_buf		*bp;
631 
632 	flags |= XBF_READ;
633 
634 	bp = xfs_buf_get_map(target, map, nmaps, flags);
635 	if (bp) {
636 		trace_xfs_buf_read(bp, flags, _RET_IP_);
637 
638 		if (!XFS_BUF_ISDONE(bp)) {
639 			XFS_STATS_INC(xb_get_read);
640 			bp->b_ops = ops;
641 			_xfs_buf_read(bp, flags);
642 		} else if (flags & XBF_ASYNC) {
643 			/*
644 			 * Read ahead call which is already satisfied,
645 			 * drop the buffer
646 			 */
647 			xfs_buf_relse(bp);
648 			return NULL;
649 		} else {
650 			/* We do not want read in the flags */
651 			bp->b_flags &= ~XBF_READ;
652 		}
653 	}
654 
655 	return bp;
656 }
657 
658 /*
659  *	If we are not low on memory then do the readahead in a deadlock
660  *	safe manner.
661  */
662 void
663 xfs_buf_readahead_map(
664 	struct xfs_buftarg	*target,
665 	struct xfs_buf_map	*map,
666 	int			nmaps,
667 	const struct xfs_buf_ops *ops)
668 {
669 	if (bdi_read_congested(target->bt_bdi))
670 		return;
671 
672 	xfs_buf_read_map(target, map, nmaps,
673 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
674 }
675 
676 /*
677  * Read an uncached buffer from disk. Allocates and returns a locked
678  * buffer containing the disk contents or nothing.
679  */
680 struct xfs_buf *
681 xfs_buf_read_uncached(
682 	struct xfs_buftarg	*target,
683 	xfs_daddr_t		daddr,
684 	size_t			numblks,
685 	int			flags,
686 	const struct xfs_buf_ops *ops)
687 {
688 	struct xfs_buf		*bp;
689 
690 	bp = xfs_buf_get_uncached(target, numblks, flags);
691 	if (!bp)
692 		return NULL;
693 
694 	/* set up the buffer for a read IO */
695 	ASSERT(bp->b_map_count == 1);
696 	bp->b_bn = daddr;
697 	bp->b_maps[0].bm_bn = daddr;
698 	bp->b_flags |= XBF_READ;
699 	bp->b_ops = ops;
700 
701 	xfsbdstrat(target->bt_mount, bp);
702 	xfs_buf_iowait(bp);
703 	return bp;
704 }
705 
706 /*
707  * Return a buffer allocated as an empty buffer and associated to external
708  * memory via xfs_buf_associate_memory() back to it's empty state.
709  */
710 void
711 xfs_buf_set_empty(
712 	struct xfs_buf		*bp,
713 	size_t			numblks)
714 {
715 	if (bp->b_pages)
716 		_xfs_buf_free_pages(bp);
717 
718 	bp->b_pages = NULL;
719 	bp->b_page_count = 0;
720 	bp->b_addr = NULL;
721 	bp->b_length = numblks;
722 	bp->b_io_length = numblks;
723 
724 	ASSERT(bp->b_map_count == 1);
725 	bp->b_bn = XFS_BUF_DADDR_NULL;
726 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
727 	bp->b_maps[0].bm_len = bp->b_length;
728 }
729 
730 static inline struct page *
731 mem_to_page(
732 	void			*addr)
733 {
734 	if ((!is_vmalloc_addr(addr))) {
735 		return virt_to_page(addr);
736 	} else {
737 		return vmalloc_to_page(addr);
738 	}
739 }
740 
741 int
742 xfs_buf_associate_memory(
743 	xfs_buf_t		*bp,
744 	void			*mem,
745 	size_t			len)
746 {
747 	int			rval;
748 	int			i = 0;
749 	unsigned long		pageaddr;
750 	unsigned long		offset;
751 	size_t			buflen;
752 	int			page_count;
753 
754 	pageaddr = (unsigned long)mem & PAGE_MASK;
755 	offset = (unsigned long)mem - pageaddr;
756 	buflen = PAGE_ALIGN(len + offset);
757 	page_count = buflen >> PAGE_SHIFT;
758 
759 	/* Free any previous set of page pointers */
760 	if (bp->b_pages)
761 		_xfs_buf_free_pages(bp);
762 
763 	bp->b_pages = NULL;
764 	bp->b_addr = mem;
765 
766 	rval = _xfs_buf_get_pages(bp, page_count, 0);
767 	if (rval)
768 		return rval;
769 
770 	bp->b_offset = offset;
771 
772 	for (i = 0; i < bp->b_page_count; i++) {
773 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
774 		pageaddr += PAGE_SIZE;
775 	}
776 
777 	bp->b_io_length = BTOBB(len);
778 	bp->b_length = BTOBB(buflen);
779 
780 	return 0;
781 }
782 
783 xfs_buf_t *
784 xfs_buf_get_uncached(
785 	struct xfs_buftarg	*target,
786 	size_t			numblks,
787 	int			flags)
788 {
789 	unsigned long		page_count;
790 	int			error, i;
791 	struct xfs_buf		*bp;
792 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
793 
794 	bp = _xfs_buf_alloc(target, &map, 1, 0);
795 	if (unlikely(bp == NULL))
796 		goto fail;
797 
798 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
799 	error = _xfs_buf_get_pages(bp, page_count, 0);
800 	if (error)
801 		goto fail_free_buf;
802 
803 	for (i = 0; i < page_count; i++) {
804 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
805 		if (!bp->b_pages[i])
806 			goto fail_free_mem;
807 	}
808 	bp->b_flags |= _XBF_PAGES;
809 
810 	error = _xfs_buf_map_pages(bp, 0);
811 	if (unlikely(error)) {
812 		xfs_warn(target->bt_mount,
813 			"%s: failed to map pages", __func__);
814 		goto fail_free_mem;
815 	}
816 
817 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
818 	return bp;
819 
820  fail_free_mem:
821 	while (--i >= 0)
822 		__free_page(bp->b_pages[i]);
823 	_xfs_buf_free_pages(bp);
824  fail_free_buf:
825 	xfs_buf_free_maps(bp);
826 	kmem_zone_free(xfs_buf_zone, bp);
827  fail:
828 	return NULL;
829 }
830 
831 /*
832  *	Increment reference count on buffer, to hold the buffer concurrently
833  *	with another thread which may release (free) the buffer asynchronously.
