xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 561099a1)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
37 
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
41 #include "xfs_sb.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44 #include "xfs_log.h"
45 
46 static kmem_zone_t *xfs_buf_zone;
47 
48 #ifdef XFS_BUF_LOCK_TRACKING
49 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
50 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
51 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
52 #else
53 # define XB_SET_OWNER(bp)	do { } while (0)
54 # define XB_CLEAR_OWNER(bp)	do { } while (0)
55 # define XB_GET_OWNER(bp)	do { } while (0)
56 #endif
57 
58 #define xb_to_gfp(flags) \
59 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
60 
61 
62 static inline int
63 xfs_buf_is_vmapped(
64 	struct xfs_buf	*bp)
65 {
66 	/*
67 	 * Return true if the buffer is vmapped.
68 	 *
69 	 * b_addr is null if the buffer is not mapped, but the code is clever
70 	 * enough to know it doesn't have to map a single page, so the check has
71 	 * to be both for b_addr and bp->b_page_count > 1.
72 	 */
73 	return bp->b_addr && bp->b_page_count > 1;
74 }
75 
76 static inline int
77 xfs_buf_vmap_len(
78 	struct xfs_buf	*bp)
79 {
80 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
81 }
82 
83 /*
84  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
85  * this buffer. The count is incremented once per buffer (per hold cycle)
86  * because the corresponding decrement is deferred to buffer release. Buffers
87  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
88  * tracking adds unnecessary overhead. This is used for sychronization purposes
89  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
90  * in-flight buffers.
91  *
92  * Buffers that are never released (e.g., superblock, iclog buffers) must set
93  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
94  * never reaches zero and unmount hangs indefinitely.
95  */
96 static inline void
97 xfs_buf_ioacct_inc(
98 	struct xfs_buf	*bp)
99 {
100 	if (bp->b_flags & XBF_NO_IOACCT)
101 		return;
102 
103 	ASSERT(bp->b_flags & XBF_ASYNC);
104 	spin_lock(&bp->b_lock);
105 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
106 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
107 		percpu_counter_inc(&bp->b_target->bt_io_count);
108 	}
109 	spin_unlock(&bp->b_lock);
110 }
111 
112 /*
113  * Clear the in-flight state on a buffer about to be released to the LRU or
114  * freed and unaccount from the buftarg.
115  */
116 static inline void
117 __xfs_buf_ioacct_dec(
118 	struct xfs_buf	*bp)
119 {
120 	lockdep_assert_held(&bp->b_lock);
121 
122 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
123 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
124 		percpu_counter_dec(&bp->b_target->bt_io_count);
125 	}
126 }
127 
128 static inline void
129 xfs_buf_ioacct_dec(
130 	struct xfs_buf	*bp)
131 {
132 	spin_lock(&bp->b_lock);
133 	__xfs_buf_ioacct_dec(bp);
134 	spin_unlock(&bp->b_lock);
135 }
136 
137 /*
138  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
139  * b_lru_ref count so that the buffer is freed immediately when the buffer
140  * reference count falls to zero. If the buffer is already on the LRU, we need
141  * to remove the reference that LRU holds on the buffer.
142  *
143  * This prevents build-up of stale buffers on the LRU.
144  */
145 void
146 xfs_buf_stale(
147 	struct xfs_buf	*bp)
148 {
149 	ASSERT(xfs_buf_islocked(bp));
150 
151 	bp->b_flags |= XBF_STALE;
152 
153 	/*
154 	 * Clear the delwri status so that a delwri queue walker will not
155 	 * flush this buffer to disk now that it is stale. The delwri queue has
156 	 * a reference to the buffer, so this is safe to do.
157 	 */
158 	bp->b_flags &= ~_XBF_DELWRI_Q;
159 
160 	/*
161 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
162 	 * could reset b_flags. There is no guarantee that the buffer is
163 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
164 	 * status now to preserve accounting consistency.
165 	 */
166 	spin_lock(&bp->b_lock);
167 	__xfs_buf_ioacct_dec(bp);
168 
169 	atomic_set(&bp->b_lru_ref, 0);
170 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
171 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
172 		atomic_dec(&bp->b_hold);
173 
174 	ASSERT(atomic_read(&bp->b_hold) >= 1);
175 	spin_unlock(&bp->b_lock);
176 }
177 
178 static int
179 xfs_buf_get_maps(
180 	struct xfs_buf		*bp,
181 	int			map_count)
182 {
183 	ASSERT(bp->b_maps == NULL);
184 	bp->b_map_count = map_count;
185 
186 	if (map_count == 1) {
187 		bp->b_maps = &bp->__b_map;
188 		return 0;
189 	}
190 
191 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
192 				KM_NOFS);
193 	if (!bp->b_maps)
194 		return -ENOMEM;
195 	return 0;
196 }
197 
198 /*
199  *	Frees b_pages if it was allocated.
200  */
201 static void
202 xfs_buf_free_maps(
203 	struct xfs_buf	*bp)
204 {
205 	if (bp->b_maps != &bp->__b_map) {
206 		kmem_free(bp->b_maps);
207 		bp->b_maps = NULL;
208 	}
209 }
210 
211 struct xfs_buf *
212 _xfs_buf_alloc(
213 	struct xfs_buftarg	*target,
214 	struct xfs_buf_map	*map,
215 	int			nmaps,
216 	xfs_buf_flags_t		flags)
217 {
218 	struct xfs_buf		*bp;
219 	int			error;
220 	int			i;
221 
222 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
223 	if (unlikely(!bp))
224 		return NULL;
225 
226 	/*
227 	 * We don't want certain flags to appear in b_flags unless they are
228 	 * specifically set by later operations on the buffer.
229 	 */
230 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
231 
232 	atomic_set(&bp->b_hold, 1);
233 	atomic_set(&bp->b_lru_ref, 1);
234 	init_completion(&bp->b_iowait);
235 	INIT_LIST_HEAD(&bp->b_lru);
236 	INIT_LIST_HEAD(&bp->b_list);
237 	sema_init(&bp->b_sema, 0); /* held, no waiters */
238 	spin_lock_init(&bp->b_lock);
239 	XB_SET_OWNER(bp);
240 	bp->b_target = target;
241 	bp->b_flags = flags;
242 
243 	/*
244 	 * Set length and io_length to the same value initially.
245 	 * I/O routines should use io_length, which will be the same in
246 	 * most cases but may be reset (e.g. XFS recovery).
247 	 */
248 	error = xfs_buf_get_maps(bp, nmaps);
249 	if (error)  {
250 		kmem_zone_free(xfs_buf_zone, bp);
251 		return NULL;
252 	}
253 
254 	bp->b_bn = map[0].bm_bn;
255 	bp->b_length = 0;
256 	for (i = 0; i < nmaps; i++) {
257 		bp->b_maps[i].bm_bn = map[i].bm_bn;
258 		bp->b_maps[i].bm_len = map[i].bm_len;
259 		bp->b_length += map[i].bm_len;
260 	}
261 	bp->b_io_length = bp->b_length;
262 
263 	atomic_set(&bp->b_pin_count, 0);
264 	init_waitqueue_head(&bp->b_waiters);
265 
266 	XFS_STATS_INC(target->bt_mount, xb_create);
267 	trace_xfs_buf_init(bp, _RET_IP_);
268 
269 	return bp;
270 }
271 
272 /*
273  *	Allocate a page array capable of holding a specified number
274  *	of pages, and point the page buf at it.
275  */
276 STATIC int
277 _xfs_buf_get_pages(
278 	xfs_buf_t		*bp,
279 	int			page_count)
280 {
281 	/* Make sure that we have a page list */
282 	if (bp->b_pages == NULL) {
283 		bp->b_page_count = page_count;
284 		if (page_count <= XB_PAGES) {
285 			bp->b_pages = bp->b_page_array;
286 		} else {
287 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
288 						 page_count, KM_NOFS);
289 			if (bp->b_pages == NULL)
290 				return -ENOMEM;
291 		}
292 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
293 	}
294 	return 0;
295 }
296 
297 /*
298  *	Frees b_pages if it was allocated.
299  */
300 STATIC void
301 _xfs_buf_free_pages(
302 	xfs_buf_t	*bp)
303 {
304 	if (bp->b_pages != bp->b_page_array) {
305 		kmem_free(bp->b_pages);
306 		bp->b_pages = NULL;
307 	}
308 }
309 
310 /*
311  *	Releases the specified buffer.
