1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include <linux/backing-dev.h> 8 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_trace.h" 16 #include "xfs_log.h" 17 #include "xfs_errortag.h" 18 #include "xfs_error.h" 19 20 static kmem_zone_t *xfs_buf_zone; 21 22 #define xb_to_gfp(flags) \ 23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 24 25 /* 26 * Locking orders 27 * 28 * xfs_buf_ioacct_inc: 29 * xfs_buf_ioacct_dec: 30 * b_sema (caller holds) 31 * b_lock 32 * 33 * xfs_buf_stale: 34 * b_sema (caller holds) 35 * b_lock 36 * lru_lock 37 * 38 * xfs_buf_rele: 39 * b_lock 40 * pag_buf_lock 41 * lru_lock 42 * 43 * xfs_buftarg_wait_rele 44 * lru_lock 45 * b_lock (trylock due to inversion) 46 * 47 * xfs_buftarg_isolate 48 * lru_lock 49 * b_lock (trylock due to inversion) 50 */ 51 52 static inline int 53 xfs_buf_is_vmapped( 54 struct xfs_buf *bp) 55 { 56 /* 57 * Return true if the buffer is vmapped. 58 * 59 * b_addr is null if the buffer is not mapped, but the code is clever 60 * enough to know it doesn't have to map a single page, so the check has 61 * to be both for b_addr and bp->b_page_count > 1. 62 */ 63 return bp->b_addr && bp->b_page_count > 1; 64 } 65 66 static inline int 67 xfs_buf_vmap_len( 68 struct xfs_buf *bp) 69 { 70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 71 } 72 73 /* 74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 75 * this buffer. The count is incremented once per buffer (per hold cycle) 76 * because the corresponding decrement is deferred to buffer release. Buffers 77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 78 * tracking adds unnecessary overhead. This is used for sychronization purposes 79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of 80 * in-flight buffers. 81 * 82 * Buffers that are never released (e.g., superblock, iclog buffers) must set 83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 84 * never reaches zero and unmount hangs indefinitely. 85 */ 86 static inline void 87 xfs_buf_ioacct_inc( 88 struct xfs_buf *bp) 89 { 90 if (bp->b_flags & XBF_NO_IOACCT) 91 return; 92 93 ASSERT(bp->b_flags & XBF_ASYNC); 94 spin_lock(&bp->b_lock); 95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { 96 bp->b_state |= XFS_BSTATE_IN_FLIGHT; 97 percpu_counter_inc(&bp->b_target->bt_io_count); 98 } 99 spin_unlock(&bp->b_lock); 100 } 101 102 /* 103 * Clear the in-flight state on a buffer about to be released to the LRU or 104 * freed and unaccount from the buftarg. 105 */ 106 static inline void 107 __xfs_buf_ioacct_dec( 108 struct xfs_buf *bp) 109 { 110 lockdep_assert_held(&bp->b_lock); 111 112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { 113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; 114 percpu_counter_dec(&bp->b_target->bt_io_count); 115 } 116 } 117 118 static inline void 119 xfs_buf_ioacct_dec( 120 struct xfs_buf *bp) 121 { 122 spin_lock(&bp->b_lock); 123 __xfs_buf_ioacct_dec(bp); 124 spin_unlock(&bp->b_lock); 125 } 126 127 /* 128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 129 * b_lru_ref count so that the buffer is freed immediately when the buffer 130 * reference count falls to zero. If the buffer is already on the LRU, we need 131 * to remove the reference that LRU holds on the buffer. 