834  *	Must hold the buffer already to call this function.
835  */
836 void
837 xfs_buf_hold(
838 	xfs_buf_t		*bp)
839 {
840 	trace_xfs_buf_hold(bp, _RET_IP_);
841 	atomic_inc(&bp->b_hold);
842 }
843 
844 /*
845  *	Releases a hold on the specified buffer.  If the
846  *	the hold count is 1, calls xfs_buf_free.
847  */
848 void
849 xfs_buf_rele(
850 	xfs_buf_t		*bp)
851 {
852 	struct xfs_perag	*pag = bp->b_pag;
853 
854 	trace_xfs_buf_rele(bp, _RET_IP_);
855 
856 	if (!pag) {
857 		ASSERT(list_empty(&bp->b_lru));
858 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
859 		if (atomic_dec_and_test(&bp->b_hold))
860 			xfs_buf_free(bp);
861 		return;
862 	}
863 
864 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
865 
866 	ASSERT(atomic_read(&bp->b_hold) > 0);
867 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
868 		spin_lock(&bp->b_lock);
869 		if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
870 			/*
871 			 * If the buffer is added to the LRU take a new
872 			 * reference to the buffer for the LRU and clear the
873 			 * (now stale) dispose list state flag
874 			 */
875 			if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
876 				bp->b_state &= ~XFS_BSTATE_DISPOSE;
877 				atomic_inc(&bp->b_hold);
878 			}
879 			spin_unlock(&bp->b_lock);
880 			spin_unlock(&pag->pag_buf_lock);
881 		} else {
882 			/*
883 			 * most of the time buffers will already be removed from
884 			 * the LRU, so optimise that case by checking for the
885 			 * XFS_BSTATE_DISPOSE flag indicating the last list the
886 			 * buffer was on was the disposal list
887 			 */
888 			if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
889 				list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
890 			} else {
891 				ASSERT(list_empty(&bp->b_lru));
892 			}
893 			spin_unlock(&bp->b_lock);
894 
895 			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
896 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
897 			spin_unlock(&pag->pag_buf_lock);
898 			xfs_perag_put(pag);
899 			xfs_buf_free(bp);
900 		}
901 	}
902 }
903 
904 
905 /*
906  *	Lock a buffer object, if it is not already locked.
907  *
908  *	If we come across a stale, pinned, locked buffer, we know that we are
909  *	being asked to lock a buffer that has been reallocated. Because it is
910  *	pinned, we know that the log has not been pushed to disk and hence it
911  *	will still be locked.  Rather than continuing to have trylock attempts
912  *	fail until someone else pushes the log, push it ourselves before
913  *	returning.  This means that the xfsaild will not get stuck trying
914  *	to push on stale inode buffers.
915  */
916 int
917 xfs_buf_trylock(
918 	struct xfs_buf		*bp)
919 {
920 	int			locked;
921 
922 	locked = down_trylock(&bp->b_sema) == 0;
923 	if (locked)
924 		XB_SET_OWNER(bp);
925 
926 	trace_xfs_buf_trylock(bp, _RET_IP_);
927 	return locked;
928 }
929 
930 /*
931  *	Lock a buffer object.
932  *
933  *	If we come across a stale, pinned, locked buffer, we know that we
934  *	are being asked to lock a buffer that has been reallocated. Because
935  *	it is pinned, we know that the log has not been pushed to disk and
936  *	hence it will still be locked. Rather than sleeping until someone
937  *	else pushes the log, push it ourselves before trying to get the lock.
