xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 5e012745)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 
20 static kmem_zone_t *xfs_buf_zone;
21 
22 #define xb_to_gfp(flags) \
23 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
24 
25 /*
26  * Locking orders
27  *
28  * xfs_buf_ioacct_inc:
29  * xfs_buf_ioacct_dec:
30  *	b_sema (caller holds)
31  *	  b_lock
32  *
33  * xfs_buf_stale:
34  *	b_sema (caller holds)
35  *	  b_lock
36  *	    lru_lock
37  *
38  * xfs_buf_rele:
39  *	b_lock
40  *	  pag_buf_lock
41  *	    lru_lock
42  *
43  * xfs_buftarg_wait_rele
44  *	lru_lock
45  *	  b_lock (trylock due to inversion)
46  *
47  * xfs_buftarg_isolate
48  *	lru_lock
49  *	  b_lock (trylock due to inversion)
50  */
51 
52 static inline int
53 xfs_buf_is_vmapped(
54 	struct xfs_buf	*bp)
55 {
56 	/*
57 	 * Return true if the buffer is vmapped.
58 	 *
59 	 * b_addr is null if the buffer is not mapped, but the code is clever
60 	 * enough to know it doesn't have to map a single page, so the check has
61 	 * to be both for b_addr and bp->b_page_count > 1.
62 	 */
63 	return bp->b_addr && bp->b_page_count > 1;
64 }
65 
66 static inline int
67 xfs_buf_vmap_len(
68 	struct xfs_buf	*bp)
69 {
70 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71 }
72 
73 /*
74  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75  * this buffer. The count is incremented once per buffer (per hold cycle)
76  * because the corresponding decrement is deferred to buffer release. Buffers
77  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78  * tracking adds unnecessary overhead. This is used for sychronization purposes
79  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80  * in-flight buffers.
81  *
82  * Buffers that are never released (e.g., superblock, iclog buffers) must set
83  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84  * never reaches zero and unmount hangs indefinitely.
85  */
86 static inline void
87 xfs_buf_ioacct_inc(
88 	struct xfs_buf	*bp)
89 {
90 	if (bp->b_flags & XBF_NO_IOACCT)
91 		return;
92 
93 	ASSERT(bp->b_flags & XBF_ASYNC);
94 	spin_lock(&bp->b_lock);
95 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 		percpu_counter_inc(&bp->b_target->bt_io_count);
98 	}
99 	spin_unlock(&bp->b_lock);
100 }
101 
102 /*
103  * Clear the in-flight state on a buffer about to be released to the LRU or
104  * freed and unaccount from the buftarg.
105  */
106 static inline void
107 __xfs_buf_ioacct_dec(
108 	struct xfs_buf	*bp)
109 {
110 	lockdep_assert_held(&bp->b_lock);
111 
112 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 		percpu_counter_dec(&bp->b_target->bt_io_count);
115 	}
116 }
117 
118 static inline void
119 xfs_buf_ioacct_dec(
120 	struct xfs_buf	*bp)
121 {
122 	spin_lock(&bp->b_lock);
123 	__xfs_buf_ioacct_dec(bp);
124 	spin_unlock(&bp->b_lock);
125 }
126 
127 /*
128  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129  * b_lru_ref count so that the buffer is freed immediately when the buffer
130  * reference count falls to zero. If the buffer is already on the LRU, we need
131  * to remove the reference that LRU holds on the buffer.
132  *
133  * This prevents build-up of stale buffers on the LRU.
134  */
135 void
136 xfs_buf_stale(
137 	struct xfs_buf	*bp)
138 {
139 	ASSERT(xfs_buf_islocked(bp));
140 
141 	bp->b_flags |= XBF_STALE;
142 
143 	/*
144 	 * Clear the delwri status so that a delwri queue walker will not
145 	 * flush this buffer to disk now that it is stale. The delwri queue has
146 	 * a reference to the buffer, so this is safe to do.
147 	 */
148 	bp->b_flags &= ~_XBF_DELWRI_Q;
149 
150 	/*
151 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 	 * could reset b_flags. There is no guarantee that the buffer is
153 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 	 * status now to preserve accounting consistency.
155 	 */
156 	spin_lock(&bp->b_lock);
157 	__xfs_buf_ioacct_dec(bp);
158 
159 	atomic_set(&bp->b_lru_ref, 0);
160 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
161 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 		atomic_dec(&bp->b_hold);
163 
164 	ASSERT(atomic_read(&bp->b_hold) >= 1);
165 	spin_unlock(&bp->b_lock);
166 }
167 
168 static int
169 xfs_buf_get_maps(
170 	struct xfs_buf		*bp,
171 	int			map_count)
172 {
173 	ASSERT(bp->b_maps == NULL);
174 	bp->b_map_count = map_count;
175 
176 	if (map_count == 1) {
177 		bp->b_maps = &bp->__b_map;
178 		return 0;
179 	}
180 
181 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 				KM_NOFS);
183 	if (!bp->b_maps)
184 		return -ENOMEM;
185 	return 0;
186 }
187 
188 /*
189  *	Frees b_pages if it was allocated.
190  */
191 static void
192 xfs_buf_free_maps(
193 	struct xfs_buf	*bp)
194 {
195 	if (bp->b_maps != &bp->__b_map) {
196 		kmem_free(bp->b_maps);
197 		bp->b_maps = NULL;
198 	}
199 }
200 
201 static struct xfs_buf *
202 _xfs_buf_alloc(
203 	struct xfs_buftarg	*target,
204 	struct xfs_buf_map	*map,
205 	int			nmaps,
206 	xfs_buf_flags_t		flags)
207 {
208 	struct xfs_buf		*bp;
209 	int			error;
210 	int			i;
211 
212 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
213 	if (unlikely(!bp))
214 		return NULL;
215 
216 	/*
217 	 * We don't want certain flags to appear in b_flags unless they are
218 	 * specifically set by later operations on the buffer.
219 	 */
220 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
221 
222 	atomic_set(&bp->b_hold, 1);
223 	atomic_set(&bp->b_lru_ref, 1);
224 	init_completion(&bp->b_iowait);
225 	INIT_LIST_HEAD(&bp->b_lru);
226 	INIT_LIST_HEAD(&bp->b_list);
227 	INIT_LIST_HEAD(&bp->b_li_list);
228 	sema_init(&bp->b_sema, 0); /* held, no waiters */
229 	spin_lock_init(&bp->b_lock);
230 	bp->b_target = target;
231 	bp->b_mount = target->bt_mount;
232 	bp->b_flags = flags;
233 
234 	/*
235 	 * Set length and io_length to the same value initially.
236 	 * I/O routines should use io_length, which will be the same in
237 	 * most cases but may be reset (e.g. XFS recovery).
238 	 */
239 	error = xfs_buf_get_maps(bp, nmaps);
240 	if (error)  {
241 		kmem_zone_free(xfs_buf_zone, bp);
242 		return NULL;
243 	}
244 
245 	bp->b_bn = map[0].bm_bn;
246 	bp->b_length = 0;
247 	for (i = 0; i < nmaps; i++) {
248 		bp->b_maps[i].bm_bn = map[i].bm_bn;
249 		bp->b_maps[i].bm_len = map[i].bm_len;
250 		bp->b_length += map[i].bm_len;
251 	}
252 
253 	atomic_set(&bp->b_pin_count, 0);
254 	init_waitqueue_head(&bp->b_waiters);
255 
256 	XFS_STATS_INC(bp->b_mount, xb_create);
257 	trace_xfs_buf_init(bp, _RET_IP_);
258 
259 	return bp;
260 }
261 
262 /*
263  *	Allocate a page array capable of holding a specified number
264  *	of pages, and point the page buf at it.
265  */
266 STATIC int
267 _xfs_buf_get_pages(
268 	xfs_buf_t		*bp,
269 	int			page_count)
270 {
271 	/* Make sure that we have a page list */
272 	if (bp->b_pages == NULL) {
273 		bp->b_page_count = page_count;
274 		if (page_count <= XB_PAGES) {
275 			bp->b_pages = bp->b_page_array;
276 		} else {
277 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
278 						 page_count, KM_NOFS);
279 			if (bp->b_pages == NULL)
280 				return -ENOMEM;
281 		}
282 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
283 	}
284 	return 0;
285 }
286 
287 /*
288  *	Frees b_pages if it was allocated.