312  *
313  * 	The modification state of any associated pages is left unchanged.
314  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
315  * 	hashed and refcounted buffers
316  */
317 void
318 xfs_buf_free(
319 	xfs_buf_t		*bp)
320 {
321 	trace_xfs_buf_free(bp, _RET_IP_);
322 
323 	ASSERT(list_empty(&bp->b_lru));
324 
325 	if (bp->b_flags & _XBF_PAGES) {
326 		uint		i;
327 
328 		if (xfs_buf_is_vmapped(bp))
329 			vm_unmap_ram(bp->b_addr - bp->b_offset,
330 					bp->b_page_count);
331 
332 		for (i = 0; i < bp->b_page_count; i++) {
333 			struct page	*page = bp->b_pages[i];
334 
335 			__free_page(page);
336 		}
337 	} else if (bp->b_flags & _XBF_KMEM)
338 		kmem_free(bp->b_addr);
339 	_xfs_buf_free_pages(bp);
340 	xfs_buf_free_maps(bp);
341 	kmem_zone_free(xfs_buf_zone, bp);
342 }
343 
344 /*
345  * Allocates all the pages for buffer in question and builds it's page list.
346  */
347 STATIC int
348 xfs_buf_allocate_memory(
349 	xfs_buf_t		*bp,
350 	uint			flags)
351 {
352 	size_t			size;
353 	size_t			nbytes, offset;
354 	gfp_t			gfp_mask = xb_to_gfp(flags);
355 	unsigned short		page_count, i;
356 	xfs_off_t		start, end;
357 	int			error;
358 
359 	/*
360 	 * for buffers that are contained within a single page, just allocate
361 	 * the memory from the heap - there's no need for the complexity of
362 	 * page arrays to keep allocation down to order 0.
363 	 */
364 	size = BBTOB(bp->b_length);
365 	if (size < PAGE_SIZE) {
366 		bp->b_addr = kmem_alloc(size, KM_NOFS);
367 		if (!bp->b_addr) {
368 			/* low memory - use alloc_page loop instead */
369 			goto use_alloc_page;
370 		}
371 
372 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
373 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
374 			/* b_addr spans two pages - use alloc_page instead */
375 			kmem_free(bp->b_addr);
376 			bp->b_addr = NULL;
377 			goto use_alloc_page;
378 		}
379 		bp->b_offset = offset_in_page(bp->b_addr);
380 		bp->b_pages = bp->b_page_array;
381 		bp->b_pages[0] = virt_to_page(bp->b_addr);
382 		bp->b_page_count = 1;
383 		bp->b_flags |= _XBF_KMEM;
384 		return 0;
385 	}
386 
387 use_alloc_page:
388 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
389 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
390 								>> PAGE_SHIFT;
391 	page_count = end - start;
392 	error = _xfs_buf_get_pages(bp, page_count);
393 	if (unlikely(error))
394 		return error;
395 
396 	offset = bp->b_offset;
397 	bp->b_flags |= _XBF_PAGES;
398 
399 	for (i = 0; i < bp->b_page_count; i++) {
400 		struct page	*page;
401 		uint		retries = 0;
402 retry:
403 		page = alloc_page(gfp_mask);
404 		if (unlikely(page == NULL)) {
405 			if (flags & XBF_READ_AHEAD) {
406 				bp->b_page_count = i;
407 				error = -ENOMEM;
408 				goto out_free_pages;
409 			}
410 
411 			/*
412 			 * This could deadlock.
413 			 *
414 			 * But until all the XFS lowlevel code is revamped to
415 			 * handle buffer allocation failures we can't do much.
416 			 */
417 			if (!(++retries % 100))
418 				xfs_err(NULL,
419 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
420 					current->comm, current->pid,
421 					__func__, gfp_mask);
422 
423 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
424 			congestion_wait(BLK_RW_ASYNC, HZ/50);
425 			goto retry;
426 		}
427 
428 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
429 
430 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
431 		size -= nbytes;
432 		bp->b_pages[i] = page;
433 		offset = 0;
434 	}
435 	return 0;
436 
437 out_free_pages:
438 	for (i = 0; i < bp->b_page_count; i++)
439 		__free_page(bp->b_pages[i]);
440 	bp->b_flags &= ~_XBF_PAGES;
441 	return error;
442 }
443 
444 /*
445  *	Map buffer into kernel address-space if necessary.
446  */
447 STATIC int
448 _xfs_buf_map_pages(
449 	xfs_buf_t		*bp,
450 	uint			flags)
451 {
452 	ASSERT(bp->b_flags & _XBF_PAGES);
453 	if (bp->b_page_count == 1) {
454 		/* A single page buffer is always mappable */
455 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456 	} else if (flags & XBF_UNMAPPED) {
457 		bp->b_addr = NULL;
458 	} else {
459 		int retried = 0;
460 		unsigned nofs_flag;
461 
462 		/*
463 		 * vm_map_ram() will allocate auxillary structures (e.g.
464 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
465 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
466 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
467 		 * memory reclaim re-entering the filesystem here and
468 		 * potentially deadlocking.
469 		 */
470 		nofs_flag = memalloc_nofs_save();
471 		do {
472 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
473 						-1, PAGE_KERNEL);
474 			if (bp->b_addr)
475 				break;
476 			vm_unmap_aliases();
477 		} while (retried++ <= 1);
478 		memalloc_nofs_restore(nofs_flag);
479 
480 		if (!bp->b_addr)
481 			return -ENOMEM;
482 		bp->b_addr += bp->b_offset;
483 	}
484 
485 	return 0;
486 }
487 
488 /*
489  *	Finding and Reading Buffers
490  */
491 static int
492 _xfs_buf_obj_cmp(
493 	struct rhashtable_compare_arg	*arg,
494 	const void			*obj)
495 {
496 	const struct xfs_buf_map	*map = arg->key;
497 	const struct xfs_buf		*bp = obj;
498 
499 	/*
500 	 * The key hashing in the lookup path depends on the key being the
501 	 * first element of the compare_arg, make sure to assert this.
502 	 */
503 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
504 
505 	if (bp->b_bn != map->bm_bn)
506 		return 1;
507 
508 	if (unlikely(bp->b_length != map->bm_len)) {
509 		/*
510 		 * found a block number match. If the range doesn't
511 		 * match, the only way this is allowed is if the buffer
512 		 * in the cache is stale and the transaction that made
513 		 * it stale has not yet committed. i.e. we are
514 		 * reallocating a busy extent. Skip this buffer and
515 		 * continue searching for an exact match.
516 		 */
517 		ASSERT(bp->b_flags & XBF_STALE);
518 		return 1;
519 	}
520 	return 0;
521 }
522 
523 static const struct rhashtable_params xfs_buf_hash_params = {
524 	.min_size		= 32,	/* empty AGs have minimal footprint */
525 	.nelem_hint		= 16,
526 	.key_len		= sizeof(xfs_daddr_t),
527 	.key_offset		= offsetof(struct xfs_buf, b_bn),
528 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
529 	.automatic_shrinking	= true,
530 	.obj_cmpfn		= _xfs_buf_obj_cmp,
531 };
532 
533 int
534 xfs_buf_hash_init(
535 	struct xfs_perag	*pag)
536 {
537 	spin_lock_init(&pag->pag_buf_lock);
538 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
539 }
540 
541 void
542 xfs_buf_hash_destroy(
543 	struct xfs_perag	*pag)
544 {
545 	rhashtable_destroy(&pag->pag_buf_hash);
546 }
547 
548 /*
549  *	Look up, and creates if absent, a lockable buffer for
550  *	a given range of an inode.  The buffer is returned
551  *	locked.	No I/O is implied by this call.
552  */
553 xfs_buf_t *
554 _xfs_buf_find(
555 	struct xfs_buftarg	*btp,
556 	struct xfs_buf_map	*map,
557 	int			nmaps,
558 	xfs_buf_flags_t		flags,
559 	xfs_buf_t		*new_bp)
560 {
561 	struct xfs_perag	*pag;
562 	xfs_buf_t		*bp;
563 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
564 	xfs_daddr_t		eofs;
565 	int			i;
566 
567 	for (i = 0; i < nmaps; i++)
568 		cmap.bm_len += map[i].bm_len;
569 
570 	/* Check for IOs smaller than the sector size / not sector aligned */
571 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
572 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
573 
574 	/*
575 	 * Corrupted block numbers can get through to here, unfortunately, so we
576 	 * have to check that the buffer falls within the filesystem bounds.