938  */
939 void
940 xfs_buf_lock(
941 	struct xfs_buf		*bp)
942 {
943 	trace_xfs_buf_lock(bp, _RET_IP_);
944 
945 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
946 		xfs_log_force(bp->b_target->bt_mount, 0);
947 	down(&bp->b_sema);
948 	XB_SET_OWNER(bp);
949 
950 	trace_xfs_buf_lock_done(bp, _RET_IP_);
951 }
952 
953 void
954 xfs_buf_unlock(
955 	struct xfs_buf		*bp)
956 {
957 	XB_CLEAR_OWNER(bp);
958 	up(&bp->b_sema);
959 
960 	trace_xfs_buf_unlock(bp, _RET_IP_);
961 }
962 
963 STATIC void
964 xfs_buf_wait_unpin(
965 	xfs_buf_t		*bp)
966 {
967 	DECLARE_WAITQUEUE	(wait, current);
968 
969 	if (atomic_read(&bp->b_pin_count) == 0)
970 		return;
971 
972 	add_wait_queue(&bp->b_waiters, &wait);
973 	for (;;) {
974 		set_current_state(TASK_UNINTERRUPTIBLE);
975 		if (atomic_read(&bp->b_pin_count) == 0)
976 			break;
977 		io_schedule();
978 	}
979 	remove_wait_queue(&bp->b_waiters, &wait);
980 	set_current_state(TASK_RUNNING);
981 }
982 
983 /*
984  *	Buffer Utility Routines
985  */
986 
987 STATIC void
988 xfs_buf_iodone_work(
989 	struct work_struct	*work)
990 {
991 	struct xfs_buf		*bp =
992 		container_of(work, xfs_buf_t, b_iodone_work);
993 	bool			read = !!(bp->b_flags & XBF_READ);
994 
995 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
996 
997 	/* only validate buffers that were read without errors */
998 	if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
999 		bp->b_ops->verify_read(bp);
1000 
1001 	if (bp->b_iodone)
1002 		(*(bp->b_iodone))(bp);
1003 	else if (bp->b_flags & XBF_ASYNC)
1004 		xfs_buf_relse(bp);
1005 	else {
1006 		ASSERT(read && bp->b_ops);
1007 		complete(&bp->b_iowait);
1008 	}
1009 }
1010 
1011 void
1012 xfs_buf_ioend(
1013 	struct xfs_buf	*bp,
1014 	int		schedule)
1015 {
1016 	bool		read = !!(bp->b_flags & XBF_READ);
1017 
1018 	trace_xfs_buf_iodone(bp, _RET_IP_);
1019 
1020 	if (bp->b_error == 0)
1021 		bp->b_flags |= XBF_DONE;
1022 
1023 	if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1024 		if (schedule) {
1025 			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1026 			queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1027 		} else {
1028 			xfs_buf_iodone_work(&bp->b_iodone_work);
1029 		}
1030 	} else {
1031 		bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1032 		complete(&bp->b_iowait);
1033 	}
1034 }
1035 
1036 void
1037 xfs_buf_ioerror(
1038 	xfs_buf_t		*bp,
1039 	int			error)
1040 {
1041 	ASSERT(error >= 0 && error <= 0xffff);
1042 	bp->b_error = (unsigned short)error;
1043 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1044 }
1045 
1046 void
1047 xfs_buf_ioerror_alert(
1048 	struct xfs_buf		*bp,
1049 	const char		*func)
1050 {
1051 	xfs_alert(bp->b_target->bt_mount,
1052 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1053 		(__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1054 }
1055 
1056 /*
1057  * Called when we want to stop a buffer from getting written or read.
1058  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1059  * so that the proper iodone callbacks get called.
1060  */
1061 STATIC int
1062 xfs_bioerror(
1063 	xfs_buf_t *bp)
1064 {
1065 #ifdef XFSERRORDEBUG
1066 	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1067 #endif
1068 
1069 	/*
1070 	 * No need to wait until the buffer is unpinned, we aren't flushing it.
1071 	 */
1072 	xfs_buf_ioerror(bp, EIO);
1073 
1074 	/*
1075 	 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1076 	 */
1077 	XFS_BUF_UNREAD(bp);
1078 	XFS_BUF_UNDONE(bp);
1079 	xfs_buf_stale(bp);
1080 
1081 	xfs_buf_ioend(bp, 0);
1082 
1083 	return EIO;
1084 }
1085 
1086 /*
1087  * Same as xfs_bioerror, except that we are releasing the buffer
1088  * here ourselves, and avoiding the xfs_buf_ioend call.
1089  * This is meant for userdata errors; metadata bufs come with
1090  * iodone functions attached, so that we can track down errors.
1091  */
1092 STATIC int
1093 xfs_bioerror_relse(
1094 	struct xfs_buf	*bp)
1095 {
1096 	int64_t		fl = bp->b_flags;
1097 	/*
1098 	 * No need to wait until the buffer is unpinned.
1099 	 * We aren't flushing it.
1100 	 *
1101 	 * chunkhold expects B_DONE to be set, whether
1102 	 * we actually finish the I/O or not. We don't want to
1103 	 * change that interface.