132 * 133 * This prevents build-up of stale buffers on the LRU. 134 */ 135 void 136 xfs_buf_stale( 137 struct xfs_buf *bp) 138 { 139 ASSERT(xfs_buf_islocked(bp)); 140 141 bp->b_flags |= XBF_STALE; 142 143 /* 144 * Clear the delwri status so that a delwri queue walker will not 145 * flush this buffer to disk now that it is stale. The delwri queue has 146 * a reference to the buffer, so this is safe to do. 147 */ 148 bp->b_flags &= ~_XBF_DELWRI_Q; 149 150 /* 151 * Once the buffer is marked stale and unlocked, a subsequent lookup 152 * could reset b_flags. There is no guarantee that the buffer is 153 * unaccounted (released to LRU) before that occurs. Drop in-flight 154 * status now to preserve accounting consistency. 155 */ 156 spin_lock(&bp->b_lock); 157 __xfs_buf_ioacct_dec(bp); 158 159 atomic_set(&bp->b_lru_ref, 0); 160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 162 atomic_dec(&bp->b_hold); 163 164 ASSERT(atomic_read(&bp->b_hold) >= 1); 165 spin_unlock(&bp->b_lock); 166 } 167 168 static int 169 xfs_buf_get_maps( 170 struct xfs_buf *bp, 171 int map_count) 172 { 173 ASSERT(bp->b_maps == NULL); 174 bp->b_map_count = map_count; 175 176 if (map_count == 1) { 177 bp->b_maps = &bp->__b_map; 178 return 0; 179 } 180 181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 182 KM_NOFS); 183 if (!bp->b_maps) 184 return -ENOMEM; 185 return 0; 186 } 187 188 /* 189 * Frees b_pages if it was allocated. 190 */ 191 static void 192 xfs_buf_free_maps( 193 struct xfs_buf *bp) 194 { 195 if (bp->b_maps != &bp->__b_map) { 196 kmem_free(bp->b_maps); 197 bp->b_maps = NULL; 198 } 199 } 200 201 static struct xfs_buf * 202 _xfs_buf_alloc( 203 struct xfs_buftarg *target, 204 struct xfs_buf_map *map, 205 int nmaps, 206 xfs_buf_flags_t flags) 207 { 208 struct xfs_buf *bp; 209 int error; 210 int i; 211 212 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 213 if (unlikely(!bp)) 214 return NULL; 215 216 /* 217 * We don't want certain flags to appear in b_flags unless they are 218 * specifically set by later operations on the buffer. 219 */ 220 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 221 222 atomic_set(&bp->b_hold, 1); 223 atomic_set(&bp->b_lru_ref, 1); 224 init_completion(&bp->b_iowait); 225 INIT_LIST_HEAD(&bp->b_lru); 226 INIT_LIST_HEAD(&bp->b_list); 227 INIT_LIST_HEAD(&bp->b_li_list); 228 sema_init(&bp->b_sema, 0); /* held, no waiters */ 229 spin_lock_init(&bp->b_lock); 230 bp->b_target = target; 231 bp->b_mount = target->bt_mount; 232 bp->b_flags = flags; 233 234 /* 235 * Set length and io_length to the same value initially. 236 * I/O routines should use io_length, which will be the same in 237 * most cases but may be reset (e.g. XFS recovery). 238 */ 239 error = xfs_buf_get_maps(bp, nmaps); 240 if (error) { 241 kmem_zone_free(xfs_buf_zone, bp); 242 return NULL; 243 } 244 245 bp->b_bn = map[0].bm_bn; 246 bp->b_length = 0; 247 for (i = 0; i < nmaps; i++) { 248 bp->b_maps[i].bm_bn = map[i].bm_bn; 249 bp->b_maps[i].bm_len = map[i].bm_len; 250 bp->b_length += map[i].bm_len; 251 } 252 253 atomic_set(&bp->b_pin_count, 0); 254 init_waitqueue_head(&bp->b_waiters); 255 256 XFS_STATS_INC(bp->b_mount, xb_create); 257 trace_xfs_buf_init(bp, _RET_IP_); 258 259 return bp; 260 } 261 262 /* 263 * Allocate a page array capable of holding a specified number 264 * of pages, and point the page buf at it. 265 */ 266 STATIC int 267 _xfs_buf_get_pages( 268 xfs_buf_t *bp, 269 int page_count) 270 { 271 /* Make sure that we have a page list */ 272 if (bp->b_pages == NULL) { 273 bp->b_page_count = page_count; 274 if (page_count <= XB_PAGES) { 275 bp->b_pages = bp->b_page_array; 276 } else { 277 bp->b_pages = kmem_alloc(sizeof(struct page *) * 278 page_count, KM_NOFS); 279 if (bp->b_pages == NULL) 280 return -ENOMEM; 281 } 282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 283 } 284 return 0; 285 } 286 287 /* 288 * Frees b_pages if it was allocated. 