1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 37 #include "xfs_sb.h" 38 #include "xfs_inum.h" 39 #include "xfs_log.h" 40 #include "xfs_ag.h" 41 #include "xfs_mount.h" 42 #include "xfs_trace.h" 43 44 static kmem_zone_t *xfs_buf_zone; 45 STATIC int xfsbufd(void *); 46 47 static struct workqueue_struct *xfslogd_workqueue; 48 49 #ifdef XFS_BUF_LOCK_TRACKING 50 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 51 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 52 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 53 #else 54 # define XB_SET_OWNER(bp) do { } while (0) 55 # define XB_CLEAR_OWNER(bp) do { } while (0) 56 # define XB_GET_OWNER(bp) do { } while (0) 57 #endif 58 59 #define xb_to_gfp(flags) \ 60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \ 61 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN) 62 63 #define xb_to_km(flags) \ 64 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP) 65 66 67 static inline int 68 xfs_buf_is_vmapped( 69 struct xfs_buf *bp) 70 { 71 /* 72 * Return true if the buffer is vmapped. 73 * 74 * The XBF_MAPPED flag is set if the buffer should be mapped, but the 75 * code is clever enough to know it doesn't have to map a single page, 76 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1. 77 */ 78 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1; 79 } 80 81 static inline int 82 xfs_buf_vmap_len( 83 struct xfs_buf *bp) 84 { 85 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 86 } 87 88 /* 89 * xfs_buf_lru_add - add a buffer to the LRU. 90 * 91 * The LRU takes a new reference to the buffer so that it will only be freed 92 * once the shrinker takes the buffer off the LRU. 93 */ 94 STATIC void 95 xfs_buf_lru_add( 96 struct xfs_buf *bp) 97 { 98 struct xfs_buftarg *btp = bp->b_target; 99 100 spin_lock(&btp->bt_lru_lock); 101 if (list_empty(&bp->b_lru)) { 102 atomic_inc(&bp->b_hold); 103 list_add_tail(&bp->b_lru, &btp->bt_lru); 104 btp->bt_lru_nr++; 105 } 106 spin_unlock(&btp->bt_lru_lock); 107 } 108 109 /* 110 * xfs_buf_lru_del - remove a buffer from the LRU 111 * 112 * The unlocked check is safe here because it only occurs when there are not 113 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there 114 * to optimise the shrinker removing the buffer from the LRU and calling 115 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the 116 * bt_lru_lock. 117 */ 118 STATIC void 119 xfs_buf_lru_del( 120 struct xfs_buf *bp) 121 { 122 struct xfs_buftarg *btp = bp->b_target; 123 124 if (list_empty(&bp->b_lru)) 125 return; 126 127 spin_lock(&btp->bt_lru_lock); 128 if (!list_empty(&bp->b_lru)) { 129 list_del_init(&bp->b_lru); 130 btp->bt_lru_nr--; 131 } 132 spin_unlock(&btp->bt_lru_lock); 133 } 134 135 /* 136 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 137 * b_lru_ref count so that the buffer is freed immediately when the buffer 138 * reference count falls to zero. If the buffer is already on the LRU, we need 139 * to remove the reference that LRU holds on the buffer. 140 * 141 * This prevents build-up of stale buffers on the LRU. 142 */ 143 void 144 xfs_buf_stale( 145 struct xfs_buf *bp) 146 { 147 bp->b_flags |= XBF_STALE; 148 xfs_buf_delwri_dequeue(bp); 149 atomic_set(&(bp)->b_lru_ref, 0); 150 if (!list_empty(&bp->b_lru)) { 151 struct xfs_buftarg *btp = bp->b_target; 152 153 spin_lock(&btp->bt_lru_lock); 154 if (!list_empty(&bp->b_lru)) { 155 list_del_init(&bp->b_lru); 156 btp->bt_lru_nr--; 157 atomic_dec(&bp->b_hold); 158 } 159 spin_unlock(&btp->bt_lru_lock); 160 } 161 ASSERT(atomic_read(&bp->b_hold) >= 1); 162 } 163 164 struct xfs_buf * 165 xfs_buf_alloc( 166 struct xfs_buftarg *target, 167 xfs_off_t range_base, 168 size_t range_length, 169 xfs_buf_flags_t flags) 170 { 171 struct xfs_buf *bp; 172 173 bp = kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags)); 174 if (unlikely(!bp)) 175 return NULL; 176 177 /* 178 * We don't want certain flags to appear in b_flags. 179 */ 180 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD); 181 182 memset(bp, 0, sizeof(xfs_buf_t)); 183 atomic_set(&bp->b_hold, 1); 184 atomic_set(&bp->b_lru_ref, 1); 185 init_completion(&bp->b_iowait); 186 INIT_LIST_HEAD(&bp->b_lru); 187 INIT_LIST_HEAD(&bp->b_list); 188 RB_CLEAR_NODE(&bp->b_rbnode); 189 sema_init(&bp->b_sema, 0); /* held, no waiters */ 190 XB_SET_OWNER(bp); 191 bp->b_target = target; 192 bp->b_file_offset = range_base; 193 /* 194 * Set buffer_length and count_desired to the same value initially. 195 * I/O routines should use count_desired, which will be the same in 196 * most cases but may be reset (e.g. XFS recovery). 197 */ 198 bp->b_buffer_length = bp->b_count_desired = range_length; 199 bp->b_flags = flags; 200 bp->b_bn = XFS_BUF_DADDR_NULL; 201 atomic_set(&bp->b_pin_count, 0); 202 init_waitqueue_head(&bp->b_waiters); 203 204 XFS_STATS_INC(xb_create); 205 trace_xfs_buf_init(bp, _RET_IP_); 206 207 return bp; 208 } 209 210 /* 211 * Allocate a page array capable of holding a specified number 212 * of pages, and point the page buf at it. 213 */ 214 STATIC int 215 _xfs_buf_get_pages( 216 xfs_buf_t *bp, 217 int page_count, 218 xfs_buf_flags_t flags) 219 { 220 /* Make sure that we have a page list */ 221 if (bp->b_pages == NULL) { 222 bp->b_offset = xfs_buf_poff(bp->b_file_offset); 223 bp->b_page_count = page_count; 224 if (page_count <= XB_PAGES) { 225 bp->b_pages = bp->b_page_array; 226 } else { 227 bp->b_pages = kmem_alloc(sizeof(struct page *) * 228 page_count, xb_to_km(flags)); 229 if (bp->b_pages == NULL) 230 return -ENOMEM; 231 } 232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 233 } 234 return 0; 235 } 236 237 /* 238 * Frees b_pages if it was allocated. 