1104 	 */
1105 	XFS_BUF_UNREAD(bp);
1106 	XFS_BUF_DONE(bp);
1107 	xfs_buf_stale(bp);
1108 	bp->b_iodone = NULL;
1109 	if (!(fl & XBF_ASYNC)) {
1110 		/*
1111 		 * Mark b_error and B_ERROR _both_.
1112 		 * Lot's of chunkcache code assumes that.
1113 		 * There's no reason to mark error for
1114 		 * ASYNC buffers.
1115 		 */
1116 		xfs_buf_ioerror(bp, EIO);
1117 		complete(&bp->b_iowait);
1118 	} else {
1119 		xfs_buf_relse(bp);
1120 	}
1121 
1122 	return EIO;
1123 }
1124 
1125 STATIC int
1126 xfs_bdstrat_cb(
1127 	struct xfs_buf	*bp)
1128 {
1129 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1130 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1131 		/*
1132 		 * Metadata write that didn't get logged but
1133 		 * written delayed anyway. These aren't associated
1134 		 * with a transaction, and can be ignored.
1135 		 */
1136 		if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1137 			return xfs_bioerror_relse(bp);
1138 		else
1139 			return xfs_bioerror(bp);
1140 	}
1141 
1142 	xfs_buf_iorequest(bp);
1143 	return 0;
1144 }
1145 
1146 int
1147 xfs_bwrite(
1148 	struct xfs_buf		*bp)
1149 {
1150 	int			error;
1151 
1152 	ASSERT(xfs_buf_islocked(bp));
1153 
1154 	bp->b_flags |= XBF_WRITE;
1155 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1156 
1157 	xfs_bdstrat_cb(bp);
1158 
1159 	error = xfs_buf_iowait(bp);
1160 	if (error) {
1161 		xfs_force_shutdown(bp->b_target->bt_mount,
1162 				   SHUTDOWN_META_IO_ERROR);
1163 	}
1164 	return error;
1165 }
1166 
1167 /*
1168  * Wrapper around bdstrat so that we can stop data from going to disk in case
1169  * we are shutting down the filesystem.  Typically user data goes thru this
1170  * path; one of the exceptions is the superblock.
1171  */
1172 void
1173 xfsbdstrat(
1174 	struct xfs_mount	*mp,
1175 	struct xfs_buf		*bp)
1176 {
1177 	if (XFS_FORCED_SHUTDOWN(mp)) {
1178 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1179 		xfs_bioerror_relse(bp);
1180 		return;
1181 	}
1182 
1183 	xfs_buf_iorequest(bp);
1184 }
1185 
1186 STATIC void
1187 _xfs_buf_ioend(
1188 	xfs_buf_t		*bp,
1189 	int			schedule)
1190 {
1191 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1192 		xfs_buf_ioend(bp, schedule);
1193 }
1194 
1195 STATIC void
1196 xfs_buf_bio_end_io(
1197 	struct bio		*bio,
1198 	int			error)
1199 {
1200 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1201 
1202 	/*
1203 	 * don't overwrite existing errors - otherwise we can lose errors on
1204 	 * buffers that require multiple bios to complete.
1205 	 */
1206 	if (!bp->b_error)
1207 		xfs_buf_ioerror(bp, -error);
1208 
1209 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1210 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1211 
1212 	_xfs_buf_ioend(bp, 1);
1213 	bio_put(bio);
1214 }
1215 
1216 static void
1217 xfs_buf_ioapply_map(
1218 	struct xfs_buf	*bp,
1219 	int		map,
1220 	int		*buf_offset,
1221 	int		*count,
1222 	int		rw)
1223 {
1224 	int		page_index;
1225 	int		total_nr_pages = bp->b_page_count;
1226 	int		nr_pages;
1227 	struct bio	*bio;
1228 	sector_t	sector =  bp->b_maps[map].bm_bn;
1229 	int		size;
1230 	int		offset;
1231 
1232 	total_nr_pages = bp->b_page_count;
1233 
1234 	/* skip the pages in the buffer before the start offset */
1235 	page_index = 0;
1236 	offset = *buf_offset;
1237 	while (offset >= PAGE_SIZE) {
1238 		page_index++;
1239 		offset -= PAGE_SIZE;
1240 	}
1241 
1242 	/*
1243 	 * Limit the IO size to the length of the current vector, and update the
1244 	 * remaining IO count for the next time around.