289  */
290 STATIC void
291 _xfs_buf_free_pages(
292 	xfs_buf_t	*bp)
293 {
294 	if (bp->b_pages != bp->b_page_array) {
295 		kmem_free(bp->b_pages);
296 		bp->b_pages = NULL;
297 	}
298 }
299 
300 /*
301  *	Releases the specified buffer.
302  *
303  * 	The modification state of any associated pages is left unchanged.
304  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
305  * 	hashed and refcounted buffers
306  */
307 void
308 xfs_buf_free(
309 	xfs_buf_t		*bp)
310 {
311 	trace_xfs_buf_free(bp, _RET_IP_);
312 
313 	ASSERT(list_empty(&bp->b_lru));
314 
315 	if (bp->b_flags & _XBF_PAGES) {
316 		uint		i;
317 
318 		if (xfs_buf_is_vmapped(bp))
319 			vm_unmap_ram(bp->b_addr - bp->b_offset,
320 					bp->b_page_count);
321 
322 		for (i = 0; i < bp->b_page_count; i++) {
323 			struct page	*page = bp->b_pages[i];
324 
325 			__free_page(page);
326 		}
327 	} else if (bp->b_flags & _XBF_KMEM)
328 		kmem_free(bp->b_addr);
329 	_xfs_buf_free_pages(bp);
330 	xfs_buf_free_maps(bp);
331 	kmem_zone_free(xfs_buf_zone, bp);
332 }
333 
334 /*
335  * Allocates all the pages for buffer in question and builds it's page list.
336  */
337 STATIC int
338 xfs_buf_allocate_memory(
339 	xfs_buf_t		*bp,
340 	uint			flags)
341 {
342 	size_t			size;
343 	size_t			nbytes, offset;
344 	gfp_t			gfp_mask = xb_to_gfp(flags);
345 	unsigned short		page_count, i;
346 	xfs_off_t		start, end;
347 	int			error;
348 
349 	/*
350 	 * for buffers that are contained within a single page, just allocate
351 	 * the memory from the heap - there's no need for the complexity of
352 	 * page arrays to keep allocation down to order 0.
353 	 */
354 	size = BBTOB(bp->b_length);
355 	if (size < PAGE_SIZE) {
356 		bp->b_addr = kmem_alloc(size, KM_NOFS);
357 		if (!bp->b_addr) {
358 			/* low memory - use alloc_page loop instead */
359 			goto use_alloc_page;
360 		}
361 
362 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
363 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
364 			/* b_addr spans two pages - use alloc_page instead */
365 			kmem_free(bp->b_addr);
366 			bp->b_addr = NULL;
367 			goto use_alloc_page;
368 		}
369 		bp->b_offset = offset_in_page(bp->b_addr);
370 		bp->b_pages = bp->b_page_array;
371 		bp->b_pages[0] = virt_to_page(bp->b_addr);
372 		bp->b_page_count = 1;
373 		bp->b_flags |= _XBF_KMEM;
374 		return 0;
375 	}
376 
377 use_alloc_page:
378 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
379 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
380 								>> PAGE_SHIFT;
381 	page_count = end - start;
382 	error = _xfs_buf_get_pages(bp, page_count);
383 	if (unlikely(error))
384 		return error;
385 
386 	offset = bp->b_offset;
387 	bp->b_flags |= _XBF_PAGES;
388 
389 	for (i = 0; i < bp->b_page_count; i++) {
390 		struct page	*page;
391 		uint		retries = 0;
392 retry:
393 		page = alloc_page(gfp_mask);
394 		if (unlikely(page == NULL)) {
395 			if (flags & XBF_READ_AHEAD) {
396 				bp->b_page_count = i;
397 				error = -ENOMEM;
398 				goto out_free_pages;
399 			}
400 
401 			/*
402 			 * This could deadlock.
403 			 *
404 			 * But until all the XFS lowlevel code is revamped to
405 			 * handle buffer allocation failures we can't do much.
406 			 */
407 			if (!(++retries % 100))
408 				xfs_err(NULL,
409 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
410 					current->comm, current->pid,
411 					__func__, gfp_mask);
412 
413 			XFS_STATS_INC(bp->b_mount, xb_page_retries);
414 			congestion_wait(BLK_RW_ASYNC, HZ/50);
415 			goto retry;
416 		}
417 
418 		XFS_STATS_INC(bp->b_mount, xb_page_found);
419 
420 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
421 		size -= nbytes;
422 		bp->b_pages[i] = page;
423 		offset = 0;
424 	}
425 	return 0;
426 
427 out_free_pages:
428 	for (i = 0; i < bp->b_page_count; i++)
429 		__free_page(bp->b_pages[i]);
430 	bp->b_flags &= ~_XBF_PAGES;
431 	return error;
432 }
433 
434 /*
435  *	Map buffer into kernel address-space if necessary.
436  */
437 STATIC int
438 _xfs_buf_map_pages(
439 	xfs_buf_t		*bp,
440 	uint			flags)
441 {
442 	ASSERT(bp->b_flags & _XBF_PAGES);
443 	if (bp->b_page_count == 1) {
444 		/* A single page buffer is always mappable */
445 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
446 	} else if (flags & XBF_UNMAPPED) {
447 		bp->b_addr = NULL;
448 	} else {
449 		int retried = 0;
450 		unsigned nofs_flag;
451 
452 		/*
453 		 * vm_map_ram() will allocate auxillary structures (e.g.
454 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
455 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
456 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
457 		 * memory reclaim re-entering the filesystem here and
458 		 * potentially deadlocking.
459 		 */
460 		nofs_flag = memalloc_nofs_save();
461 		do {
462 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
463 						-1, PAGE_KERNEL);
464 			if (bp->b_addr)
465 				break;
466 			vm_unmap_aliases();
467 		} while (retried++ <= 1);
468 		memalloc_nofs_restore(nofs_flag);
469 
470 		if (!bp->b_addr)
471 			return -ENOMEM;
472 		bp->b_addr += bp->b_offset;
473 	}
474 
475 	return 0;
476 }
477 
478 /*
479  *	Finding and Reading Buffers
480  */
481 static int
482 _xfs_buf_obj_cmp(
483 	struct rhashtable_compare_arg	*arg,
484 	const void			*obj)
485 {
486 	const struct xfs_buf_map	*map = arg->key;
487 	const struct xfs_buf		*bp = obj;
488 
489 	/*
490 	 * The key hashing in the lookup path depends on the key being the
491 	 * first element of the compare_arg, make sure to assert this.
492 	 */
493 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
494 
495 	if (bp->b_bn != map->bm_bn)
496 		return 1;
497 
498 	if (unlikely(bp->b_length != map->bm_len)) {
499 		/*
500 		 * found a block number match. If the range doesn't
501 		 * match, the only way this is allowed is if the buffer
502 		 * in the cache is stale and the transaction that made
503 		 * it stale has not yet committed. i.e. we are
504 		 * reallocating a busy extent. Skip this buffer and
505 		 * continue searching for an exact match.
506 		 */
507 		ASSERT(bp->b_flags & XBF_STALE);
508 		return 1;
509 	}
510 	return 0;
511 }
512 
513 static const struct rhashtable_params xfs_buf_hash_params = {
514 	.min_size		= 32,	/* empty AGs have minimal footprint */
515 	.nelem_hint		= 16,
516 	.key_len		= sizeof(xfs_daddr_t),
517 	.key_offset		= offsetof(struct xfs_buf, b_bn),
518 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
519 	.automatic_shrinking	= true,
520 	.obj_cmpfn		= _xfs_buf_obj_cmp,
521 };
522 
523 int
524 xfs_buf_hash_init(
525 	struct xfs_perag	*pag)
526 {
527 	spin_lock_init(&pag->pag_buf_lock);
528 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
529 }
530 
531 void
532 xfs_buf_hash_destroy(
533 	struct xfs_perag	*pag)
534 {
535 	rhashtable_destroy(&pag->pag_buf_hash);
536 }
537 
538 /*
539  * Look up a buffer in the buffer cache and return it referenced and locked
540  * in @found_bp.
541  *
542  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
543  * cache.
544  *
545  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
546  * -EAGAIN if we fail to lock it.
