1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include <linux/backing-dev.h> 8 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_trace.h" 16 #include "xfs_log.h" 17 #include "xfs_errortag.h" 18 #include "xfs_error.h" 19 20 static kmem_zone_t *xfs_buf_zone; 21 22 #define xb_to_gfp(flags) \ 23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 24 25 /* 26 * Locking orders 27 * 28 * xfs_buf_ioacct_inc: 29 * xfs_buf_ioacct_dec: 30 * b_sema (caller holds) 31 * b_lock 32 * 33 * xfs_buf_stale: 34 * b_sema (caller holds) 35 * b_lock 36 * lru_lock 37 * 38 * xfs_buf_rele: 39 * b_lock 40 * pag_buf_lock 41 * lru_lock 42 * 43 * xfs_buftarg_wait_rele 44 * lru_lock 45 * b_lock (trylock due to inversion) 46 * 47 * xfs_buftarg_isolate 48 * lru_lock 49 * b_lock (trylock due to inversion) 50 */ 51 52 static inline int 53 xfs_buf_is_vmapped( 54 struct xfs_buf *bp) 55 { 56 /* 57 * Return true if the buffer is vmapped. 58 * 59 * b_addr is null if the buffer is not mapped, but the code is clever 60 * enough to know it doesn't have to map a single page, so the check has 61 * to be both for b_addr and bp->b_page_count > 1. 62 */ 63 return bp->b_addr && bp->b_page_count > 1; 64 } 65 66 static inline int 67 xfs_buf_vmap_len( 68 struct xfs_buf *bp) 69 { 70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 71 } 72 73 /* 74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 75 * this buffer. The count is incremented once per buffer (per hold cycle) 76 * because the corresponding decrement is deferred to buffer release. Buffers 77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 78 * tracking adds unnecessary overhead. This is used for sychronization purposes 79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of 80 * in-flight buffers. 81 * 82 * Buffers that are never released (e.g., superblock, iclog buffers) must set 83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 84 * never reaches zero and unmount hangs indefinitely. 85 */ 86 static inline void 87 xfs_buf_ioacct_inc( 88 struct xfs_buf *bp) 89 { 90 if (bp->b_flags & XBF_NO_IOACCT) 91 return; 92 93 ASSERT(bp->b_flags & XBF_ASYNC); 94 spin_lock(&bp->b_lock); 95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { 96 bp->b_state |= XFS_BSTATE_IN_FLIGHT; 97 percpu_counter_inc(&bp->b_target->bt_io_count); 98 } 99 spin_unlock(&bp->b_lock); 100 } 101 102 /* 103 * Clear the in-flight state on a buffer about to be released to the LRU or 104 * freed and unaccount from the buftarg. 105 */ 106 static inline void 107 __xfs_buf_ioacct_dec( 108 struct xfs_buf *bp) 109 { 110 lockdep_assert_held(&bp->b_lock); 111 112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { 113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; 114 percpu_counter_dec(&bp->b_target->bt_io_count); 115 } 116 } 117 118 static inline void 119 xfs_buf_ioacct_dec( 120 struct xfs_buf *bp) 121 { 122 spin_lock(&bp->b_lock); 123 __xfs_buf_ioacct_dec(bp); 124 spin_unlock(&bp->b_lock); 125 } 126 127 /* 128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 129 * b_lru_ref count so that the buffer is freed immediately when the buffer 130 * reference count falls to zero. If the buffer is already on the LRU, we need 131 * to remove the reference that LRU holds on the buffer. 132 * 133 * This prevents build-up of stale buffers on the LRU. 134 */ 135 void 136 xfs_buf_stale( 137 struct xfs_buf *bp) 138 { 139 ASSERT(xfs_buf_islocked(bp)); 140 141 bp->b_flags |= XBF_STALE; 142 143 /* 144 * Clear the delwri status so that a delwri queue walker will not 145 * flush this buffer to disk now that it is stale. The delwri queue has 146 * a reference to the buffer, so this is safe to do. 147 */ 148 bp->b_flags &= ~_XBF_DELWRI_Q; 149 150 /* 151 * Once the buffer is marked stale and unlocked, a subsequent lookup 152 * could reset b_flags. There is no guarantee that the buffer is 153 * unaccounted (released to LRU) before that occurs. Drop in-flight 154 * status now to preserve accounting consistency. 155 */ 156 spin_lock(&bp->b_lock); 157 __xfs_buf_ioacct_dec(bp); 158 159 atomic_set(&bp->b_lru_ref, 0); 160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 162 atomic_dec(&bp->b_hold); 163 164 ASSERT(atomic_read(&bp->b_hold) >= 1); 165 spin_unlock(&bp->b_lock); 166 } 167 168 static int 169 xfs_buf_get_maps( 170 struct xfs_buf *bp, 171 int map_count) 172 { 173 ASSERT(bp->b_maps == NULL); 174 bp->b_map_count = map_count; 175 176 if (map_count == 1) { 177 bp->b_maps = &bp->__b_map; 178 return 0; 179 } 180 181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 182 KM_NOFS); 183 if (!bp->b_maps) 184 return -ENOMEM; 185 return 0; 186 } 187 188 /* 189 * Frees b_pages if it was allocated. 190 */ 191 static void 192 xfs_buf_free_maps( 193 struct xfs_buf *bp) 194 { 195 if (bp->b_maps != &bp->__b_map) { 196 kmem_free(bp->b_maps); 197 bp->b_maps = NULL; 198 } 199 } 200 201 static struct xfs_buf * 202 _xfs_buf_alloc( 203 struct xfs_buftarg *target, 204 struct xfs_buf_map *map, 205 int nmaps, 206 xfs_buf_flags_t flags) 207 { 208 struct xfs_buf *bp; 209 int error; 210 int i; 211 212 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 213 if (unlikely(!bp)) 214 return NULL; 215 216 /* 217 * We don't want certain flags to appear in b_flags unless they are 218 * specifically set by later operations on the buffer. 219 */ 220 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 221 222 atomic_set(&bp->b_hold, 1); 223 atomic_set(&bp->b_lru_ref, 1); 224 init_completion(&bp->b_iowait); 225 INIT_LIST_HEAD(&bp->b_lru); 226 INIT_LIST_HEAD(&bp->b_list); 227 INIT_LIST_HEAD(&bp->b_li_list); 228 sema_init(&bp->b_sema, 0); /* held, no waiters */ 229 spin_lock_init(&bp->b_lock); 230 bp->b_target = target; 231 bp->b_mount = target->bt_mount; 232 bp->b_flags = flags; 233 234 /* 235 * Set length and io_length to the same value initially. 236 * I/O routines should use io_length, which will be the same in 237 * most cases but may be reset (e.g. XFS recovery). 238 */ 239 error = xfs_buf_get_maps(bp, nmaps); 240 if (error) { 241 kmem_zone_free(xfs_buf_zone, bp); 242 return NULL; 243 } 244 245 bp->b_bn = map[0].bm_bn; 246 bp->b_length = 0; 247 for (i = 0; i < nmaps; i++) { 248 bp->b_maps[i].bm_bn = map[i].bm_bn; 249 bp->b_maps[i].bm_len = map[i].bm_len; 250 bp->b_length += map[i].bm_len; 251 } 252 253 atomic_set(&bp->b_pin_count, 0); 254 init_waitqueue_head(&bp->b_waiters); 255 256 XFS_STATS_INC(bp->b_mount, xb_create); 257 trace_xfs_buf_init(bp, _RET_IP_); 258 259 return bp; 260 } 261 262 /* 263 * Allocate a page array capable of holding a specified number 264 * of pages, and point the page buf at it. 265 */ 266 STATIC int 267 _xfs_buf_get_pages( 268 xfs_buf_t *bp, 269 int page_count) 270 { 271 /* Make sure that we have a page list */ 272 if (bp->b_pages == NULL) { 273 bp->b_page_count = page_count; 274 if (page_count <= XB_PAGES) { 275 bp->b_pages = bp->b_page_array; 276 } else { 277 bp->b_pages = kmem_alloc(sizeof(struct page *) * 278 page_count, KM_NOFS); 279 if (bp->b_pages == NULL) 280 return -ENOMEM; 281 } 282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 283 } 284 return 0; 285 } 286 287 /* 288 * Frees b_pages if it was allocated. 