1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 37 #include "xfs_sb.h" 38 #include "xfs_trans_resv.h" 39 #include "xfs_log.h" 40 #include "xfs_ag.h" 41 #include "xfs_mount.h" 42 #include "xfs_trace.h" 43 44 static kmem_zone_t *xfs_buf_zone; 45 46 static struct workqueue_struct *xfslogd_workqueue; 47 48 #ifdef XFS_BUF_LOCK_TRACKING 49 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 50 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 51 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 52 #else 53 # define XB_SET_OWNER(bp) do { } while (0) 54 # define XB_CLEAR_OWNER(bp) do { } while (0) 55 # define XB_GET_OWNER(bp) do { } while (0) 56 #endif 57 58 #define xb_to_gfp(flags) \ 59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 60 61 62 static inline int 63 xfs_buf_is_vmapped( 64 struct xfs_buf *bp) 65 { 66 /* 67 * Return true if the buffer is vmapped. 68 * 69 * b_addr is null if the buffer is not mapped, but the code is clever 70 * enough to know it doesn't have to map a single page, so the check has 71 * to be both for b_addr and bp->b_page_count > 1. 72 */ 73 return bp->b_addr && bp->b_page_count > 1; 74 } 75 76 static inline int 77 xfs_buf_vmap_len( 78 struct xfs_buf *bp) 79 { 80 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 81 } 82 83 /* 84 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 85 * b_lru_ref count so that the buffer is freed immediately when the buffer 86 * reference count falls to zero. If the buffer is already on the LRU, we need 87 * to remove the reference that LRU holds on the buffer. 88 * 89 * This prevents build-up of stale buffers on the LRU. 90 */ 91 void 92 xfs_buf_stale( 93 struct xfs_buf *bp) 94 { 95 ASSERT(xfs_buf_islocked(bp)); 96 97 bp->b_flags |= XBF_STALE; 98 99 /* 100 * Clear the delwri status so that a delwri queue walker will not 101 * flush this buffer to disk now that it is stale. The delwri queue has 102 * a reference to the buffer, so this is safe to do. 103 */ 104 bp->b_flags &= ~_XBF_DELWRI_Q; 105 106 spin_lock(&bp->b_lock); 107 atomic_set(&bp->b_lru_ref, 0); 108 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 109 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 110 atomic_dec(&bp->b_hold); 111 112 ASSERT(atomic_read(&bp->b_hold) >= 1); 113 spin_unlock(&bp->b_lock); 114 } 115 116 static int 117 xfs_buf_get_maps( 118 struct xfs_buf *bp, 119 int map_count) 120 { 121 ASSERT(bp->b_maps == NULL); 122 bp->b_map_count = map_count; 123 124 if (map_count == 1) { 125 bp->b_maps = &bp->__b_map; 126 return 0; 127 } 128 129 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 130 KM_NOFS); 131 if (!bp->b_maps) 132 return ENOMEM; 133 return 0; 134 } 135 136 /* 137 * Frees b_pages if it was allocated. 138 */ 139 static void 140 xfs_buf_free_maps( 141 struct xfs_buf *bp) 142 { 143 if (bp->b_maps != &bp->__b_map) { 144 kmem_free(bp->b_maps); 145 bp->b_maps = NULL; 146 } 147 } 148 149 struct xfs_buf * 150 _xfs_buf_alloc( 151 struct xfs_buftarg *target, 152 struct xfs_buf_map *map, 153 int nmaps, 154 xfs_buf_flags_t flags) 155 { 156 struct xfs_buf *bp; 157 int error; 158 int i; 159 160 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 161 if (unlikely(!bp)) 162 return NULL; 163 164 /* 165 * We don't want certain flags to appear in b_flags unless they are 166 * specifically set by later operations on the buffer. 167 */ 168 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 169 170 atomic_set(&bp->b_hold, 1); 171 atomic_set(&bp->b_lru_ref, 1); 172 init_completion(&bp->b_iowait); 173 INIT_LIST_HEAD(&bp->b_lru); 174 INIT_LIST_HEAD(&bp->b_list); 175 RB_CLEAR_NODE(&bp->b_rbnode); 176 sema_init(&bp->b_sema, 0); /* held, no waiters */ 177 spin_lock_init(&bp->b_lock); 178 XB_SET_OWNER(bp); 179 bp->b_target = target; 180 bp->b_flags = flags; 181 182 /* 183 * Set length and io_length to the same value initially. 184 * I/O routines should use io_length, which will be the same in 185 * most cases but may be reset (e.g. XFS recovery). 186 */ 187 error = xfs_buf_get_maps(bp, nmaps); 188 if (error) { 189 kmem_zone_free(xfs_buf_zone, bp); 190 return NULL; 191 } 192 193 bp->b_bn = map[0].bm_bn; 194 bp->b_length = 0; 195 for (i = 0; i < nmaps; i++) { 196 bp->b_maps[i].bm_bn = map[i].bm_bn; 197 bp->b_maps[i].bm_len = map[i].bm_len; 198 bp->b_length += map[i].bm_len; 199 } 200 bp->b_io_length = bp->b_length; 201 202 atomic_set(&bp->b_pin_count, 0); 203 init_waitqueue_head(&bp->b_waiters); 204 205 XFS_STATS_INC(xb_create); 206 trace_xfs_buf_init(bp, _RET_IP_); 207 208 return bp; 209 } 210 211 /* 212 * Allocate a page array capable of holding a specified number 213 * of pages, and point the page buf at it. 214 */ 215 STATIC int 216 _xfs_buf_get_pages( 217 xfs_buf_t *bp, 218 int page_count, 219 xfs_buf_flags_t flags) 220 { 221 /* Make sure that we have a page list */ 222 if (bp->b_pages == NULL) { 223 bp->b_page_count = page_count; 224 if (page_count <= XB_PAGES) { 225 bp->b_pages = bp->b_page_array; 226 } else { 227 bp->b_pages = kmem_alloc(sizeof(struct page *) * 228 page_count, KM_NOFS); 229 if (bp->b_pages == NULL) 230 return -ENOMEM; 231 } 232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 233 } 234 return 0; 235 } 236 237 /* 238 * Frees b_pages if it was allocated. 239 */ 240 STATIC void 241 _xfs_buf_free_pages( 242 xfs_buf_t *bp) 243 { 244 if (bp->b_pages != bp->b_page_array) { 245 kmem_free(bp->b_pages); 246 bp->b_pages = NULL; 247 } 248 } 249 250 /* 251 * Releases the specified buffer. 252 * 253 * The modification state of any associated pages is left unchanged. 