577 	 */
578 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
579 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
580 		/*
581 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
582 		 * but none of the higher level infrastructure supports
583 		 * returning a specific error on buffer lookup failures.
584 		 */
585 		xfs_alert(btp->bt_mount,
586 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
587 			  __func__, cmap.bm_bn, eofs);
588 		WARN_ON(1);
589 		return NULL;
590 	}
591 
592 	pag = xfs_perag_get(btp->bt_mount,
593 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
594 
595 	spin_lock(&pag->pag_buf_lock);
596 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
597 				    xfs_buf_hash_params);
598 	if (bp) {
599 		atomic_inc(&bp->b_hold);
600 		goto found;
601 	}
602 
603 	/* No match found */
604 	if (new_bp) {
605 		/* the buffer keeps the perag reference until it is freed */
606 		new_bp->b_pag = pag;
607 		rhashtable_insert_fast(&pag->pag_buf_hash,
608 				       &new_bp->b_rhash_head,
609 				       xfs_buf_hash_params);
610 		spin_unlock(&pag->pag_buf_lock);
611 	} else {
612 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
613 		spin_unlock(&pag->pag_buf_lock);
614 		xfs_perag_put(pag);
615 	}
616 	return new_bp;
617 
618 found:
619 	spin_unlock(&pag->pag_buf_lock);
620 	xfs_perag_put(pag);
621 
622 	if (!xfs_buf_trylock(bp)) {
623 		if (flags & XBF_TRYLOCK) {
624 			xfs_buf_rele(bp);
625 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
626 			return NULL;
627 		}
628 		xfs_buf_lock(bp);
629 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
630 	}
631 
632 	/*
633 	 * if the buffer is stale, clear all the external state associated with
634 	 * it. We need to keep flags such as how we allocated the buffer memory
635 	 * intact here.
636 	 */
637 	if (bp->b_flags & XBF_STALE) {
638 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
639 		ASSERT(bp->b_iodone == NULL);
640 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
641 		bp->b_ops = NULL;
642 	}
643 
644 	trace_xfs_buf_find(bp, flags, _RET_IP_);
645 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
646 	return bp;
647 }
648 
649 /*
650  * Assembles a buffer covering the specified range. The code is optimised for
651  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
652  * more hits than misses.
653  */
654 struct xfs_buf *
655 xfs_buf_get_map(
656 	struct xfs_buftarg	*target,
657 	struct xfs_buf_map	*map,
658 	int			nmaps,
659 	xfs_buf_flags_t		flags)
660 {
661 	struct xfs_buf		*bp;
662 	struct xfs_buf		*new_bp;
663 	int			error = 0;
664 
665 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
666 	if (likely(bp))
667 		goto found;
668 
669 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
670 	if (unlikely(!new_bp))
671 		return NULL;
672 
673 	error = xfs_buf_allocate_memory(new_bp, flags);
674 	if (error) {
675 		xfs_buf_free(new_bp);
676 		return NULL;
677 	}
678 
679 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
680 	if (!bp) {
681 		xfs_buf_free(new_bp);
682 		return NULL;
683 	}
684 
685 	if (bp != new_bp)
686 		xfs_buf_free(new_bp);
687 
688 found:
689 	if (!bp->b_addr) {
690 		error = _xfs_buf_map_pages(bp, flags);
691 		if (unlikely(error)) {
692 			xfs_warn(target->bt_mount,
693 				"%s: failed to map pagesn", __func__);
694 			xfs_buf_relse(bp);
695 			return NULL;
696 		}
697 	}
698 
699 	/*
700 	 * Clear b_error if this is a lookup from a caller that doesn't expect
701 	 * valid data to be found in the buffer.
702 	 */
703 	if (!(flags & XBF_READ))
704 		xfs_buf_ioerror(bp, 0);
705 
706 	XFS_STATS_INC(target->bt_mount, xb_get);
707 	trace_xfs_buf_get(bp, flags, _RET_IP_);
708 	return bp;
709 }
710 
711 STATIC int
712 _xfs_buf_read(
713 	xfs_buf_t		*bp,
714 	xfs_buf_flags_t		flags)
715 {
716 	ASSERT(!(flags & XBF_WRITE));
717 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
718 
719 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
720 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
721 
722 	if (flags & XBF_ASYNC) {
723 		xfs_buf_submit(bp);
724 		return 0;
725 	}
726 	return xfs_buf_submit_wait(bp);
727 }
728 
729 xfs_buf_t *
730 xfs_buf_read_map(
731 	struct xfs_buftarg	*target,
732 	struct xfs_buf_map	*map,
733 	int			nmaps,
734 	xfs_buf_flags_t		flags,
735 	const struct xfs_buf_ops *ops)
736 {
737 	struct xfs_buf		*bp;
738 
739 	flags |= XBF_READ;
740 
741 	bp = xfs_buf_get_map(target, map, nmaps, flags);
742 	if (bp) {
743 		trace_xfs_buf_read(bp, flags, _RET_IP_);
744 
745 		if (!(bp->b_flags & XBF_DONE)) {
746 			XFS_STATS_INC(target->bt_mount, xb_get_read);
747 			bp->b_ops = ops;
748 			_xfs_buf_read(bp, flags);
749 		} else if (flags & XBF_ASYNC) {
750 			/*
751 			 * Read ahead call which is already satisfied,
752 			 * drop the buffer
753 			 */
754 			xfs_buf_relse(bp);
755 			return NULL;
756 		} else {
757 			/* We do not want read in the flags */
758 			bp->b_flags &= ~XBF_READ;
759 		}
760 	}
761 
762 	return bp;
763 }
764 
765 /*
766  *	If we are not low on memory then do the readahead in a deadlock
767  *	safe manner.
768  */
769 void
770 xfs_buf_readahead_map(
771 	struct xfs_buftarg	*target,
772 	struct xfs_buf_map	*map,
773 	int			nmaps,
774 	const struct xfs_buf_ops *ops)
775 {
776 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
777 		return;
778 
779 	xfs_buf_read_map(target, map, nmaps,
780 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
781 }
782 
783 /*
784  * Read an uncached buffer from disk. Allocates and returns a locked
785  * buffer containing the disk contents or nothing.
786  */
787 int
788 xfs_buf_read_uncached(
789 	struct xfs_buftarg	*target,
790 	xfs_daddr_t		daddr,
791 	size_t			numblks,
792 	int			flags,
793 	struct xfs_buf		**bpp,
794 	const struct xfs_buf_ops *ops)
795 {
796 	struct xfs_buf		*bp;
797 
798 	*bpp = NULL;
799 
800 	bp = xfs_buf_get_uncached(target, numblks, flags);
801 	if (!bp)
802 		return -ENOMEM;
803 
804 	/* set up the buffer for a read IO */
805 	ASSERT(bp->b_map_count == 1);
806 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
807 	bp->b_maps[0].bm_bn = daddr;
808 	bp->b_flags |= XBF_READ;
809 	bp->b_ops = ops;
810 
811 	xfs_buf_submit_wait(bp);
812 	if (bp->b_error) {
813 		int	error = bp->b_error;
814 		xfs_buf_relse(bp);
815 		return error;
816 	}
817 
818 	*bpp = bp;
819 	return 0;
820 }
821 
822 /*
823  * Return a buffer allocated as an empty buffer and associated to external
824  * memory via xfs_buf_associate_memory() back to it's empty state.