239 */ 240 STATIC void 241 _xfs_buf_free_pages( 242 xfs_buf_t *bp) 243 { 244 if (bp->b_pages != bp->b_page_array) { 245 kmem_free(bp->b_pages); 246 bp->b_pages = NULL; 247 } 248 } 249 250 /* 251 * Releases the specified buffer. 252 * 253 * The modification state of any associated pages is left unchanged. 254 * The buffer most not be on any hash - use xfs_buf_rele instead for 255 * hashed and refcounted buffers 256 */ 257 void 258 xfs_buf_free( 259 xfs_buf_t *bp) 260 { 261 trace_xfs_buf_free(bp, _RET_IP_); 262 263 ASSERT(list_empty(&bp->b_lru)); 264 265 if (bp->b_flags & _XBF_PAGES) { 266 uint i; 267 268 if (xfs_buf_is_vmapped(bp)) 269 vm_unmap_ram(bp->b_addr - bp->b_offset, 270 bp->b_page_count); 271 272 for (i = 0; i < bp->b_page_count; i++) { 273 struct page *page = bp->b_pages[i]; 274 275 __free_page(page); 276 } 277 } else if (bp->b_flags & _XBF_KMEM) 278 kmem_free(bp->b_addr); 279 _xfs_buf_free_pages(bp); 280 kmem_zone_free(xfs_buf_zone, bp); 281 } 282 283 /* 284 * Allocates all the pages for buffer in question and builds it's page list. 285 */ 286 STATIC int 287 xfs_buf_allocate_memory( 288 xfs_buf_t *bp, 289 uint flags) 290 { 291 size_t size = bp->b_count_desired; 292 size_t nbytes, offset; 293 gfp_t gfp_mask = xb_to_gfp(flags); 294 unsigned short page_count, i; 295 xfs_off_t end; 296 int error; 297 298 /* 299 * for buffers that are contained within a single page, just allocate 300 * the memory from the heap - there's no need for the complexity of 301 * page arrays to keep allocation down to order 0. 302 */ 303 if (bp->b_buffer_length < PAGE_SIZE) { 304 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags)); 305 if (!bp->b_addr) { 306 /* low memory - use alloc_page loop instead */ 307 goto use_alloc_page; 308 } 309 310 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) & 311 PAGE_MASK) != 312 ((unsigned long)bp->b_addr & PAGE_MASK)) { 313 /* b_addr spans two pages - use alloc_page instead */ 314 kmem_free(bp->b_addr); 315 bp->b_addr = NULL; 316 goto use_alloc_page; 317 } 318 bp->b_offset = offset_in_page(bp->b_addr); 319 bp->b_pages = bp->b_page_array; 320 bp->b_pages[0] = virt_to_page(bp->b_addr); 321 bp->b_page_count = 1; 322 bp->b_flags |= XBF_MAPPED | _XBF_KMEM; 323 return 0; 324 } 325 326 use_alloc_page: 327 end = bp->b_file_offset + bp->b_buffer_length; 328 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset); 329 error = _xfs_buf_get_pages(bp, page_count, flags); 330 if (unlikely(error)) 331 return error; 332 333 offset = bp->b_offset; 334 bp->b_flags |= _XBF_PAGES; 335 336 for (i = 0; i < bp->b_page_count; i++) { 337 struct page *page; 338 uint retries = 0; 339 retry: 340 page = alloc_page(gfp_mask); 341 if (unlikely(page == NULL)) { 342 if (flags & XBF_READ_AHEAD) { 343 bp->b_page_count = i; 344 error = ENOMEM; 345 goto out_free_pages; 346 } 347 348 /* 349 * This could deadlock. 350 * 351 * But until all the XFS lowlevel code is revamped to 352 * handle buffer allocation failures we can't do much. 353 */ 354 if (!(++retries % 100)) 355 xfs_err(NULL, 356 "possible memory allocation deadlock in %s (mode:0x%x)", 357 __func__, gfp_mask); 358 359 XFS_STATS_INC(xb_page_retries); 360 congestion_wait(BLK_RW_ASYNC, HZ/50); 361 goto retry; 362 } 363 364 XFS_STATS_INC(xb_page_found); 365 366 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 367 size -= nbytes; 368 bp->b_pages[i] = page; 369 offset = 0; 370 } 371 return 0; 372 373 out_free_pages: 374 for (i = 0; i < bp->b_page_count; i++) 375 __free_page(bp->b_pages[i]); 376 return error; 377 } 378 379 /* 380 * Map buffer into kernel address-space if necessary. 381 */ 382 STATIC int 383 _xfs_buf_map_pages( 384 xfs_buf_t *bp, 385 uint flags) 386 { 387 ASSERT(bp->b_flags & _XBF_PAGES); 388 if (bp->b_page_count == 1) { 389 /* A single page buffer is always mappable */ 390 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 391 bp->b_flags |= XBF_MAPPED; 392 } else if (flags & XBF_MAPPED) { 393 int retried = 0; 394 395 do { 396 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 397 -1, PAGE_KERNEL); 398 if (bp->b_addr) 399 break; 400 vm_unmap_aliases(); 401 } while (retried++ <= 1); 402 403 if (!bp->b_addr) 404 return -ENOMEM; 405 bp->b_addr += bp->b_offset; 406 bp->b_flags |= XBF_MAPPED; 407 } 408 409 return 0; 410 } 411 412 /* 413 * Finding and Reading Buffers 414 */ 415 416 /* 417 * Look up, and creates if absent, a lockable buffer for 418 * a given range of an inode. The buffer is returned 419 * locked. No I/O is implied by this call. 420 */ 421 xfs_buf_t * 422 _xfs_buf_find( 423 xfs_buftarg_t *btp, /* block device target */ 424 xfs_off_t ioff, /* starting offset of range */ 425 size_t isize, /* length of range */ 426 xfs_buf_flags_t flags, 427 xfs_buf_t *new_bp) 428 { 429 xfs_off_t range_base; 430 size_t range_length; 431 struct xfs_perag *pag; 432 struct rb_node **rbp; 433 struct rb_node *parent; 434 xfs_buf_t *bp; 435 436 range_base = (ioff << BBSHIFT); 437 range_length = (isize << BBSHIFT); 438 439 /* Check for IOs smaller than the sector size / not sector aligned */ 440 ASSERT(!(range_length < (1 << btp->bt_sshift))); 441 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask)); 442 443 /* get tree root */ 444 pag = xfs_perag_get(btp->bt_mount, 445 xfs_daddr_to_agno(btp->bt_mount, ioff)); 446 447 /* walk tree */ 448 spin_lock(&pag->pag_buf_lock); 449 rbp = &pag->pag_buf_tree.rb_node; 450 parent = NULL; 451 bp = NULL; 452 while (*rbp) { 453 parent = *rbp; 454 bp = rb_entry(parent, struct xfs_buf, b_rbnode); 455 456 if (range_base < bp->b_file_offset) 457 rbp = &(*rbp)->rb_left; 458 else if (range_base > bp->b_file_offset) 459 rbp = &(*rbp)->rb_right; 460 else { 461 /* 462 * found a block offset match. If the range doesn't 463 * match, the only way this is allowed is if the buffer 464 * in the cache is stale and the transaction that made 465 * it stale has not yet committed. i.e. we are 466 * reallocating a busy extent. Skip this buffer and 467 * continue searching to the right for an exact match. 