254 * The buffer must not be on any hash - use xfs_buf_rele instead for 255 * hashed and refcounted buffers 256 */ 257 void 258 xfs_buf_free( 259 xfs_buf_t *bp) 260 { 261 trace_xfs_buf_free(bp, _RET_IP_); 262 263 ASSERT(list_empty(&bp->b_lru)); 264 265 if (bp->b_flags & _XBF_PAGES) { 266 uint i; 267 268 if (xfs_buf_is_vmapped(bp)) 269 vm_unmap_ram(bp->b_addr - bp->b_offset, 270 bp->b_page_count); 271 272 for (i = 0; i < bp->b_page_count; i++) { 273 struct page *page = bp->b_pages[i]; 274 275 __free_page(page); 276 } 277 } else if (bp->b_flags & _XBF_KMEM) 278 kmem_free(bp->b_addr); 279 _xfs_buf_free_pages(bp); 280 xfs_buf_free_maps(bp); 281 kmem_zone_free(xfs_buf_zone, bp); 282 } 283 284 /* 285 * Allocates all the pages for buffer in question and builds it's page list. 286 */ 287 STATIC int 288 xfs_buf_allocate_memory( 289 xfs_buf_t *bp, 290 uint flags) 291 { 292 size_t size; 293 size_t nbytes, offset; 294 gfp_t gfp_mask = xb_to_gfp(flags); 295 unsigned short page_count, i; 296 xfs_off_t start, end; 297 int error; 298 299 /* 300 * for buffers that are contained within a single page, just allocate 301 * the memory from the heap - there's no need for the complexity of 302 * page arrays to keep allocation down to order 0. 303 */ 304 size = BBTOB(bp->b_length); 305 if (size < PAGE_SIZE) { 306 bp->b_addr = kmem_alloc(size, KM_NOFS); 307 if (!bp->b_addr) { 308 /* low memory - use alloc_page loop instead */ 309 goto use_alloc_page; 310 } 311 312 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 313 ((unsigned long)bp->b_addr & PAGE_MASK)) { 314 /* b_addr spans two pages - use alloc_page instead */ 315 kmem_free(bp->b_addr); 316 bp->b_addr = NULL; 317 goto use_alloc_page; 318 } 319 bp->b_offset = offset_in_page(bp->b_addr); 320 bp->b_pages = bp->b_page_array; 321 bp->b_pages[0] = virt_to_page(bp->b_addr); 322 bp->b_page_count = 1; 323 bp->b_flags |= _XBF_KMEM; 324 return 0; 325 } 326 327 use_alloc_page: 328 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 329 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 330 >> PAGE_SHIFT; 331 page_count = end - start; 332 error = _xfs_buf_get_pages(bp, page_count, flags); 333 if (unlikely(error)) 334 return error; 335 336 offset = bp->b_offset; 337 bp->b_flags |= _XBF_PAGES; 338 339 for (i = 0; i < bp->b_page_count; i++) { 340 struct page *page; 341 uint retries = 0; 342 retry: 343 page = alloc_page(gfp_mask); 344 if (unlikely(page == NULL)) { 345 if (flags & XBF_READ_AHEAD) { 346 bp->b_page_count = i; 347 error = ENOMEM; 348 goto out_free_pages; 349 } 350 351 /* 352 * This could deadlock. 353 * 354 * But until all the XFS lowlevel code is revamped to 355 * handle buffer allocation failures we can't do much. 356 */ 357 if (!(++retries % 100)) 358 xfs_err(NULL, 359 "possible memory allocation deadlock in %s (mode:0x%x)", 360 __func__, gfp_mask); 361 362 XFS_STATS_INC(xb_page_retries); 363 congestion_wait(BLK_RW_ASYNC, HZ/50); 364 goto retry; 365 } 366 367 XFS_STATS_INC(xb_page_found); 368 369 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 370 size -= nbytes; 371 bp->b_pages[i] = page; 372 offset = 0; 373 } 374 return 0; 375 376 out_free_pages: 377 for (i = 0; i < bp->b_page_count; i++) 378 __free_page(bp->b_pages[i]); 379 return error; 380 } 381 382 /* 383 * Map buffer into kernel address-space if necessary. 384 */ 385 STATIC int 386 _xfs_buf_map_pages( 387 xfs_buf_t *bp, 388 uint flags) 389 { 390 ASSERT(bp->b_flags & _XBF_PAGES); 391 if (bp->b_page_count == 1) { 392 /* A single page buffer is always mappable */ 393 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 394 } else if (flags & XBF_UNMAPPED) { 395 bp->b_addr = NULL; 396 } else { 397 int retried = 0; 398 399 do { 400 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 401 -1, PAGE_KERNEL); 402 if (bp->b_addr) 403 break; 404 vm_unmap_aliases(); 405 } while (retried++ <= 1); 406 407 if (!bp->b_addr) 408 return -ENOMEM; 409 bp->b_addr += bp->b_offset; 410 } 411 412 return 0; 413 } 414 415 /* 416 * Finding and Reading Buffers 417 */ 418 419 /* 420 * Look up, and creates if absent, a lockable buffer for 421 * a given range of an inode. The buffer is returned 422 * locked. No I/O is implied by this call. 423 */ 424 xfs_buf_t * 425 _xfs_buf_find( 426 struct xfs_buftarg *btp, 427 struct xfs_buf_map *map, 428 int nmaps, 429 xfs_buf_flags_t flags, 430 xfs_buf_t *new_bp) 431 { 432 size_t numbytes; 433 struct xfs_perag *pag; 434 struct rb_node **rbp; 435 struct rb_node *parent; 436 xfs_buf_t *bp; 437 xfs_daddr_t blkno = map[0].bm_bn; 438 xfs_daddr_t eofs; 439 int numblks = 0; 440 int i; 441 442 for (i = 0; i < nmaps; i++) 443 numblks += map[i].bm_len; 444 numbytes = BBTOB(numblks); 445 446 /* Check for IOs smaller than the sector size / not sector aligned */ 447 ASSERT(!(numbytes < (1 << btp->bt_sshift))); 448 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask)); 449 450 /* 451 * Corrupted block numbers can get through to here, unfortunately, so we 452 * have to check that the buffer falls within the filesystem bounds. 453 */ 454 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 455 if (blkno >= eofs) { 456 /* 457 * XXX (dgc): we should really be returning EFSCORRUPTED here, 458 * but none of the higher level infrastructure supports 459 * returning a specific error on buffer lookup failures. 460 */ 461 xfs_alert(btp->bt_mount, 462 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ", 463 __func__, blkno, eofs); 464 WARN_ON(1); 465 return NULL; 466 } 467 468 /* get tree root */ 469 pag = xfs_perag_get(btp->bt_mount, 470 xfs_daddr_to_agno(btp->bt_mount, blkno)); 471 472 /* walk tree */ 473 spin_lock(&pag->pag_buf_lock); 474 rbp = &pag->pag_buf_tree.rb_node; 475 parent = NULL; 476 bp = NULL; 477 while (*rbp) { 478 parent = *rbp; 479 bp = rb_entry(parent, struct xfs_buf, b_rbnode); 480 481 if (blkno < bp->b_bn) 482 rbp = &(*rbp)->rb_left; 483 else if (blkno > bp->b_bn) 484 rbp = &(*rbp)->rb_right; 485 else { 486 /* 487 * found a block number match. If the range doesn't 488 * match, the only way this is allowed is if the buffer 489 * in the cache is stale and the transaction that made 490 * it stale has not yet committed. i.e. we are 491 * reallocating a busy extent. Skip this buffer and 492 * continue searching to the right for an exact match. 