825  */
826 void
827 xfs_buf_set_empty(
828 	struct xfs_buf		*bp,
829 	size_t			numblks)
830 {
831 	if (bp->b_pages)
832 		_xfs_buf_free_pages(bp);
833 
834 	bp->b_pages = NULL;
835 	bp->b_page_count = 0;
836 	bp->b_addr = NULL;
837 	bp->b_length = numblks;
838 	bp->b_io_length = numblks;
839 
840 	ASSERT(bp->b_map_count == 1);
841 	bp->b_bn = XFS_BUF_DADDR_NULL;
842 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
843 	bp->b_maps[0].bm_len = bp->b_length;
844 }
845 
846 static inline struct page *
847 mem_to_page(
848 	void			*addr)
849 {
850 	if ((!is_vmalloc_addr(addr))) {
851 		return virt_to_page(addr);
852 	} else {
853 		return vmalloc_to_page(addr);
854 	}
855 }
856 
857 int
858 xfs_buf_associate_memory(
859 	xfs_buf_t		*bp,
860 	void			*mem,
861 	size_t			len)
862 {
863 	int			rval;
864 	int			i = 0;
865 	unsigned long		pageaddr;
866 	unsigned long		offset;
867 	size_t			buflen;
868 	int			page_count;
869 
870 	pageaddr = (unsigned long)mem & PAGE_MASK;
871 	offset = (unsigned long)mem - pageaddr;
872 	buflen = PAGE_ALIGN(len + offset);
873 	page_count = buflen >> PAGE_SHIFT;
874 
875 	/* Free any previous set of page pointers */
876 	if (bp->b_pages)
877 		_xfs_buf_free_pages(bp);
878 
879 	bp->b_pages = NULL;
880 	bp->b_addr = mem;
881 
882 	rval = _xfs_buf_get_pages(bp, page_count);
883 	if (rval)
884 		return rval;
885 
886 	bp->b_offset = offset;
887 
888 	for (i = 0; i < bp->b_page_count; i++) {
889 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
890 		pageaddr += PAGE_SIZE;
891 	}
892 
893 	bp->b_io_length = BTOBB(len);
894 	bp->b_length = BTOBB(buflen);
895 
896 	return 0;
897 }
898 
899 xfs_buf_t *
900 xfs_buf_get_uncached(
901 	struct xfs_buftarg	*target,
902 	size_t			numblks,
903 	int			flags)
904 {
905 	unsigned long		page_count;
906 	int			error, i;
907 	struct xfs_buf		*bp;
908 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
909 
910 	/* flags might contain irrelevant bits, pass only what we care about */
911 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
912 	if (unlikely(bp == NULL))
913 		goto fail;
914 
915 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
916 	error = _xfs_buf_get_pages(bp, page_count);
917 	if (error)
918 		goto fail_free_buf;
919 
920 	for (i = 0; i < page_count; i++) {
921 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
922 		if (!bp->b_pages[i])
923 			goto fail_free_mem;
924 	}
925 	bp->b_flags |= _XBF_PAGES;
926 
927 	error = _xfs_buf_map_pages(bp, 0);
928 	if (unlikely(error)) {
929 		xfs_warn(target->bt_mount,
930 			"%s: failed to map pages", __func__);
931 		goto fail_free_mem;
932 	}
933 
934 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
935 	return bp;
936 
937  fail_free_mem:
938 	while (--i >= 0)
939 		__free_page(bp->b_pages[i]);
940 	_xfs_buf_free_pages(bp);
941  fail_free_buf:
942 	xfs_buf_free_maps(bp);
943 	kmem_zone_free(xfs_buf_zone, bp);
944  fail:
945 	return NULL;
946 }
947 
948 /*
949  *	Increment reference count on buffer, to hold the buffer concurrently
950  *	with another thread which may release (free) the buffer asynchronously.
951  *	Must hold the buffer already to call this function.
952  */
953 void
954 xfs_buf_hold(
955 	xfs_buf_t		*bp)
956 {
957 	trace_xfs_buf_hold(bp, _RET_IP_);
958 	atomic_inc(&bp->b_hold);
959 }
960 
961 /*
962  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
963  * placed on LRU or freed (depending on b_lru_ref).
964  */
965 void
966 xfs_buf_rele(
967 	xfs_buf_t		*bp)
968 {
969 	struct xfs_perag	*pag = bp->b_pag;
970 	bool			release;
971 	bool			freebuf = false;
972 
973 	trace_xfs_buf_rele(bp, _RET_IP_);
974 
975 	if (!pag) {
976 		ASSERT(list_empty(&bp->b_lru));
977 		if (atomic_dec_and_test(&bp->b_hold)) {
978 			xfs_buf_ioacct_dec(bp);
979 			xfs_buf_free(bp);
980 		}
981 		return;
982 	}
983 
984 	ASSERT(atomic_read(&bp->b_hold) > 0);
985 
986 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
987 	spin_lock(&bp->b_lock);
988 	if (!release) {
989 		/*
990 		 * Drop the in-flight state if the buffer is already on the LRU
991 		 * and it holds the only reference. This is racy because we
992 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
993 		 * ensures the decrement occurs only once per-buf.
994 		 */
995 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
996 			__xfs_buf_ioacct_dec(bp);
997 		goto out_unlock;
998 	}
999 
1000 	/* the last reference has been dropped ... */
1001 	__xfs_buf_ioacct_dec(bp);
1002 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1003 		/*
1004 		 * If the buffer is added to the LRU take a new reference to the
1005 		 * buffer for the LRU and clear the (now stale) dispose list
1006 		 * state flag
1007 		 */
1008 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1009 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1010 			atomic_inc(&bp->b_hold);
1011 		}
1012 		spin_unlock(&pag->pag_buf_lock);
1013 	} else {
1014 		/*
1015 		 * most of the time buffers will already be removed from the
1016 		 * LRU, so optimise that case by checking for the
1017 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1018 		 * was on was the disposal list
1019 		 */
1020 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1021 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1022 		} else {
1023 			ASSERT(list_empty(&bp->b_lru));
1024 		}
1025 
1026 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1027 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1028 				       xfs_buf_hash_params);
1029 		spin_unlock(&pag->pag_buf_lock);
1030 		xfs_perag_put(pag);
1031 		freebuf = true;
1032 	}
1033 
1034 out_unlock:
1035 	spin_unlock(&bp->b_lock);
1036 
1037 	if (freebuf)
1038 		xfs_buf_free(bp);
1039 }
1040 
1041 
1042 /*
1043  *	Lock a buffer object, if it is not already locked.
1044  *
1045  *	If we come across a stale, pinned, locked buffer, we know that we are
1046  *	being asked to lock a buffer that has been reallocated. Because it is
1047  *	pinned, we know that the log has not been pushed to disk and hence it
1048  *	will still be locked.  Rather than continuing to have trylock attempts
1049  *	fail until someone else pushes the log, push it ourselves before
1050  *	returning.  This means that the xfsaild will not get stuck trying
1051  *	to push on stale inode buffers.
1052  */
1053 int
1054 xfs_buf_trylock(
1055 	struct xfs_buf		*bp)
1056 {
1057 	int			locked;
1058 
1059 	locked = down_trylock(&bp->b_sema) == 0;
1060 	if (locked) {
1061 		XB_SET_OWNER(bp);
1062 		trace_xfs_buf_trylock(bp, _RET_IP_);
1063 	} else {
1064 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1065 	}
1066 	return locked;
1067 }
1068 
1069 /*
1070  *	Lock a buffer object.
1071  *
1072  *	If we come across a stale, pinned, locked buffer, we know that we
1073  *	are being asked to lock a buffer that has been reallocated. Because
1074  *	it is pinned, we know that the log has not been pushed to disk and
1075  *	hence it will still be locked. Rather than sleeping until someone
1076  *	else pushes the log, push it ourselves before trying to get the lock.
1077  */
1078 void
1079 xfs_buf_lock(
1080 	struct xfs_buf		*bp)
1081 {
1082 	trace_xfs_buf_lock(bp, _RET_IP_);
1083 
1084 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1085 		xfs_log_force(bp->b_target->bt_mount, 0);
1086 	down(&bp->b_sema);
1087 	XB_SET_OWNER(bp);
1088 
1089 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1090 }
1091 
1092 void
1093 xfs_buf_unlock(
1094 	struct xfs_buf		*bp)
1095 {
1096 	ASSERT(xfs_buf_islocked(bp));
1097 
1098 	XB_CLEAR_OWNER(bp);
1099 	up(&bp->b_sema);
1100 
1101 	trace_xfs_buf_unlock(bp, _RET_IP_);
1102 }
1103 
1104 STATIC void
1105 xfs_buf_wait_unpin(
1106 	xfs_buf_t		*bp)
1107 {
1108 	DECLARE_WAITQUEUE	(wait, current);
1109 
1110 	if (atomic_read(&bp->b_pin_count) == 0)
1111 		return;
1112 
1113 	add_wait_queue(&bp->b_waiters, &wait);
1114 	for (;;) {
1115 		set_current_state(TASK_UNINTERRUPTIBLE);
1116 		if (atomic_read(&bp->b_pin_count) == 0)
1117 			break;
1118 		io_schedule();
1119 	}
1120 	remove_wait_queue(&bp->b_waiters, &wait);
1121 	set_current_state(TASK_RUNNING);
1122 }
1123 
1124 /*
1125  *	Buffer Utility Routines
1126  */
1127 
1128 void
1129 xfs_buf_ioend(
1130 	struct xfs_buf	*bp)
1131 {
1132 	bool		read = bp->b_flags & XBF_READ;
1133 
1134 	trace_xfs_buf_iodone(bp, _RET_IP_);
1135 
1136 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1137 
1138 	/*
1139 	 * Pull in IO completion errors now. We are guaranteed to be running
1140 	 * single threaded, so we don't need the lock to read b_io_error.