547  *
548  * Return values are:
549  *	-EFSCORRUPTED if have been supplied with an invalid address
550  *	-EAGAIN on trylock failure
551  *	-ENOENT if we fail to find a match and @new_bp was NULL
552  *	0, with @found_bp:
553  *		- @new_bp if we inserted it into the cache
554  *		- the buffer we found and locked.
555  */
556 static int
557 xfs_buf_find(
558 	struct xfs_buftarg	*btp,
559 	struct xfs_buf_map	*map,
560 	int			nmaps,
561 	xfs_buf_flags_t		flags,
562 	struct xfs_buf		*new_bp,
563 	struct xfs_buf		**found_bp)
564 {
565 	struct xfs_perag	*pag;
566 	xfs_buf_t		*bp;
567 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
568 	xfs_daddr_t		eofs;
569 	int			i;
570 
571 	*found_bp = NULL;
572 
573 	for (i = 0; i < nmaps; i++)
574 		cmap.bm_len += map[i].bm_len;
575 
576 	/* Check for IOs smaller than the sector size / not sector aligned */
577 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
578 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
579 
580 	/*
581 	 * Corrupted block numbers can get through to here, unfortunately, so we
582 	 * have to check that the buffer falls within the filesystem bounds.
583 	 */
584 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
585 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
586 		xfs_alert(btp->bt_mount,
587 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
588 			  __func__, cmap.bm_bn, eofs);
589 		WARN_ON(1);
590 		return -EFSCORRUPTED;
591 	}
592 
593 	pag = xfs_perag_get(btp->bt_mount,
594 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
595 
596 	spin_lock(&pag->pag_buf_lock);
597 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
598 				    xfs_buf_hash_params);
599 	if (bp) {
600 		atomic_inc(&bp->b_hold);
601 		goto found;
602 	}
603 
604 	/* No match found */
605 	if (!new_bp) {
606 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
607 		spin_unlock(&pag->pag_buf_lock);
608 		xfs_perag_put(pag);
609 		return -ENOENT;
610 	}
611 
612 	/* the buffer keeps the perag reference until it is freed */
613 	new_bp->b_pag = pag;
614 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
615 			       xfs_buf_hash_params);
616 	spin_unlock(&pag->pag_buf_lock);
617 	*found_bp = new_bp;
618 	return 0;
619 
620 found:
621 	spin_unlock(&pag->pag_buf_lock);
622 	xfs_perag_put(pag);
623 
624 	if (!xfs_buf_trylock(bp)) {
625 		if (flags & XBF_TRYLOCK) {
626 			xfs_buf_rele(bp);
627 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
628 			return -EAGAIN;
629 		}
630 		xfs_buf_lock(bp);
631 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
632 	}
633 
634 	/*
635 	 * if the buffer is stale, clear all the external state associated with
636 	 * it. We need to keep flags such as how we allocated the buffer memory
637 	 * intact here.
638 	 */
639 	if (bp->b_flags & XBF_STALE) {
640 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
641 		ASSERT(bp->b_iodone == NULL);
642 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
643 		bp->b_ops = NULL;
644 	}
645 
646 	trace_xfs_buf_find(bp, flags, _RET_IP_);
647 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
648 	*found_bp = bp;
649 	return 0;
650 }
651 
652 struct xfs_buf *
653 xfs_buf_incore(
654 	struct xfs_buftarg	*target,
655 	xfs_daddr_t		blkno,
656 	size_t			numblks,
657 	xfs_buf_flags_t		flags)
658 {
659 	struct xfs_buf		*bp;
660 	int			error;
661 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
662 
663 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
664 	if (error)
665 		return NULL;
666 	return bp;
667 }
668 
669 /*
670  * Assembles a buffer covering the specified range. The code is optimised for
671  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
672  * more hits than misses.
673  */
674 struct xfs_buf *
675 xfs_buf_get_map(
676 	struct xfs_buftarg	*target,
677 	struct xfs_buf_map	*map,
678 	int			nmaps,
679 	xfs_buf_flags_t		flags)
680 {
681 	struct xfs_buf		*bp;
682 	struct xfs_buf		*new_bp;
683 	int			error = 0;
684 
685 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
686 
687 	switch (error) {
688 	case 0:
689 		/* cache hit */
690 		goto found;
691 	case -EAGAIN:
692 		/* cache hit, trylock failure, caller handles failure */
693 		ASSERT(flags & XBF_TRYLOCK);
694 		return NULL;
695 	case -ENOENT:
696 		/* cache miss, go for insert */
697 		break;
698 	case -EFSCORRUPTED:
699 	default:
700 		/*
701 		 * None of the higher layers understand failure types
702 		 * yet, so return NULL to signal a fatal lookup error.
703 		 */
704 		return NULL;
705 	}
706 
707 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
708 	if (unlikely(!new_bp))
709 		return NULL;
710 
711 	error = xfs_buf_allocate_memory(new_bp, flags);
712 	if (error) {
713 		xfs_buf_free(new_bp);
714 		return NULL;
715 	}
716 
717 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
718 	if (error) {
719 		xfs_buf_free(new_bp);
720 		return NULL;
721 	}
722 
723 	if (bp != new_bp)
724 		xfs_buf_free(new_bp);
725 
726 found:
727 	if (!bp->b_addr) {
728 		error = _xfs_buf_map_pages(bp, flags);
729 		if (unlikely(error)) {
730 			xfs_warn(target->bt_mount,
731 				"%s: failed to map pagesn", __func__);
732 			xfs_buf_relse(bp);
733 			return NULL;
734 		}
735 	}
736 
737 	/*
738 	 * Clear b_error if this is a lookup from a caller that doesn't expect
739 	 * valid data to be found in the buffer.
740 	 */
741 	if (!(flags & XBF_READ))
742 		xfs_buf_ioerror(bp, 0);
743 
744 	XFS_STATS_INC(target->bt_mount, xb_get);
745 	trace_xfs_buf_get(bp, flags, _RET_IP_);
746 	return bp;
747 }
748 
749 STATIC int
750 _xfs_buf_read(
751 	xfs_buf_t		*bp,
752 	xfs_buf_flags_t		flags)
753 {
754 	ASSERT(!(flags & XBF_WRITE));
755 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
756 
757 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
758 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
759 
760 	return xfs_buf_submit(bp);
761 }
762 
763 /*
764  * Reverify a buffer found in cache without an attached ->b_ops.
765  *
766  * If the caller passed an ops structure and the buffer doesn't have ops
767  * assigned, set the ops and use it to verify the contents. If verification
768  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
769  * already in XBF_DONE state on entry.
770  *
771  * Under normal operations, every in-core buffer is verified on read I/O
772  * completion. There are two scenarios that can lead to in-core buffers without
773  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
774  * filesystem, though these buffers are purged at the end of recovery. The
775  * other is online repair, which intentionally reads with a NULL buffer ops to
776  * run several verifiers across an in-core buffer in order to establish buffer
777  * type.  If repair can't establish that, the buffer will be left in memory
778  * with NULL buffer ops.
779  */
780 int
781 xfs_buf_reverify(
782 	struct xfs_buf		*bp,
783 	const struct xfs_buf_ops *ops)
784 {
785 	ASSERT(bp->b_flags & XBF_DONE);
786 	ASSERT(bp->b_error == 0);
787 
788 	if (!ops || bp->b_ops)
789 		return 0;
790 
791 	bp->b_ops = ops;
792 	bp->b_ops->verify_read(bp);
793 	if (bp->b_error)
794 		bp->b_flags &= ~XBF_DONE;
795 	return bp->b_error;
796 }
797 
798 xfs_buf_t *
799 xfs_buf_read_map(
800 	struct xfs_buftarg	*target,
801 	struct xfs_buf_map	*map,
802 	int			nmaps,
803 	xfs_buf_flags_t		flags,
804 	const struct xfs_buf_ops *ops)
805 {
806 	struct xfs_buf		*bp;
807 
808 	flags |= XBF_READ;
809 
810 	bp = xfs_buf_get_map(target, map, nmaps, flags);
811 	if (!bp)
812 		return NULL;
813 
814 	trace_xfs_buf_read(bp, flags, _RET_IP_);
815 
816 	if (!(bp->b_flags & XBF_DONE)) {
817 		XFS_STATS_INC(target->bt_mount, xb_get_read);
818 		bp->b_ops = ops;
819 		_xfs_buf_read(bp, flags);
820 		return bp;
821 	}
822 
823 	xfs_buf_reverify(bp, ops);
824 
825 	if (flags & XBF_ASYNC) {
826 		/*
827 		 * Read ahead call which is already satisfied,
828 		 * drop the buffer
829 		 */
830 		xfs_buf_relse(bp);
831 		return NULL;
832 	}
833 
834 	/* We do not want read in the flags */
835 	bp->b_flags &= ~XBF_READ;
836 	ASSERT(bp->b_ops != NULL || ops == NULL);
837 	return bp;
838 }
839 
840 /*
841  *	If we are not low on memory then do the readahead in a deadlock
842  *	safe manner.