493 */ 494 if (bp->b_length != numblks) { 495 ASSERT(bp->b_flags & XBF_STALE); 496 rbp = &(*rbp)->rb_right; 497 continue; 498 } 499 atomic_inc(&bp->b_hold); 500 goto found; 501 } 502 } 503 504 /* No match found */ 505 if (new_bp) { 506 rb_link_node(&new_bp->b_rbnode, parent, rbp); 507 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); 508 /* the buffer keeps the perag reference until it is freed */ 509 new_bp->b_pag = pag; 510 spin_unlock(&pag->pag_buf_lock); 511 } else { 512 XFS_STATS_INC(xb_miss_locked); 513 spin_unlock(&pag->pag_buf_lock); 514 xfs_perag_put(pag); 515 } 516 return new_bp; 517 518 found: 519 spin_unlock(&pag->pag_buf_lock); 520 xfs_perag_put(pag); 521 522 if (!xfs_buf_trylock(bp)) { 523 if (flags & XBF_TRYLOCK) { 524 xfs_buf_rele(bp); 525 XFS_STATS_INC(xb_busy_locked); 526 return NULL; 527 } 528 xfs_buf_lock(bp); 529 XFS_STATS_INC(xb_get_locked_waited); 530 } 531 532 /* 533 * if the buffer is stale, clear all the external state associated with 534 * it. We need to keep flags such as how we allocated the buffer memory 535 * intact here. 536 */ 537 if (bp->b_flags & XBF_STALE) { 538 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 539 ASSERT(bp->b_iodone == NULL); 540 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 541 bp->b_ops = NULL; 542 } 543 544 trace_xfs_buf_find(bp, flags, _RET_IP_); 545 XFS_STATS_INC(xb_get_locked); 546 return bp; 547 } 548 549 /* 550 * Assembles a buffer covering the specified range. The code is optimised for 551 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 552 * more hits than misses. 553 */ 554 struct xfs_buf * 555 xfs_buf_get_map( 556 struct xfs_buftarg *target, 557 struct xfs_buf_map *map, 558 int nmaps, 559 xfs_buf_flags_t flags) 560 { 561 struct xfs_buf *bp; 562 struct xfs_buf *new_bp; 563 int error = 0; 564 565 bp = _xfs_buf_find(target, map, nmaps, flags, NULL); 566 if (likely(bp)) 567 goto found; 568 569 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 570 if (unlikely(!new_bp)) 571 return NULL; 572 573 error = xfs_buf_allocate_memory(new_bp, flags); 574 if (error) { 575 xfs_buf_free(new_bp); 576 return NULL; 577 } 578 579 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); 580 if (!bp) { 581 xfs_buf_free(new_bp); 582 return NULL; 583 } 584 585 if (bp != new_bp) 586 xfs_buf_free(new_bp); 587 588 found: 589 if (!bp->b_addr) { 590 error = _xfs_buf_map_pages(bp, flags); 591 if (unlikely(error)) { 592 xfs_warn(target->bt_mount, 593 "%s: failed to map pages\n", __func__); 594 xfs_buf_relse(bp); 595 return NULL; 596 } 597 } 598 599 XFS_STATS_INC(xb_get); 600 trace_xfs_buf_get(bp, flags, _RET_IP_); 601 return bp; 602 } 603 604 STATIC int 605 _xfs_buf_read( 606 xfs_buf_t *bp, 607 xfs_buf_flags_t flags) 608 { 609 ASSERT(!(flags & XBF_WRITE)); 610 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 611 612 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 613 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 614 615 xfs_buf_iorequest(bp); 616 if (flags & XBF_ASYNC) 617 return 0; 618 return xfs_buf_iowait(bp); 619 } 620 621 xfs_buf_t * 622 xfs_buf_read_map( 623 struct xfs_buftarg *target, 624 struct xfs_buf_map *map, 625 int nmaps, 626 xfs_buf_flags_t flags, 627 const struct xfs_buf_ops *ops) 628 { 629 struct xfs_buf *bp; 630 631 flags |= XBF_READ; 632 633 bp = xfs_buf_get_map(target, map, nmaps, flags); 634 if (bp) { 635 trace_xfs_buf_read(bp, flags, _RET_IP_); 636 637 if (!XFS_BUF_ISDONE(bp)) { 638 XFS_STATS_INC(xb_get_read); 639 bp->b_ops = ops; 640 _xfs_buf_read(bp, flags); 641 } else if (flags & XBF_ASYNC) { 642 /* 643 * Read ahead call which is already satisfied, 644 * drop the buffer 645 */ 646 xfs_buf_relse(bp); 647 return NULL; 648 } else { 649 /* We do not want read in the flags */ 650 bp->b_flags &= ~XBF_READ; 651 } 652 } 653 654 return bp; 655 } 656 657 /* 658 * If we are not low on memory then do the readahead in a deadlock 659 * safe manner. 660 */ 661 void 662 xfs_buf_readahead_map( 663 struct xfs_buftarg *target, 664 struct xfs_buf_map *map, 665 int nmaps, 666 const struct xfs_buf_ops *ops) 667 { 668 if (bdi_read_congested(target->bt_bdi)) 669 return; 670 671 xfs_buf_read_map(target, map, nmaps, 672 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 673 } 674 675 /* 676 * Read an uncached buffer from disk. Allocates and returns a locked 677 * buffer containing the disk contents or nothing. 678 */ 679 struct xfs_buf * 680 xfs_buf_read_uncached( 681 struct xfs_buftarg *target, 682 xfs_daddr_t daddr, 683 size_t numblks, 684 int flags, 685 const struct xfs_buf_ops *ops) 686 { 687 struct xfs_buf *bp; 688 689 bp = xfs_buf_get_uncached(target, numblks, flags); 690 if (!bp) 691 return NULL; 692 693 /* set up the buffer for a read IO */ 694 ASSERT(bp->b_map_count == 1); 695 bp->b_bn = daddr; 696 bp->b_maps[0].bm_bn = daddr; 697 bp->b_flags |= XBF_READ; 698 bp->b_ops = ops; 699 700 xfsbdstrat(target->bt_mount, bp); 701 xfs_buf_iowait(bp); 702 return bp; 703 } 704 705 /* 706 * Return a buffer allocated as an empty buffer and associated to external 707 * memory via xfs_buf_associate_memory() back to it's empty state. 