1245 	 */
1246 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1247 	*count -= size;
1248 	*buf_offset += size;
1249 
1250 next_chunk:
1251 	atomic_inc(&bp->b_io_remaining);
1252 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1253 	if (nr_pages > total_nr_pages)
1254 		nr_pages = total_nr_pages;
1255 
1256 	bio = bio_alloc(GFP_NOIO, nr_pages);
1257 	bio->bi_bdev = bp->b_target->bt_bdev;
1258 	bio->bi_sector = sector;
1259 	bio->bi_end_io = xfs_buf_bio_end_io;
1260 	bio->bi_private = bp;
1261 
1262 
1263 	for (; size && nr_pages; nr_pages--, page_index++) {
1264 		int	rbytes, nbytes = PAGE_SIZE - offset;
1265 
1266 		if (nbytes > size)
1267 			nbytes = size;
1268 
1269 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1270 				      offset);
1271 		if (rbytes < nbytes)
1272 			break;
1273 
1274 		offset = 0;
1275 		sector += BTOBB(nbytes);
1276 		size -= nbytes;
1277 		total_nr_pages--;
1278 	}
1279 
1280 	if (likely(bio->bi_size)) {
1281 		if (xfs_buf_is_vmapped(bp)) {
1282 			flush_kernel_vmap_range(bp->b_addr,
1283 						xfs_buf_vmap_len(bp));
1284 		}
1285 		submit_bio(rw, bio);
1286 		if (size)
1287 			goto next_chunk;
1288 	} else {
1289 		/*
1290 		 * This is guaranteed not to be the last io reference count
1291 		 * because the caller (xfs_buf_iorequest) holds a count itself.
1292 		 */
1293 		atomic_dec(&bp->b_io_remaining);
1294 		xfs_buf_ioerror(bp, EIO);
1295 		bio_put(bio);
1296 	}
1297 
1298 }
1299 
1300 STATIC void
1301 _xfs_buf_ioapply(
1302 	struct xfs_buf	*bp)
1303 {
1304 	struct blk_plug	plug;
1305 	int		rw;
1306 	int		offset;
1307 	int		size;
1308 	int		i;
1309 
1310 	/*
1311 	 * Make sure we capture only current IO errors rather than stale errors
1312 	 * left over from previous use of the buffer (e.g. failed readahead).
1313 	 */
1314 	bp->b_error = 0;
1315 
1316 	if (bp->b_flags & XBF_WRITE) {
1317 		if (bp->b_flags & XBF_SYNCIO)
1318 			rw = WRITE_SYNC;
1319 		else
1320 			rw = WRITE;
1321 		if (bp->b_flags & XBF_FUA)
1322 			rw |= REQ_FUA;
1323 		if (bp->b_flags & XBF_FLUSH)
1324 			rw |= REQ_FLUSH;
1325 
1326 		/*
1327 		 * Run the write verifier callback function if it exists. If
1328 		 * this function fails it will mark the buffer with an error and
1329 		 * the IO should not be dispatched.
1330 		 */
1331 		if (bp->b_ops) {
1332 			bp->b_ops->verify_write(bp);
1333 			if (bp->b_error) {
1334 				xfs_force_shutdown(bp->b_target->bt_mount,
1335 						   SHUTDOWN_CORRUPT_INCORE);
1336 				return;
1337 			}
1338 		}
1339 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1340 		rw = READA;
1341 	} else {
1342 		rw = READ;
1343 	}
1344 
1345 	/* we only use the buffer cache for meta-data */
1346 	rw |= REQ_META;
1347 
1348 	/*
1349 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1350 	 * into the buffer and the desired IO size before we start -
1351 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1352 	 * subsequent call.
1353 	 */
1354 	offset = bp->b_offset;
1355 	size = BBTOB(bp->b_io_length);
1356 	blk_start_plug(&plug);
1357 	for (i = 0; i < bp->b_map_count; i++) {
1358 		xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1359 		if (bp->b_error)
1360 			break;
1361 		if (size <= 0)
1362 			break;	/* all done */
1363 	}
1364 	blk_finish_plug(&plug);
1365 }
1366 
1367 void
1368 xfs_buf_iorequest(
1369 	xfs_buf_t		*bp)
1370 {
1371 	trace_xfs_buf_iorequest(bp, _RET_IP_);
1372 
1373 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1374 
1375 	if (bp->b_flags & XBF_WRITE)
1376 		xfs_buf_wait_unpin(bp);
1377 	xfs_buf_hold(bp);
1378 
1379 	/* Set the count to 1 initially, this will stop an I/O
1380 	 * completion callout which happens before we have started
1381 	 * all the I/O from calling xfs_buf_ioend too early.
1382 	 */
1383 	atomic_set(&bp->b_io_remaining, 1);
1384 	_xfs_buf_ioapply(bp);
1385 	_xfs_buf_ioend(bp, 1);
1386 
1387 	xfs_buf_rele(bp);
1388 }
1389 
1390 /*
1391  * Waits for I/O to complete on the buffer supplied.  It returns immediately if
1392  * no I/O is pending or there is already a pending error on the buffer.  It
1393  * returns the I/O error code, if any, or 0 if there was no error.
1394  */
1395 int
1396 xfs_buf_iowait(
1397 	xfs_buf_t		*bp)
1398 {
1399 	trace_xfs_buf_iowait(bp, _RET_IP_);
1400 
1401 	if (!bp->b_error)
1402 		wait_for_completion(&bp->b_iowait);
1403 
1404 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1405 	return bp->b_error;
1406 }
1407 
1408 xfs_caddr_t
1409 xfs_buf_offset(
1410 	xfs_buf_t		*bp,
1411 	size_t			offset)
1412 {
1413 	struct page		*page;
1414 
1415 	if (bp->b_addr)
1416 		return bp->b_addr + offset;
1417 
1418 	offset += bp->b_offset;
1419 	page = bp->b_pages[offset >> PAGE_SHIFT];
1420 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1421 }
1422 
1423 /*
1424  *	Move data into or out of a buffer.