843  */
844 void
845 xfs_buf_readahead_map(
846 	struct xfs_buftarg	*target,
847 	struct xfs_buf_map	*map,
848 	int			nmaps,
849 	const struct xfs_buf_ops *ops)
850 {
851 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
852 		return;
853 
854 	xfs_buf_read_map(target, map, nmaps,
855 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
856 }
857 
858 /*
859  * Read an uncached buffer from disk. Allocates and returns a locked
860  * buffer containing the disk contents or nothing.
861  */
862 int
863 xfs_buf_read_uncached(
864 	struct xfs_buftarg	*target,
865 	xfs_daddr_t		daddr,
866 	size_t			numblks,
867 	int			flags,
868 	struct xfs_buf		**bpp,
869 	const struct xfs_buf_ops *ops)
870 {
871 	struct xfs_buf		*bp;
872 
873 	*bpp = NULL;
874 
875 	bp = xfs_buf_get_uncached(target, numblks, flags);
876 	if (!bp)
877 		return -ENOMEM;
878 
879 	/* set up the buffer for a read IO */
880 	ASSERT(bp->b_map_count == 1);
881 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
882 	bp->b_maps[0].bm_bn = daddr;
883 	bp->b_flags |= XBF_READ;
884 	bp->b_ops = ops;
885 
886 	xfs_buf_submit(bp);
887 	if (bp->b_error) {
888 		int	error = bp->b_error;
889 		xfs_buf_relse(bp);
890 		return error;
891 	}
892 
893 	*bpp = bp;
894 	return 0;
895 }
896 
897 xfs_buf_t *
898 xfs_buf_get_uncached(
899 	struct xfs_buftarg	*target,
900 	size_t			numblks,
901 	int			flags)
902 {
903 	unsigned long		page_count;
904 	int			error, i;
905 	struct xfs_buf		*bp;
906 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
907 
908 	/* flags might contain irrelevant bits, pass only what we care about */
909 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
910 	if (unlikely(bp == NULL))
911 		goto fail;
912 
913 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
914 	error = _xfs_buf_get_pages(bp, page_count);
915 	if (error)
916 		goto fail_free_buf;
917 
918 	for (i = 0; i < page_count; i++) {
919 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
920 		if (!bp->b_pages[i])
921 			goto fail_free_mem;
922 	}
923 	bp->b_flags |= _XBF_PAGES;
924 
925 	error = _xfs_buf_map_pages(bp, 0);
926 	if (unlikely(error)) {
927 		xfs_warn(target->bt_mount,
928 			"%s: failed to map pages", __func__);
929 		goto fail_free_mem;
930 	}
931 
932 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
933 	return bp;
934 
935  fail_free_mem:
936 	while (--i >= 0)
937 		__free_page(bp->b_pages[i]);
938 	_xfs_buf_free_pages(bp);
939  fail_free_buf:
940 	xfs_buf_free_maps(bp);
941 	kmem_zone_free(xfs_buf_zone, bp);
942  fail:
943 	return NULL;
944 }
945 
946 /*
947  *	Increment reference count on buffer, to hold the buffer concurrently
948  *	with another thread which may release (free) the buffer asynchronously.
949  *	Must hold the buffer already to call this function.
950  */
951 void
952 xfs_buf_hold(
953 	xfs_buf_t		*bp)
954 {
955 	trace_xfs_buf_hold(bp, _RET_IP_);
956 	atomic_inc(&bp->b_hold);
957 }
958 
959 /*
960  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
961  * placed on LRU or freed (depending on b_lru_ref).
962  */
963 void
964 xfs_buf_rele(
965 	xfs_buf_t		*bp)
966 {
967 	struct xfs_perag	*pag = bp->b_pag;
968 	bool			release;
969 	bool			freebuf = false;
970 
971 	trace_xfs_buf_rele(bp, _RET_IP_);
972 
973 	if (!pag) {
974 		ASSERT(list_empty(&bp->b_lru));
975 		if (atomic_dec_and_test(&bp->b_hold)) {
976 			xfs_buf_ioacct_dec(bp);
977 			xfs_buf_free(bp);
978 		}
979 		return;
980 	}
981 
982 	ASSERT(atomic_read(&bp->b_hold) > 0);
983 
984 	/*
985 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
986 	 * calls. The pag_buf_lock being taken on the last reference only
987 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
988 	 * to last reference we drop here is not serialised against the last
989 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
990 	 * first, the last "release" reference can win the race to the lock and
991 	 * free the buffer before the second-to-last reference is processed,
992 	 * leading to a use-after-free scenario.
993 	 */
994 	spin_lock(&bp->b_lock);
995 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
996 	if (!release) {
997 		/*
998 		 * Drop the in-flight state if the buffer is already on the LRU
999 		 * and it holds the only reference. This is racy because we
1000 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1001 		 * ensures the decrement occurs only once per-buf.
1002 		 */
1003 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1004 			__xfs_buf_ioacct_dec(bp);
1005 		goto out_unlock;
1006 	}
1007 
1008 	/* the last reference has been dropped ... */
1009 	__xfs_buf_ioacct_dec(bp);
1010 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1011 		/*
1012 		 * If the buffer is added to the LRU take a new reference to the
1013 		 * buffer for the LRU and clear the (now stale) dispose list
1014 		 * state flag
1015 		 */
1016 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1017 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1018 			atomic_inc(&bp->b_hold);
1019 		}
1020 		spin_unlock(&pag->pag_buf_lock);
1021 	} else {
1022 		/*
1023 		 * most of the time buffers will already be removed from the
1024 		 * LRU, so optimise that case by checking for the
1025 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1026 		 * was on was the disposal list
1027 		 */
1028 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1029 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1030 		} else {
1031 			ASSERT(list_empty(&bp->b_lru));
1032 		}
1033 
1034 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1035 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1036 				       xfs_buf_hash_params);
1037 		spin_unlock(&pag->pag_buf_lock);
1038 		xfs_perag_put(pag);
1039 		freebuf = true;
1040 	}
1041 
1042 out_unlock:
1043 	spin_unlock(&bp->b_lock);
1044 
1045 	if (freebuf)
1046 		xfs_buf_free(bp);
1047 }
1048 
1049 
1050 /*
1051  *	Lock a buffer object, if it is not already locked.
1052  *
1053  *	If we come across a stale, pinned, locked buffer, we know that we are
1054  *	being asked to lock a buffer that has been reallocated. Because it is
1055  *	pinned, we know that the log has not been pushed to disk and hence it
1056  *	will still be locked.  Rather than continuing to have trylock attempts
1057  *	fail until someone else pushes the log, push it ourselves before
1058  *	returning.  This means that the xfsaild will not get stuck trying
1059  *	to push on stale inode buffers.
1060  */
1061 int
1062 xfs_buf_trylock(
1063 	struct xfs_buf		*bp)
1064 {
1065 	int			locked;
1066 
1067 	locked = down_trylock(&bp->b_sema) == 0;
1068 	if (locked)
1069 		trace_xfs_buf_trylock(bp, _RET_IP_);
1070 	else
1071 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1072 	return locked;
1073 }
1074 
1075 /*
1076  *	Lock a buffer object.
1077  *
1078  *	If we come across a stale, pinned, locked buffer, we know that we
1079  *	are being asked to lock a buffer that has been reallocated. Because
1080  *	it is pinned, we know that the log has not been pushed to disk and
1081  *	hence it will still be locked. Rather than sleeping until someone
1082  *	else pushes the log, push it ourselves before trying to get the lock.