1141 	 */
1142 	if (!bp->b_error && bp->b_io_error)
1143 		xfs_buf_ioerror(bp, bp->b_io_error);
1144 
1145 	/* Only validate buffers that were read without errors */
1146 	if (read && !bp->b_error && bp->b_ops) {
1147 		ASSERT(!bp->b_iodone);
1148 		bp->b_ops->verify_read(bp);
1149 	}
1150 
1151 	if (!bp->b_error)
1152 		bp->b_flags |= XBF_DONE;
1153 
1154 	if (bp->b_iodone)
1155 		(*(bp->b_iodone))(bp);
1156 	else if (bp->b_flags & XBF_ASYNC)
1157 		xfs_buf_relse(bp);
1158 	else
1159 		complete(&bp->b_iowait);
1160 }
1161 
1162 static void
1163 xfs_buf_ioend_work(
1164 	struct work_struct	*work)
1165 {
1166 	struct xfs_buf		*bp =
1167 		container_of(work, xfs_buf_t, b_ioend_work);
1168 
1169 	xfs_buf_ioend(bp);
1170 }
1171 
1172 static void
1173 xfs_buf_ioend_async(
1174 	struct xfs_buf	*bp)
1175 {
1176 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1177 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1178 }
1179 
1180 void
1181 xfs_buf_ioerror(
1182 	xfs_buf_t		*bp,
1183 	int			error)
1184 {
1185 	ASSERT(error <= 0 && error >= -1000);
1186 	bp->b_error = error;
1187 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1188 }
1189 
1190 void
1191 xfs_buf_ioerror_alert(
1192 	struct xfs_buf		*bp,
1193 	const char		*func)
1194 {
1195 	xfs_alert(bp->b_target->bt_mount,
1196 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1197 		(uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1198 }
1199 
1200 int
1201 xfs_bwrite(
1202 	struct xfs_buf		*bp)
1203 {
1204 	int			error;
1205 
1206 	ASSERT(xfs_buf_islocked(bp));
1207 
1208 	bp->b_flags |= XBF_WRITE;
1209 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1210 			 XBF_WRITE_FAIL | XBF_DONE);
1211 
1212 	error = xfs_buf_submit_wait(bp);
1213 	if (error) {
1214 		xfs_force_shutdown(bp->b_target->bt_mount,
1215 				   SHUTDOWN_META_IO_ERROR);
1216 	}
1217 	return error;
1218 }
1219 
1220 static void
1221 xfs_buf_bio_end_io(
1222 	struct bio		*bio)
1223 {
1224 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1225 
1226 	/*
1227 	 * don't overwrite existing errors - otherwise we can lose errors on
1228 	 * buffers that require multiple bios to complete.
1229 	 */
1230 	if (bio->bi_status) {
1231 		int error = blk_status_to_errno(bio->bi_status);
1232 
1233 		cmpxchg(&bp->b_io_error, 0, error);
1234 	}
1235 
1236 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1237 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1238 
1239 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1240 		xfs_buf_ioend_async(bp);
1241 	bio_put(bio);
1242 }
1243 
1244 static void
1245 xfs_buf_ioapply_map(
1246 	struct xfs_buf	*bp,
1247 	int		map,
1248 	int		*buf_offset,
1249 	int		*count,
1250 	int		op,
1251 	int		op_flags)
1252 {
1253 	int		page_index;
1254 	int		total_nr_pages = bp->b_page_count;
1255 	int		nr_pages;
1256 	struct bio	*bio;
1257 	sector_t	sector =  bp->b_maps[map].bm_bn;
1258 	int		size;
1259 	int		offset;
1260 
1261 	total_nr_pages = bp->b_page_count;
1262 
1263 	/* skip the pages in the buffer before the start offset */
1264 	page_index = 0;
1265 	offset = *buf_offset;
1266 	while (offset >= PAGE_SIZE) {
1267 		page_index++;
1268 		offset -= PAGE_SIZE;
1269 	}
1270 
1271 	/*
1272 	 * Limit the IO size to the length of the current vector, and update the
1273 	 * remaining IO count for the next time around.
1274 	 */
1275 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1276 	*count -= size;
1277 	*buf_offset += size;
1278 
1279 next_chunk:
1280 	atomic_inc(&bp->b_io_remaining);
1281 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1282 
1283 	bio = bio_alloc(GFP_NOIO, nr_pages);
1284 	bio->bi_bdev = bp->b_target->bt_bdev;
1285 	bio->bi_iter.bi_sector = sector;
1286 	bio->bi_end_io = xfs_buf_bio_end_io;
1287 	bio->bi_private = bp;
1288 	bio_set_op_attrs(bio, op, op_flags);
1289 
1290 	for (; size && nr_pages; nr_pages--, page_index++) {
1291 		int	rbytes, nbytes = PAGE_SIZE - offset;
1292 
1293 		if (nbytes > size)
1294 			nbytes = size;
1295 
1296 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1297 				      offset);
1298 		if (rbytes < nbytes)
1299 			break;
1300 
1301 		offset = 0;
1302 		sector += BTOBB(nbytes);
1303 		size -= nbytes;
1304 		total_nr_pages--;
1305 	}
1306 
1307 	if (likely(bio->bi_iter.bi_size)) {
1308 		if (xfs_buf_is_vmapped(bp)) {
1309 			flush_kernel_vmap_range(bp->b_addr,
1310 						xfs_buf_vmap_len(bp));
1311 		}
1312 		submit_bio(bio);
1313 		if (size)
1314 			goto next_chunk;
1315 	} else {
1316 		/*
1317 		 * This is guaranteed not to be the last io reference count
1318 		 * because the caller (xfs_buf_submit) holds a count itself.
1319 		 */
1320 		atomic_dec(&bp->b_io_remaining);
1321 		xfs_buf_ioerror(bp, -EIO);
1322 		bio_put(bio);
1323 	}
1324 
1325 }
1326 
1327 STATIC void
1328 _xfs_buf_ioapply(
1329 	struct xfs_buf	*bp)
1330 {
1331 	struct blk_plug	plug;
1332 	int		op;
1333 	int		op_flags = 0;
1334 	int		offset;
1335 	int		size;
1336 	int		i;
1337 
1338 	/*
1339 	 * Make sure we capture only current IO errors rather than stale errors
1340 	 * left over from previous use of the buffer (e.g. failed readahead).
1341 	 */
1342 	bp->b_error = 0;
1343 
1344 	/*
1345 	 * Initialize the I/O completion workqueue if we haven't yet or the
1346 	 * submitter has not opted to specify a custom one.
1347 	 */
1348 	if (!bp->b_ioend_wq)
1349 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1350 
1351 	if (bp->b_flags & XBF_WRITE) {
1352 		op = REQ_OP_WRITE;
1353 		if (bp->b_flags & XBF_SYNCIO)
1354 			op_flags = REQ_SYNC;
1355 		if (bp->b_flags & XBF_FUA)
1356 			op_flags |= REQ_FUA;
1357 		if (bp->b_flags & XBF_FLUSH)
1358 			op_flags |= REQ_PREFLUSH;
1359 
1360 		/*
1361 		 * Run the write verifier callback function if it exists. If
1362 		 * this function fails it will mark the buffer with an error and
1363 		 * the IO should not be dispatched.