289 */ 290 STATIC void 291 _xfs_buf_free_pages( 292 xfs_buf_t *bp) 293 { 294 if (bp->b_pages != bp->b_page_array) { 295 kmem_free(bp->b_pages); 296 bp->b_pages = NULL; 297 } 298 } 299 300 /* 301 * Releases the specified buffer. 302 * 303 * The modification state of any associated pages is left unchanged. 304 * The buffer must not be on any hash - use xfs_buf_rele instead for 305 * hashed and refcounted buffers 306 */ 307 void 308 xfs_buf_free( 309 xfs_buf_t *bp) 310 { 311 trace_xfs_buf_free(bp, _RET_IP_); 312 313 ASSERT(list_empty(&bp->b_lru)); 314 315 if (bp->b_flags & _XBF_PAGES) { 316 uint i; 317 318 if (xfs_buf_is_vmapped(bp)) 319 vm_unmap_ram(bp->b_addr - bp->b_offset, 320 bp->b_page_count); 321 322 for (i = 0; i < bp->b_page_count; i++) { 323 struct page *page = bp->b_pages[i]; 324 325 __free_page(page); 326 } 327 } else if (bp->b_flags & _XBF_KMEM) 328 kmem_free(bp->b_addr); 329 _xfs_buf_free_pages(bp); 330 xfs_buf_free_maps(bp); 331 kmem_zone_free(xfs_buf_zone, bp); 332 } 333 334 /* 335 * Allocates all the pages for buffer in question and builds it's page list. 336 */ 337 STATIC int 338 xfs_buf_allocate_memory( 339 xfs_buf_t *bp, 340 uint flags) 341 { 342 size_t size; 343 size_t nbytes, offset; 344 gfp_t gfp_mask = xb_to_gfp(flags); 345 unsigned short page_count, i; 346 xfs_off_t start, end; 347 int error; 348 349 /* 350 * for buffers that are contained within a single page, just allocate 351 * the memory from the heap - there's no need for the complexity of 352 * page arrays to keep allocation down to order 0. 353 */ 354 size = BBTOB(bp->b_length); 355 if (size < PAGE_SIZE) { 356 bp->b_addr = kmem_alloc(size, KM_NOFS); 357 if (!bp->b_addr) { 358 /* low memory - use alloc_page loop instead */ 359 goto use_alloc_page; 360 } 361 362 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 363 ((unsigned long)bp->b_addr & PAGE_MASK)) { 364 /* b_addr spans two pages - use alloc_page instead */ 365 kmem_free(bp->b_addr); 366 bp->b_addr = NULL; 367 goto use_alloc_page; 368 } 369 bp->b_offset = offset_in_page(bp->b_addr); 370 bp->b_pages = bp->b_page_array; 371 bp->b_pages[0] = virt_to_page(bp->b_addr); 372 bp->b_page_count = 1; 373 bp->b_flags |= _XBF_KMEM; 374 return 0; 375 } 376 377 use_alloc_page: 378 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 379 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 380 >> PAGE_SHIFT; 381 page_count = end - start; 382 error = _xfs_buf_get_pages(bp, page_count); 383 if (unlikely(error)) 384 return error; 385 386 offset = bp->b_offset; 387 bp->b_flags |= _XBF_PAGES; 388 389 for (i = 0; i < bp->b_page_count; i++) { 390 struct page *page; 391 uint retries = 0; 392 retry: 393 page = alloc_page(gfp_mask); 394 if (unlikely(page == NULL)) { 395 if (flags & XBF_READ_AHEAD) { 396 bp->b_page_count = i; 397 error = -ENOMEM; 398 goto out_free_pages; 399 } 400 401 /* 402 * This could deadlock. 403 * 404 * But until all the XFS lowlevel code is revamped to 405 * handle buffer allocation failures we can't do much. 406 */ 407 if (!(++retries % 100)) 408 xfs_err(NULL, 409 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", 410 current->comm, current->pid, 411 __func__, gfp_mask); 412 413 XFS_STATS_INC(bp->b_mount, xb_page_retries); 414 congestion_wait(BLK_RW_ASYNC, HZ/50); 415 goto retry; 416 } 417 418 XFS_STATS_INC(bp->b_mount, xb_page_found); 419 420 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 421 size -= nbytes; 422 bp->b_pages[i] = page; 423 offset = 0; 424 } 425 return 0; 426 427 out_free_pages: 428 for (i = 0; i < bp->b_page_count; i++) 429 __free_page(bp->b_pages[i]); 430 bp->b_flags &= ~_XBF_PAGES; 431 return error; 432 } 433 434 /* 435 * Map buffer into kernel address-space if necessary. 436 */ 437 STATIC int 438 _xfs_buf_map_pages( 439 xfs_buf_t *bp, 440 uint flags) 441 { 442 ASSERT(bp->b_flags & _XBF_PAGES); 443 if (bp->b_page_count == 1) { 444 /* A single page buffer is always mappable */ 445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 446 } else if (flags & XBF_UNMAPPED) { 447 bp->b_addr = NULL; 448 } else { 449 int retried = 0; 450 unsigned nofs_flag; 451 452 /* 453 * vm_map_ram() will allocate auxillary structures (e.g. 454 * pagetables) with GFP_KERNEL, yet we are likely to be under 455 * GFP_NOFS context here. Hence we need to tell memory reclaim 456 * that we are in such a context via PF_MEMALLOC_NOFS to prevent 457 * memory reclaim re-entering the filesystem here and 458 * potentially deadlocking. 459 */ 460 nofs_flag = memalloc_nofs_save(); 461 do { 462 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 463 -1, PAGE_KERNEL); 464 if (bp->b_addr) 465 break; 466 vm_unmap_aliases(); 467 } while (retried++ <= 1); 468 memalloc_nofs_restore(nofs_flag); 469 470 if (!bp->b_addr) 471 return -ENOMEM; 472 bp->b_addr += bp->b_offset; 473 } 474 475 return 0; 476 } 477 478 /* 479 * Finding and Reading Buffers 480 */ 481 static int 482 _xfs_buf_obj_cmp( 483 struct rhashtable_compare_arg *arg, 484 const void *obj) 485 { 486 const struct xfs_buf_map *map = arg->key; 487 const struct xfs_buf *bp = obj; 488 489 /* 490 * The key hashing in the lookup path depends on the key being the 491 * first element of the compare_arg, make sure to assert this. 492 */ 493 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 494 495 if (bp->b_bn != map->bm_bn) 496 return 1; 497 498 if (unlikely(bp->b_length != map->bm_len)) { 499 /* 500 * found a block number match. If the range doesn't 501 * match, the only way this is allowed is if the buffer 502 * in the cache is stale and the transaction that made 503 * it stale has not yet committed. i.e. we are 504 * reallocating a busy extent. Skip this buffer and 505 * continue searching for an exact match. 506 */ 507 ASSERT(bp->b_flags & XBF_STALE); 508 return 1; 509 } 510 return 0; 511 } 512 513 static const struct rhashtable_params xfs_buf_hash_params = { 514 .min_size = 32, /* empty AGs have minimal footprint */ 515 .nelem_hint = 16, 516 .key_len = sizeof(xfs_daddr_t), 517 .key_offset = offsetof(struct xfs_buf, b_bn), 518 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 519 .automatic_shrinking = true, 520 .obj_cmpfn = _xfs_buf_obj_cmp, 521 }; 522 523 int 524 xfs_buf_hash_init( 525 struct xfs_perag *pag) 526 { 527 spin_lock_init(&pag->pag_buf_lock); 528 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); 529 } 530 531 void 532 xfs_buf_hash_destroy( 533 struct xfs_perag *pag) 534 { 535 rhashtable_destroy(&pag->pag_buf_hash); 536 } 537 538 /* 539 * Look up a buffer in the buffer cache and return it referenced and locked 540 * in @found_bp. 541 * 542 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the 543 * cache. 544 * 545 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return 546 * -EAGAIN if we fail to lock it. 547 * 548 * Return values are: 549 * -EFSCORRUPTED if have been supplied with an invalid address 550 * -EAGAIN on trylock failure 551 * -ENOENT if we fail to find a match and @new_bp was NULL 552 * 0, with @found_bp: 553 * - @new_bp if we inserted it into the cache 554 * - the buffer we found and locked. 