468 */ 469 if (bp->b_buffer_length != range_length) { 470 ASSERT(bp->b_flags & XBF_STALE); 471 rbp = &(*rbp)->rb_right; 472 continue; 473 } 474 atomic_inc(&bp->b_hold); 475 goto found; 476 } 477 } 478 479 /* No match found */ 480 if (new_bp) { 481 rb_link_node(&new_bp->b_rbnode, parent, rbp); 482 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); 483 /* the buffer keeps the perag reference until it is freed */ 484 new_bp->b_pag = pag; 485 spin_unlock(&pag->pag_buf_lock); 486 } else { 487 XFS_STATS_INC(xb_miss_locked); 488 spin_unlock(&pag->pag_buf_lock); 489 xfs_perag_put(pag); 490 } 491 return new_bp; 492 493 found: 494 spin_unlock(&pag->pag_buf_lock); 495 xfs_perag_put(pag); 496 497 if (!xfs_buf_trylock(bp)) { 498 if (flags & XBF_TRYLOCK) { 499 xfs_buf_rele(bp); 500 XFS_STATS_INC(xb_busy_locked); 501 return NULL; 502 } 503 xfs_buf_lock(bp); 504 XFS_STATS_INC(xb_get_locked_waited); 505 } 506 507 /* 508 * if the buffer is stale, clear all the external state associated with 509 * it. We need to keep flags such as how we allocated the buffer memory 510 * intact here. 511 */ 512 if (bp->b_flags & XBF_STALE) { 513 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 514 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES; 515 } 516 517 trace_xfs_buf_find(bp, flags, _RET_IP_); 518 XFS_STATS_INC(xb_get_locked); 519 return bp; 520 } 521 522 /* 523 * Assembles a buffer covering the specified range. The code is optimised for 524 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 525 * more hits than misses. 526 */ 527 struct xfs_buf * 528 xfs_buf_get( 529 xfs_buftarg_t *target,/* target for buffer */ 530 xfs_off_t ioff, /* starting offset of range */ 531 size_t isize, /* length of range */ 532 xfs_buf_flags_t flags) 533 { 534 struct xfs_buf *bp; 535 struct xfs_buf *new_bp; 536 int error = 0; 537 538 bp = _xfs_buf_find(target, ioff, isize, flags, NULL); 539 if (likely(bp)) 540 goto found; 541 542 new_bp = xfs_buf_alloc(target, ioff << BBSHIFT, isize << BBSHIFT, 543 flags); 544 if (unlikely(!new_bp)) 545 return NULL; 546 547 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp); 548 if (!bp) { 549 kmem_zone_free(xfs_buf_zone, new_bp); 550 return NULL; 551 } 552 553 if (bp == new_bp) { 554 error = xfs_buf_allocate_memory(bp, flags); 555 if (error) 556 goto no_buffer; 557 } else 558 kmem_zone_free(xfs_buf_zone, new_bp); 559 560 /* 561 * Now we have a workable buffer, fill in the block number so 562 * that we can do IO on it. 563 */ 564 bp->b_bn = ioff; 565 bp->b_count_desired = bp->b_buffer_length; 566 567 found: 568 if (!(bp->b_flags & XBF_MAPPED)) { 569 error = _xfs_buf_map_pages(bp, flags); 570 if (unlikely(error)) { 571 xfs_warn(target->bt_mount, 572 "%s: failed to map pages\n", __func__); 573 goto no_buffer; 574 } 575 } 576 577 XFS_STATS_INC(xb_get); 578 trace_xfs_buf_get(bp, flags, _RET_IP_); 579 return bp; 580 581 no_buffer: 582 if (flags & (XBF_LOCK | XBF_TRYLOCK)) 583 xfs_buf_unlock(bp); 584 xfs_buf_rele(bp); 585 return NULL; 586 } 587 588 STATIC int 589 _xfs_buf_read( 590 xfs_buf_t *bp, 591 xfs_buf_flags_t flags) 592 { 593 int status; 594 595 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE))); 596 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL); 597 598 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | XBF_READ_AHEAD); 599 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 600 601 status = xfs_buf_iorequest(bp); 602 if (status || bp->b_error || (flags & XBF_ASYNC)) 603 return status; 604 return xfs_buf_iowait(bp); 605 } 606 607 xfs_buf_t * 608 xfs_buf_read( 609 xfs_buftarg_t *target, 610 xfs_off_t ioff, 611 size_t isize, 612 xfs_buf_flags_t flags) 613 { 614 xfs_buf_t *bp; 615 616 flags |= XBF_READ; 617 618 bp = xfs_buf_get(target, ioff, isize, flags); 619 if (bp) { 620 trace_xfs_buf_read(bp, flags, _RET_IP_); 621 622 if (!XFS_BUF_ISDONE(bp)) { 623 XFS_STATS_INC(xb_get_read); 624 _xfs_buf_read(bp, flags); 625 } else if (flags & XBF_ASYNC) { 626 /* 627 * Read ahead call which is already satisfied, 628 * drop the buffer 629 */ 630 goto no_buffer; 631 } else { 632 /* We do not want read in the flags */ 633 bp->b_flags &= ~XBF_READ; 634 } 635 } 636 637 return bp; 638 639 no_buffer: 640 if (flags & (XBF_LOCK | XBF_TRYLOCK)) 641 xfs_buf_unlock(bp); 642 xfs_buf_rele(bp); 643 return NULL; 644 } 645 646 /* 647 * If we are not low on memory then do the readahead in a deadlock 648 * safe manner. 649 */ 650 void 651 xfs_buf_readahead( 652 xfs_buftarg_t *target, 653 xfs_off_t ioff, 654 size_t isize) 655 { 656 if (bdi_read_congested(target->bt_bdi)) 657 return; 658 659 xfs_buf_read(target, ioff, isize, 660 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK); 661 } 662 663 /* 664 * Read an uncached buffer from disk. Allocates and returns a locked 665 * buffer containing the disk contents or nothing. 666 */ 667 struct xfs_buf * 668 xfs_buf_read_uncached( 669 struct xfs_mount *mp, 670 struct xfs_buftarg *target, 671 xfs_daddr_t daddr, 672 size_t length, 673 int flags) 674 { 675 xfs_buf_t *bp; 676 int error; 677 678 bp = xfs_buf_get_uncached(target, length, flags); 679 if (!bp) 680 return NULL; 681 682 /* set up the buffer for a read IO */ 683 XFS_BUF_SET_ADDR(bp, daddr); 684 XFS_BUF_READ(bp); 685 686 xfsbdstrat(mp, bp); 687 error = xfs_buf_iowait(bp); 688 if (error || bp->b_error) { 689 xfs_buf_relse(bp); 690 return NULL; 691 } 692 return bp; 693 } 694 695 /* 696 * Return a buffer allocated as an empty buffer and associated to external 697 * memory via xfs_buf_associate_memory() back to it's empty state. 