708 */ 709 void 710 xfs_buf_set_empty( 711 struct xfs_buf *bp, 712 size_t numblks) 713 { 714 if (bp->b_pages) 715 _xfs_buf_free_pages(bp); 716 717 bp->b_pages = NULL; 718 bp->b_page_count = 0; 719 bp->b_addr = NULL; 720 bp->b_length = numblks; 721 bp->b_io_length = numblks; 722 723 ASSERT(bp->b_map_count == 1); 724 bp->b_bn = XFS_BUF_DADDR_NULL; 725 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 726 bp->b_maps[0].bm_len = bp->b_length; 727 } 728 729 static inline struct page * 730 mem_to_page( 731 void *addr) 732 { 733 if ((!is_vmalloc_addr(addr))) { 734 return virt_to_page(addr); 735 } else { 736 return vmalloc_to_page(addr); 737 } 738 } 739 740 int 741 xfs_buf_associate_memory( 742 xfs_buf_t *bp, 743 void *mem, 744 size_t len) 745 { 746 int rval; 747 int i = 0; 748 unsigned long pageaddr; 749 unsigned long offset; 750 size_t buflen; 751 int page_count; 752 753 pageaddr = (unsigned long)mem & PAGE_MASK; 754 offset = (unsigned long)mem - pageaddr; 755 buflen = PAGE_ALIGN(len + offset); 756 page_count = buflen >> PAGE_SHIFT; 757 758 /* Free any previous set of page pointers */ 759 if (bp->b_pages) 760 _xfs_buf_free_pages(bp); 761 762 bp->b_pages = NULL; 763 bp->b_addr = mem; 764 765 rval = _xfs_buf_get_pages(bp, page_count, 0); 766 if (rval) 767 return rval; 768 769 bp->b_offset = offset; 770 771 for (i = 0; i < bp->b_page_count; i++) { 772 bp->b_pages[i] = mem_to_page((void *)pageaddr); 773 pageaddr += PAGE_SIZE; 774 } 775 776 bp->b_io_length = BTOBB(len); 777 bp->b_length = BTOBB(buflen); 778 779 return 0; 780 } 781 782 xfs_buf_t * 783 xfs_buf_get_uncached( 784 struct xfs_buftarg *target, 785 size_t numblks, 786 int flags) 787 { 788 unsigned long page_count; 789 int error, i; 790 struct xfs_buf *bp; 791 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 792 793 bp = _xfs_buf_alloc(target, &map, 1, 0); 794 if (unlikely(bp == NULL)) 795 goto fail; 796 797 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 798 error = _xfs_buf_get_pages(bp, page_count, 0); 799 if (error) 800 goto fail_free_buf; 801 802 for (i = 0; i < page_count; i++) { 803 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 804 if (!bp->b_pages[i]) 805 goto fail_free_mem; 806 } 807 bp->b_flags |= _XBF_PAGES; 808 809 error = _xfs_buf_map_pages(bp, 0); 810 if (unlikely(error)) { 811 xfs_warn(target->bt_mount, 812 "%s: failed to map pages\n", __func__); 813 goto fail_free_mem; 814 } 815 816 trace_xfs_buf_get_uncached(bp, _RET_IP_); 817 return bp; 818 819 fail_free_mem: 820 while (--i >= 0) 821 __free_page(bp->b_pages[i]); 822 _xfs_buf_free_pages(bp); 823 fail_free_buf: 824 xfs_buf_free_maps(bp); 825 kmem_zone_free(xfs_buf_zone, bp); 826 fail: 827 return NULL; 828 } 829 830 /* 831 * Increment reference count on buffer, to hold the buffer concurrently 832 * with another thread which may release (free) the buffer asynchronously. 833 * Must hold the buffer already to call this function. 834 */ 835 void 836 xfs_buf_hold( 837 xfs_buf_t *bp) 838 { 839 trace_xfs_buf_hold(bp, _RET_IP_); 840 atomic_inc(&bp->b_hold); 841 } 842 843 /* 844 * Releases a hold on the specified buffer. If the 845 * the hold count is 1, calls xfs_buf_free. 846 */ 847 void 848 xfs_buf_rele( 849 xfs_buf_t *bp) 850 { 851 struct xfs_perag *pag = bp->b_pag; 852 853 trace_xfs_buf_rele(bp, _RET_IP_); 854 855 if (!pag) { 856 ASSERT(list_empty(&bp->b_lru)); 857 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); 858 if (atomic_dec_and_test(&bp->b_hold)) 859 xfs_buf_free(bp); 860 return; 861 } 862 863 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); 864 865 ASSERT(atomic_read(&bp->b_hold) > 0); 866 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { 867 spin_lock(&bp->b_lock); 868 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 869 /* 870 * If the buffer is added to the LRU take a new 871 * reference to the buffer for the LRU and clear the 872 * (now stale) dispose list state flag 873 */ 874 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 875 bp->b_state &= ~XFS_BSTATE_DISPOSE; 876 atomic_inc(&bp->b_hold); 877 } 878 spin_unlock(&bp->b_lock); 879 spin_unlock(&pag->pag_buf_lock); 880 } else { 881 /* 882 * most of the time buffers will already be removed from 883 * the LRU, so optimise that case by checking for the 884 * XFS_BSTATE_DISPOSE flag indicating the last list the 885 * buffer was on was the disposal list 886 */ 887 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 888 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 889 } else { 890 ASSERT(list_empty(&bp->b_lru)); 891 } 892 spin_unlock(&bp->b_lock); 893 894 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 895 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); 896 spin_unlock(&pag->pag_buf_lock); 897 xfs_perag_put(pag); 898 xfs_buf_free(bp); 899 } 900 } 901 } 902 903 904 /* 905 * Lock a buffer object, if it is not already locked. 906 * 907 * If we come across a stale, pinned, locked buffer, we know that we are 908 * being asked to lock a buffer that has been reallocated. Because it is 909 * pinned, we know that the log has not been pushed to disk and hence it 910 * will still be locked. Rather than continuing to have trylock attempts 911 * fail until someone else pushes the log, push it ourselves before 912 * returning. This means that the xfsaild will not get stuck trying 913 * to push on stale inode buffers. 914 */ 915 int 916 xfs_buf_trylock( 917 struct xfs_buf *bp) 918 { 919 int locked; 920 921 locked = down_trylock(&bp->b_sema) == 0; 922 if (locked) 923 XB_SET_OWNER(bp); 924 925 trace_xfs_buf_trylock(bp, _RET_IP_); 926 return locked; 927 } 928 929 /* 930 * Lock a buffer object. 931 * 932 * If we come across a stale, pinned, locked buffer, we know that we 933 * are being asked to lock a buffer that has been reallocated. Because 934 * it is pinned, we know that the log has not been pushed to disk and 935 * hence it will still be locked. Rather than sleeping until someone 936 * else pushes the log, push it ourselves before trying to get the lock. 937 */ 938 void 939 xfs_buf_lock( 940 struct xfs_buf *bp) 941 { 942 trace_xfs_buf_lock(bp, _RET_IP_); 943 944 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 945 xfs_log_force(bp->b_target->bt_mount, 0); 946 down(&bp->b_sema); 947 XB_SET_OWNER(bp); 948 949 trace_xfs_buf_lock_done(bp, _RET_IP_); 950 } 951 952 void 953 xfs_buf_unlock( 954 struct xfs_buf *bp) 955 { 956 XB_CLEAR_OWNER(bp); 957 up(&bp->b_sema); 958 959 trace_xfs_buf_unlock(bp, _RET_IP_); 960 } 961 962 STATIC void 963 xfs_buf_wait_unpin( 964 xfs_buf_t *bp) 965 { 966 DECLARE_WAITQUEUE (wait, current); 967 968 if (atomic_read(&bp->b_pin_count) == 0) 969 return; 970 971 add_wait_queue(&bp->b_waiters, &wait); 972 for (;;) { 973 set_current_state(TASK_UNINTERRUPTIBLE); 974 if (atomic_read(&bp->b_pin_count) == 0) 975 break; 976 io_schedule(); 977 } 978 remove_wait_queue(&bp->b_waiters, &wait); 979 set_current_state(TASK_RUNNING); 980 } 981 982 /* 983 * Buffer Utility Routines 984 */ 985 986 STATIC void 987 xfs_buf_iodone_work( 988 struct work_struct *work) 989 { 990 struct xfs_buf *bp = 991 container_of(work, xfs_buf_t, b_iodone_work); 992 bool read = !!