555 */ 556 static int 557 xfs_buf_find( 558 struct xfs_buftarg *btp, 559 struct xfs_buf_map *map, 560 int nmaps, 561 xfs_buf_flags_t flags, 562 struct xfs_buf *new_bp, 563 struct xfs_buf **found_bp) 564 { 565 struct xfs_perag *pag; 566 xfs_buf_t *bp; 567 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 568 xfs_daddr_t eofs; 569 int i; 570 571 *found_bp = NULL; 572 573 for (i = 0; i < nmaps; i++) 574 cmap.bm_len += map[i].bm_len; 575 576 /* Check for IOs smaller than the sector size / not sector aligned */ 577 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize)); 578 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 579 580 /* 581 * Corrupted block numbers can get through to here, unfortunately, so we 582 * have to check that the buffer falls within the filesystem bounds. 583 */ 584 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 585 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) { 586 xfs_alert(btp->bt_mount, 587 "%s: daddr 0x%llx out of range, EOFS 0x%llx", 588 __func__, cmap.bm_bn, eofs); 589 WARN_ON(1); 590 return -EFSCORRUPTED; 591 } 592 593 pag = xfs_perag_get(btp->bt_mount, 594 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); 595 596 spin_lock(&pag->pag_buf_lock); 597 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap, 598 xfs_buf_hash_params); 599 if (bp) { 600 atomic_inc(&bp->b_hold); 601 goto found; 602 } 603 604 /* No match found */ 605 if (!new_bp) { 606 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 607 spin_unlock(&pag->pag_buf_lock); 608 xfs_perag_put(pag); 609 return -ENOENT; 610 } 611 612 /* the buffer keeps the perag reference until it is freed */ 613 new_bp->b_pag = pag; 614 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head, 615 xfs_buf_hash_params); 616 spin_unlock(&pag->pag_buf_lock); 617 *found_bp = new_bp; 618 return 0; 619 620 found: 621 spin_unlock(&pag->pag_buf_lock); 622 xfs_perag_put(pag); 623 624 if (!xfs_buf_trylock(bp)) { 625 if (flags & XBF_TRYLOCK) { 626 xfs_buf_rele(bp); 627 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 628 return -EAGAIN; 629 } 630 xfs_buf_lock(bp); 631 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 632 } 633 634 /* 635 * if the buffer is stale, clear all the external state associated with 636 * it. We need to keep flags such as how we allocated the buffer memory 637 * intact here. 638 */ 639 if (bp->b_flags & XBF_STALE) { 640 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 641 ASSERT(bp->b_iodone == NULL); 642 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 643 bp->b_ops = NULL; 644 } 645 646 trace_xfs_buf_find(bp, flags, _RET_IP_); 647 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 648 *found_bp = bp; 649 return 0; 650 } 651 652 struct xfs_buf * 653 xfs_buf_incore( 654 struct xfs_buftarg *target, 655 xfs_daddr_t blkno, 656 size_t numblks, 657 xfs_buf_flags_t flags) 658 { 659 struct xfs_buf *bp; 660 int error; 661 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks); 662 663 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp); 664 if (error) 665 return NULL; 666 return bp; 667 } 668 669 /* 670 * Assembles a buffer covering the specified range. The code is optimised for 671 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 672 * more hits than misses. 673 */ 674 struct xfs_buf * 675 xfs_buf_get_map( 676 struct xfs_buftarg *target, 677 struct xfs_buf_map *map, 678 int nmaps, 679 xfs_buf_flags_t flags) 680 { 681 struct xfs_buf *bp; 682 struct xfs_buf *new_bp; 683 int error = 0; 684 685 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp); 686 687 switch (error) { 688 case 0: 689 /* cache hit */ 690 goto found; 691 case -EAGAIN: 692 /* cache hit, trylock failure, caller handles failure */ 693 ASSERT(flags & XBF_TRYLOCK); 694 return NULL; 695 case -ENOENT: 696 /* cache miss, go for insert */ 697 break; 698 case -EFSCORRUPTED: 699 default: 700 /* 701 * None of the higher layers understand failure types 702 * yet, so return NULL to signal a fatal lookup error. 703 */ 704 return NULL; 705 } 706 707 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 708 if (unlikely(!new_bp)) 709 return NULL; 710 711 error = xfs_buf_allocate_memory(new_bp, flags); 712 if (error) { 713 xfs_buf_free(new_bp); 714 return NULL; 715 } 716 717 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp); 718 if (error) { 719 xfs_buf_free(new_bp); 720 return NULL; 721 } 722 723 if (bp != new_bp) 724 xfs_buf_free(new_bp); 725 726 found: 727 if (!bp->b_addr) { 728 error = _xfs_buf_map_pages(bp, flags); 729 if (unlikely(error)) { 730 xfs_warn(target->bt_mount, 731 "%s: failed to map pagesn", __func__); 732 xfs_buf_relse(bp); 733 return NULL; 734 } 735 } 736 737 /* 738 * Clear b_error if this is a lookup from a caller that doesn't expect 739 * valid data to be found in the buffer. 740 */ 741 if (!(flags & XBF_READ)) 742 xfs_buf_ioerror(bp, 0); 743 744 XFS_STATS_INC(target->bt_mount, xb_get); 745 trace_xfs_buf_get(bp, flags, _RET_IP_); 746 return bp; 747 } 748 749 STATIC int 750 _xfs_buf_read( 751 xfs_buf_t *bp, 752 xfs_buf_flags_t flags) 753 { 754 ASSERT(!(flags & XBF_WRITE)); 755 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 756 757 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 758 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 759 760 return xfs_buf_submit(bp); 761 } 762 763 /* 764 * Reverify a buffer found in cache without an attached ->b_ops. 765 * 766 * If the caller passed an ops structure and the buffer doesn't have ops 767 * assigned, set the ops and use it to verify the contents. If verification 768 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is 769 * already in XBF_DONE state on entry. 770 * 771 * Under normal operations, every in-core buffer is verified on read I/O 772 * completion. There are two scenarios that can lead to in-core buffers without 773 * an assigned ->b_ops. The first is during log recovery of buffers on a V4 774 * filesystem, though these buffers are purged at the end of recovery. The 775 * other is online repair, which intentionally reads with a NULL buffer ops to 776 * run several verifiers across an in-core buffer in order to establish buffer 777 * type. If repair can't establish that, the buffer will be left in memory 778 * with NULL buffer ops. 779 */ 780 int 781 xfs_buf_reverify( 782 struct xfs_buf *bp, 783 const struct xfs_buf_ops *ops) 784 { 785 ASSERT(bp->b_flags & XBF_DONE); 786 ASSERT(bp->b_error == 0); 787 788 if (!ops || bp->b_ops) 789 return 0; 790 791 bp->b_ops = ops; 792 bp->b_ops->verify_read(bp); 793 if (bp->b_error) 794 bp->b_flags &= ~XBF_DONE; 795 return bp->b_error; 796 } 797 798 xfs_buf_t * 799 xfs_buf_read_map( 800 struct xfs_buftarg *target, 801 struct xfs_buf_map *map, 802 int nmaps, 803 xfs_buf_flags_t flags, 804 const struct xfs_buf_ops *ops) 805 { 806 struct xfs_buf *bp; 807 808 flags |= XBF_READ; 809 810 bp = xfs_buf_get_map(target, map, nmaps, flags); 811 if (!bp) 812 return NULL; 813 814 trace_xfs_buf_read(bp, flags, _RET_IP_); 815 816 if (!(bp->b_flags & XBF_DONE)) { 817 XFS_STATS_INC(target->bt_mount, xb_get_read); 818 bp->b_ops = ops; 819 _xfs_buf_read(bp, flags); 820 return bp; 821 } 822 823 xfs_buf_reverify(bp, ops); 824 825 if (flags & XBF_ASYNC) { 826 /* 827 * Read ahead call which is already satisfied, 828 * drop the buffer 829 */ 830 xfs_buf_relse(bp); 831 return NULL; 832 } 833 834 /* We do not want read in the flags */ 835 bp->b_flags &= ~XBF_READ; 836 ASSERT(bp->b_ops != NULL || ops == NULL); 837 return bp; 838 } 839 840 /* 841 * If we are not low on memory then do the readahead in a deadlock 842 * safe manner. 