1364 		 */
1365 		if (bp->b_ops) {
1366 			bp->b_ops->verify_write(bp);
1367 			if (bp->b_error) {
1368 				xfs_force_shutdown(bp->b_target->bt_mount,
1369 						   SHUTDOWN_CORRUPT_INCORE);
1370 				return;
1371 			}
1372 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1373 			struct xfs_mount *mp = bp->b_target->bt_mount;
1374 
1375 			/*
1376 			 * non-crc filesystems don't attach verifiers during
1377 			 * log recovery, so don't warn for such filesystems.
1378 			 */
1379 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1380 				xfs_warn(mp,
1381 					"%s: no ops on block 0x%llx/0x%x",
1382 					__func__, bp->b_bn, bp->b_length);
1383 				xfs_hex_dump(bp->b_addr, 64);
1384 				dump_stack();
1385 			}
1386 		}
1387 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1388 		op = REQ_OP_READ;
1389 		op_flags = REQ_RAHEAD;
1390 	} else {
1391 		op = REQ_OP_READ;
1392 	}
1393 
1394 	/* we only use the buffer cache for meta-data */
1395 	op_flags |= REQ_META;
1396 
1397 	/*
1398 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1399 	 * into the buffer and the desired IO size before we start -
1400 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1401 	 * subsequent call.
1402 	 */
1403 	offset = bp->b_offset;
1404 	size = BBTOB(bp->b_io_length);
1405 	blk_start_plug(&plug);
1406 	for (i = 0; i < bp->b_map_count; i++) {
1407 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1408 		if (bp->b_error)
1409 			break;
1410 		if (size <= 0)
1411 			break;	/* all done */
1412 	}
1413 	blk_finish_plug(&plug);
1414 }
1415 
1416 /*
1417  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1418  * the current reference to the IO. It is not safe to reference the buffer after
1419  * a call to this function unless the caller holds an additional reference
1420  * itself.
1421  */
1422 void
1423 xfs_buf_submit(
1424 	struct xfs_buf	*bp)
1425 {
1426 	trace_xfs_buf_submit(bp, _RET_IP_);
1427 
1428 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1429 	ASSERT(bp->b_flags & XBF_ASYNC);
1430 
1431 	/* on shutdown we stale and complete the buffer immediately */
1432 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1433 		xfs_buf_ioerror(bp, -EIO);
1434 		bp->b_flags &= ~XBF_DONE;
1435 		xfs_buf_stale(bp);
1436 		xfs_buf_ioend(bp);
1437 		return;
1438 	}
1439 
1440 	if (bp->b_flags & XBF_WRITE)
1441 		xfs_buf_wait_unpin(bp);
1442 
1443 	/* clear the internal error state to avoid spurious errors */
1444 	bp->b_io_error = 0;
1445 
1446 	/*
1447 	 * The caller's reference is released during I/O completion.
1448 	 * This occurs some time after the last b_io_remaining reference is
1449 	 * released, so after we drop our Io reference we have to have some
1450 	 * other reference to ensure the buffer doesn't go away from underneath
1451 	 * us. Take a direct reference to ensure we have safe access to the
1452 	 * buffer until we are finished with it.
1453 	 */
1454 	xfs_buf_hold(bp);
1455 
1456 	/*
1457 	 * Set the count to 1 initially, this will stop an I/O completion
1458 	 * callout which happens before we have started all the I/O from calling
1459 	 * xfs_buf_ioend too early.
1460 	 */
1461 	atomic_set(&bp->b_io_remaining, 1);
1462 	xfs_buf_ioacct_inc(bp);
1463 	_xfs_buf_ioapply(bp);
1464 
1465 	/*
1466 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1467 	 * reference we took above. If we drop it to zero, run completion so
1468 	 * that we don't return to the caller with completion still pending.
1469 	 */
1470 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1471 		if (bp->b_error)
1472 			xfs_buf_ioend(bp);
1473 		else
1474 			xfs_buf_ioend_async(bp);
1475 	}
1476 
1477 	xfs_buf_rele(bp);
1478 	/* Note: it is not safe to reference bp now we've dropped our ref */
1479 }
1480 
1481 /*
1482  * Synchronous buffer IO submission path, read or write.
1483  */
1484 int
1485 xfs_buf_submit_wait(
1486 	struct xfs_buf	*bp)
1487 {
1488 	int		error;
1489 
1490 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1491 
1492 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1493 
1494 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1495 		xfs_buf_ioerror(bp, -EIO);
1496 		xfs_buf_stale(bp);
1497 		bp->b_flags &= ~XBF_DONE;
1498 		return -EIO;
1499 	}
1500 
1501 	if (bp->b_flags & XBF_WRITE)
1502 		xfs_buf_wait_unpin(bp);
1503 
1504 	/* clear the internal error state to avoid spurious errors */
1505 	bp->b_io_error = 0;
1506 
1507 	/*
1508 	 * For synchronous IO, the IO does not inherit the submitters reference
1509 	 * count, nor the buffer lock. Hence we cannot release the reference we
1510 	 * are about to take until we've waited for all IO completion to occur,
1511 	 * including any xfs_buf_ioend_async() work that may be pending.
1512 	 */
1513 	xfs_buf_hold(bp);
1514 
1515 	/*
1516 	 * Set the count to 1 initially, this will stop an I/O completion
1517 	 * callout which happens before we have started all the I/O from calling
1518 	 * xfs_buf_ioend too early.
1519 	 */
1520 	atomic_set(&bp->b_io_remaining, 1);
1521 	_xfs_buf_ioapply(bp);
1522 
1523 	/*
1524 	 * make sure we run completion synchronously if it raced with us and is
1525 	 * already complete.
1526 	 */
1527 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1528 		xfs_buf_ioend(bp);
1529 
1530 	/* wait for completion before gathering the error from the buffer */
1531 	trace_xfs_buf_iowait(bp, _RET_IP_);
1532 	wait_for_completion(&bp->b_iowait);
1533 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1534 	error = bp->b_error;
1535 
1536 	/*
1537 	 * all done now, we can release the hold that keeps the buffer
1538 	 * referenced for the entire IO.
1539 	 */
1540 	xfs_buf_rele(bp);
1541 	return error;
1542 }
1543 
1544 void *
1545 xfs_buf_offset(
1546 	struct xfs_buf		*bp,
1547 	size_t			offset)
1548 {
1549 	struct page		*page;
1550 
1551 	if (bp->b_addr)
1552 		return bp->b_addr + offset;
1553 
1554 	offset += bp->b_offset;
1555 	page = bp->b_pages[offset >> PAGE_SHIFT];
1556 	return page_address(page) + (offset & (PAGE_SIZE-1));
1557 }
1558 
1559 /*
1560  *	Move data into or out of a buffer.
1561  */
1562 void
1563 xfs_buf_iomove(
1564 	xfs_buf_t		*bp,	/* buffer to process		*/
1565 	size_t			boff,	/* starting buffer offset	*/
1566 	size_t			bsize,	/* length to copy		*/
1567 	void			*data,	/* data address			*/
1568 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1569 {
1570 	size_t			bend;
1571 
1572 	bend = boff + bsize;
1573 	while (boff < bend) {
1574 		struct page	*page;
1575 		int		page_index, page_offset, csize;
1576 
1577 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1578 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1579 		page = bp->b_pages[page_index];
1580 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1581 				      BBTOB(bp->b_io_length) - boff);
1582 
1583 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1584 
1585 		switch (mode) {
1586 		case XBRW_ZERO:
1587 			memset(page_address(page) + page_offset, 0, csize);
1588 			break;
1589 		case XBRW_READ:
1590 			memcpy(data, page_address(page) + page_offset, csize);
1591 			break;
1592 		case XBRW_WRITE:
1593 			memcpy(page_address(page) + page_offset, data, csize);
1594 		}
1595 
1596 		boff += csize;
1597 		data += csize;
1598 	}
1599 }
1600 
1601 /*
1602  *	Handling of buffer targets (buftargs).
1603  */
1604 
1605 /*
1606  * Wait for any bufs with callbacks that have been submitted but have not yet
1607  * returned. These buffers will have an elevated hold count, so wait on those
1608  * while freeing all the buffers only held by the LRU.