(bp->b_flags & XBF_READ); 993 994 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 995 996 /* only validate buffers that were read without errors */ 997 if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE)) 998 bp->b_ops->verify_read(bp); 999 1000 if (bp->b_iodone) 1001 (*(bp->b_iodone))(bp); 1002 else if (bp->b_flags & XBF_ASYNC) 1003 xfs_buf_relse(bp); 1004 else { 1005 ASSERT(read && bp->b_ops); 1006 complete(&bp->b_iowait); 1007 } 1008 } 1009 1010 void 1011 xfs_buf_ioend( 1012 struct xfs_buf *bp, 1013 int schedule) 1014 { 1015 bool read = !!(bp->b_flags & XBF_READ); 1016 1017 trace_xfs_buf_iodone(bp, _RET_IP_); 1018 1019 if (bp->b_error == 0) 1020 bp->b_flags |= XBF_DONE; 1021 1022 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) { 1023 if (schedule) { 1024 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work); 1025 queue_work(xfslogd_workqueue, &bp->b_iodone_work); 1026 } else { 1027 xfs_buf_iodone_work(&bp->b_iodone_work); 1028 } 1029 } else { 1030 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1031 complete(&bp->b_iowait); 1032 } 1033 } 1034 1035 void 1036 xfs_buf_ioerror( 1037 xfs_buf_t *bp, 1038 int error) 1039 { 1040 ASSERT(error >= 0 && error <= 0xffff); 1041 bp->b_error = (unsigned short)error; 1042 trace_xfs_buf_ioerror(bp, error, _RET_IP_); 1043 } 1044 1045 void 1046 xfs_buf_ioerror_alert( 1047 struct xfs_buf *bp, 1048 const char *func) 1049 { 1050 xfs_alert(bp->b_target->bt_mount, 1051 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d", 1052 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length); 1053 } 1054 1055 /* 1056 * Called when we want to stop a buffer from getting written or read. 1057 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend 1058 * so that the proper iodone callbacks get called. 1059 */ 1060 STATIC int 1061 xfs_bioerror( 1062 xfs_buf_t *bp) 1063 { 1064 #ifdef XFSERRORDEBUG 1065 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone); 1066 #endif 1067 1068 /* 1069 * No need to wait until the buffer is unpinned, we aren't flushing it. 1070 */ 1071 xfs_buf_ioerror(bp, EIO); 1072 1073 /* 1074 * We're calling xfs_buf_ioend, so delete XBF_DONE flag. 1075 */ 1076 XFS_BUF_UNREAD(bp); 1077 XFS_BUF_UNDONE(bp); 1078 xfs_buf_stale(bp); 1079 1080 xfs_buf_ioend(bp, 0); 1081 1082 return EIO; 1083 } 1084 1085 /* 1086 * Same as xfs_bioerror, except that we are releasing the buffer 1087 * here ourselves, and avoiding the xfs_buf_ioend call. 1088 * This is meant for userdata errors; metadata bufs come with 1089 * iodone functions attached, so that we can track down errors. 1090 */ 1091 STATIC int 1092 xfs_bioerror_relse( 1093 struct xfs_buf *bp) 1094 { 1095 int64_t fl = bp->b_flags; 1096 /* 1097 * No need to wait until the buffer is unpinned. 1098 * We aren't flushing it. 1099 * 1100 * chunkhold expects B_DONE to be set, whether 1101 * we actually finish the I/O or not. We don't want to 1102 * change that interface. 1103 */ 1104 XFS_BUF_UNREAD(bp); 1105 XFS_BUF_DONE(bp); 1106 xfs_buf_stale(bp); 1107 bp->b_iodone = NULL; 1108 if (!(fl & XBF_ASYNC)) { 1109 /* 1110 * Mark b_error and B_ERROR _both_. 1111 * Lot's of chunkcache code assumes that. 1112 * There's no reason to mark error for 1113 * ASYNC buffers. 1114 */ 1115 xfs_buf_ioerror(bp, EIO); 1116 complete(&bp->b_iowait); 1117 } else { 1118 xfs_buf_relse(bp); 1119 } 1120 1121 return EIO; 1122 } 1123 1124 STATIC int 1125 xfs_bdstrat_cb( 1126 struct xfs_buf *bp) 1127 { 1128 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1129 trace_xfs_bdstrat_shut(bp, _RET_IP_); 1130 /* 1131 * Metadata write that didn't get logged but 1132 * written delayed anyway. These aren't associated 1133 * with a transaction, and can be ignored. 1134 */ 1135 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp)) 1136 return xfs_bioerror_relse(bp); 1137 else 1138 return xfs_bioerror(bp); 1139 } 1140 1141 xfs_buf_iorequest(bp); 1142 return 0; 1143 } 1144 1145 int 1146 xfs_bwrite( 1147 struct xfs_buf *bp) 1148 { 1149 int error; 1150 1151 ASSERT(xfs_buf_islocked(bp)); 1152 1153 bp->b_flags |= XBF_WRITE; 1154 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q); 1155 1156 xfs_bdstrat_cb(bp); 1157 1158 error = xfs_buf_iowait(bp); 1159 if (error) { 1160 xfs_force_shutdown(bp->b_target->bt_mount, 1161 SHUTDOWN_META_IO_ERROR); 1162 } 1163 return error; 1164 } 1165 1166 /* 1167 * Wrapper around bdstrat so that we can stop data from going to disk in case 1168 * we are shutting down the filesystem. Typically user data goes thru this 1169 * path; one of the exceptions is the superblock. 1170 */ 1171 void 1172 xfsbdstrat( 1173 struct xfs_mount *mp, 1174 struct xfs_buf *bp) 1175 { 1176 if (XFS_FORCED_SHUTDOWN(mp)) { 1177 trace_xfs_bdstrat_shut(bp, _RET_IP_); 1178 xfs_bioerror_relse(bp); 1179 return; 1180 } 1181 1182 xfs_buf_iorequest(bp); 1183 } 1184 1185 STATIC void 1186 _xfs_buf_ioend( 1187 xfs_buf_t *bp, 1188 int schedule) 1189 { 1190 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1191 xfs_buf_ioend(bp, schedule); 1192 } 1193 1194 STATIC void 1195 xfs_buf_bio_end_io( 1196 struct bio *bio, 1197 int error) 1198 { 1199 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private; 1200 1201 /* 1202 * don't overwrite existing errors - otherwise we can lose errors on 1203 * buffers that require multiple bios to complete. 