1083  */
1084 void
1085 xfs_buf_lock(
1086 	struct xfs_buf		*bp)
1087 {
1088 	trace_xfs_buf_lock(bp, _RET_IP_);
1089 
1090 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1091 		xfs_log_force(bp->b_mount, 0);
1092 	down(&bp->b_sema);
1093 
1094 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1095 }
1096 
1097 void
1098 xfs_buf_unlock(
1099 	struct xfs_buf		*bp)
1100 {
1101 	ASSERT(xfs_buf_islocked(bp));
1102 
1103 	up(&bp->b_sema);
1104 	trace_xfs_buf_unlock(bp, _RET_IP_);
1105 }
1106 
1107 STATIC void
1108 xfs_buf_wait_unpin(
1109 	xfs_buf_t		*bp)
1110 {
1111 	DECLARE_WAITQUEUE	(wait, current);
1112 
1113 	if (atomic_read(&bp->b_pin_count) == 0)
1114 		return;
1115 
1116 	add_wait_queue(&bp->b_waiters, &wait);
1117 	for (;;) {
1118 		set_current_state(TASK_UNINTERRUPTIBLE);
1119 		if (atomic_read(&bp->b_pin_count) == 0)
1120 			break;
1121 		io_schedule();
1122 	}
1123 	remove_wait_queue(&bp->b_waiters, &wait);
1124 	set_current_state(TASK_RUNNING);
1125 }
1126 
1127 /*
1128  *	Buffer Utility Routines
1129  */
1130 
1131 void
1132 xfs_buf_ioend(
1133 	struct xfs_buf	*bp)
1134 {
1135 	bool		read = bp->b_flags & XBF_READ;
1136 
1137 	trace_xfs_buf_iodone(bp, _RET_IP_);
1138 
1139 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1140 
1141 	/*
1142 	 * Pull in IO completion errors now. We are guaranteed to be running
1143 	 * single threaded, so we don't need the lock to read b_io_error.
1144 	 */
1145 	if (!bp->b_error && bp->b_io_error)
1146 		xfs_buf_ioerror(bp, bp->b_io_error);
1147 
1148 	/* Only validate buffers that were read without errors */
1149 	if (read && !bp->b_error && bp->b_ops) {
1150 		ASSERT(!bp->b_iodone);
1151 		bp->b_ops->verify_read(bp);
1152 	}
1153 
1154 	if (!bp->b_error)
1155 		bp->b_flags |= XBF_DONE;
1156 
1157 	if (bp->b_iodone)
1158 		(*(bp->b_iodone))(bp);
1159 	else if (bp->b_flags & XBF_ASYNC)
1160 		xfs_buf_relse(bp);
1161 	else
1162 		complete(&bp->b_iowait);
1163 }
1164 
1165 static void
1166 xfs_buf_ioend_work(
1167 	struct work_struct	*work)
1168 {
1169 	struct xfs_buf		*bp =
1170 		container_of(work, xfs_buf_t, b_ioend_work);
1171 
1172 	xfs_buf_ioend(bp);
1173 }
1174 
1175 static void
1176 xfs_buf_ioend_async(
1177 	struct xfs_buf	*bp)
1178 {
1179 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1180 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1181 }
1182 
1183 void
1184 __xfs_buf_ioerror(
1185 	xfs_buf_t		*bp,
1186 	int			error,
1187 	xfs_failaddr_t		failaddr)
1188 {
1189 	ASSERT(error <= 0 && error >= -1000);
1190 	bp->b_error = error;
1191 	trace_xfs_buf_ioerror(bp, error, failaddr);
1192 }
1193 
1194 void
1195 xfs_buf_ioerror_alert(
1196 	struct xfs_buf		*bp,
1197 	const char		*func)
1198 {
1199 	xfs_alert(bp->b_mount,
1200 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1201 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1202 			-bp->b_error);
1203 }
1204 
1205 int
1206 xfs_bwrite(
1207 	struct xfs_buf		*bp)
1208 {
1209 	int			error;
1210 
1211 	ASSERT(xfs_buf_islocked(bp));
1212 
1213 	bp->b_flags |= XBF_WRITE;
1214 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1215 			 XBF_WRITE_FAIL | XBF_DONE);
1216 
1217 	error = xfs_buf_submit(bp);
1218 	if (error)
1219 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1220 	return error;
1221 }
1222 
1223 static void
1224 xfs_buf_bio_end_io(
1225 	struct bio		*bio)
1226 {
1227 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1228 
1229 	/*
1230 	 * don't overwrite existing errors - otherwise we can lose errors on
1231 	 * buffers that require multiple bios to complete.
1232 	 */
1233 	if (bio->bi_status) {
1234 		int error = blk_status_to_errno(bio->bi_status);
1235 
1236 		cmpxchg(&bp->b_io_error, 0, error);
1237 	}
1238 
1239 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1240 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1241 
1242 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1243 		xfs_buf_ioend_async(bp);
1244 	bio_put(bio);
1245 }
1246 
1247 static void
1248 xfs_buf_ioapply_map(
1249 	struct xfs_buf	*bp,
1250 	int		map,
1251 	int		*buf_offset,
1252 	int		*count,
1253 	int		op,
1254 	int		op_flags)
1255 {
1256 	int		page_index;
1257 	int		total_nr_pages = bp->b_page_count;
1258 	int		nr_pages;
1259 	struct bio	*bio;
1260 	sector_t	sector =  bp->b_maps[map].bm_bn;
1261 	int		size;
1262 	int		offset;
1263 
1264 	/* skip the pages in the buffer before the start offset */
1265 	page_index = 0;
1266 	offset = *buf_offset;
1267 	while (offset >= PAGE_SIZE) {
1268 		page_index++;
1269 		offset -= PAGE_SIZE;
1270 	}
1271 
1272 	/*
1273 	 * Limit the IO size to the length of the current vector, and update the
1274 	 * remaining IO count for the next time around.
1275 	 */
1276 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1277 	*count -= size;
1278 	*buf_offset += size;
1279 
1280 next_chunk:
1281 	atomic_inc(&bp->b_io_remaining);
1282 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1283 
1284 	bio = bio_alloc(GFP_NOIO, nr_pages);
1285 	bio_set_dev(bio, bp->b_target->bt_bdev);
1286 	bio->bi_iter.bi_sector = sector;
1287 	bio->bi_end_io = xfs_buf_bio_end_io;
1288 	bio->bi_private = bp;
1289 	bio_set_op_attrs(bio, op, op_flags);
1290 
1291 	for (; size && nr_pages; nr_pages--, page_index++) {
1292 		int	rbytes, nbytes = PAGE_SIZE - offset;
1293 
1294 		if (nbytes > size)
1295 			nbytes = size;
1296 
1297 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1298 				      offset);
1299 		if (rbytes < nbytes)
1300 			break;
1301 
1302 		offset = 0;
1303 		sector += BTOBB(nbytes);
1304 		size -= nbytes;
1305 		total_nr_pages--;
1306 	}
1307 
1308 	if (likely(bio->bi_iter.bi_size)) {
1309 		if (xfs_buf_is_vmapped(bp)) {
1310 			flush_kernel_vmap_range(bp->b_addr,
1311 						xfs_buf_vmap_len(bp));
1312 		}
1313 		submit_bio(bio);
1314 		if (size)
1315 			goto next_chunk;
1316 	} else {
1317 		/*
1318 		 * This is guaranteed not to be the last io reference count
1319 		 * because the caller (xfs_buf_submit) holds a count itself.
1320 		 */
1321 		atomic_dec(&bp->b_io_remaining);
1322 		xfs_buf_ioerror(bp, -EIO);
1323 		bio_put(bio);
1324 	}
1325 
1326 }
1327 
1328 STATIC void
1329 _xfs_buf_ioapply(
1330 	struct xfs_buf	*bp)
1331 {
1332 	struct blk_plug	plug;
1333 	int		op;
1334 	int		op_flags = 0;
1335 	int		offset;
1336 	int		size;
1337 	int		i;
1338 
1339 	/*
1340 	 * Make sure we capture only current IO errors rather than stale errors
1341 	 * left over from previous use of the buffer (e.g. failed readahead).
1342 	 */
1343 	bp->b_error = 0;
1344 
1345 	if (bp->b_flags & XBF_WRITE) {
1346 		op = REQ_OP_WRITE;
1347 
1348 		/*
1349 		 * Run the write verifier callback function if it exists. If
1350 		 * this function fails it will mark the buffer with an error and
1351 		 * the IO should not be dispatched.