843 */ 844 void 845 xfs_buf_readahead_map( 846 struct xfs_buftarg *target, 847 struct xfs_buf_map *map, 848 int nmaps, 849 const struct xfs_buf_ops *ops) 850 { 851 if (bdi_read_congested(target->bt_bdev->bd_bdi)) 852 return; 853 854 xfs_buf_read_map(target, map, nmaps, 855 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 856 } 857 858 /* 859 * Read an uncached buffer from disk. Allocates and returns a locked 860 * buffer containing the disk contents or nothing. 861 */ 862 int 863 xfs_buf_read_uncached( 864 struct xfs_buftarg *target, 865 xfs_daddr_t daddr, 866 size_t numblks, 867 int flags, 868 struct xfs_buf **bpp, 869 const struct xfs_buf_ops *ops) 870 { 871 struct xfs_buf *bp; 872 873 *bpp = NULL; 874 875 bp = xfs_buf_get_uncached(target, numblks, flags); 876 if (!bp) 877 return -ENOMEM; 878 879 /* set up the buffer for a read IO */ 880 ASSERT(bp->b_map_count == 1); 881 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 882 bp->b_maps[0].bm_bn = daddr; 883 bp->b_flags |= XBF_READ; 884 bp->b_ops = ops; 885 886 xfs_buf_submit(bp); 887 if (bp->b_error) { 888 int error = bp->b_error; 889 xfs_buf_relse(bp); 890 return error; 891 } 892 893 *bpp = bp; 894 return 0; 895 } 896 897 xfs_buf_t * 898 xfs_buf_get_uncached( 899 struct xfs_buftarg *target, 900 size_t numblks, 901 int flags) 902 { 903 unsigned long page_count; 904 int error, i; 905 struct xfs_buf *bp; 906 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 907 908 /* flags might contain irrelevant bits, pass only what we care about */ 909 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT); 910 if (unlikely(bp == NULL)) 911 goto fail; 912 913 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 914 error = _xfs_buf_get_pages(bp, page_count); 915 if (error) 916 goto fail_free_buf; 917 918 for (i = 0; i < page_count; i++) { 919 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 920 if (!bp->b_pages[i]) 921 goto fail_free_mem; 922 } 923 bp->b_flags |= _XBF_PAGES; 924 925 error = _xfs_buf_map_pages(bp, 0); 926 if (unlikely(error)) { 927 xfs_warn(target->bt_mount, 928 "%s: failed to map pages", __func__); 929 goto fail_free_mem; 930 } 931 932 trace_xfs_buf_get_uncached(bp, _RET_IP_); 933 return bp; 934 935 fail_free_mem: 936 while (--i >= 0) 937 __free_page(bp->b_pages[i]); 938 _xfs_buf_free_pages(bp); 939 fail_free_buf: 940 xfs_buf_free_maps(bp); 941 kmem_zone_free(xfs_buf_zone, bp); 942 fail: 943 return NULL; 944 } 945 946 /* 947 * Increment reference count on buffer, to hold the buffer concurrently 948 * with another thread which may release (free) the buffer asynchronously. 949 * Must hold the buffer already to call this function. 950 */ 951 void 952 xfs_buf_hold( 953 xfs_buf_t *bp) 954 { 955 trace_xfs_buf_hold(bp, _RET_IP_); 956 atomic_inc(&bp->b_hold); 957 } 958 959 /* 960 * Release a hold on the specified buffer. If the hold count is 1, the buffer is 961 * placed on LRU or freed (depending on b_lru_ref). 962 */ 963 void 964 xfs_buf_rele( 965 xfs_buf_t *bp) 966 { 967 struct xfs_perag *pag = bp->b_pag; 968 bool release; 969 bool freebuf = false; 970 971 trace_xfs_buf_rele(bp, _RET_IP_); 972 973 if (!pag) { 974 ASSERT(list_empty(&bp->b_lru)); 975 if (atomic_dec_and_test(&bp->b_hold)) { 976 xfs_buf_ioacct_dec(bp); 977 xfs_buf_free(bp); 978 } 979 return; 980 } 981 982 ASSERT(atomic_read(&bp->b_hold) > 0); 983 984 /* 985 * We grab the b_lock here first to serialise racing xfs_buf_rele() 986 * calls. The pag_buf_lock being taken on the last reference only 987 * serialises against racing lookups in xfs_buf_find(). IOWs, the second 988 * to last reference we drop here is not serialised against the last 989 * reference until we take bp->b_lock. Hence if we don't grab b_lock 990 * first, the last "release" reference can win the race to the lock and 991 * free the buffer before the second-to-last reference is processed, 992 * leading to a use-after-free scenario. 993 */ 994 spin_lock(&bp->b_lock); 995 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); 996 if (!release) { 997 /* 998 * Drop the in-flight state if the buffer is already on the LRU 999 * and it holds the only reference. This is racy because we 1000 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 1001 * ensures the decrement occurs only once per-buf. 1002 */ 1003 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 1004 __xfs_buf_ioacct_dec(bp); 1005 goto out_unlock; 1006 } 1007 1008 /* the last reference has been dropped ... */ 1009 __xfs_buf_ioacct_dec(bp); 1010 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 1011 /* 1012 * If the buffer is added to the LRU take a new reference to the 1013 * buffer for the LRU and clear the (now stale) dispose list 1014 * state flag 1015 */ 1016 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 1017 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1018 atomic_inc(&bp->b_hold); 1019 } 1020 spin_unlock(&pag->pag_buf_lock); 1021 } else { 1022 /* 1023 * most of the time buffers will already be removed from the 1024 * LRU, so optimise that case by checking for the 1025 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1026 * was on was the disposal list 1027 */ 1028 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1029 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 1030 } else { 1031 ASSERT(list_empty(&bp->b_lru)); 1032 } 1033 1034 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1035 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, 1036 xfs_buf_hash_params); 1037 spin_unlock(&pag->pag_buf_lock); 1038 xfs_perag_put(pag); 1039 freebuf = true; 1040 } 1041 1042 out_unlock: 1043 spin_unlock(&bp->b_lock); 1044 1045 if (freebuf) 1046 xfs_buf_free(bp); 1047 } 1048 1049 1050 /* 1051 * Lock a buffer object, if it is not already locked. 1052 * 1053 * If we come across a stale, pinned, locked buffer, we know that we are 1054 * being asked to lock a buffer that has been reallocated. Because it is 1055 * pinned, we know that the log has not been pushed to disk and hence it 1056 * will still be locked. Rather than continuing to have trylock attempts 1057 * fail until someone else pushes the log, push it ourselves before 1058 * returning. This means that the xfsaild will not get stuck trying 1059 * to push on stale inode buffers. 1060 */ 1061 int 1062 xfs_buf_trylock( 1063 struct xfs_buf *bp) 1064 { 1065 int locked; 1066 1067 locked = down_trylock(&bp->b_sema) == 0; 1068 if (locked) 1069 trace_xfs_buf_trylock(bp, _RET_IP_); 1070 else 1071 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1072 return locked; 1073 } 1074 1075 /* 1076 * Lock a buffer object. 