1204 */ 1205 if (!bp->b_error) 1206 xfs_buf_ioerror(bp, -error); 1207 1208 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1209 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1210 1211 _xfs_buf_ioend(bp, 1); 1212 bio_put(bio); 1213 } 1214 1215 static void 1216 xfs_buf_ioapply_map( 1217 struct xfs_buf *bp, 1218 int map, 1219 int *buf_offset, 1220 int *count, 1221 int rw) 1222 { 1223 int page_index; 1224 int total_nr_pages = bp->b_page_count; 1225 int nr_pages; 1226 struct bio *bio; 1227 sector_t sector = bp->b_maps[map].bm_bn; 1228 int size; 1229 int offset; 1230 1231 total_nr_pages = bp->b_page_count; 1232 1233 /* skip the pages in the buffer before the start offset */ 1234 page_index = 0; 1235 offset = *buf_offset; 1236 while (offset >= PAGE_SIZE) { 1237 page_index++; 1238 offset -= PAGE_SIZE; 1239 } 1240 1241 /* 1242 * Limit the IO size to the length of the current vector, and update the 1243 * remaining IO count for the next time around. 1244 */ 1245 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1246 *count -= size; 1247 *buf_offset += size; 1248 1249 next_chunk: 1250 atomic_inc(&bp->b_io_remaining); 1251 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); 1252 if (nr_pages > total_nr_pages) 1253 nr_pages = total_nr_pages; 1254 1255 bio = bio_alloc(GFP_NOIO, nr_pages); 1256 bio->bi_bdev = bp->b_target->bt_bdev; 1257 bio->bi_sector = sector; 1258 bio->bi_end_io = xfs_buf_bio_end_io; 1259 bio->bi_private = bp; 1260 1261 1262 for (; size && nr_pages; nr_pages--, page_index++) { 1263 int rbytes, nbytes = PAGE_SIZE - offset; 1264 1265 if (nbytes > size) 1266 nbytes = size; 1267 1268 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1269 offset); 1270 if (rbytes < nbytes) 1271 break; 1272 1273 offset = 0; 1274 sector += BTOBB(nbytes); 1275 size -= nbytes; 1276 total_nr_pages--; 1277 } 1278 1279 if (likely(bio->bi_size)) { 1280 if (xfs_buf_is_vmapped(bp)) { 1281 flush_kernel_vmap_range(bp->b_addr, 1282 xfs_buf_vmap_len(bp)); 1283 } 1284 submit_bio(rw, bio); 1285 if (size) 1286 goto next_chunk; 1287 } else { 1288 /* 1289 * This is guaranteed not to be the last io reference count 1290 * because the caller (xfs_buf_iorequest) holds a count itself. 1291 */ 1292 atomic_dec(&bp->b_io_remaining); 1293 xfs_buf_ioerror(bp, EIO); 1294 bio_put(bio); 1295 } 1296 1297 } 1298 1299 STATIC void 1300 _xfs_buf_ioapply( 1301 struct xfs_buf *bp) 1302 { 1303 struct blk_plug plug; 1304 int rw; 1305 int offset; 1306 int size; 1307 int i; 1308 1309 /* 1310 * Make sure we capture only current IO errors rather than stale errors 1311 * left over from previous use of the buffer (e.g. failed readahead). 1312 */ 1313 bp->b_error = 0; 1314 1315 if (bp->b_flags & XBF_WRITE) { 1316 if (bp->b_flags & XBF_SYNCIO) 1317 rw = WRITE_SYNC; 1318 else 1319 rw = WRITE; 1320 if (bp->b_flags & XBF_FUA) 1321 rw |= REQ_FUA; 1322 if (bp->b_flags & XBF_FLUSH) 1323 rw |= REQ_FLUSH; 1324 1325 /* 1326 * Run the write verifier callback function if it exists. If 1327 * this function fails it will mark the buffer with an error and 1328 * the IO should not be dispatched. 1329 */ 1330 if (bp->b_ops) { 1331 bp->b_ops->verify_write(bp); 1332 if (bp->b_error) { 1333 xfs_force_shutdown(bp->b_target->bt_mount, 1334 SHUTDOWN_CORRUPT_INCORE); 1335 return; 1336 } 1337 } 1338 } else if (bp->b_flags & XBF_READ_AHEAD) { 1339 rw = READA; 1340 } else { 1341 rw = READ; 1342 } 1343 1344 /* we only use the buffer cache for meta-data */ 1345 rw |= REQ_META; 1346 1347 /* 1348 * Walk all the vectors issuing IO on them. Set up the initial offset 1349 * into the buffer and the desired IO size before we start - 1350 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1351 * subsequent call. 1352 */ 1353 offset = bp->b_offset; 1354 size = BBTOB(bp->b_io_length); 1355 blk_start_plug(&plug); 1356 for (i = 0; i < bp->b_map_count; i++) { 1357 xfs_buf_ioapply_map(bp, i, &offset, &size, rw); 1358 if (bp->b_error) 1359 break; 1360 if (size <= 0) 1361 break; /* all done */ 1362 } 1363 blk_finish_plug(&plug); 1364 } 1365 1366 void 1367 xfs_buf_iorequest( 1368 xfs_buf_t *bp) 1369 { 1370 trace_xfs_buf_iorequest(bp, _RET_IP_); 1371 1372 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1373 1374 if (bp->b_flags & XBF_WRITE) 1375 xfs_buf_wait_unpin(bp); 1376 xfs_buf_hold(bp); 1377 1378 /* Set the count to 1 initially, this will stop an I/O 1379 * completion callout which happens before we have started 1380 * all the I/O from calling xfs_buf_ioend too early. 1381 */ 1382 atomic_set(&bp->b_io_remaining, 1); 1383 _xfs_buf_ioapply(bp); 1384 _xfs_buf_ioend(bp, 1); 1385 1386 xfs_buf_rele(bp); 1387 } 1388 1389 /* 1390 * Waits for I/O to complete on the buffer supplied. It returns immediately if 1391 * no I/O is pending or there is already a pending error on the buffer. It 1392 * returns the I/O error code, if any, or 0 if there was no error. 1393 */ 1394 int 1395 xfs_buf_iowait( 1396 xfs_buf_t *bp) 1397 { 1398 trace_xfs_buf_iowait(bp, _RET_IP_); 1399 1400 if (!bp->b_error) 1401 wait_for_completion(&bp->b_iowait); 1402 1403 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1404 return bp->b_error; 1405 } 1406 1407 xfs_caddr_t 1408 xfs_buf_offset( 1409 xfs_buf_t *bp, 1410 size_t offset) 1411 { 1412 struct page *page; 1413 1414 if (bp->b_addr) 1415 return bp->b_addr + offset; 1416 1417 offset += bp->b_offset; 1418 page = bp->b_pages[offset >> PAGE_SHIFT]; 1419 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1)); 1420 } 1421 1422 /* 1423 * Move data into or out of a buffer. 1424 */ 1425 void 1426 xfs_buf_iomove( 1427 xfs_buf_t *bp, /* buffer to process */ 1428 size_t boff, /* starting buffer offset */ 1429 size_t bsize, /* length to copy */ 1430 void *data, /* data address */ 1431 xfs_buf_rw_t mode) /* read/write/zero flag */ 1432 { 1433 size_t bend; 1434 1435 bend = boff + bsize; 1436 while (boff < bend) { 1437 struct page *page; 1438 int page_index, page_offset, csize; 1439 1440 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1441 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1442 page = bp->b_pages[page_index]; 1443 csize = min_t(size_t, PAGE_SIZE - page_offset, 1444 BBTOB(bp->b_io_length) - boff); 1445 1446 ASSERT((csize + page_offset) <= PAGE_SIZE); 1447 1448 switch (mode) { 1449 case XBRW_ZERO: 1450 memset(page_address(page) + page_offset, 0, csize); 1451 break; 1452 case XBRW_READ: 1453 memcpy(data, page_address(page) + page_offset, csize); 1454 break; 1455 case XBRW_WRITE: 1456 memcpy(page_address(page) + page_offset, data, csize); 1457 } 1458 1459 boff += csize; 1460 data += csize; 1461 } 1462 } 1463 1464 /* 1465 * Handling of buffer targets (buftargs). 