698 */ 699 void 700 xfs_buf_set_empty( 701 struct xfs_buf *bp, 702 size_t len) 703 { 704 if (bp->b_pages) 705 _xfs_buf_free_pages(bp); 706 707 bp->b_pages = NULL; 708 bp->b_page_count = 0; 709 bp->b_addr = NULL; 710 bp->b_file_offset = 0; 711 bp->b_buffer_length = bp->b_count_desired = len; 712 bp->b_bn = XFS_BUF_DADDR_NULL; 713 bp->b_flags &= ~XBF_MAPPED; 714 } 715 716 static inline struct page * 717 mem_to_page( 718 void *addr) 719 { 720 if ((!is_vmalloc_addr(addr))) { 721 return virt_to_page(addr); 722 } else { 723 return vmalloc_to_page(addr); 724 } 725 } 726 727 int 728 xfs_buf_associate_memory( 729 xfs_buf_t *bp, 730 void *mem, 731 size_t len) 732 { 733 int rval; 734 int i = 0; 735 unsigned long pageaddr; 736 unsigned long offset; 737 size_t buflen; 738 int page_count; 739 740 pageaddr = (unsigned long)mem & PAGE_MASK; 741 offset = (unsigned long)mem - pageaddr; 742 buflen = PAGE_ALIGN(len + offset); 743 page_count = buflen >> PAGE_SHIFT; 744 745 /* Free any previous set of page pointers */ 746 if (bp->b_pages) 747 _xfs_buf_free_pages(bp); 748 749 bp->b_pages = NULL; 750 bp->b_addr = mem; 751 752 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK); 753 if (rval) 754 return rval; 755 756 bp->b_offset = offset; 757 758 for (i = 0; i < bp->b_page_count; i++) { 759 bp->b_pages[i] = mem_to_page((void *)pageaddr); 760 pageaddr += PAGE_SIZE; 761 } 762 763 bp->b_count_desired = len; 764 bp->b_buffer_length = buflen; 765 bp->b_flags |= XBF_MAPPED; 766 767 return 0; 768 } 769 770 xfs_buf_t * 771 xfs_buf_get_uncached( 772 struct xfs_buftarg *target, 773 size_t len, 774 int flags) 775 { 776 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT; 777 int error, i; 778 xfs_buf_t *bp; 779 780 bp = xfs_buf_alloc(target, 0, len, 0); 781 if (unlikely(bp == NULL)) 782 goto fail; 783 784 error = _xfs_buf_get_pages(bp, page_count, 0); 785 if (error) 786 goto fail_free_buf; 787 788 for (i = 0; i < page_count; i++) { 789 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 790 if (!bp->b_pages[i]) 791 goto fail_free_mem; 792 } 793 bp->b_flags |= _XBF_PAGES; 794 795 error = _xfs_buf_map_pages(bp, XBF_MAPPED); 796 if (unlikely(error)) { 797 xfs_warn(target->bt_mount, 798 "%s: failed to map pages\n", __func__); 799 goto fail_free_mem; 800 } 801 802 trace_xfs_buf_get_uncached(bp, _RET_IP_); 803 return bp; 804 805 fail_free_mem: 806 while (--i >= 0) 807 __free_page(bp->b_pages[i]); 808 _xfs_buf_free_pages(bp); 809 fail_free_buf: 810 kmem_zone_free(xfs_buf_zone, bp); 811 fail: 812 return NULL; 813 } 814 815 /* 816 * Increment reference count on buffer, to hold the buffer concurrently 817 * with another thread which may release (free) the buffer asynchronously. 818 * Must hold the buffer already to call this function. 819 */ 820 void 821 xfs_buf_hold( 822 xfs_buf_t *bp) 823 { 824 trace_xfs_buf_hold(bp, _RET_IP_); 825 atomic_inc(&bp->b_hold); 826 } 827 828 /* 829 * Releases a hold on the specified buffer. If the 830 * the hold count is 1, calls xfs_buf_free. 831 */ 832 void 833 xfs_buf_rele( 834 xfs_buf_t *bp) 835 { 836 struct xfs_perag *pag = bp->b_pag; 837 838 trace_xfs_buf_rele(bp, _RET_IP_); 839 840 if (!pag) { 841 ASSERT(list_empty(&bp->b_lru)); 842 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); 843 if (atomic_dec_and_test(&bp->b_hold)) 844 xfs_buf_free(bp); 845 return; 846 } 847 848 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); 849 850 ASSERT(atomic_read(&bp->b_hold) > 0); 851 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { 852 if (!(bp->b_flags & XBF_STALE) && 853 atomic_read(&bp->b_lru_ref)) { 854 xfs_buf_lru_add(bp); 855 spin_unlock(&pag->pag_buf_lock); 856 } else { 857 xfs_buf_lru_del(bp); 858 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q))); 859 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); 860 spin_unlock(&pag->pag_buf_lock); 861 xfs_perag_put(pag); 862 xfs_buf_free(bp); 863 } 864 } 865 } 866 867 868 /* 869 * Lock a buffer object, if it is not already locked. 870 * 871 * If we come across a stale, pinned, locked buffer, we know that we are 872 * being asked to lock a buffer that has been reallocated. Because it is 873 * pinned, we know that the log has not been pushed to disk and hence it 874 * will still be locked. Rather than continuing to have trylock attempts 875 * fail until someone else pushes the log, push it ourselves before 876 * returning. This means that the xfsaild will not get stuck trying 877 * to push on stale inode buffers. 878 */ 879 int 880 xfs_buf_trylock( 881 struct xfs_buf *bp) 882 { 883 int locked; 884 885 locked = down_trylock(&bp->b_sema) == 0; 886 if (locked) 887 XB_SET_OWNER(bp); 888 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 889 xfs_log_force(bp->b_target->bt_mount, 0); 890 891 trace_xfs_buf_trylock(bp, _RET_IP_); 892 return locked; 893 } 894 895 /* 896 * Lock a buffer object. 897 * 898 * If we come across a stale, pinned, locked buffer, we know that we 899 * are being asked to lock a buffer that has been reallocated. Because 900 * it is pinned, we know that the log has not been pushed to disk and 901 * hence it will still be locked. Rather than sleeping until someone 902 * else pushes the log, push it ourselves before trying to get the lock. 903 */ 904 void 905 xfs_buf_lock( 906 struct xfs_buf *bp) 907 { 908 trace_xfs_buf_lock(bp, _RET_IP_); 909 910 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 911 xfs_log_force(bp->b_target->bt_mount, 0); 912 down(&bp->b_sema); 913 XB_SET_OWNER(bp); 914 915 trace_xfs_buf_lock_done(bp, _RET_IP_); 916 } 917 918 /* 919 * Releases the lock on the buffer object. 