1352 		 */
1353 		if (bp->b_ops) {
1354 			bp->b_ops->verify_write(bp);
1355 			if (bp->b_error) {
1356 				xfs_force_shutdown(bp->b_mount,
1357 						   SHUTDOWN_CORRUPT_INCORE);
1358 				return;
1359 			}
1360 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1361 			struct xfs_mount *mp = bp->b_mount;
1362 
1363 			/*
1364 			 * non-crc filesystems don't attach verifiers during
1365 			 * log recovery, so don't warn for such filesystems.
1366 			 */
1367 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1368 				xfs_warn(mp,
1369 					"%s: no buf ops on daddr 0x%llx len %d",
1370 					__func__, bp->b_bn, bp->b_length);
1371 				xfs_hex_dump(bp->b_addr,
1372 						XFS_CORRUPTION_DUMP_LEN);
1373 				dump_stack();
1374 			}
1375 		}
1376 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1377 		op = REQ_OP_READ;
1378 		op_flags = REQ_RAHEAD;
1379 	} else {
1380 		op = REQ_OP_READ;
1381 	}
1382 
1383 	/* we only use the buffer cache for meta-data */
1384 	op_flags |= REQ_META;
1385 
1386 	/*
1387 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1388 	 * into the buffer and the desired IO size before we start -
1389 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1390 	 * subsequent call.
1391 	 */
1392 	offset = bp->b_offset;
1393 	size = BBTOB(bp->b_length);
1394 	blk_start_plug(&plug);
1395 	for (i = 0; i < bp->b_map_count; i++) {
1396 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1397 		if (bp->b_error)
1398 			break;
1399 		if (size <= 0)
1400 			break;	/* all done */
1401 	}
1402 	blk_finish_plug(&plug);
1403 }
1404 
1405 /*
1406  * Wait for I/O completion of a sync buffer and return the I/O error code.
1407  */
1408 static int
1409 xfs_buf_iowait(
1410 	struct xfs_buf	*bp)
1411 {
1412 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1413 
1414 	trace_xfs_buf_iowait(bp, _RET_IP_);
1415 	wait_for_completion(&bp->b_iowait);
1416 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1417 
1418 	return bp->b_error;
1419 }
1420 
1421 /*
1422  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1423  * the buffer lock ownership and the current reference to the IO. It is not
1424  * safe to reference the buffer after a call to this function unless the caller
1425  * holds an additional reference itself.
1426  */
1427 int
1428 __xfs_buf_submit(
1429 	struct xfs_buf	*bp,
1430 	bool		wait)
1431 {
1432 	int		error = 0;
1433 
1434 	trace_xfs_buf_submit(bp, _RET_IP_);
1435 
1436 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1437 
1438 	/* on shutdown we stale and complete the buffer immediately */
1439 	if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1440 		xfs_buf_ioerror(bp, -EIO);
1441 		bp->b_flags &= ~XBF_DONE;
1442 		xfs_buf_stale(bp);
1443 		xfs_buf_ioend(bp);
1444 		return -EIO;
1445 	}
1446 
1447 	/*
1448 	 * Grab a reference so the buffer does not go away underneath us. For
1449 	 * async buffers, I/O completion drops the callers reference, which
1450 	 * could occur before submission returns.
1451 	 */
1452 	xfs_buf_hold(bp);
1453 
1454 	if (bp->b_flags & XBF_WRITE)
1455 		xfs_buf_wait_unpin(bp);
1456 
1457 	/* clear the internal error state to avoid spurious errors */
1458 	bp->b_io_error = 0;
1459 
1460 	/*
1461 	 * Set the count to 1 initially, this will stop an I/O completion
1462 	 * callout which happens before we have started all the I/O from calling
1463 	 * xfs_buf_ioend too early.
1464 	 */
1465 	atomic_set(&bp->b_io_remaining, 1);
1466 	if (bp->b_flags & XBF_ASYNC)
1467 		xfs_buf_ioacct_inc(bp);
1468 	_xfs_buf_ioapply(bp);
1469 
1470 	/*
1471 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1472 	 * reference we took above. If we drop it to zero, run completion so
1473 	 * that we don't return to the caller with completion still pending.
1474 	 */
1475 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1476 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1477 			xfs_buf_ioend(bp);
1478 		else
1479 			xfs_buf_ioend_async(bp);
1480 	}
1481 
1482 	if (wait)
1483 		error = xfs_buf_iowait(bp);
1484 
1485 	/*
1486 	 * Release the hold that keeps the buffer referenced for the entire
1487 	 * I/O. Note that if the buffer is async, it is not safe to reference
1488 	 * after this release.
1489 	 */
1490 	xfs_buf_rele(bp);
1491 	return error;
1492 }
1493 
1494 void *
1495 xfs_buf_offset(
1496 	struct xfs_buf		*bp,
1497 	size_t			offset)
1498 {
1499 	struct page		*page;
1500 
1501 	if (bp->b_addr)
1502 		return bp->b_addr + offset;
1503 
1504 	offset += bp->b_offset;
1505 	page = bp->b_pages[offset >> PAGE_SHIFT];
1506 	return page_address(page) + (offset & (PAGE_SIZE-1));
1507 }
1508 
1509 void
1510 xfs_buf_zero(
1511 	struct xfs_buf		*bp,
1512 	size_t			boff,
1513 	size_t			bsize)
1514 {
1515 	size_t			bend;
1516 
1517 	bend = boff + bsize;
1518 	while (boff < bend) {
1519 		struct page	*page;
1520 		int		page_index, page_offset, csize;
1521 
1522 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1523 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1524 		page = bp->b_pages[page_index];
1525 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1526 				      BBTOB(bp->b_length) - boff);
1527 
1528 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1529 
1530 		memset(page_address(page) + page_offset, 0, csize);
1531 
1532 		boff += csize;
1533 	}
1534 }
1535 
1536 /*
1537  *	Handling of buffer targets (buftargs).
1538  */
1539 
1540 /*
1541  * Wait for any bufs with callbacks that have been submitted but have not yet
1542  * returned. These buffers will have an elevated hold count, so wait on those
1543  * while freeing all the buffers only held by the LRU.
1544  */
1545 static enum lru_status
1546 xfs_buftarg_wait_rele(
1547 	struct list_head	*item,
1548 	struct list_lru_one	*lru,
1549 	spinlock_t		*lru_lock,
1550 	void			*arg)
1551 
1552 {
1553 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1554 	struct list_head	*dispose = arg;
1555 
1556 	if (atomic_read(&bp->b_hold) > 1) {
1557 		/* need to wait, so skip it this pass */
1558 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1559 		return LRU_SKIP;
1560 	}
1561 	if (!spin_trylock(&bp->b_lock))
1562 		return LRU_SKIP;
1563 
1564 	/*
1565 	 * clear the LRU reference count so the buffer doesn't get
1566 	 * ignored in xfs_buf_rele().
1567 	 */
1568 	atomic_set(&bp->b_lru_ref, 0);
1569 	bp->b_state |= XFS_BSTATE_DISPOSE;
1570 	list_lru_isolate_move(lru, item, dispose);
1571 	spin_unlock(&bp->b_lock);
1572 	return LRU_REMOVED;
1573 }
1574 
1575 void
1576 xfs_wait_buftarg(
1577 	struct xfs_buftarg	*btp)
1578 {
1579 	LIST_HEAD(dispose);
1580 	int loop = 0;
1581 
1582 	/*
1583 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1584 	 * released. This is critical as new buffers do not make the LRU until
1585 	 * they are released.
1586 	 *
1587 	 * Next, flush the buffer workqueue to ensure all completion processing
1588 	 * has finished. Just waiting on buffer locks is not sufficient for
1589 	 * async IO as the reference count held over IO is not released until
1590 	 * after the buffer lock is dropped. Hence we need to ensure here that
1591 	 * all reference counts have been dropped before we start walking the
1592 	 * LRU list.