289 */ 290 STATIC void 291 _xfs_buf_free_pages( 292 xfs_buf_t *bp) 293 { 294 if (bp->b_pages != bp->b_page_array) { 295 kmem_free(bp->b_pages); 296 bp->b_pages = NULL; 297 } 298 } 299 300 /* 301 * Releases the specified buffer. 302 * 303 * The modification state of any associated pages is left unchanged. 304 * The buffer must not be on any hash - use xfs_buf_rele instead for 305 * hashed and refcounted buffers 306 */ 307 void 308 xfs_buf_free( 309 xfs_buf_t *bp) 310 { 311 trace_xfs_buf_free(bp, _RET_IP_); 312 313 ASSERT(list_empty(&bp->b_lru)); 314 315 if (bp->b_flags & _XBF_PAGES) { 316 uint i; 317 318 if (xfs_buf_is_vmapped(bp)) 319 vm_unmap_ram(bp->b_addr - bp->b_offset, 320 bp->b_page_count); 321 322 for (i = 0; i < bp->b_page_count; i++) { 323 struct page *page = bp->b_pages[i]; 324 325 __free_page(page); 326 } 327 } else if (bp->b_flags & _XBF_KMEM) 328 kmem_free(bp->b_addr); 329 _xfs_buf_free_pages(bp); 330 xfs_buf_free_maps(bp); 331 kmem_zone_free(xfs_buf_zone, bp); 332 } 333 334 /* 335 * Allocates all the pages for buffer in question and builds it's page list. 336 */ 337 STATIC int 338 xfs_buf_allocate_memory( 339 xfs_buf_t *bp, 340 uint flags) 341 { 342 size_t size; 343 size_t nbytes, offset; 344 gfp_t gfp_mask = xb_to_gfp(flags); 345 unsigned short page_count, i; 346 xfs_off_t start, end; 347 int error; 348 349 /* 350 * for buffers that are contained within a single page, just allocate 351 * the memory from the heap - there's no need for the complexity of 352 * page arrays to keep allocation down to order 0. 353 */ 354 size = BBTOB(bp->b_length); 355 if (size < PAGE_SIZE) { 356 int align_mask = xfs_buftarg_dma_alignment(bp->b_target); 357 bp->b_addr = kmem_alloc_io(size, align_mask, KM_NOFS); 358 if (!bp->b_addr) { 359 /* low memory - use alloc_page loop instead */ 360 goto use_alloc_page; 361 } 362 363 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 364 ((unsigned long)bp->b_addr & PAGE_MASK)) { 365 /* b_addr spans two pages - use alloc_page instead */ 366 kmem_free(bp->b_addr); 367 bp->b_addr = NULL; 368 goto use_alloc_page; 369 } 370 bp->b_offset = offset_in_page(bp->b_addr); 371 bp->b_pages = bp->b_page_array; 372 bp->b_pages[0] = kmem_to_page(bp->b_addr); 373 bp->b_page_count = 1; 374 bp->b_flags |= _XBF_KMEM; 375 return 0; 376 } 377 378 use_alloc_page: 379 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 380 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 381 >> PAGE_SHIFT; 382 page_count = end - start; 383 error = _xfs_buf_get_pages(bp, page_count); 384 if (unlikely(error)) 385 return error; 386 387 offset = bp->b_offset; 388 bp->b_flags |= _XBF_PAGES; 389 390 for (i = 0; i < bp->b_page_count; i++) { 391 struct page *page; 392 uint retries = 0; 393 retry: 394 page = alloc_page(gfp_mask); 395 if (unlikely(page == NULL)) { 396 if (flags & XBF_READ_AHEAD) { 397 bp->b_page_count = i; 398 error = -ENOMEM; 399 goto out_free_pages; 400 } 401 402 /* 403 * This could deadlock. 404 * 405 * But until all the XFS lowlevel code is revamped to 406 * handle buffer allocation failures we can't do much. 407 */ 408 if (!