1077 * 1078 * If we come across a stale, pinned, locked buffer, we know that we 1079 * are being asked to lock a buffer that has been reallocated. Because 1080 * it is pinned, we know that the log has not been pushed to disk and 1081 * hence it will still be locked. Rather than sleeping until someone 1082 * else pushes the log, push it ourselves before trying to get the lock. 1083 */ 1084 void 1085 xfs_buf_lock( 1086 struct xfs_buf *bp) 1087 { 1088 trace_xfs_buf_lock(bp, _RET_IP_); 1089 1090 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1091 xfs_log_force(bp->b_mount, 0); 1092 down(&bp->b_sema); 1093 1094 trace_xfs_buf_lock_done(bp, _RET_IP_); 1095 } 1096 1097 void 1098 xfs_buf_unlock( 1099 struct xfs_buf *bp) 1100 { 1101 ASSERT(xfs_buf_islocked(bp)); 1102 1103 up(&bp->b_sema); 1104 trace_xfs_buf_unlock(bp, _RET_IP_); 1105 } 1106 1107 STATIC void 1108 xfs_buf_wait_unpin( 1109 xfs_buf_t *bp) 1110 { 1111 DECLARE_WAITQUEUE (wait, current); 1112 1113 if (atomic_read(&bp->b_pin_count) == 0) 1114 return; 1115 1116 add_wait_queue(&bp->b_waiters, &wait); 1117 for (;;) { 1118 set_current_state(TASK_UNINTERRUPTIBLE); 1119 if (atomic_read(&bp->b_pin_count) == 0) 1120 break; 1121 io_schedule(); 1122 } 1123 remove_wait_queue(&bp->b_waiters, &wait); 1124 set_current_state(TASK_RUNNING); 1125 } 1126 1127 /* 1128 * Buffer Utility Routines 1129 */ 1130 1131 void 1132 xfs_buf_ioend( 1133 struct xfs_buf *bp) 1134 { 1135 bool read = bp->b_flags & XBF_READ; 1136 1137 trace_xfs_buf_iodone(bp, _RET_IP_); 1138 1139 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1140 1141 /* 1142 * Pull in IO completion errors now. We are guaranteed to be running 1143 * single threaded, so we don't need the lock to read b_io_error. 1144 */ 1145 if (!bp->b_error && bp->b_io_error) 1146 xfs_buf_ioerror(bp, bp->b_io_error); 1147 1148 /* Only validate buffers that were read without errors */ 1149 if (read && !bp->b_error && bp->b_ops) { 1150 ASSERT(!bp->b_iodone); 1151 bp->b_ops->verify_read(bp); 1152 } 1153 1154 if (!bp->b_error) 1155 bp->b_flags |= XBF_DONE; 1156 1157 if (bp->b_iodone) 1158 (*(bp->b_iodone))(bp); 1159 else if (bp->b_flags & XBF_ASYNC) 1160 xfs_buf_relse(bp); 1161 else 1162 complete(&bp->b_iowait); 1163 } 1164 1165 static void 1166 xfs_buf_ioend_work( 1167 struct work_struct *work) 1168 { 1169 struct xfs_buf *bp = 1170 container_of(work, xfs_buf_t, b_ioend_work); 1171 1172 xfs_buf_ioend(bp); 1173 } 1174 1175 static void 1176 xfs_buf_ioend_async( 1177 struct xfs_buf *bp) 1178 { 1179 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1180 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); 1181 } 1182 1183 void 1184 __xfs_buf_ioerror( 1185 xfs_buf_t *bp, 1186 int error, 1187 xfs_failaddr_t failaddr) 1188 { 1189 ASSERT(error <= 0 && error >= -1000); 1190 bp->b_error = error; 1191 trace_xfs_buf_ioerror(bp, error, failaddr); 1192 } 1193 1194 void 1195 xfs_buf_ioerror_alert( 1196 struct xfs_buf *bp, 1197 const char *func) 1198 { 1199 xfs_alert(bp->b_mount, 1200 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d", 1201 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length, 1202 -bp->b_error); 1203 } 1204 1205 int 1206 xfs_bwrite( 1207 struct xfs_buf *bp) 1208 { 1209 int error; 1210 1211 ASSERT(xfs_buf_islocked(bp)); 1212 1213 bp->b_flags |= XBF_WRITE; 1214 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1215 XBF_WRITE_FAIL | XBF_DONE); 1216 1217 error = xfs_buf_submit(bp); 1218 if (error) 1219 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 1220 return error; 1221 } 1222 1223 static void 1224 xfs_buf_bio_end_io( 1225 struct bio *bio) 1226 { 1227 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1228 1229 /* 1230 * don't overwrite existing errors - otherwise we can lose errors on 1231 * buffers that require multiple bios to complete. 1232 */ 1233 if (bio->bi_status) { 1234 int error = blk_status_to_errno(bio->bi_status); 1235 1236 cmpxchg(&bp->b_io_error, 0, error); 1237 } 1238 1239 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1240 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1241 1242 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1243 xfs_buf_ioend_async(bp); 1244 bio_put(bio); 1245 } 1246 1247 static void 1248 xfs_buf_ioapply_map( 1249 struct xfs_buf *bp, 1250 int map, 1251 int *buf_offset, 1252 int *count, 1253 int op, 1254 int op_flags) 1255 { 1256 int page_index; 1257 int total_nr_pages = bp->b_page_count; 1258 int nr_pages; 1259 struct bio *bio; 1260 sector_t sector = bp->b_maps[map].bm_bn; 1261 int size; 1262 int offset; 1263 1264 /* skip the pages in the buffer before the start offset */ 1265 page_index = 0; 1266 offset = *buf_offset; 1267 while (offset >= PAGE_SIZE) { 1268 page_index++; 1269 offset -= PAGE_SIZE; 1270 } 1271 1272 /* 1273 * Limit the IO size to the length of the current vector, and update the 1274 * remaining IO count for the next time around. 1275 */ 1276 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1277 *count -= size; 1278 *buf_offset += size; 1279 1280 next_chunk: 1281 atomic_inc(&bp->b_io_remaining); 1282 nr_pages = min(total_nr_pages, BIO_MAX_PAGES); 1283 1284 bio = bio_alloc(GFP_NOIO, nr_pages); 1285 bio_set_dev(bio, bp->b_target->bt_bdev); 1286 bio->bi_iter.bi_sector = sector; 1287 bio->bi_end_io = xfs_buf_bio_end_io; 1288 bio->bi_private = bp; 1289 bio_set_op_attrs(bio, op, op_flags); 1290 1291 for (; size && nr_pages; nr_pages--, page_index++) { 1292 int rbytes, nbytes = PAGE_SIZE - offset; 1293 1294 if (nbytes > size) 1295 nbytes = size; 1296 1297 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1298 offset); 1299 if (rbytes < nbytes) 1300 break; 1301 1302 offset = 0; 1303 sector += BTOBB(nbytes); 1304 size -= nbytes; 1305 total_nr_pages--; 1306 } 1307 1308 if (likely(bio->bi_iter.bi_size)) { 1309 if (xfs_buf_is_vmapped(bp)) { 1310 flush_kernel_vmap_range(bp->b_addr, 1311 xfs_buf_vmap_len(bp)); 1312 } 1313 submit_bio(bio); 1314 if (size) 1315 goto next_chunk; 1316 } else { 1317 /* 1318 * This is guaranteed not to be the last io reference count 1319 * because the caller (xfs_buf_submit) holds a count itself. 1320 */ 1321 atomic_dec(&bp->b_io_remaining); 1322 xfs_buf_ioerror(bp, -EIO); 1323 bio_put(bio); 1324 } 1325 1326 } 1327 1328 STATIC void 1329 _xfs_buf_ioapply( 1330 struct xfs_buf *bp) 1331 { 1332 struct blk_plug plug; 1333 int op; 1334 int op_flags = 0; 1335 int offset; 1336 int size; 1337 int i; 1338 1339 /* 1340 * Make sure we capture only current IO errors rather than stale errors 1341 * left over from previous use of the buffer (e.g. failed readahead). 1342 */ 1343 bp->b_error = 0; 1344 1345 if (bp->b_flags & XBF_WRITE) { 1346 op = REQ_OP_WRITE; 1347 1348 /* 1349 * Run the write verifier callback function if it exists. If 1350 * this function fails it will mark the buffer with an error and 1351 * the IO should not be dispatched. 1352 */ 1353 if (bp->b_ops) { 1354 bp->b_ops->verify_write(bp); 1355 if (bp->b_error) { 1356 xfs_force_shutdown(bp->b_mount, 1357 SHUTDOWN_CORRUPT_INCORE); 1358 return; 1359 } 1360 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1361 struct xfs_mount *mp = bp->b_mount; 1362 1363 /* 1364 * non-crc filesystems don't attach verifiers during 1365 * log recovery, so don't warn for such filesystems. 