1609  */
1610 static enum lru_status
1611 xfs_buftarg_wait_rele(
1612 	struct list_head	*item,
1613 	struct list_lru_one	*lru,
1614 	spinlock_t		*lru_lock,
1615 	void			*arg)
1616 
1617 {
1618 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1619 	struct list_head	*dispose = arg;
1620 
1621 	if (atomic_read(&bp->b_hold) > 1) {
1622 		/* need to wait, so skip it this pass */
1623 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1624 		return LRU_SKIP;
1625 	}
1626 	if (!spin_trylock(&bp->b_lock))
1627 		return LRU_SKIP;
1628 
1629 	/*
1630 	 * clear the LRU reference count so the buffer doesn't get
1631 	 * ignored in xfs_buf_rele().
1632 	 */
1633 	atomic_set(&bp->b_lru_ref, 0);
1634 	bp->b_state |= XFS_BSTATE_DISPOSE;
1635 	list_lru_isolate_move(lru, item, dispose);
1636 	spin_unlock(&bp->b_lock);
1637 	return LRU_REMOVED;
1638 }
1639 
1640 void
1641 xfs_wait_buftarg(
1642 	struct xfs_buftarg	*btp)
1643 {
1644 	LIST_HEAD(dispose);
1645 	int loop = 0;
1646 
1647 	/*
1648 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1649 	 * released. This is critical as new buffers do not make the LRU until
1650 	 * they are released.
1651 	 *
1652 	 * Next, flush the buffer workqueue to ensure all completion processing
1653 	 * has finished. Just waiting on buffer locks is not sufficient for
1654 	 * async IO as the reference count held over IO is not released until
1655 	 * after the buffer lock is dropped. Hence we need to ensure here that
1656 	 * all reference counts have been dropped before we start walking the
1657 	 * LRU list.
1658 	 */
1659 	while (percpu_counter_sum(&btp->bt_io_count))
1660 		delay(100);
1661 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1662 
1663 	/* loop until there is nothing left on the lru list. */
1664 	while (list_lru_count(&btp->bt_lru)) {
1665 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1666 			      &dispose, LONG_MAX);
1667 
1668 		while (!list_empty(&dispose)) {
1669 			struct xfs_buf *bp;
1670 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1671 			list_del_init(&bp->b_lru);
1672 			if (bp->b_flags & XBF_WRITE_FAIL) {
1673 				xfs_alert(btp->bt_mount,
1674 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1675 					(long long)bp->b_bn);
1676 				xfs_alert(btp->bt_mount,
1677 "Please run xfs_repair to determine the extent of the problem.");
1678 			}
1679 			xfs_buf_rele(bp);
1680 		}
1681 		if (loop++ != 0)
1682 			delay(100);
1683 	}
1684 }
1685 
1686 static enum lru_status
1687 xfs_buftarg_isolate(
1688 	struct list_head	*item,
1689 	struct list_lru_one	*lru,
1690 	spinlock_t		*lru_lock,
1691 	void			*arg)
1692 {
1693 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1694 	struct list_head	*dispose = arg;
1695 
1696 	/*
1697 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1698 	 * If we fail to get the lock, just skip it.
1699 	 */
1700 	if (!spin_trylock(&bp->b_lock))
1701 		return LRU_SKIP;
1702 	/*
1703 	 * Decrement the b_lru_ref count unless the value is already
1704 	 * zero. If the value is already zero, we need to reclaim the
1705 	 * buffer, otherwise it gets another trip through the LRU.
1706 	 */
1707 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1708 		spin_unlock(&bp->b_lock);
1709 		return LRU_ROTATE;
1710 	}
1711 
1712 	bp->b_state |= XFS_BSTATE_DISPOSE;
1713 	list_lru_isolate_move(lru, item, dispose);
1714 	spin_unlock(&bp->b_lock);
1715 	return LRU_REMOVED;
1716 }
1717 
1718 static unsigned long
1719 xfs_buftarg_shrink_scan(
1720 	struct shrinker		*shrink,
1721 	struct shrink_control	*sc)
1722 {
1723 	struct xfs_buftarg	*btp = container_of(shrink,
1724 					struct xfs_buftarg, bt_shrinker);
1725 	LIST_HEAD(dispose);
1726 	unsigned long		freed;
1727 
1728 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1729 				     xfs_buftarg_isolate, &dispose);
1730 
1731 	while (!list_empty(&dispose)) {
1732 		struct xfs_buf *bp;
1733 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1734 		list_del_init(&bp->b_lru);
1735 		xfs_buf_rele(bp);
1736 	}
1737 
1738 	return freed;
1739 }
1740 
1741 static unsigned long
1742 xfs_buftarg_shrink_count(
1743 	struct shrinker		*shrink,
1744 	struct shrink_control	*sc)
1745 {
1746 	struct xfs_buftarg	*btp = container_of(shrink,
1747 					struct xfs_buftarg, bt_shrinker);
1748 	return list_lru_shrink_count(&btp->bt_lru, sc);
1749 }
1750 
1751 void
1752 xfs_free_buftarg(
1753 	struct xfs_mount	*mp,
1754 	struct xfs_buftarg	*btp)
1755 {
1756 	unregister_shrinker(&btp->bt_shrinker);
1757 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1758 	percpu_counter_destroy(&btp->bt_io_count);
1759 	list_lru_destroy(&btp->bt_lru);
1760 
1761 	xfs_blkdev_issue_flush(btp);
1762 
1763 	kmem_free(btp);
1764 }
1765 
1766 int
1767 xfs_setsize_buftarg(
1768 	xfs_buftarg_t		*btp,
1769 	unsigned int		sectorsize)
1770 {
1771 	/* Set up metadata sector size info */
1772 	btp->bt_meta_sectorsize = sectorsize;
1773 	btp->bt_meta_sectormask = sectorsize - 1;
1774 
1775 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1776 		xfs_warn(btp->bt_mount,
1777 			"Cannot set_blocksize to %u on device %pg",
1778 			sectorsize, btp->bt_bdev);
1779 		return -EINVAL;
1780 	}
1781 
1782 	/* Set up device logical sector size mask */
1783 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1784 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1785 
1786 	return 0;
1787 }
1788 
1789 /*
1790  * When allocating the initial buffer target we have not yet
1791  * read in the superblock, so don't know what sized sectors
1792  * are being used at this early stage.  Play safe.
1793  */
1794 STATIC int
1795 xfs_setsize_buftarg_early(
1796 	xfs_buftarg_t		*btp,
1797 	struct block_device	*bdev)
1798 {
1799 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1800 }
1801 
1802 xfs_buftarg_t *
1803 xfs_alloc_buftarg(
1804 	struct xfs_mount	*mp,
1805 	struct block_device	*bdev)
1806 {
1807 	xfs_buftarg_t		*btp;
1808 
1809 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1810 
1811 	btp->bt_mount = mp;
1812 	btp->bt_dev =  bdev->bd_dev;
1813 	btp->bt_bdev = bdev;
1814 
1815 	if (xfs_setsize_buftarg_early(btp, bdev))
1816 		goto error;
1817 
1818 	if (list_lru_init(&btp->bt_lru))
1819 		goto error;
1820 
1821 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1822 		goto error;
1823 
1824 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1825 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1826 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1827 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1828 	register_shrinker(&btp->bt_shrinker);
1829 	return btp;
1830 
1831 error:
1832 	kmem_free(btp);
1833 	return NULL;
1834 }
1835 
1836 /*
1837  * Cancel a delayed write list.
1838  *
1839  * Remove each buffer from the list, clear the delwri queue flag and drop the
1840  * associated buffer reference.
1841  */
1842 void
1843 xfs_buf_delwri_cancel(
1844 	struct list_head	*list)
1845 {
1846 	struct xfs_buf		*bp;
1847 
1848 	while (!list_empty(list)) {
1849 		bp = list_first_entry(list, struct xfs_buf, b_list);
1850 
1851 		xfs_buf_lock(bp);
1852 		bp->b_flags &= ~_XBF_DELWRI_Q;
1853 		list_del_init(&bp->b_list);
1854 		xfs_buf_relse(bp);
1855 	}
1856 }
1857 
1858 /*
1859  * Add a buffer to the delayed write list.
1860  *
1861  * This queues a buffer for writeout if it hasn't already been.  Note that
1862  * neither this routine nor the buffer list submission functions perform
1863  * any internal synchronization.  It is expected that the lists are thread-local
1864  * to the callers.
1865  *
1866  * Returns true if we queued up the buffer, or false if it already had
1867  * been on the buffer list.