1466 */ 1467 1468 /* 1469 * Wait for any bufs with callbacks that have been submitted but have not yet 1470 * returned. These buffers will have an elevated hold count, so wait on those 1471 * while freeing all the buffers only held by the LRU. 1472 */ 1473 static enum lru_status 1474 xfs_buftarg_wait_rele( 1475 struct list_head *item, 1476 spinlock_t *lru_lock, 1477 void *arg) 1478 1479 { 1480 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1481 struct list_head *dispose = arg; 1482 1483 if (atomic_read(&bp->b_hold) > 1) { 1484 /* need to wait, so skip it this pass */ 1485 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1486 return LRU_SKIP; 1487 } 1488 if (!spin_trylock(&bp->b_lock)) 1489 return LRU_SKIP; 1490 1491 /* 1492 * clear the LRU reference count so the buffer doesn't get 1493 * ignored in xfs_buf_rele(). 1494 */ 1495 atomic_set(&bp->b_lru_ref, 0); 1496 bp->b_state |= XFS_BSTATE_DISPOSE; 1497 list_move(item, dispose); 1498 spin_unlock(&bp->b_lock); 1499 return LRU_REMOVED; 1500 } 1501 1502 void 1503 xfs_wait_buftarg( 1504 struct xfs_buftarg *btp) 1505 { 1506 LIST_HEAD(dispose); 1507 int loop = 0; 1508 1509 /* loop until there is nothing left on the lru list. */ 1510 while (list_lru_count(&btp->bt_lru)) { 1511 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1512 &dispose, LONG_MAX); 1513 1514 while (!list_empty(&dispose)) { 1515 struct xfs_buf *bp; 1516 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1517 list_del_init(&bp->b_lru); 1518 xfs_buf_rele(bp); 1519 } 1520 if (loop++ != 0) 1521 delay(100); 1522 } 1523 } 1524 1525 static enum lru_status 1526 xfs_buftarg_isolate( 1527 struct list_head *item, 1528 spinlock_t *lru_lock, 1529 void *arg) 1530 { 1531 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1532 struct list_head *dispose = arg; 1533 1534 /* 1535 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1536 * If we fail to get the lock, just skip it. 1537 */ 1538 if (!spin_trylock(&bp->b_lock)) 1539 return LRU_SKIP; 1540 /* 1541 * Decrement the b_lru_ref count unless the value is already 1542 * zero. If the value is already zero, we need to reclaim the 1543 * buffer, otherwise it gets another trip through the LRU. 1544 */ 1545 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1546 spin_unlock(&bp->b_lock); 1547 return LRU_ROTATE; 1548 } 1549 1550 bp->b_state |= XFS_BSTATE_DISPOSE; 1551 list_move(item, dispose); 1552 spin_unlock(&bp->b_lock); 1553 return LRU_REMOVED; 1554 } 1555 1556 static unsigned long 1557 xfs_buftarg_shrink_scan( 1558 struct shrinker *shrink, 1559 struct shrink_control *sc) 1560 { 1561 struct xfs_buftarg *btp = container_of(shrink, 1562 struct xfs_buftarg, bt_shrinker); 1563 LIST_HEAD(dispose); 1564 unsigned long freed; 1565 unsigned long nr_to_scan = sc->nr_to_scan; 1566 1567 freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate, 1568 &dispose, &nr_to_scan); 1569 1570 while (!list_empty(&dispose)) { 1571 struct xfs_buf *bp; 1572 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1573 list_del_init(&bp->b_lru); 1574 xfs_buf_rele(bp); 1575 } 1576 1577 return freed; 1578 } 1579 1580 static unsigned long 1581 xfs_buftarg_shrink_count( 1582 struct shrinker *shrink, 1583 struct shrink_control *sc) 1584 { 1585 struct xfs_buftarg *btp = container_of(shrink, 1586 struct xfs_buftarg, bt_shrinker); 1587 return list_lru_count_node(&btp->bt_lru, sc->nid); 1588 } 1589 1590 void 1591 xfs_free_buftarg( 1592 struct xfs_mount *mp, 1593 struct xfs_buftarg *btp) 1594 { 1595 unregister_shrinker(&btp->bt_shrinker); 1596 list_lru_destroy(&btp->bt_lru); 1597 1598 if (mp->m_flags & XFS_MOUNT_BARRIER) 1599 xfs_blkdev_issue_flush(btp); 1600 1601 kmem_free(btp); 1602 } 1603 1604 STATIC int 1605 xfs_setsize_buftarg_flags( 1606 xfs_buftarg_t *btp, 1607 unsigned int blocksize, 1608 unsigned int sectorsize, 1609 int verbose) 1610 { 1611 btp->bt_bsize = blocksize; 1612 btp->bt_sshift = ffs(sectorsize) - 1; 1613 btp->bt_smask = sectorsize - 1; 1614 1615 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1616 char name[BDEVNAME_SIZE]; 1617 1618 bdevname(btp->bt_bdev, name); 1619 1620 xfs_warn(btp->bt_mount, 1621 "Cannot set_blocksize to %u on device %s\n", 1622 sectorsize, name); 1623 return EINVAL; 1624 } 1625 1626 return 0; 1627 } 1628 1629 /* 1630 * When allocating the initial buffer target we have not yet 1631 * read in the superblock, so don't know what sized sectors 1632 * are being used at this early stage. Play safe. 1633 */ 1634 STATIC int 1635 xfs_setsize_buftarg_early( 1636 xfs_buftarg_t *btp, 1637 struct block_device *bdev) 1638 { 1639 return xfs_setsize_buftarg_flags(btp, 1640 PAGE_SIZE, bdev_logical_block_size(bdev), 0); 1641 } 1642 1643 int 1644 xfs_setsize_buftarg( 1645 xfs_buftarg_t *btp, 1646 unsigned int blocksize, 1647 unsigned int sectorsize) 1648 { 1649 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); 1650 } 1651 1652 xfs_buftarg_t * 1653 xfs_alloc_buftarg( 1654 struct xfs_mount *mp, 1655 struct block_device *bdev, 1656 int external, 1657 const char *fsname) 1658 { 1659 xfs_buftarg_t *btp; 1660 1661 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); 1662 1663 btp->bt_mount = mp; 1664 btp->bt_dev = bdev->bd_dev; 1665 btp->bt_bdev = bdev; 1666 btp->bt_bdi = blk_get_backing_dev_info(bdev); 1667 if (!btp->bt_bdi) 1668 goto error; 1669 1670 if (xfs_setsize_buftarg_early(btp, bdev)) 1671 goto error; 1672 1673 if (list_lru_init(&btp->bt_lru)) 1674 goto error; 1675 1676 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1677 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1678 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1679 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1680 register_shrinker(&btp->bt_shrinker); 1681 return btp; 1682 1683 error: 1684 kmem_free(btp); 1685 return NULL; 1686 } 1687 1688 /* 1689 * Add a buffer to the delayed write list. 1690 * 1691 * This queues a buffer for writeout if it hasn't already been. Note that 1692 * neither this routine nor the buffer list submission functions perform 1693 * any internal synchronization. It is expected that the lists are thread-local 1694 * to the callers. 