1593 	 */
1594 	while (percpu_counter_sum(&btp->bt_io_count))
1595 		delay(100);
1596 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1597 
1598 	/* loop until there is nothing left on the lru list. */
1599 	while (list_lru_count(&btp->bt_lru)) {
1600 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1601 			      &dispose, LONG_MAX);
1602 
1603 		while (!list_empty(&dispose)) {
1604 			struct xfs_buf *bp;
1605 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1606 			list_del_init(&bp->b_lru);
1607 			if (bp->b_flags & XBF_WRITE_FAIL) {
1608 				xfs_alert(btp->bt_mount,
1609 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1610 					(long long)bp->b_bn);
1611 				xfs_alert(btp->bt_mount,
1612 "Please run xfs_repair to determine the extent of the problem.");
1613 			}
1614 			xfs_buf_rele(bp);
1615 		}
1616 		if (loop++ != 0)
1617 			delay(100);
1618 	}
1619 }
1620 
1621 static enum lru_status
1622 xfs_buftarg_isolate(
1623 	struct list_head	*item,
1624 	struct list_lru_one	*lru,
1625 	spinlock_t		*lru_lock,
1626 	void			*arg)
1627 {
1628 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1629 	struct list_head	*dispose = arg;
1630 
1631 	/*
1632 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1633 	 * If we fail to get the lock, just skip it.
1634 	 */
1635 	if (!spin_trylock(&bp->b_lock))
1636 		return LRU_SKIP;
1637 	/*
1638 	 * Decrement the b_lru_ref count unless the value is already
1639 	 * zero. If the value is already zero, we need to reclaim the
1640 	 * buffer, otherwise it gets another trip through the LRU.
1641 	 */
1642 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1643 		spin_unlock(&bp->b_lock);
1644 		return LRU_ROTATE;
1645 	}
1646 
1647 	bp->b_state |= XFS_BSTATE_DISPOSE;
1648 	list_lru_isolate_move(lru, item, dispose);
1649 	spin_unlock(&bp->b_lock);
1650 	return LRU_REMOVED;
1651 }
1652 
1653 static unsigned long
1654 xfs_buftarg_shrink_scan(
1655 	struct shrinker		*shrink,
1656 	struct shrink_control	*sc)
1657 {
1658 	struct xfs_buftarg	*btp = container_of(shrink,
1659 					struct xfs_buftarg, bt_shrinker);
1660 	LIST_HEAD(dispose);
1661 	unsigned long		freed;
1662 
1663 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1664 				     xfs_buftarg_isolate, &dispose);
1665 
1666 	while (!list_empty(&dispose)) {
1667 		struct xfs_buf *bp;
1668 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1669 		list_del_init(&bp->b_lru);
1670 		xfs_buf_rele(bp);
1671 	}
1672 
1673 	return freed;
1674 }
1675 
1676 static unsigned long
1677 xfs_buftarg_shrink_count(
1678 	struct shrinker		*shrink,
1679 	struct shrink_control	*sc)
1680 {
1681 	struct xfs_buftarg	*btp = container_of(shrink,
1682 					struct xfs_buftarg, bt_shrinker);
1683 	return list_lru_shrink_count(&btp->bt_lru, sc);
1684 }
1685 
1686 void
1687 xfs_free_buftarg(
1688 	struct xfs_buftarg	*btp)
1689 {
1690 	unregister_shrinker(&btp->bt_shrinker);
1691 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1692 	percpu_counter_destroy(&btp->bt_io_count);
1693 	list_lru_destroy(&btp->bt_lru);
1694 
1695 	xfs_blkdev_issue_flush(btp);
1696 
1697 	kmem_free(btp);
1698 }
1699 
1700 int
1701 xfs_setsize_buftarg(
1702 	xfs_buftarg_t		*btp,
1703 	unsigned int		sectorsize)
1704 {
1705 	/* Set up metadata sector size info */
1706 	btp->bt_meta_sectorsize = sectorsize;
1707 	btp->bt_meta_sectormask = sectorsize - 1;
1708 
1709 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1710 		xfs_warn(btp->bt_mount,
1711 			"Cannot set_blocksize to %u on device %pg",
1712 			sectorsize, btp->bt_bdev);
1713 		return -EINVAL;
1714 	}
1715 
1716 	/* Set up device logical sector size mask */
1717 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1718 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1719 
1720 	return 0;
1721 }
1722 
1723 /*
1724  * When allocating the initial buffer target we have not yet
1725  * read in the superblock, so don't know what sized sectors
1726  * are being used at this early stage.  Play safe.
1727  */
1728 STATIC int
1729 xfs_setsize_buftarg_early(
1730 	xfs_buftarg_t		*btp,
1731 	struct block_device	*bdev)
1732 {
1733 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1734 }
1735 
1736 xfs_buftarg_t *
1737 xfs_alloc_buftarg(
1738 	struct xfs_mount	*mp,
1739 	struct block_device	*bdev,
1740 	struct dax_device	*dax_dev)
1741 {
1742 	xfs_buftarg_t		*btp;
1743 
1744 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1745 
1746 	btp->bt_mount = mp;
1747 	btp->bt_dev =  bdev->bd_dev;
1748 	btp->bt_bdev = bdev;
1749 	btp->bt_daxdev = dax_dev;
1750 
1751 	if (xfs_setsize_buftarg_early(btp, bdev))
1752 		goto error_free;
1753 
1754 	if (list_lru_init(&btp->bt_lru))
1755 		goto error_free;
1756 
1757 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1758 		goto error_lru;
1759 
1760 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1761 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1762 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1763 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1764 	if (register_shrinker(&btp->bt_shrinker))
1765 		goto error_pcpu;
1766 	return btp;
1767 
1768 error_pcpu:
1769 	percpu_counter_destroy(&btp->bt_io_count);
1770 error_lru:
1771 	list_lru_destroy(&btp->bt_lru);
1772 error_free:
1773 	kmem_free(btp);
1774 	return NULL;
1775 }
1776 
1777 /*
1778  * Cancel a delayed write list.
1779  *
1780  * Remove each buffer from the list, clear the delwri queue flag and drop the
1781  * associated buffer reference.
1782  */
1783 void
1784 xfs_buf_delwri_cancel(
1785 	struct list_head	*list)
1786 {
1787 	struct xfs_buf		*bp;
1788 
1789 	while (!list_empty(list)) {
1790 		bp = list_first_entry(list, struct xfs_buf, b_list);
1791 
1792 		xfs_buf_lock(bp);
1793 		bp->b_flags &= ~_XBF_DELWRI_Q;
1794 		list_del_init(&bp->b_list);
1795 		xfs_buf_relse(bp);
1796 	}
1797 }
1798 
1799 /*
1800  * Add a buffer to the delayed write list.
1801  *
1802  * This queues a buffer for writeout if it hasn't already been.  Note that
1803  * neither this routine nor the buffer list submission functions perform
1804  * any internal synchronization.  It is expected that the lists are thread-local
1805  * to the callers.
1806  *
1807  * Returns true if we queued up the buffer, or false if it already had
1808  * been on the buffer list.
1809  */
1810 bool
1811 xfs_buf_delwri_queue(
1812 	struct xfs_buf		*bp,
1813 	struct list_head	*list)
1814 {
1815 	ASSERT(xfs_buf_islocked(bp));
1816 	ASSERT(!(bp->b_flags & XBF_READ));
1817 
1818 	/*
1819 	 * If the buffer is already marked delwri it already is queued up
1820 	 * by someone else for imediate writeout.  Just ignore it in that
1821 	 * case.
1822 	 */
1823 	if (bp->b_flags & _XBF_DELWRI_Q) {
1824 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1825 		return false;
1826 	}
1827 
1828 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1829 
1830 	/*
1831 	 * If a buffer gets written out synchronously or marked stale while it
1832 	 * is on a delwri list we lazily remove it. To do this, the other party
1833 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1834 	 * It remains referenced and on the list.  In a rare corner case it
1835 	 * might get readded to a delwri list after the synchronous writeout, in
1836 	 * which case we need just need to re-add the flag here.
1837 	 */
1838 	bp->b_flags |= _XBF_DELWRI_Q;
1839 	if (list_empty(&bp->b_list)) {
1840 		atomic_inc(&bp->b_hold);
1841 		list_add_tail(&bp->b_list, list);
1842 	}
1843 
1844 	return true;
1845 }
1846 
1847 /*
1848  * Compare function is more complex than it needs to be because
1849  * the return value is only 32 bits and we are doing comparisons
1850  * on 64 bit values
1851  */
1852 static int
1853 xfs_buf_cmp(
1854 	void		*priv,
1855 	struct list_head *a,
1856 	struct list_head *b)
1857 {
1858 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1859 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1860 	xfs_daddr_t		diff;
1861 
1862 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1863 	if (diff < 0)
1864 		return -1;
1865 	if (diff > 0)
1866 		return 1;
1867 	return 0;
1868 }
1869 
1870 /*
1871  * Submit buffers for write. If wait_list is specified, the buffers are
1872  * submitted using sync I/O and placed on the wait list such that the caller can
1873  * iowait each buffer. Otherwise async I/O is used and the buffers are released
1874  * at I/O completion time. In either case, buffers remain locked until I/O
1875  * completes and the buffer is released from the queue.