1868  */
1869 bool
1870 xfs_buf_delwri_queue(
1871 	struct xfs_buf		*bp,
1872 	struct list_head	*list)
1873 {
1874 	ASSERT(xfs_buf_islocked(bp));
1875 	ASSERT(!(bp->b_flags & XBF_READ));
1876 
1877 	/*
1878 	 * If the buffer is already marked delwri it already is queued up
1879 	 * by someone else for imediate writeout.  Just ignore it in that
1880 	 * case.
1881 	 */
1882 	if (bp->b_flags & _XBF_DELWRI_Q) {
1883 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1884 		return false;
1885 	}
1886 
1887 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1888 
1889 	/*
1890 	 * If a buffer gets written out synchronously or marked stale while it
1891 	 * is on a delwri list we lazily remove it. To do this, the other party
1892 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1893 	 * It remains referenced and on the list.  In a rare corner case it
1894 	 * might get readded to a delwri list after the synchronous writeout, in
1895 	 * which case we need just need to re-add the flag here.
1896 	 */
1897 	bp->b_flags |= _XBF_DELWRI_Q;
1898 	if (list_empty(&bp->b_list)) {
1899 		atomic_inc(&bp->b_hold);
1900 		list_add_tail(&bp->b_list, list);
1901 	}
1902 
1903 	return true;
1904 }
1905 
1906 /*
1907  * Compare function is more complex than it needs to be because
1908  * the return value is only 32 bits and we are doing comparisons
1909  * on 64 bit values
1910  */
1911 static int
1912 xfs_buf_cmp(
1913 	void		*priv,
1914 	struct list_head *a,
1915 	struct list_head *b)
1916 {
1917 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1918 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1919 	xfs_daddr_t		diff;
1920 
1921 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1922 	if (diff < 0)
1923 		return -1;
1924 	if (diff > 0)
1925 		return 1;
1926 	return 0;
1927 }
1928 
1929 /*
1930  * submit buffers for write.
1931  *
1932  * When we have a large buffer list, we do not want to hold all the buffers
1933  * locked while we block on the request queue waiting for IO dispatch. To avoid
1934  * this problem, we lock and submit buffers in groups of 50, thereby minimising
1935  * the lock hold times for lists which may contain thousands of objects.
1936  *
1937  * To do this, we sort the buffer list before we walk the list to lock and
1938  * submit buffers, and we plug and unplug around each group of buffers we
1939  * submit.
1940  */
1941 static int
1942 xfs_buf_delwri_submit_buffers(
1943 	struct list_head	*buffer_list,
1944 	struct list_head	*wait_list)
1945 {
1946 	struct xfs_buf		*bp, *n;
1947 	LIST_HEAD		(submit_list);
1948 	int			pinned = 0;
1949 	struct blk_plug		plug;
1950 
1951 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1952 
1953 	blk_start_plug(&plug);
1954 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1955 		if (!wait_list) {
1956 			if (xfs_buf_ispinned(bp)) {
1957 				pinned++;
1958 				continue;
1959 			}
1960 			if (!xfs_buf_trylock(bp))
1961 				continue;
1962 		} else {
1963 			xfs_buf_lock(bp);
1964 		}
1965 
1966 		/*
1967 		 * Someone else might have written the buffer synchronously or
1968 		 * marked it stale in the meantime.  In that case only the
1969 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1970 		 * reference and remove it from the list here.
1971 		 */
1972 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1973 			list_del_init(&bp->b_list);
1974 			xfs_buf_relse(bp);
1975 			continue;
1976 		}
1977 
1978 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1979 
1980 		/*
1981 		 * We do all IO submission async. This means if we need
1982 		 * to wait for IO completion we need to take an extra
1983 		 * reference so the buffer is still valid on the other
1984 		 * side. We need to move the buffer onto the io_list
1985 		 * at this point so the caller can still access it.
1986 		 */
1987 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1988 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1989 		if (wait_list) {
1990 			xfs_buf_hold(bp);
1991 			list_move_tail(&bp->b_list, wait_list);
1992 		} else
1993 			list_del_init(&bp->b_list);
1994 
1995 		xfs_buf_submit(bp);
1996 	}
1997 	blk_finish_plug(&plug);
1998 
1999 	return pinned;
2000 }
2001 
2002 /*
2003  * Write out a buffer list asynchronously.
2004  *
2005  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2006  * out and not wait for I/O completion on any of the buffers.  This interface
2007  * is only safely useable for callers that can track I/O completion by higher
2008  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2009  * function.
2010  */
2011 int
2012 xfs_buf_delwri_submit_nowait(
2013 	struct list_head	*buffer_list)
2014 {
2015 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2016 }
2017 
2018 /*
2019  * Write out a buffer list synchronously.
2020  *
2021  * This will take the @buffer_list, write all buffers out and wait for I/O
2022  * completion on all of the buffers. @buffer_list is consumed by the function,
2023  * so callers must have some other way of tracking buffers if they require such
2024  * functionality.
2025  */
2026 int
2027 xfs_buf_delwri_submit(
2028 	struct list_head	*buffer_list)
2029 {
2030 	LIST_HEAD		(wait_list);
2031 	int			error = 0, error2;
2032 	struct xfs_buf		*bp;
2033 
2034 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2035 
2036 	/* Wait for IO to complete. */
2037 	while (!list_empty(&wait_list)) {
2038 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2039 
2040 		list_del_init(&bp->b_list);
2041 
2042 		/* locking the buffer will wait for async IO completion. */
2043 		xfs_buf_lock(bp);
2044 		error2 = bp->b_error;
2045 		xfs_buf_relse(bp);
2046 		if (!error)
2047 			error = error2;
2048 	}
2049 
2050 	return error;
2051 }
2052 
2053 /*
2054  * Push a single buffer on a delwri queue.
2055  *
2056  * The purpose of this function is to submit a single buffer of a delwri queue
2057  * and return with the buffer still on the original queue. The waiting delwri
2058  * buffer submission infrastructure guarantees transfer of the delwri queue
2059  * buffer reference to a temporary wait list. We reuse this infrastructure to
2060  * transfer the buffer back to the original queue.
2061  *
2062  * Note the buffer transitions from the queued state, to the submitted and wait
2063  * listed state and back to the queued state during this call. The buffer
2064  * locking and queue management logic between _delwri_pushbuf() and
2065  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2066  * before returning.
2067  */
2068 int
2069 xfs_buf_delwri_pushbuf(
2070 	struct xfs_buf		*bp,
2071 	struct list_head	*buffer_list)
2072 {
2073 	LIST_HEAD		(submit_list);
2074 	int			error;
2075 
2076 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2077 
2078 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2079 
2080 	/*
2081 	 * Isolate the buffer to a new local list so we can submit it for I/O
2082 	 * independently from the rest of the original list.
2083 	 */
2084 	xfs_buf_lock(bp);
2085 	list_move(&bp->b_list, &submit_list);
2086 	xfs_buf_unlock(bp);
2087 
2088 	/*
2089 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2090 	 * the buffer on the wait list with an associated reference. Rather than
2091 	 * bounce the buffer from a local wait list back to the original list
2092 	 * after I/O completion, reuse the original list as the wait list.
2093 	 */
2094 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2095 
2096 	/*
2097 	 * The buffer is now under I/O and wait listed as during typical delwri
2098 	 * submission. Lock the buffer to wait for I/O completion. Rather than
2099 	 * remove the buffer from the wait list and release the reference, we
2100 	 * want to return with the buffer queued to the original list. The
2101 	 * buffer already sits on the original list with a wait list reference,
2102 	 * however. If we let the queue inherit that wait list reference, all we
2103 	 * need to do is reset the DELWRI_Q flag.
2104 	 */
2105 	xfs_buf_lock(bp);
2106 	error = bp->b_error;
2107 	bp->b_flags |= _XBF_DELWRI_Q;
2108 	xfs_buf_unlock(bp);
2109 
2110 	return error;
2111 }
2112 
2113 int __init
2114 xfs_buf_init(void)
2115 {
2116 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2117 						KM_ZONE_HWALIGN, NULL);
2118 	if (!xfs_buf_zone)
2119 		goto out;
2120 
2121 	return 0;
2122 
2123  out:
2124 	return -ENOMEM;
2125 }
2126 
2127 void
2128 xfs_buf_terminate(void)
2129 {
2130 	kmem_zone_destroy(xfs_buf_zone);
2131 }
2132