1425  */
1426 void
1427 xfs_buf_iomove(
1428 	xfs_buf_t		*bp,	/* buffer to process		*/
1429 	size_t			boff,	/* starting buffer offset	*/
1430 	size_t			bsize,	/* length to copy		*/
1431 	void			*data,	/* data address			*/
1432 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1433 {
1434 	size_t			bend;
1435 
1436 	bend = boff + bsize;
1437 	while (boff < bend) {
1438 		struct page	*page;
1439 		int		page_index, page_offset, csize;
1440 
1441 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1442 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1443 		page = bp->b_pages[page_index];
1444 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1445 				      BBTOB(bp->b_io_length) - boff);
1446 
1447 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1448 
1449 		switch (mode) {
1450 		case XBRW_ZERO:
1451 			memset(page_address(page) + page_offset, 0, csize);
1452 			break;
1453 		case XBRW_READ:
1454 			memcpy(data, page_address(page) + page_offset, csize);
1455 			break;
1456 		case XBRW_WRITE:
1457 			memcpy(page_address(page) + page_offset, data, csize);
1458 		}
1459 
1460 		boff += csize;
1461 		data += csize;
1462 	}
1463 }
1464 
1465 /*
1466  *	Handling of buffer targets (buftargs).
1467  */
1468 
1469 /*
1470  * Wait for any bufs with callbacks that have been submitted but have not yet
1471  * returned. These buffers will have an elevated hold count, so wait on those
1472  * while freeing all the buffers only held by the LRU.
1473  */
1474 static enum lru_status
1475 xfs_buftarg_wait_rele(
1476 	struct list_head	*item,
1477 	spinlock_t		*lru_lock,
1478 	void			*arg)
1479 
1480 {
1481 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1482 	struct list_head	*dispose = arg;
1483 
1484 	if (atomic_read(&bp->b_hold) > 1) {
1485 		/* need to wait, so skip it this pass */
1486 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1487 		return LRU_SKIP;
1488 	}
1489 	if (!spin_trylock(&bp->b_lock))
1490 		return LRU_SKIP;
1491 
1492 	/*
1493 	 * clear the LRU reference count so the buffer doesn't get
1494 	 * ignored in xfs_buf_rele().
1495 	 */
1496 	atomic_set(&bp->b_lru_ref, 0);
1497 	bp->b_state |= XFS_BSTATE_DISPOSE;
1498 	list_move(item, dispose);
1499 	spin_unlock(&bp->b_lock);
1500 	return LRU_REMOVED;
1501 }
1502 
1503 void
1504 xfs_wait_buftarg(
1505 	struct xfs_buftarg	*btp)
1506 {
1507 	LIST_HEAD(dispose);
1508 	int loop = 0;
1509 
1510 	/* loop until there is nothing left on the lru list. */
1511 	while (list_lru_count(&btp->bt_lru)) {
1512 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1513 			      &dispose, LONG_MAX);
1514 
1515 		while (!list_empty(&dispose)) {
1516 			struct xfs_buf *bp;
1517 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1518 			list_del_init(&bp->b_lru);
1519 			xfs_buf_rele(bp);
1520 		}
1521 		if (loop++ != 0)
1522 			delay(100);
1523 	}
1524 }
1525 
1526 static enum lru_status
1527 xfs_buftarg_isolate(
1528 	struct list_head	*item,
1529 	spinlock_t		*lru_lock,
1530 	void			*arg)
1531 {
1532 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1533 	struct list_head	*dispose = arg;
1534 
1535 	/*
1536 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1537 	 * If we fail to get the lock, just skip it.
1538 	 */
1539 	if (!spin_trylock(&bp->b_lock))
1540 		return LRU_SKIP;
1541 	/*
1542 	 * Decrement the b_lru_ref count unless the value is already
1543 	 * zero. If the value is already zero, we need to reclaim the
1544 	 * buffer, otherwise it gets another trip through the LRU.