(++retries % 100)) 409 xfs_err(NULL, 410 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", 411 current->comm, current->pid, 412 __func__, gfp_mask); 413 414 XFS_STATS_INC(bp->b_mount, xb_page_retries); 415 congestion_wait(BLK_RW_ASYNC, HZ/50); 416 goto retry; 417 } 418 419 XFS_STATS_INC(bp->b_mount, xb_page_found); 420 421 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 422 size -= nbytes; 423 bp->b_pages[i] = page; 424 offset = 0; 425 } 426 return 0; 427 428 out_free_pages: 429 for (i = 0; i < bp->b_page_count; i++) 430 __free_page(bp->b_pages[i]); 431 bp->b_flags &= ~_XBF_PAGES; 432 return error; 433 } 434 435 /* 436 * Map buffer into kernel address-space if necessary. 437 */ 438 STATIC int 439 _xfs_buf_map_pages( 440 xfs_buf_t *bp, 441 uint flags) 442 { 443 ASSERT(bp->b_flags & _XBF_PAGES); 444 if (bp->b_page_count == 1) { 445 /* A single page buffer is always mappable */ 446 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 447 } else if (flags & XBF_UNMAPPED) { 448 bp->b_addr = NULL; 449 } else { 450 int retried = 0; 451 unsigned nofs_flag; 452 453 /* 454 * vm_map_ram() will allocate auxillary structures (e.g. 455 * pagetables) with GFP_KERNEL, yet we are likely to be under 456 * GFP_NOFS context here. Hence we need to tell memory reclaim 457 * that we are in such a context via PF_MEMALLOC_NOFS to prevent 458 * memory reclaim re-entering the filesystem here and 459 * potentially deadlocking. 460 */ 461 nofs_flag = memalloc_nofs_save(); 462 do { 463 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 464 -1, PAGE_KERNEL); 465 if (bp->b_addr) 466 break; 467 vm_unmap_aliases(); 468 } while (retried++ <= 1); 469 memalloc_nofs_restore(nofs_flag); 470 471 if (!bp->b_addr) 472 return -ENOMEM; 473 bp->b_addr += bp->b_offset; 474 } 475 476 return 0; 477 } 478 479 /* 480 * Finding and Reading Buffers 481 */ 482 static int 483 _xfs_buf_obj_cmp( 484 struct rhashtable_compare_arg *arg, 485 const void *obj) 486 { 487 const struct xfs_buf_map *map = arg->key; 488 const struct xfs_buf *bp = obj; 489 490 /* 491 * The key hashing in the lookup path depends on the key being the 492 * first element of the compare_arg, make sure to assert this. 493 */ 494 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 495 496 if (bp->b_bn != map->bm_bn) 497 return 1; 498 499 if (unlikely(bp->b_length != map->bm_len)) { 500 /* 501 * found a block number match. If the range doesn't 502 * match, the only way this is allowed is if the buffer 503 * in the cache is stale and the transaction that made 504 * it stale has not yet committed. i.e. we are 505 * reallocating a busy extent. Skip this buffer and 506 * continue searching for an exact match. 507 */ 508 ASSERT(bp->b_flags & XBF_STALE); 509 return 1; 510 } 511 return 0; 512 } 513 514 static const struct rhashtable_params xfs_buf_hash_params = { 515 .min_size = 32, /* empty AGs have minimal footprint */ 516 .nelem_hint = 16, 517 .key_len = sizeof(xfs_daddr_t), 518 .key_offset = offsetof(struct xfs_buf, b_bn), 519 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 520 .automatic_shrinking = true, 521 .obj_cmpfn = _xfs_buf_obj_cmp, 522 }; 523 524 int 525 xfs_buf_hash_init( 526 struct xfs_perag *pag) 527 { 528 spin_lock_init(&pag->pag_buf_lock); 529 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); 530 } 531 532 void 533 xfs_buf_hash_destroy( 534 struct xfs_perag *pag) 535 { 536 rhashtable_destroy(&pag->pag_buf_hash); 537 } 538 539 /* 540 * Look up a buffer in the buffer cache and return it referenced and locked 541 * in @found_bp. 542 * 543 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the 544 * cache. 