1366 */ 1367 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1368 xfs_warn(mp, 1369 "%s: no buf ops on daddr 0x%llx len %d", 1370 __func__, bp->b_bn, bp->b_length); 1371 xfs_hex_dump(bp->b_addr, 1372 XFS_CORRUPTION_DUMP_LEN); 1373 dump_stack(); 1374 } 1375 } 1376 } else if (bp->b_flags & XBF_READ_AHEAD) { 1377 op = REQ_OP_READ; 1378 op_flags = REQ_RAHEAD; 1379 } else { 1380 op = REQ_OP_READ; 1381 } 1382 1383 /* we only use the buffer cache for meta-data */ 1384 op_flags |= REQ_META; 1385 1386 /* 1387 * Walk all the vectors issuing IO on them. Set up the initial offset 1388 * into the buffer and the desired IO size before we start - 1389 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1390 * subsequent call. 1391 */ 1392 offset = bp->b_offset; 1393 size = BBTOB(bp->b_length); 1394 blk_start_plug(&plug); 1395 for (i = 0; i < bp->b_map_count; i++) { 1396 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags); 1397 if (bp->b_error) 1398 break; 1399 if (size <= 0) 1400 break; /* all done */ 1401 } 1402 blk_finish_plug(&plug); 1403 } 1404 1405 /* 1406 * Wait for I/O completion of a sync buffer and return the I/O error code. 1407 */ 1408 static int 1409 xfs_buf_iowait( 1410 struct xfs_buf *bp) 1411 { 1412 ASSERT(!(bp->b_flags & XBF_ASYNC)); 1413 1414 trace_xfs_buf_iowait(bp, _RET_IP_); 1415 wait_for_completion(&bp->b_iowait); 1416 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1417 1418 return bp->b_error; 1419 } 1420 1421 /* 1422 * Buffer I/O submission path, read or write. Asynchronous submission transfers 1423 * the buffer lock ownership and the current reference to the IO. It is not 1424 * safe to reference the buffer after a call to this function unless the caller 1425 * holds an additional reference itself. 1426 */ 1427 int 1428 __xfs_buf_submit( 1429 struct xfs_buf *bp, 1430 bool wait) 1431 { 1432 int error = 0; 1433 1434 trace_xfs_buf_submit(bp, _RET_IP_); 1435 1436 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1437 1438 /* on shutdown we stale and complete the buffer immediately */ 1439 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) { 1440 xfs_buf_ioerror(bp, -EIO); 1441 bp->b_flags &= ~XBF_DONE; 1442 xfs_buf_stale(bp); 1443 xfs_buf_ioend(bp); 1444 return -EIO; 1445 } 1446 1447 /* 1448 * Grab a reference so the buffer does not go away underneath us. For 1449 * async buffers, I/O completion drops the callers reference, which 1450 * could occur before submission returns. 1451 */ 1452 xfs_buf_hold(bp); 1453 1454 if (bp->b_flags & XBF_WRITE) 1455 xfs_buf_wait_unpin(bp); 1456 1457 /* clear the internal error state to avoid spurious errors */ 1458 bp->b_io_error = 0; 1459 1460 /* 1461 * Set the count to 1 initially, this will stop an I/O completion 1462 * callout which happens before we have started all the I/O from calling 1463 * xfs_buf_ioend too early. 1464 */ 1465 atomic_set(&bp->b_io_remaining, 1); 1466 if (bp->b_flags & XBF_ASYNC) 1467 xfs_buf_ioacct_inc(bp); 1468 _xfs_buf_ioapply(bp); 1469 1470 /* 1471 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1472 * reference we took above. If we drop it to zero, run completion so 1473 * that we don't return to the caller with completion still pending. 1474 */ 1475 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1476 if (bp->b_error || !(bp->b_flags & XBF_ASYNC)) 1477 xfs_buf_ioend(bp); 1478 else 1479 xfs_buf_ioend_async(bp); 1480 } 1481 1482 if (wait) 1483 error = xfs_buf_iowait(bp); 1484 1485 /* 1486 * Release the hold that keeps the buffer referenced for the entire 1487 * I/O. Note that if the buffer is async, it is not safe to reference 1488 * after this release. 1489 */ 1490 xfs_buf_rele(bp); 1491 return error; 1492 } 1493 1494 void * 1495 xfs_buf_offset( 1496 struct xfs_buf *bp, 1497 size_t offset) 1498 { 1499 struct page *page; 1500 1501 if (bp->b_addr) 1502 return bp->b_addr + offset; 1503 1504 offset += bp->b_offset; 1505 page = bp->b_pages[offset >> PAGE_SHIFT]; 1506 return page_address(page) + (offset & (PAGE_SIZE-1)); 1507 } 1508 1509 void 1510 xfs_buf_zero( 1511 struct xfs_buf *bp, 1512 size_t boff, 1513 size_t bsize) 1514 { 1515 size_t bend; 1516 1517 bend = boff + bsize; 1518 while (boff < bend) { 1519 struct page *page; 1520 int page_index, page_offset, csize; 1521 1522 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1523 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1524 page = bp->b_pages[page_index]; 1525 csize = min_t(size_t, PAGE_SIZE - page_offset, 1526 BBTOB(bp->b_length) - boff); 1527 1528 ASSERT((csize + page_offset) <= PAGE_SIZE); 1529 1530 memset(page_address(page) + page_offset, 0, csize); 1531 1532 boff += csize; 1533 } 1534 } 1535 1536 /* 1537 * Handling of buffer targets (buftargs). 1538 */ 1539 1540 /* 1541 * Wait for any bufs with callbacks that have been submitted but have not yet 1542 * returned. These buffers will have an elevated hold count, so wait on those 1543 * while freeing all the buffers only held by the LRU. 1544 */ 1545 static enum lru_status 1546 xfs_buftarg_wait_rele( 1547 struct list_head *item, 1548 struct list_lru_one *lru, 1549 spinlock_t *lru_lock, 1550 void *arg) 1551 1552 { 1553 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1554 struct list_head *dispose = arg; 1555 1556 if (atomic_read(&bp->b_hold) > 1) { 1557 /* need to wait, so skip it this pass */ 1558 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1559 return LRU_SKIP; 1560 } 1561 if (!spin_trylock(&bp->b_lock)) 1562 return LRU_SKIP; 1563 1564 /* 1565 * clear the LRU reference count so the buffer doesn't get 1566 * ignored in xfs_buf_rele(). 1567 */ 1568 atomic_set(&bp->b_lru_ref, 0); 1569 bp->b_state |= XFS_BSTATE_DISPOSE; 1570 list_lru_isolate_move(lru, item, dispose); 1571 spin_unlock(&bp->b_lock); 1572 return LRU_REMOVED; 1573 } 1574 1575 void 1576 xfs_wait_buftarg( 1577 struct xfs_buftarg *btp) 1578 { 1579 LIST_HEAD(dispose); 1580 int loop = 0; 1581 1582 /* 1583 * First wait on the buftarg I/O count for all in-flight buffers to be 1584 * released. This is critical as new buffers do not make the LRU until 1585 * they are released. 1586 * 1587 * Next, flush the buffer workqueue to ensure all completion processing 1588 * has finished. Just waiting on buffer locks is not sufficient for 1589 * async IO as the reference count held over IO is not released until 1590 * after the buffer lock is dropped. Hence we need to ensure here that 1591 * all reference counts have been dropped before we start walking the 1592 * LRU list. 1593 */ 1594 while (percpu_counter_sum(&btp->bt_io_count)) 1595 delay(100); 1596 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1597 1598 /* loop until there is nothing left on the lru list. */ 1599 while (list_lru_count(&btp->bt_lru)) { 1600 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1601 &dispose, LONG_MAX); 1602 1603 while (!list_empty(&dispose)) { 1604 struct xfs_buf *bp; 1605 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1606 list_del_init(&bp->b_lru); 1607 if (bp->b_flags & XBF_WRITE_FAIL) { 1608 xfs_alert(btp->bt_mount, 1609 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", 1610 (long long)bp->b_bn); 1611 xfs_alert(btp->bt_mount, 1612 "Please run xfs_repair to determine the extent of the problem."); 1613 } 1614 xfs_buf_rele(bp); 1615 } 1616 if (loop++ != 0) 1617 delay(100); 1618 } 1619 } 1620 1621 static enum lru_status 1622 xfs_buftarg_isolate( 1623 struct list_head *item, 1624 struct list_lru_one *lru, 1625 spinlock_t *lru_lock, 1626 void *arg) 1627 { 1628 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1629 struct list_head *dispose = arg; 1630 1631 /* 1632 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1633 * If we fail to get the lock, just skip it. 1634 */ 1635 if (!spin_trylock(&bp->b_lock)) 1636 return LRU_SKIP; 1637 /* 1638 * Decrement the b_lru_ref count unless the value is already 1639 * zero. If the value is already zero, we need to reclaim the 1640 * buffer, otherwise it gets another trip through the LRU. 1641 */ 1642 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1643 spin_unlock(&bp->b_lock); 1644 return LRU_ROTATE; 1645 } 1646 1647 bp->b_state |= XFS_BSTATE_DISPOSE; 1648 list_lru_isolate_move(lru, item, dispose); 1649 spin_unlock(&bp->b_lock); 1650 return LRU_REMOVED; 1651 } 1652 1653 static unsigned long 1654 xfs_buftarg_shrink_scan( 1655 struct shrinker *shrink, 1656 struct shrink_control *sc) 1657 { 1658 struct xfs_buftarg *btp = container_of(shrink, 1659 struct xfs_buftarg, bt_shrinker); 1660 LIST_HEAD(dispose); 1661 unsigned long freed; 1662 1663 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1664 xfs_buftarg_isolate, &dispose); 1665 1666 while (!list_empty(&dispose)) { 1667 struct xfs_buf *bp; 1668 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1669 list_del_init(&bp->b_lru); 1670 xfs_buf_rele(bp); 1671 } 1672 1673 return freed; 1674 } 1675 1676 static unsigned long 1677 xfs_buftarg_shrink_count( 1678 struct shrinker *shrink, 1679 struct shrink_control *sc) 1680 { 1681 struct xfs_buftarg *btp = container_of(shrink, 1682 struct xfs_buftarg, bt_shrinker); 1683 return list_lru_shrink_count(&btp->bt_lru, sc); 1684 } 1685 1686 void 1687 xfs_free_buftarg( 1688 struct xfs_buftarg *btp) 1689 { 1690 unregister_shrinker(&btp->bt_shrinker); 1691 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1692 percpu_counter_destroy(&btp->bt_io_count); 1693 list_lru_destroy(&btp->bt_lru); 1694 1695 xfs_blkdev_issue_flush(btp); 1696 1697 kmem_free(btp); 1698 } 1699 1700 int 1701 xfs_setsize_buftarg( 1702 xfs_buftarg_t *btp, 1703 unsigned int sectorsize) 1704 { 1705 /* Set up metadata sector size info */ 1706 btp->bt_meta_sectorsize = sectorsize; 1707 btp->bt_meta_sectormask = sectorsize - 1; 1708 1709 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1710 xfs_warn(btp->bt_mount, 1711 "Cannot set_blocksize to %u on device %pg", 1712 sectorsize, btp->bt_bdev); 1713 return -EINVAL; 1714 } 1715 1716 /* Set up device logical sector size mask */ 1717 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1718 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1719 1720 return 0; 1721 } 1722 1723 /* 1724 * When allocating the initial buffer target we have not yet 1725 * read in the superblock, so don't know what sized sectors 1726 * are being used at this early stage. Play safe. 1727 */ 1728 STATIC int 1729 xfs_setsize_buftarg_early( 1730 xfs_buftarg_t *btp, 1731 struct block_device *bdev) 1732 { 1733 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1734 } 1735 1736 xfs_buftarg_t * 1737 xfs_alloc_buftarg( 1738 struct xfs_mount *mp, 1739 struct block_device *bdev, 1740 struct dax_device *dax_dev) 1741 { 1742 xfs_buftarg_t *btp; 1743 1744 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); 1745 1746 btp->bt_mount = mp; 1747 btp->bt_dev = bdev->bd_dev; 1748 btp->bt_bdev = bdev; 1749 btp->bt_daxdev = dax_dev; 1750 1751 if (xfs_setsize_buftarg_early(btp, bdev)) 1752 goto error_free; 1753 1754 if (list_lru_init(&btp->bt_lru)) 1755 goto error_free; 1756 1757 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 1758 goto error_lru; 1759 1760 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1761 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1762 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1763 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1764 if (register_shrinker(&btp->bt_shrinker)) 1765 goto error_pcpu; 1766 return btp; 1767 1768 error_pcpu: 1769 percpu_counter_destroy(&btp->bt_io_count); 1770 error_lru: 1771 list_lru_destroy(&btp->bt_lru); 1772 error_free: 1773 kmem_free(btp); 1774 return NULL; 1775 } 1776 1777 /* 1778 * Cancel a delayed write list. 1779 * 1780 * Remove each buffer from the list, clear the delwri queue flag and drop the 1781 * associated buffer reference. 1782 */ 1783 void 1784 xfs_buf_delwri_cancel( 1785 struct list_head *list) 1786 { 1787 struct xfs_buf *bp; 1788 1789 while (!list_empty(list)) { 1790 bp = list_first_entry(list, struct xfs_buf, b_list); 1791 1792 xfs_buf_lock(bp); 1793 bp->b_flags &= ~_XBF_DELWRI_Q; 1794 list_del_init(&bp->b_list); 1795 xfs_buf_relse(bp); 1796 } 1797 } 1798 1799 /* 1800 * Add a buffer to the delayed write list. 1801 * 1802 * This queues a buffer for writeout if it hasn't already been. Note that 1803 * neither this routine nor the buffer list submission functions perform 1804 * any internal synchronization. It is expected that the lists are thread-local 1805 * to the callers. 1806 * 1807 * Returns true if we queued up the buffer, or false if it already had 1808 * been on the buffer list. 1809 */ 1810 bool 1811 xfs_buf_delwri_queue( 1812 struct xfs_buf *bp, 1813 struct list_head *list) 1814 { 1815 ASSERT(xfs_buf_islocked(bp)); 1816 ASSERT(!(bp->b_flags & XBF_READ)); 1817 1818 /* 1819 * If the buffer is already marked delwri it already is queued up 1820 * by someone else for imediate writeout. Just ignore it in that 1821 * case. 1822 */ 1823 if (bp->b_flags & _XBF_DELWRI_Q) { 1824 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1825 return false; 1826 } 1827 1828 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1829 1830 /* 1831 * If a buffer gets written out synchronously or marked stale while it 1832 * is on a delwri list we lazily remove it. To do this, the other party 1833 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1834 * It remains referenced and on the list. In a rare corner case it 1835 * might get readded to a delwri list after the synchronous writeout, in 1836 * which case we need just need to re-add the flag here. 1837 */ 1838 bp->b_flags |= _XBF_DELWRI_Q; 1839 if (list_empty(&bp->b_list)) { 1840 atomic_inc(&bp->b_hold); 1841 list_add_tail(&bp->b_list, list); 1842 } 1843 1844 return true; 1845 } 1846 1847 /* 1848 * Compare function is more complex than it needs to be because 1849 * the return value is only 32 bits and we are doing comparisons 1850 * on 64 bit values 1851 */ 1852 static int 1853 xfs_buf_cmp( 1854 void *priv, 1855 struct list_head *a, 1856 struct list_head *b) 1857 { 1858 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1859 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1860 xfs_daddr_t diff; 1861 1862 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1863 if (diff < 0) 1864 return -1; 1865 if (diff > 0) 1866 return 1; 1867 return 0; 1868 } 1869 1870 /* 1871 * Submit buffers for write. If wait_list is specified, the buffers are 1872 * submitted using sync I/O and placed on the wait list such that the caller can 1873 * iowait each buffer. Otherwise async I/O is used and the buffers are released 1874 * at I/O completion time. In either case, buffers remain locked until I/O 1875 * completes and the buffer is released from the queue. 