1545 	 */
1546 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1547 		spin_unlock(&bp->b_lock);
1548 		return LRU_ROTATE;
1549 	}
1550 
1551 	bp->b_state |= XFS_BSTATE_DISPOSE;
1552 	list_move(item, dispose);
1553 	spin_unlock(&bp->b_lock);
1554 	return LRU_REMOVED;
1555 }
1556 
1557 static unsigned long
1558 xfs_buftarg_shrink_scan(
1559 	struct shrinker		*shrink,
1560 	struct shrink_control	*sc)
1561 {
1562 	struct xfs_buftarg	*btp = container_of(shrink,
1563 					struct xfs_buftarg, bt_shrinker);
1564 	LIST_HEAD(dispose);
1565 	unsigned long		freed;
1566 	unsigned long		nr_to_scan = sc->nr_to_scan;
1567 
1568 	freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1569 				       &dispose, &nr_to_scan);
1570 
1571 	while (!list_empty(&dispose)) {
1572 		struct xfs_buf *bp;
1573 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1574 		list_del_init(&bp->b_lru);
1575 		xfs_buf_rele(bp);
1576 	}
1577 
1578 	return freed;
1579 }
1580 
1581 static unsigned long
1582 xfs_buftarg_shrink_count(
1583 	struct shrinker		*shrink,
1584 	struct shrink_control	*sc)
1585 {
1586 	struct xfs_buftarg	*btp = container_of(shrink,
1587 					struct xfs_buftarg, bt_shrinker);
1588 	return list_lru_count_node(&btp->bt_lru, sc->nid);
1589 }
1590 
1591 void
1592 xfs_free_buftarg(
1593 	struct xfs_mount	*mp,
1594 	struct xfs_buftarg	*btp)
1595 {
1596 	unregister_shrinker(&btp->bt_shrinker);
1597 	list_lru_destroy(&btp->bt_lru);
1598 
1599 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1600 		xfs_blkdev_issue_flush(btp);
1601 
1602 	kmem_free(btp);
1603 }
1604 
1605 STATIC int
1606 xfs_setsize_buftarg_flags(
1607 	xfs_buftarg_t		*btp,
1608 	unsigned int		blocksize,
1609 	unsigned int		sectorsize,
1610 	int			verbose)
1611 {
1612 	btp->bt_bsize = blocksize;
1613 	btp->bt_sshift = ffs(sectorsize) - 1;
1614 	btp->bt_smask = sectorsize - 1;
1615 
1616 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1617 		char name[BDEVNAME_SIZE];
1618 
1619 		bdevname(btp->bt_bdev, name);
1620 
1621 		xfs_warn(btp->bt_mount,
1622 			"Cannot set_blocksize to %u on device %s",
1623 			sectorsize, name);
1624 		return EINVAL;
1625 	}
1626 
1627 	return 0;
1628 }
1629 
1630 /*
1631  *	When allocating the initial buffer target we have not yet
1632  *	read in the superblock, so don't know what sized sectors
1633  *	are being used at this early stage.  Play safe.
1634  */
1635 STATIC int
1636 xfs_setsize_buftarg_early(
1637 	xfs_buftarg_t		*btp,
1638 	struct block_device	*bdev)
1639 {
1640 	return xfs_setsize_buftarg_flags(btp,
1641 			PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1642 }
1643 
1644 int
1645 xfs_setsize_buftarg(
1646 	xfs_buftarg_t		*btp,
1647 	unsigned int		blocksize,
1648 	unsigned int		sectorsize)
1649 {
1650 	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1651 }
1652 
1653 xfs_buftarg_t *
1654 xfs_alloc_buftarg(
1655 	struct xfs_mount	*mp,
1656 	struct block_device	*bdev,
1657 	int			external,
1658 	const char		*fsname)
1659 {
1660 	xfs_buftarg_t		*btp;
1661 
1662 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1663 
1664 	btp->bt_mount = mp;
1665 	btp->bt_dev =  bdev->bd_dev;
1666 	btp->bt_bdev = bdev;
1667 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1668 	if (!btp->bt_bdi)
1669 		goto error;
1670 
1671 	if (xfs_setsize_buftarg_early(btp, bdev))
1672 		goto error;
1673 
1674 	if (list_lru_init(&btp->bt_lru))
1675 		goto error;
1676 
1677 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1678 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1679 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1680 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1681 	register_shrinker(&btp->bt_shrinker);
1682 	return btp;
1683 
1684 error:
1685 	kmem_free(btp);
1686 	return NULL;
1687 }
1688 
1689 /*
1690  * Add a buffer to the delayed write list.
1691  *
1692  * This queues a buffer for writeout if it hasn't already been.  Note that
1693  * neither this routine nor the buffer list submission functions perform
1694  * any internal synchronization.  It is expected that the lists are thread-local
1695  * to the callers.
1696  *
1697  * Returns true if we queued up the buffer, or false if it already had
1698  * been on the buffer list.
1699  */
1700 bool
1701 xfs_buf_delwri_queue(
1702 	struct xfs_buf		*bp,
1703 	struct list_head	*list)
1704 {
1705 	ASSERT(xfs_buf_islocked(bp));
1706 	ASSERT(!(bp->b_flags & XBF_READ));
1707 
1708 	/*
1709 	 * If the buffer is already marked delwri it already is queued up
1710 	 * by someone else for imediate writeout.  Just ignore it in that
1711 	 * case.
1712 	 */
1713 	if (bp->b_flags & _XBF_DELWRI_Q) {
1714 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1715 		return false;
1716 	}
1717 
1718 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1719 
1720 	/*
1721 	 * If a buffer gets written out synchronously or marked stale while it
1722 	 * is on a delwri list we lazily remove it. To do this, the other party
1723 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1724 	 * It remains referenced and on the list.  In a rare corner case it
1725 	 * might get readded to a delwri list after the synchronous writeout, in
1726 	 * which case we need just need to re-add the flag here.