545 * 546 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return 547 * -EAGAIN if we fail to lock it. 548 * 549 * Return values are: 550 * -EFSCORRUPTED if have been supplied with an invalid address 551 * -EAGAIN on trylock failure 552 * -ENOENT if we fail to find a match and @new_bp was NULL 553 * 0, with @found_bp: 554 * - @new_bp if we inserted it into the cache 555 * - the buffer we found and locked. 556 */ 557 static int 558 xfs_buf_find( 559 struct xfs_buftarg *btp, 560 struct xfs_buf_map *map, 561 int nmaps, 562 xfs_buf_flags_t flags, 563 struct xfs_buf *new_bp, 564 struct xfs_buf **found_bp) 565 { 566 struct xfs_perag *pag; 567 xfs_buf_t *bp; 568 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 569 xfs_daddr_t eofs; 570 int i; 571 572 *found_bp = NULL; 573 574 for (i = 0; i < nmaps; i++) 575 cmap.bm_len += map[i].bm_len; 576 577 /* Check for IOs smaller than the sector size / not sector aligned */ 578 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize)); 579 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 580 581 /* 582 * Corrupted block numbers can get through to here, unfortunately, so we 583 * have to check that the buffer falls within the filesystem bounds. 584 */ 585 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 586 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) { 587 xfs_alert(btp->bt_mount, 588 "%s: daddr 0x%llx out of range, EOFS 0x%llx", 589 __func__, cmap.bm_bn, eofs); 590 WARN_ON(1); 591 return -EFSCORRUPTED; 592 } 593 594 pag = xfs_perag_get(btp->bt_mount, 595 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); 596 597 spin_lock(&pag->pag_buf_lock); 598 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap, 599 xfs_buf_hash_params); 600 if (bp) { 601 atomic_inc(&bp->b_hold); 602 goto found; 603 } 604 605 /* No match found */ 606 if (!new_bp) { 607 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 608 spin_unlock(&pag->pag_buf_lock); 609 xfs_perag_put(pag); 610 return -ENOENT; 611 } 612 613 /* the buffer keeps the perag reference until it is freed */ 614 new_bp->b_pag = pag; 615 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head, 616 xfs_buf_hash_params); 617 spin_unlock(&pag->pag_buf_lock); 618 *found_bp = new_bp; 619 return 0; 620 621 found: 622 spin_unlock(&pag->pag_buf_lock); 623 xfs_perag_put(pag); 624 625 if (!xfs_buf_trylock(bp)) { 626 if (flags & XBF_TRYLOCK) { 627 xfs_buf_rele(bp); 628 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 629 return -EAGAIN; 630 } 631 xfs_buf_lock(bp); 632 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 633 } 634 635 /* 636 * if the buffer is stale, clear all the external state associated with 637 * it. We need to keep flags such as how we allocated the buffer memory 638 * intact here. 639 */ 640 if (bp->b_flags & XBF_STALE) { 641 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 642 ASSERT(bp->b_iodone == NULL); 643 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 644 bp->b_ops = NULL; 645 } 646 647 trace_xfs_buf_find(bp, flags, _RET_IP_); 648 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 649 *found_bp = bp; 650 return 0; 651 } 652 653 struct xfs_buf * 654 xfs_buf_incore( 655 struct xfs_buftarg *target, 656 xfs_daddr_t blkno, 657 size_t numblks, 658 xfs_buf_flags_t flags) 659 { 660 struct xfs_buf *bp; 661 int error; 662 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks); 663 664 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp); 665 if (error) 666 return NULL; 667 return bp; 668 } 669 670 /* 671 * Assembles a buffer covering the specified range. The code is optimised for 672 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 673 * more hits than misses. 