1876 */ 1877 static int 1878 xfs_buf_delwri_submit_buffers( 1879 struct list_head *buffer_list, 1880 struct list_head *wait_list) 1881 { 1882 struct xfs_buf *bp, *n; 1883 int pinned = 0; 1884 struct blk_plug plug; 1885 1886 list_sort(NULL, buffer_list, xfs_buf_cmp); 1887 1888 blk_start_plug(&plug); 1889 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1890 if (!wait_list) { 1891 if (xfs_buf_ispinned(bp)) { 1892 pinned++; 1893 continue; 1894 } 1895 if (!xfs_buf_trylock(bp)) 1896 continue; 1897 } else { 1898 xfs_buf_lock(bp); 1899 } 1900 1901 /* 1902 * Someone else might have written the buffer synchronously or 1903 * marked it stale in the meantime. In that case only the 1904 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1905 * reference and remove it from the list here. 1906 */ 1907 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1908 list_del_init(&bp->b_list); 1909 xfs_buf_relse(bp); 1910 continue; 1911 } 1912 1913 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1914 1915 /* 1916 * If we have a wait list, each buffer (and associated delwri 1917 * queue reference) transfers to it and is submitted 1918 * synchronously. Otherwise, drop the buffer from the delwri 1919 * queue and submit async. 1920 */ 1921 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL); 1922 bp->b_flags |= XBF_WRITE; 1923 if (wait_list) { 1924 bp->b_flags &= ~XBF_ASYNC; 1925 list_move_tail(&bp->b_list, wait_list); 1926 } else { 1927 bp->b_flags |= XBF_ASYNC; 1928 list_del_init(&bp->b_list); 1929 } 1930 __xfs_buf_submit(bp, false); 1931 } 1932 blk_finish_plug(&plug); 1933 1934 return pinned; 1935 } 1936 1937 /* 1938 * Write out a buffer list asynchronously. 1939 * 1940 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1941 * out and not wait for I/O completion on any of the buffers. This interface 1942 * is only safely useable for callers that can track I/O completion by higher 1943 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1944 * function. 1945 * 1946 * Note: this function will skip buffers it would block on, and in doing so 1947 * leaves them on @buffer_list so they can be retried on a later pass. As such, 1948 * it is up to the caller to ensure that the buffer list is fully submitted or 1949 * cancelled appropriately when they are finished with the list. Failure to 1950 * cancel or resubmit the list until it is empty will result in leaked buffers 1951 * at unmount time. 1952 */ 1953 int 1954 xfs_buf_delwri_submit_nowait( 1955 struct list_head *buffer_list) 1956 { 1957 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 1958 } 1959 1960 /* 1961 * Write out a buffer list synchronously. 1962 * 1963 * This will take the @buffer_list, write all buffers out and wait for I/O 1964 * completion on all of the buffers. @buffer_list is consumed by the function, 1965 * so callers must have some other way of tracking buffers if they require such 1966 * functionality. 1967 */ 1968 int 1969 xfs_buf_delwri_submit( 1970 struct list_head *buffer_list) 1971 { 1972 LIST_HEAD (wait_list); 1973 int error = 0, error2; 1974 struct xfs_buf *bp; 1975 1976 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 1977 1978 /* Wait for IO to complete. */ 1979 while (!list_empty(&wait_list)) { 1980 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 1981 1982 list_del_init(&bp->b_list); 1983 1984 /* 1985 * Wait on the locked buffer, check for errors and unlock and 1986 * release the delwri queue reference. 1987 */ 1988 error2 = xfs_buf_iowait(bp); 1989 xfs_buf_relse(bp); 1990 if (!error) 1991 error = error2; 1992 } 1993 1994 return error; 1995 } 1996 1997 /* 1998 * Push a single buffer on a delwri queue. 1999 * 2000 * The purpose of this function is to submit a single buffer of a delwri queue 2001 * and return with the buffer still on the original queue. The waiting delwri 2002 * buffer submission infrastructure guarantees transfer of the delwri queue 2003 * buffer reference to a temporary wait list. We reuse this infrastructure to 2004 * transfer the buffer back to the original queue. 2005 * 2006 * Note the buffer transitions from the queued state, to the submitted and wait 2007 * listed state and back to the queued state during this call. The buffer 2008 * locking and queue management logic between _delwri_pushbuf() and 2009 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2010 * before returning. 2011 */ 2012 int 2013 xfs_buf_delwri_pushbuf( 2014 struct xfs_buf *bp, 2015 struct list_head *buffer_list) 2016 { 2017 LIST_HEAD (submit_list); 2018 int error; 2019 2020 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2021 2022 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2023 2024 /* 2025 * Isolate the buffer to a new local list so we can submit it for I/O 2026 * independently from the rest of the original list. 2027 */ 2028 xfs_buf_lock(bp); 2029 list_move(&bp->b_list, &submit_list); 2030 xfs_buf_unlock(bp); 2031 2032 /* 2033 * Delwri submission clears the DELWRI_Q buffer flag and returns with 2034 * the buffer on the wait list with the original reference. Rather than 2035 * bounce the buffer from a local wait list back to the original list 2036 * after I/O completion, reuse the original list as the wait list. 2037 */ 2038 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); 2039 2040 /* 2041 * The buffer is now locked, under I/O and wait listed on the original 2042 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and 2043 * return with the buffer unlocked and on the original queue. 2044 */ 2045 error = xfs_buf_iowait(bp); 2046 bp->b_flags |= _XBF_DELWRI_Q; 2047 xfs_buf_unlock(bp); 2048 2049 return error; 2050 } 2051 2052 int __init 2053 xfs_buf_init(void) 2054 { 2055 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 2056 KM_ZONE_HWALIGN, NULL); 2057 if (!xfs_buf_zone) 2058 goto out; 2059 2060 return 0; 2061 2062 out: 2063 return -ENOMEM; 2064 } 2065 2066 void 2067 xfs_buf_terminate(void) 2068 { 2069 kmem_zone_destroy(xfs_buf_zone); 2070 } 2071 2072 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) 2073 { 2074 /* 2075 * Set the lru reference count to 0 based on the error injection tag. 2076 * This allows userspace to disrupt buffer caching for debug/testing 2077 * purposes. 2078 */ 2079 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) 2080 lru_ref = 0; 2081 2082 atomic_set(&bp->b_lru_ref, lru_ref); 2083 } 2084 2085 /* 2086 * Verify an on-disk magic value against the magic value specified in the 2087 * verifier structure. The verifier magic is in disk byte order so the caller is 2088 * expected to pass the value directly from disk. 2089 */ 2090 bool 2091 xfs_verify_magic( 2092 struct xfs_buf *bp, 2093 __be32 dmagic) 2094 { 2095 struct xfs_mount *mp = bp->b_mount; 2096 int idx; 2097 2098 idx = xfs_sb_version_hascrc(&mp->m_sb); 2099 if (unlikely(WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))) 2100 return false; 2101 return dmagic == bp->b_ops->magic[idx]; 2102 } 2103 /* 2104 * Verify an on-disk magic value against the magic value specified in the 2105 * verifier structure. The verifier magic is in disk byte order so the caller is 2106 * expected to pass the value directly from disk. 2107 */ 2108 bool 2109 xfs_verify_magic16( 2110 struct xfs_buf *bp, 2111 __be16 dmagic) 2112 { 2113 struct xfs_mount *mp = bp->b_mount; 2114 int idx; 2115 2116 idx = xfs_sb_version_hascrc(&mp->m_sb); 2117 if (unlikely(WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))) 2118 return false; 2119 return dmagic == bp->b_ops->magic16[idx]; 2120 } 2121