920 * If the buffer is marked delwri but is not queued, do so before we 921 * unlock the buffer as we need to set flags correctly. We also need to 922 * take a reference for the delwri queue because the unlocker is going to 923 * drop their's and they don't know we just queued it. 924 */ 925 void 926 xfs_buf_unlock( 927 struct xfs_buf *bp) 928 { 929 XB_CLEAR_OWNER(bp); 930 up(&bp->b_sema); 931 932 trace_xfs_buf_unlock(bp, _RET_IP_); 933 } 934 935 STATIC void 936 xfs_buf_wait_unpin( 937 xfs_buf_t *bp) 938 { 939 DECLARE_WAITQUEUE (wait, current); 940 941 if (atomic_read(&bp->b_pin_count) == 0) 942 return; 943 944 add_wait_queue(&bp->b_waiters, &wait); 945 for (;;) { 946 set_current_state(TASK_UNINTERRUPTIBLE); 947 if (atomic_read(&bp->b_pin_count) == 0) 948 break; 949 io_schedule(); 950 } 951 remove_wait_queue(&bp->b_waiters, &wait); 952 set_current_state(TASK_RUNNING); 953 } 954 955 /* 956 * Buffer Utility Routines 957 */ 958 959 STATIC void 960 xfs_buf_iodone_work( 961 struct work_struct *work) 962 { 963 xfs_buf_t *bp = 964 container_of(work, xfs_buf_t, b_iodone_work); 965 966 if (bp->b_iodone) 967 (*(bp->b_iodone))(bp); 968 else if (bp->b_flags & XBF_ASYNC) 969 xfs_buf_relse(bp); 970 } 971 972 void 973 xfs_buf_ioend( 974 xfs_buf_t *bp, 975 int schedule) 976 { 977 trace_xfs_buf_iodone(bp, _RET_IP_); 978 979 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 980 if (bp->b_error == 0) 981 bp->b_flags |= XBF_DONE; 982 983 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) { 984 if (schedule) { 985 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work); 986 queue_work(xfslogd_workqueue, &bp->b_iodone_work); 987 } else { 988 xfs_buf_iodone_work(&bp->b_iodone_work); 989 } 990 } else { 991 complete(&bp->b_iowait); 992 } 993 } 994 995 void 996 xfs_buf_ioerror( 997 xfs_buf_t *bp, 998 int error) 999 { 1000 ASSERT(error >= 0 && error <= 0xffff); 1001 bp->b_error = (unsigned short)error; 1002 trace_xfs_buf_ioerror(bp, error, _RET_IP_); 1003 } 1004 1005 void 1006 xfs_buf_ioerror_alert( 1007 struct xfs_buf *bp, 1008 const char *func) 1009 { 1010 xfs_alert(bp->b_target->bt_mount, 1011 "metadata I/O error: block 0x%llx (\"%s\") error %d buf count %zd", 1012 (__uint64_t)XFS_BUF_ADDR(bp), func, 1013 bp->b_error, XFS_BUF_COUNT(bp)); 1014 } 1015 1016 int 1017 xfs_bwrite( 1018 struct xfs_buf *bp) 1019 { 1020 int error; 1021 1022 bp->b_flags |= XBF_WRITE; 1023 bp->b_flags &= ~(XBF_ASYNC | XBF_READ); 1024 1025 xfs_buf_delwri_dequeue(bp); 1026 xfs_bdstrat_cb(bp); 1027 1028 error = xfs_buf_iowait(bp); 1029 if (error) { 1030 xfs_force_shutdown(bp->b_target->bt_mount, 1031 SHUTDOWN_META_IO_ERROR); 1032 } 1033 return error; 1034 } 1035 1036 /* 1037 * Called when we want to stop a buffer from getting written or read. 1038 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend 1039 * so that the proper iodone callbacks get called. 1040 */ 1041 STATIC int 1042 xfs_bioerror( 1043 xfs_buf_t *bp) 1044 { 1045 #ifdef XFSERRORDEBUG 1046 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone); 1047 #endif 1048 1049 /* 1050 * No need to wait until the buffer is unpinned, we aren't flushing it. 1051 */ 1052 xfs_buf_ioerror(bp, EIO); 1053 1054 /* 1055 * We're calling xfs_buf_ioend, so delete XBF_DONE flag. 1056 */ 1057 XFS_BUF_UNREAD(bp); 1058 XFS_BUF_UNDONE(bp); 1059 xfs_buf_stale(bp); 1060 1061 xfs_buf_ioend(bp, 0); 1062 1063 return EIO; 1064 } 1065 1066 /* 1067 * Same as xfs_bioerror, except that we are releasing the buffer 1068 * here ourselves, and avoiding the xfs_buf_ioend call. 1069 * This is meant for userdata errors; metadata bufs come with 1070 * iodone functions attached, so that we can track down errors. 1071 */ 1072 STATIC int 1073 xfs_bioerror_relse( 1074 struct xfs_buf *bp) 1075 { 1076 int64_t fl = bp->b_flags; 1077 /* 1078 * No need to wait until the buffer is unpinned. 1079 * We aren't flushing it. 1080 * 1081 * chunkhold expects B_DONE to be set, whether 1082 * we actually finish the I/O or not. We don't want to 1083 * change that interface. 1084 */ 1085 XFS_BUF_UNREAD(bp); 1086 XFS_BUF_DONE(bp); 1087 xfs_buf_stale(bp); 1088 bp->b_iodone = NULL; 1089 if (!(fl & XBF_ASYNC)) { 1090 /* 1091 * Mark b_error and B_ERROR _both_. 1092 * Lot's of chunkcache code assumes that. 1093 * There's no reason to mark error for 1094 * ASYNC buffers. 1095 */ 1096 xfs_buf_ioerror(bp, EIO); 1097 complete(&bp->b_iowait); 1098 } else { 1099 xfs_buf_relse(bp); 1100 } 1101 1102 return EIO; 1103 } 1104 1105 1106 /* 1107 * All xfs metadata buffers except log state machine buffers 1108 * get this attached as their b_bdstrat callback function. 1109 * This is so that we can catch a buffer 1110 * after prematurely unpinning it to forcibly shutdown the filesystem. 1111 */ 1112 int 1113 xfs_bdstrat_cb( 1114 struct xfs_buf *bp) 1115 { 1116 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1117 trace_xfs_bdstrat_shut(bp, _RET_IP_); 1118 /* 1119 * Metadata write that didn't get logged but 1120 * written delayed anyway. These aren't associated 1121 * with a transaction, and can be ignored. 1122 */ 1123 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp)) 1124 return xfs_bioerror_relse(bp); 1125 else 1126 return xfs_bioerror(bp); 1127 } 1128 1129 xfs_buf_iorequest(bp); 1130 return 0; 1131 } 1132 1133 /* 1134 * Wrapper around bdstrat so that we can stop data from going to disk in case 1135 * we are shutting down the filesystem. Typically user data goes thru this 1136 * path; one of the exceptions is the superblock. 