1695 * 1696 * Returns true if we queued up the buffer, or false if it already had 1697 * been on the buffer list. 1698 */ 1699 bool 1700 xfs_buf_delwri_queue( 1701 struct xfs_buf *bp, 1702 struct list_head *list) 1703 { 1704 ASSERT(xfs_buf_islocked(bp)); 1705 ASSERT(!(bp->b_flags & XBF_READ)); 1706 1707 /* 1708 * If the buffer is already marked delwri it already is queued up 1709 * by someone else for imediate writeout. Just ignore it in that 1710 * case. 1711 */ 1712 if (bp->b_flags & _XBF_DELWRI_Q) { 1713 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1714 return false; 1715 } 1716 1717 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1718 1719 /* 1720 * If a buffer gets written out synchronously or marked stale while it 1721 * is on a delwri list we lazily remove it. To do this, the other party 1722 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1723 * It remains referenced and on the list. In a rare corner case it 1724 * might get readded to a delwri list after the synchronous writeout, in 1725 * which case we need just need to re-add the flag here. 1726 */ 1727 bp->b_flags |= _XBF_DELWRI_Q; 1728 if (list_empty(&bp->b_list)) { 1729 atomic_inc(&bp->b_hold); 1730 list_add_tail(&bp->b_list, list); 1731 } 1732 1733 return true; 1734 } 1735 1736 /* 1737 * Compare function is more complex than it needs to be because 1738 * the return value is only 32 bits and we are doing comparisons 1739 * on 64 bit values 1740 */ 1741 static int 1742 xfs_buf_cmp( 1743 void *priv, 1744 struct list_head *a, 1745 struct list_head *b) 1746 { 1747 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1748 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1749 xfs_daddr_t diff; 1750 1751 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1752 if (diff < 0) 1753 return -1; 1754 if (diff > 0) 1755 return 1; 1756 return 0; 1757 } 1758 1759 static int 1760 __xfs_buf_delwri_submit( 1761 struct list_head *buffer_list, 1762 struct list_head *io_list, 1763 bool wait) 1764 { 1765 struct blk_plug plug; 1766 struct xfs_buf *bp, *n; 1767 int pinned = 0; 1768 1769 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1770 if (!wait) { 1771 if (xfs_buf_ispinned(bp)) { 1772 pinned++; 1773 continue; 1774 } 1775 if (!xfs_buf_trylock(bp)) 1776 continue; 1777 } else { 1778 xfs_buf_lock(bp); 1779 } 1780 1781 /* 1782 * Someone else might have written the buffer synchronously or 1783 * marked it stale in the meantime. In that case only the 1784 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1785 * reference and remove it from the list here. 1786 */ 1787 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1788 list_del_init(&bp->b_list); 1789 xfs_buf_relse(bp); 1790 continue; 1791 } 1792 1793 list_move_tail(&bp->b_list, io_list); 1794 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1795 } 1796 1797 list_sort(NULL, io_list, xfs_buf_cmp); 1798 1799 blk_start_plug(&plug); 1800 list_for_each_entry_safe(bp, n, io_list, b_list) { 1801 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC); 1802 bp->b_flags |= XBF_WRITE; 1803 1804 if (!wait) { 1805 bp->b_flags |= XBF_ASYNC; 1806 list_del_init(&bp->b_list); 1807 } 1808 xfs_bdstrat_cb(bp); 1809 } 1810 blk_finish_plug(&plug); 1811 1812 return pinned; 1813 } 1814 1815 /* 1816 * Write out a buffer list asynchronously. 1817 * 1818 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1819 * out and not wait for I/O completion on any of the buffers. This interface 1820 * is only safely useable for callers that can track I/O completion by higher 1821 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1822 * function. 1823 */ 1824 int 1825 xfs_buf_delwri_submit_nowait( 1826 struct list_head *buffer_list) 1827 { 1828 LIST_HEAD (io_list); 1829 return __xfs_buf_delwri_submit(buffer_list, &io_list, false); 1830 } 1831 1832 /* 1833 * Write out a buffer list synchronously. 1834 * 1835 * This will take the @buffer_list, write all buffers out and wait for I/O 1836 * completion on all of the buffers. @buffer_list is consumed by the function, 1837 * so callers must have some other way of tracking buffers if they require such 1838 * functionality. 1839 */ 1840 int 1841 xfs_buf_delwri_submit( 1842 struct list_head *buffer_list) 1843 { 1844 LIST_HEAD (io_list); 1845 int error = 0, error2; 1846 struct xfs_buf *bp; 1847 1848 __xfs_buf_delwri_submit(buffer_list, &io_list, true); 1849 1850 /* Wait for IO to complete. */ 1851 while (!list_empty(&io_list)) { 1852 bp = list_first_entry(&io_list, struct xfs_buf, b_list); 1853 1854 list_del_init(&bp->b_list); 1855 error2 = xfs_buf_iowait(bp); 1856 xfs_buf_relse(bp); 1857 if (!error) 1858 error = error2; 1859 } 1860 1861 return error; 1862 } 1863 1864 int __init 1865 xfs_buf_init(void) 1866 { 1867 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 1868 KM_ZONE_HWALIGN, NULL); 1869 if (!xfs_buf_zone) 1870 goto out; 1871 1872 xfslogd_workqueue = alloc_workqueue("xfslogd", 1873 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1); 1874 if (!xfslogd_workqueue) 1875 goto out_free_buf_zone; 1876 1877 return 0; 1878 1879 out_free_buf_zone: 1880 kmem_zone_destroy(xfs_buf_zone); 1881 out: 1882 return -ENOMEM; 1883 } 1884 1885 void 1886 xfs_buf_terminate(void) 1887 { 1888 destroy_workqueue(xfslogd_workqueue); 1889 kmem_zone_destroy(xfs_buf_zone); 1890 } 1891