1876  */
1877 static int
1878 xfs_buf_delwri_submit_buffers(
1879 	struct list_head	*buffer_list,
1880 	struct list_head	*wait_list)
1881 {
1882 	struct xfs_buf		*bp, *n;
1883 	int			pinned = 0;
1884 	struct blk_plug		plug;
1885 
1886 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1887 
1888 	blk_start_plug(&plug);
1889 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1890 		if (!wait_list) {
1891 			if (xfs_buf_ispinned(bp)) {
1892 				pinned++;
1893 				continue;
1894 			}
1895 			if (!xfs_buf_trylock(bp))
1896 				continue;
1897 		} else {
1898 			xfs_buf_lock(bp);
1899 		}
1900 
1901 		/*
1902 		 * Someone else might have written the buffer synchronously or
1903 		 * marked it stale in the meantime.  In that case only the
1904 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1905 		 * reference and remove it from the list here.
1906 		 */
1907 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1908 			list_del_init(&bp->b_list);
1909 			xfs_buf_relse(bp);
1910 			continue;
1911 		}
1912 
1913 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1914 
1915 		/*
1916 		 * If we have a wait list, each buffer (and associated delwri
1917 		 * queue reference) transfers to it and is submitted
1918 		 * synchronously. Otherwise, drop the buffer from the delwri
1919 		 * queue and submit async.
1920 		 */
1921 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1922 		bp->b_flags |= XBF_WRITE;
1923 		if (wait_list) {
1924 			bp->b_flags &= ~XBF_ASYNC;
1925 			list_move_tail(&bp->b_list, wait_list);
1926 		} else {
1927 			bp->b_flags |= XBF_ASYNC;
1928 			list_del_init(&bp->b_list);
1929 		}
1930 		__xfs_buf_submit(bp, false);
1931 	}
1932 	blk_finish_plug(&plug);
1933 
1934 	return pinned;
1935 }
1936 
1937 /*
1938  * Write out a buffer list asynchronously.
1939  *
1940  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1941  * out and not wait for I/O completion on any of the buffers.  This interface
1942  * is only safely useable for callers that can track I/O completion by higher
1943  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1944  * function.
1945  *
1946  * Note: this function will skip buffers it would block on, and in doing so
1947  * leaves them on @buffer_list so they can be retried on a later pass. As such,
1948  * it is up to the caller to ensure that the buffer list is fully submitted or
1949  * cancelled appropriately when they are finished with the list. Failure to
1950  * cancel or resubmit the list until it is empty will result in leaked buffers
1951  * at unmount time.
1952  */
1953 int
1954 xfs_buf_delwri_submit_nowait(
1955 	struct list_head	*buffer_list)
1956 {
1957 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1958 }
1959 
1960 /*
1961  * Write out a buffer list synchronously.
1962  *
1963  * This will take the @buffer_list, write all buffers out and wait for I/O
1964  * completion on all of the buffers. @buffer_list is consumed by the function,
1965  * so callers must have some other way of tracking buffers if they require such
1966  * functionality.
1967  */
1968 int
1969 xfs_buf_delwri_submit(
1970 	struct list_head	*buffer_list)
1971 {
1972 	LIST_HEAD		(wait_list);
1973 	int			error = 0, error2;
1974 	struct xfs_buf		*bp;
1975 
1976 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1977 
1978 	/* Wait for IO to complete. */
1979 	while (!list_empty(&wait_list)) {
1980 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1981 
1982 		list_del_init(&bp->b_list);
1983 
1984 		/*
1985 		 * Wait on the locked buffer, check for errors and unlock and
1986 		 * release the delwri queue reference.
1987 		 */
1988 		error2 = xfs_buf_iowait(bp);
1989 		xfs_buf_relse(bp);
1990 		if (!error)
1991 			error = error2;
1992 	}
1993 
1994 	return error;
1995 }
1996 
1997 /*
1998  * Push a single buffer on a delwri queue.
1999  *
2000  * The purpose of this function is to submit a single buffer of a delwri queue
2001  * and return with the buffer still on the original queue. The waiting delwri
2002  * buffer submission infrastructure guarantees transfer of the delwri queue
2003  * buffer reference to a temporary wait list. We reuse this infrastructure to
2004  * transfer the buffer back to the original queue.
2005  *
2006  * Note the buffer transitions from the queued state, to the submitted and wait
2007  * listed state and back to the queued state during this call. The buffer
2008  * locking and queue management logic between _delwri_pushbuf() and
2009  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2010  * before returning.
2011  */
2012 int
2013 xfs_buf_delwri_pushbuf(
2014 	struct xfs_buf		*bp,
2015 	struct list_head	*buffer_list)
2016 {
2017 	LIST_HEAD		(submit_list);
2018 	int			error;
2019 
2020 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2021 
2022 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2023 
2024 	/*
2025 	 * Isolate the buffer to a new local list so we can submit it for I/O
2026 	 * independently from the rest of the original list.
2027 	 */
2028 	xfs_buf_lock(bp);
2029 	list_move(&bp->b_list, &submit_list);
2030 	xfs_buf_unlock(bp);
2031 
2032 	/*
2033 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2034 	 * the buffer on the wait list with the original reference. Rather than
2035 	 * bounce the buffer from a local wait list back to the original list
2036 	 * after I/O completion, reuse the original list as the wait list.
2037 	 */
2038 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2039 
2040 	/*
2041 	 * The buffer is now locked, under I/O and wait listed on the original
2042 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2043 	 * return with the buffer unlocked and on the original queue.
2044 	 */
2045 	error = xfs_buf_iowait(bp);
2046 	bp->b_flags |= _XBF_DELWRI_Q;
2047 	xfs_buf_unlock(bp);
2048 
2049 	return error;
2050 }
2051 
2052 int __init
2053 xfs_buf_init(void)
2054 {
2055 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2056 						KM_ZONE_HWALIGN, NULL);
2057 	if (!xfs_buf_zone)
2058 		goto out;
2059 
2060 	return 0;
2061 
2062  out:
2063 	return -ENOMEM;
2064 }
2065 
2066 void
2067 xfs_buf_terminate(void)
2068 {
2069 	kmem_zone_destroy(xfs_buf_zone);
2070 }
2071 
2072 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2073 {
2074 	/*
2075 	 * Set the lru reference count to 0 based on the error injection tag.
2076 	 * This allows userspace to disrupt buffer caching for debug/testing
2077 	 * purposes.
2078 	 */
2079 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2080 		lru_ref = 0;
2081 
2082 	atomic_set(&bp->b_lru_ref, lru_ref);
2083 }
2084 
2085 /*
2086  * Verify an on-disk magic value against the magic value specified in the
2087  * verifier structure. The verifier magic is in disk byte order so the caller is
2088  * expected to pass the value directly from disk.
2089  */
2090 bool
2091 xfs_verify_magic(
2092 	struct xfs_buf		*bp,
2093 	__be32			dmagic)
2094 {
2095 	struct xfs_mount	*mp = bp->b_mount;
2096 	int			idx;
2097 
2098 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2099 	if (unlikely(WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])))
2100 		return false;
2101 	return dmagic == bp->b_ops->magic[idx];
2102 }
2103 /*
2104  * Verify an on-disk magic value against the magic value specified in the
2105  * verifier structure. The verifier magic is in disk byte order so the caller is
2106  * expected to pass the value directly from disk.
2107  */
2108 bool
2109 xfs_verify_magic16(
2110 	struct xfs_buf		*bp,
2111 	__be16			dmagic)
2112 {
2113 	struct xfs_mount	*mp = bp->b_mount;
2114 	int			idx;
2115 
2116 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2117 	if (unlikely(WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])))
2118 		return false;
2119 	return dmagic == bp->b_ops->magic16[idx];
2120 }
2121