1137 */ 1138 void 1139 xfsbdstrat( 1140 struct xfs_mount *mp, 1141 struct xfs_buf *bp) 1142 { 1143 if (XFS_FORCED_SHUTDOWN(mp)) { 1144 trace_xfs_bdstrat_shut(bp, _RET_IP_); 1145 xfs_bioerror_relse(bp); 1146 return; 1147 } 1148 1149 xfs_buf_iorequest(bp); 1150 } 1151 1152 STATIC void 1153 _xfs_buf_ioend( 1154 xfs_buf_t *bp, 1155 int schedule) 1156 { 1157 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1158 xfs_buf_ioend(bp, schedule); 1159 } 1160 1161 STATIC void 1162 xfs_buf_bio_end_io( 1163 struct bio *bio, 1164 int error) 1165 { 1166 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private; 1167 1168 xfs_buf_ioerror(bp, -error); 1169 1170 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1171 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1172 1173 _xfs_buf_ioend(bp, 1); 1174 bio_put(bio); 1175 } 1176 1177 STATIC void 1178 _xfs_buf_ioapply( 1179 xfs_buf_t *bp) 1180 { 1181 int rw, map_i, total_nr_pages, nr_pages; 1182 struct bio *bio; 1183 int offset = bp->b_offset; 1184 int size = bp->b_count_desired; 1185 sector_t sector = bp->b_bn; 1186 1187 total_nr_pages = bp->b_page_count; 1188 map_i = 0; 1189 1190 if (bp->b_flags & XBF_WRITE) { 1191 if (bp->b_flags & XBF_SYNCIO) 1192 rw = WRITE_SYNC; 1193 else 1194 rw = WRITE; 1195 if (bp->b_flags & XBF_FUA) 1196 rw |= REQ_FUA; 1197 if (bp->b_flags & XBF_FLUSH) 1198 rw |= REQ_FLUSH; 1199 } else if (bp->b_flags & XBF_READ_AHEAD) { 1200 rw = READA; 1201 } else { 1202 rw = READ; 1203 } 1204 1205 /* we only use the buffer cache for meta-data */ 1206 rw |= REQ_META; 1207 1208 next_chunk: 1209 atomic_inc(&bp->b_io_remaining); 1210 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); 1211 if (nr_pages > total_nr_pages) 1212 nr_pages = total_nr_pages; 1213 1214 bio = bio_alloc(GFP_NOIO, nr_pages); 1215 bio->bi_bdev = bp->b_target->bt_bdev; 1216 bio->bi_sector = sector; 1217 bio->bi_end_io = xfs_buf_bio_end_io; 1218 bio->bi_private = bp; 1219 1220 1221 for (; size && nr_pages; nr_pages--, map_i++) { 1222 int rbytes, nbytes = PAGE_SIZE - offset; 1223 1224 if (nbytes > size) 1225 nbytes = size; 1226 1227 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset); 1228 if (rbytes < nbytes) 1229 break; 1230 1231 offset = 0; 1232 sector += nbytes >> BBSHIFT; 1233 size -= nbytes; 1234 total_nr_pages--; 1235 } 1236 1237 if (likely(bio->bi_size)) { 1238 if (xfs_buf_is_vmapped(bp)) { 1239 flush_kernel_vmap_range(bp->b_addr, 1240 xfs_buf_vmap_len(bp)); 1241 } 1242 submit_bio(rw, bio); 1243 if (size) 1244 goto next_chunk; 1245 } else { 1246 xfs_buf_ioerror(bp, EIO); 1247 bio_put(bio); 1248 } 1249 } 1250 1251 int 1252 xfs_buf_iorequest( 1253 xfs_buf_t *bp) 1254 { 1255 trace_xfs_buf_iorequest(bp, _RET_IP_); 1256 1257 ASSERT(!(bp->b_flags & XBF_DELWRI)); 1258 1259 if (bp->b_flags & XBF_WRITE) 1260 xfs_buf_wait_unpin(bp); 1261 xfs_buf_hold(bp); 1262 1263 /* Set the count to 1 initially, this will stop an I/O 1264 * completion callout which happens before we have started 1265 * all the I/O from calling xfs_buf_ioend too early. 1266 */ 1267 atomic_set(&bp->b_io_remaining, 1); 1268 _xfs_buf_ioapply(bp); 1269 _xfs_buf_ioend(bp, 0); 1270 1271 xfs_buf_rele(bp); 1272 return 0; 1273 } 1274 1275 /* 1276 * Waits for I/O to complete on the buffer supplied. 1277 * It returns immediately if no I/O is pending. 1278 * It returns the I/O error code, if any, or 0 if there was no error. 1279 */ 1280 int 1281 xfs_buf_iowait( 1282 xfs_buf_t *bp) 1283 { 1284 trace_xfs_buf_iowait(bp, _RET_IP_); 1285 1286 wait_for_completion(&bp->b_iowait); 1287 1288 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1289 return bp->b_error; 1290 } 1291 1292 xfs_caddr_t 1293 xfs_buf_offset( 1294 xfs_buf_t *bp, 1295 size_t offset) 1296 { 1297 struct page *page; 1298 1299 if (bp->b_flags & XBF_MAPPED) 1300 return bp->b_addr + offset; 1301 1302 offset += bp->b_offset; 1303 page = bp->b_pages[offset >> PAGE_SHIFT]; 1304 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); 1305 } 1306 1307 /* 1308 * Move data into or out of a buffer. 1309 */ 1310 void 1311 xfs_buf_iomove( 1312 xfs_buf_t *bp, /* buffer to process */ 1313 size_t boff, /* starting buffer offset */ 1314 size_t bsize, /* length to copy */ 1315 void *data, /* data address */ 1316 xfs_buf_rw_t mode) /* read/write/zero flag */ 1317 { 1318 size_t bend, cpoff, csize; 1319 struct page *page; 1320 1321 bend = boff + bsize; 1322 while (boff < bend) { 1323 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)]; 1324 cpoff = xfs_buf_poff(boff + bp->b_offset); 1325 csize = min_t(size_t, 1326 PAGE_SIZE-cpoff, bp->b_count_desired-boff); 1327 1328 ASSERT(((csize + cpoff) <= PAGE_SIZE)); 1329 1330 switch (mode) { 1331 case XBRW_ZERO: 1332 memset(page_address(page) + cpoff, 0, csize); 1333 break; 1334 case XBRW_READ: 1335 memcpy(data, page_address(page) + cpoff, csize); 1336 break; 1337 case XBRW_WRITE: 1338 memcpy(page_address(page) + cpoff, data, csize); 1339 } 1340 1341 boff += csize; 1342 data += csize; 1343 } 1344 } 1345 1346 /* 1347 * Handling of buffer targets (buftargs). 1348 */ 1349 1350 /* 1351 * Wait for any bufs with callbacks that have been submitted but have not yet 1352 * returned. These buffers will have an elevated hold count, so wait on those 1353 * while freeing all the buffers only held by the LRU. 1354 */ 1355 void 1356 xfs_wait_buftarg( 1357 struct xfs_buftarg *btp) 1358 { 1359 struct xfs_buf *bp; 1360 1361 restart: 1362 spin_lock(&btp->bt_lru_lock); 1363 while (!list_empty(&btp->bt_lru)) { 1364 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); 1365 if (atomic_read(&bp->b_hold) > 1) { 1366 spin_unlock(&btp->bt_lru_lock); 1367 delay(100); 1368 goto restart; 1369 } 1370 /* 1371 * clear the LRU reference count so the buffer doesn't get 1372 * ignored in xfs_buf_rele(). 