1727 	 */
1728 	bp->b_flags |= _XBF_DELWRI_Q;
1729 	if (list_empty(&bp->b_list)) {
1730 		atomic_inc(&bp->b_hold);
1731 		list_add_tail(&bp->b_list, list);
1732 	}
1733 
1734 	return true;
1735 }
1736 
1737 /*
1738  * Compare function is more complex than it needs to be because
1739  * the return value is only 32 bits and we are doing comparisons
1740  * on 64 bit values
1741  */
1742 static int
1743 xfs_buf_cmp(
1744 	void		*priv,
1745 	struct list_head *a,
1746 	struct list_head *b)
1747 {
1748 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1749 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1750 	xfs_daddr_t		diff;
1751 
1752 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1753 	if (diff < 0)
1754 		return -1;
1755 	if (diff > 0)
1756 		return 1;
1757 	return 0;
1758 }
1759 
1760 static int
1761 __xfs_buf_delwri_submit(
1762 	struct list_head	*buffer_list,
1763 	struct list_head	*io_list,
1764 	bool			wait)
1765 {
1766 	struct blk_plug		plug;
1767 	struct xfs_buf		*bp, *n;
1768 	int			pinned = 0;
1769 
1770 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1771 		if (!wait) {
1772 			if (xfs_buf_ispinned(bp)) {
1773 				pinned++;
1774 				continue;
1775 			}
1776 			if (!xfs_buf_trylock(bp))
1777 				continue;
1778 		} else {
1779 			xfs_buf_lock(bp);
1780 		}
1781 
1782 		/*
1783 		 * Someone else might have written the buffer synchronously or
1784 		 * marked it stale in the meantime.  In that case only the
1785 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1786 		 * reference and remove it from the list here.
1787 		 */
1788 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1789 			list_del_init(&bp->b_list);
1790 			xfs_buf_relse(bp);
1791 			continue;
1792 		}
1793 
1794 		list_move_tail(&bp->b_list, io_list);
1795 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1796 	}
1797 
1798 	list_sort(NULL, io_list, xfs_buf_cmp);
1799 
1800 	blk_start_plug(&plug);
1801 	list_for_each_entry_safe(bp, n, io_list, b_list) {
1802 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1803 		bp->b_flags |= XBF_WRITE;
1804 
1805 		if (!wait) {
1806 			bp->b_flags |= XBF_ASYNC;
1807 			list_del_init(&bp->b_list);
1808 		}
1809 		xfs_bdstrat_cb(bp);
1810 	}
1811 	blk_finish_plug(&plug);
1812 
1813 	return pinned;
1814 }
1815 
1816 /*
1817  * Write out a buffer list asynchronously.
1818  *
1819  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1820  * out and not wait for I/O completion on any of the buffers.  This interface
1821  * is only safely useable for callers that can track I/O completion by higher
1822  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1823  * function.
1824  */
1825 int
1826 xfs_buf_delwri_submit_nowait(
1827 	struct list_head	*buffer_list)
1828 {
1829 	LIST_HEAD		(io_list);
1830 	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1831 }
1832 
1833 /*
1834  * Write out a buffer list synchronously.
1835  *
1836  * This will take the @buffer_list, write all buffers out and wait for I/O
1837  * completion on all of the buffers. @buffer_list is consumed by the function,
1838  * so callers must have some other way of tracking buffers if they require such
1839  * functionality.
1840  */
1841 int
1842 xfs_buf_delwri_submit(
1843 	struct list_head	*buffer_list)
1844 {
1845 	LIST_HEAD		(io_list);
1846 	int			error = 0, error2;
1847 	struct xfs_buf		*bp;
1848 
1849 	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
1850 
1851 	/* Wait for IO to complete. */
1852 	while (!list_empty(&io_list)) {
1853 		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1854 
1855 		list_del_init(&bp->b_list);
1856 		error2 = xfs_buf_iowait(bp);
1857 		xfs_buf_relse(bp);
1858 		if (!error)
1859 			error = error2;
1860 	}
1861 
1862 	return error;
1863 }
1864 
1865 int __init
1866 xfs_buf_init(void)
1867 {
1868 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1869 						KM_ZONE_HWALIGN, NULL);
1870 	if (!xfs_buf_zone)
1871 		goto out;
1872 
1873 	xfslogd_workqueue = alloc_workqueue("xfslogd",
1874 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1875 	if (!xfslogd_workqueue)
1876 		goto out_free_buf_zone;
1877 
1878 	return 0;
1879 
1880  out_free_buf_zone:
1881 	kmem_zone_destroy(xfs_buf_zone);
1882  out:
1883 	return -ENOMEM;
1884 }
1885 
1886 void
1887 xfs_buf_terminate(void)
1888 {
1889 	destroy_workqueue(xfslogd_workqueue);
1890 	kmem_zone_destroy(xfs_buf_zone);
1891 }
1892