1373 */ 1374 atomic_set(&bp->b_lru_ref, 0); 1375 spin_unlock(&btp->bt_lru_lock); 1376 xfs_buf_rele(bp); 1377 spin_lock(&btp->bt_lru_lock); 1378 } 1379 spin_unlock(&btp->bt_lru_lock); 1380 } 1381 1382 int 1383 xfs_buftarg_shrink( 1384 struct shrinker *shrink, 1385 struct shrink_control *sc) 1386 { 1387 struct xfs_buftarg *btp = container_of(shrink, 1388 struct xfs_buftarg, bt_shrinker); 1389 struct xfs_buf *bp; 1390 int nr_to_scan = sc->nr_to_scan; 1391 LIST_HEAD(dispose); 1392 1393 if (!nr_to_scan) 1394 return btp->bt_lru_nr; 1395 1396 spin_lock(&btp->bt_lru_lock); 1397 while (!list_empty(&btp->bt_lru)) { 1398 if (nr_to_scan-- <= 0) 1399 break; 1400 1401 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru); 1402 1403 /* 1404 * Decrement the b_lru_ref count unless the value is already 1405 * zero. If the value is already zero, we need to reclaim the 1406 * buffer, otherwise it gets another trip through the LRU. 1407 */ 1408 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1409 list_move_tail(&bp->b_lru, &btp->bt_lru); 1410 continue; 1411 } 1412 1413 /* 1414 * remove the buffer from the LRU now to avoid needing another 1415 * lock round trip inside xfs_buf_rele(). 1416 */ 1417 list_move(&bp->b_lru, &dispose); 1418 btp->bt_lru_nr--; 1419 } 1420 spin_unlock(&btp->bt_lru_lock); 1421 1422 while (!list_empty(&dispose)) { 1423 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1424 list_del_init(&bp->b_lru); 1425 xfs_buf_rele(bp); 1426 } 1427 1428 return btp->bt_lru_nr; 1429 } 1430 1431 void 1432 xfs_free_buftarg( 1433 struct xfs_mount *mp, 1434 struct xfs_buftarg *btp) 1435 { 1436 unregister_shrinker(&btp->bt_shrinker); 1437 1438 xfs_flush_buftarg(btp, 1); 1439 if (mp->m_flags & XFS_MOUNT_BARRIER) 1440 xfs_blkdev_issue_flush(btp); 1441 1442 kthread_stop(btp->bt_task); 1443 kmem_free(btp); 1444 } 1445 1446 STATIC int 1447 xfs_setsize_buftarg_flags( 1448 xfs_buftarg_t *btp, 1449 unsigned int blocksize, 1450 unsigned int sectorsize, 1451 int verbose) 1452 { 1453 btp->bt_bsize = blocksize; 1454 btp->bt_sshift = ffs(sectorsize) - 1; 1455 btp->bt_smask = sectorsize - 1; 1456 1457 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1458 char name[BDEVNAME_SIZE]; 1459 1460 bdevname(btp->bt_bdev, name); 1461 1462 xfs_warn(btp->bt_mount, 1463 "Cannot set_blocksize to %u on device %s\n", 1464 sectorsize, name); 1465 return EINVAL; 1466 } 1467 1468 return 0; 1469 } 1470 1471 /* 1472 * When allocating the initial buffer target we have not yet 1473 * read in the superblock, so don't know what sized sectors 1474 * are being used is at this early stage. Play safe. 1475 */ 1476 STATIC int 1477 xfs_setsize_buftarg_early( 1478 xfs_buftarg_t *btp, 1479 struct block_device *bdev) 1480 { 1481 return xfs_setsize_buftarg_flags(btp, 1482 PAGE_SIZE, bdev_logical_block_size(bdev), 0); 1483 } 1484 1485 int 1486 xfs_setsize_buftarg( 1487 xfs_buftarg_t *btp, 1488 unsigned int blocksize, 1489 unsigned int sectorsize) 1490 { 1491 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); 1492 } 1493 1494 STATIC int 1495 xfs_alloc_delwri_queue( 1496 xfs_buftarg_t *btp, 1497 const char *fsname) 1498 { 1499 INIT_LIST_HEAD(&btp->bt_delwri_queue); 1500 spin_lock_init(&btp->bt_delwri_lock); 1501 btp->bt_flags = 0; 1502 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname); 1503 if (IS_ERR(btp->bt_task)) 1504 return PTR_ERR(btp->bt_task); 1505 return 0; 1506 } 1507 1508 xfs_buftarg_t * 1509 xfs_alloc_buftarg( 1510 struct xfs_mount *mp, 1511 struct block_device *bdev, 1512 int external, 1513 const char *fsname) 1514 { 1515 xfs_buftarg_t *btp; 1516 1517 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); 1518 1519 btp->bt_mount = mp; 1520 btp->bt_dev = bdev->bd_dev; 1521 btp->bt_bdev = bdev; 1522 btp->bt_bdi = blk_get_backing_dev_info(bdev); 1523 if (!btp->bt_bdi) 1524 goto error; 1525 1526 INIT_LIST_HEAD(&btp->bt_lru); 1527 spin_lock_init(&btp->bt_lru_lock); 1528 if (xfs_setsize_buftarg_early(btp, bdev)) 1529 goto error; 1530 if (xfs_alloc_delwri_queue(btp, fsname)) 1531 goto error; 1532 btp->bt_shrinker.shrink = xfs_buftarg_shrink; 1533 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1534 register_shrinker(&btp->bt_shrinker); 1535 return btp; 1536 1537 error: 1538 kmem_free(btp); 1539 return NULL; 1540 } 1541 1542 1543 /* 1544 * Delayed write buffer handling 1545 */ 1546 void 1547 xfs_buf_delwri_queue( 1548 xfs_buf_t *bp) 1549 { 1550 struct xfs_buftarg *btp = bp->b_target; 1551 1552 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1553 1554 ASSERT(!(bp->b_flags & XBF_READ)); 1555 1556 spin_lock(&btp->bt_delwri_lock); 1557 if (!list_empty(&bp->b_list)) { 1558 /* if already in the queue, move it to the tail */ 1559 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 1560 list_move_tail(&bp->b_list, &btp->bt_delwri_queue); 1561 } else { 1562 /* start xfsbufd as it is about to have something to do */ 1563 if (list_empty(&btp->bt_delwri_queue)) 1564 wake_up_process(bp->b_target->bt_task); 1565 1566 atomic_inc(&bp->b_hold); 1567 bp->b_flags |= XBF_DELWRI | _XBF_DELWRI_Q | XBF_ASYNC; 1568 list_add_tail(&bp->b_list, &btp->bt_delwri_queue); 1569 } 1570 bp->b_queuetime = jiffies; 1571 spin_unlock(&btp->bt_delwri_lock); 1572 } 1573 1574 void 1575 xfs_buf_delwri_dequeue( 1576 xfs_buf_t *bp) 1577 { 1578 int dequeued = 0; 1579 1580 spin_lock(&bp->b_target->bt_delwri_lock); 1581 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) { 1582 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 1583 list_del_init(&bp->b_list); 1584 dequeued = 1; 1585 } 1586 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q); 1587 spin_unlock(&bp->b_target->bt_delwri_lock); 1588 1589 if (dequeued) 1590 xfs_buf_rele(bp); 1591 1592 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_); 1593 } 1594 1595 /* 1596 * If a delwri buffer needs to be pushed before it has aged out, then promote 1597 * it to the head of the delwri queue so that it will be flushed on the next 1598 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older 1599 * than the age currently needed to flush the buffer. Hence the next time the 1600 * xfsbufd sees it is guaranteed to be considered old enough to flush. 1601 */ 1602 void 1603 xfs_buf_delwri_promote( 1604 struct xfs_buf *bp) 1605 { 1606 struct xfs_buftarg *btp = bp->b_target; 1607 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1; 1608 1609 ASSERT(bp->b_flags & XBF_DELWRI); 1610 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 1611 1612 /* 1613 * Check the buffer age before locking the delayed write queue as we 1614 * don't need to promote buffers that are already past the flush age. 1615 */ 1616 if (bp->b_queuetime < jiffies - age) 1617 return; 1618 bp->b_queuetime = jiffies - age; 1619 spin_lock(&btp->bt_delwri_lock); 1620 list_move(&bp->b_list, &btp->bt_delwri_queue); 1621 spin_unlock(&btp->bt_delwri_lock); 1622 } 1623 1624 /* 1625 * Move as many buffers as specified to the supplied list 1626 * idicating if we skipped any buffers to prevent deadlocks. 1627 */ 1628 STATIC int 1629 xfs_buf_delwri_split( 1630 xfs_buftarg_t *target, 1631 struct list_head *list, 1632 unsigned long age) 1633 { 1634 xfs_buf_t *bp, *n; 1635 int skipped = 0; 1636 int force; 1637 1638 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags); 1639 INIT_LIST_HEAD(list); 1640 spin_lock(&target->bt_delwri_lock); 1641 list_for_each_entry_safe(bp, n, &target->bt_delwri_queue, b_list) { 1642 ASSERT(bp->b_flags & XBF_DELWRI); 1643 1644 if (!xfs_buf_ispinned(bp) && xfs_buf_trylock(bp)) { 1645 if (!force && 1646 time_before(jiffies, bp->b_queuetime + age)) { 1647 xfs_buf_unlock(bp); 1648 break; 1649 } 1650 1651 bp->b_flags &= ~(XBF_DELWRI | _XBF_DELWRI_Q); 1652 bp->b_flags |= XBF_WRITE; 1653 list_move_tail(&bp->b_list, list); 1654 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1655 } else 1656 skipped++; 1657 } 1658 1659 spin_unlock(&target->bt_delwri_lock); 1660 return skipped; 1661 } 1662 1663 /* 1664 * Compare function is more complex than it needs to be because 1665 * the return value is only 32 bits and we are doing comparisons 1666 * on 64 bit values 1667 */ 1668 static int 1669 xfs_buf_cmp( 1670 void *priv, 1671 struct list_head *a, 1672 struct list_head *b) 1673 { 1674 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1675 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1676 xfs_daddr_t diff; 1677 1678 diff = ap->b_bn - bp->b_bn; 1679 if (diff < 0) 1680 return -1; 1681 if (diff > 0) 1682 return 1; 1683 return 0; 1684 } 1685 1686 STATIC int 1687 xfsbufd( 1688 void *data) 1689 { 1690 xfs_buftarg_t *target = (xfs_buftarg_t *)data; 1691 1692 current->flags |= PF_MEMALLOC; 1693 1694 set_freezable(); 1695 1696 do { 1697 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10); 1698 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10); 1699 struct list_head tmp; 1700 struct blk_plug plug; 1701 1702 if (unlikely(freezing(current))) 1703 try_to_freeze(); 1704 1705 /* sleep for a long time if there is nothing to do. */ 1706 if (list_empty(&target->bt_delwri_queue)) 1707 tout = MAX_SCHEDULE_TIMEOUT; 1708 schedule_timeout_interruptible(tout); 1709 1710 xfs_buf_delwri_split(target, &tmp, age); 1711 list_sort(NULL, &tmp, xfs_buf_cmp); 1712 1713 blk_start_plug(&plug); 1714 while (!list_empty(&tmp)) { 1715 struct xfs_buf *bp; 1716 bp = list_first_entry(&tmp, struct xfs_buf, b_list); 1717 list_del_init(&bp->b_list); 1718 xfs_bdstrat_cb(bp); 1719 } 1720 blk_finish_plug(&plug); 1721 } while (!kthread_should_stop()); 1722 1723 return 0; 1724 } 1725 1726 /* 1727 * Go through all incore buffers, and release buffers if they belong to 1728 * the given device. This is used in filesystem error handling to 1729 * preserve the consistency of its metadata. 1730 */ 1731 int 1732 xfs_flush_buftarg( 1733 xfs_buftarg_t *target, 1734 int wait) 1735 { 1736 xfs_buf_t *bp; 1737 int pincount = 0; 1738 LIST_HEAD(tmp_list); 1739 LIST_HEAD(wait_list); 1740 struct blk_plug plug; 1741 1742 flush_workqueue(xfslogd_workqueue); 1743 1744 set_bit(XBT_FORCE_FLUSH, &target->bt_flags); 1745 pincount = xfs_buf_delwri_split(target, &tmp_list, 0); 1746 1747 /* 1748 * Dropped the delayed write list lock, now walk the temporary list. 1749 * All I/O is issued async and then if we need to wait for completion 1750 * we do that after issuing all the IO. 1751 */ 1752 list_sort(NULL, &tmp_list, xfs_buf_cmp); 1753 1754 blk_start_plug(&plug); 1755 while (!list_empty(&tmp_list)) { 1756 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list); 1757 ASSERT(target == bp->b_target); 1758 list_del_init(&bp->b_list); 1759 if (wait) { 1760 bp->b_flags &= ~XBF_ASYNC; 1761 list_add(&bp->b_list, &wait_list); 1762 } 1763 xfs_bdstrat_cb(bp); 1764 } 1765 blk_finish_plug(&plug); 1766 1767 if (wait) { 1768 /* Wait for IO to complete. */ 1769 while (!list_empty(&wait_list)) { 1770 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 1771 1772 list_del_init(&bp->b_list); 1773 xfs_buf_iowait(bp); 1774 xfs_buf_relse(bp); 1775 } 1776 } 1777 1778 return pincount; 1779 } 1780 1781 int __init 1782 xfs_buf_init(void) 1783 { 1784 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 1785 KM_ZONE_HWALIGN, NULL); 1786 if (!xfs_buf_zone) 1787 goto out; 1788 1789 xfslogd_workqueue = alloc_workqueue("xfslogd", 1790 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1); 1791 if (!xfslogd_workqueue) 1792 goto out_free_buf_zone; 1793 1794 return 0; 1795 1796 out_free_buf_zone: 1797 kmem_zone_destroy(xfs_buf_zone); 1798 out: 1799 return -ENOMEM; 1800 } 1801 1802 void 1803 xfs_buf_terminate(void) 1804 { 1805 destroy_workqueue(xfslogd_workqueue); 1806 kmem_zone_destroy(xfs_buf_zone); 1807 } 1808