674 */ 675 struct xfs_buf * 676 xfs_buf_get_map( 677 struct xfs_buftarg *target, 678 struct xfs_buf_map *map, 679 int nmaps, 680 xfs_buf_flags_t flags) 681 { 682 struct xfs_buf *bp; 683 struct xfs_buf *new_bp; 684 int error = 0; 685 686 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp); 687 688 switch (error) { 689 case 0: 690 /* cache hit */ 691 goto found; 692 case -EAGAIN: 693 /* cache hit, trylock failure, caller handles failure */ 694 ASSERT(flags & XBF_TRYLOCK); 695 return NULL; 696 case -ENOENT: 697 /* cache miss, go for insert */ 698 break; 699 case -EFSCORRUPTED: 700 default: 701 /* 702 * None of the higher layers understand failure types 703 * yet, so return NULL to signal a fatal lookup error. 704 */ 705 return NULL; 706 } 707 708 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 709 if (unlikely(!new_bp)) 710 return NULL; 711 712 error = xfs_buf_allocate_memory(new_bp, flags); 713 if (error) { 714 xfs_buf_free(new_bp); 715 return NULL; 716 } 717 718 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp); 719 if (error) { 720 xfs_buf_free(new_bp); 721 return NULL; 722 } 723 724 if (bp != new_bp) 725 xfs_buf_free(new_bp); 726 727 found: 728 if (!bp->b_addr) { 729 error = _xfs_buf_map_pages(bp, flags); 730 if (unlikely(error)) { 731 xfs_warn(target->bt_mount, 732 "%s: failed to map pagesn", __func__); 733 xfs_buf_relse(bp); 734 return NULL; 735 } 736 } 737 738 /* 739 * Clear b_error if this is a lookup from a caller that doesn't expect 740 * valid data to be found in the buffer. 741 */ 742 if (!(flags & XBF_READ)) 743 xfs_buf_ioerror(bp, 0); 744 745 XFS_STATS_INC(target->bt_mount, xb_get); 746 trace_xfs_buf_get(bp, flags, _RET_IP_); 747 return bp; 748 } 749 750 STATIC int 751 _xfs_buf_read( 752 xfs_buf_t *bp, 753 xfs_buf_flags_t flags) 754 { 755 ASSERT(!(flags & XBF_WRITE)); 756 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 757 758 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 759 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 760 761 return xfs_buf_submit(bp); 762 } 763 764 /* 765 * Reverify a buffer found in cache without an attached ->b_ops. 766 * 767 * If the caller passed an ops structure and the buffer doesn't have ops 768 * assigned, set the ops and use it to verify the contents. If verification 769 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is 770 * already in XBF_DONE state on entry. 771 * 772 * Under normal operations, every in-core buffer is verified on read I/O 773 * completion. There are two scenarios that can lead to in-core buffers without 774 * an assigned ->b_ops. The first is during log recovery of buffers on a V4 775 * filesystem, though these buffers are purged at the end of recovery. The 776 * other is online repair, which intentionally reads with a NULL buffer ops to 777 * run several verifiers across an in-core buffer in order to establish buffer 778 * type. If repair can't establish that, the buffer will be left in memory 779 * with NULL buffer ops. 780 */ 781 int 782 xfs_buf_reverify( 783 struct xfs_buf *bp, 784 const struct xfs_buf_ops *ops) 785 { 786 ASSERT(bp->b_flags & XBF_DONE); 787 ASSERT(bp->b_error == 0); 788 789 if (!ops || bp->b_ops) 790 return 0; 791 792 bp->b_ops = ops; 793 bp->b_ops->verify_read(bp); 794 if (bp->b_error) 795 bp->b_flags &= ~XBF_DONE; 796 return bp->b_error; 797 } 798 799 xfs_buf_t * 800 xfs_buf_read_map( 801 struct xfs_buftarg *target, 802 struct xfs_buf_map *map, 803 int nmaps, 804 xfs_buf_flags_t flags, 805 const struct xfs_buf_ops *ops) 806 { 807 struct xfs_buf *bp; 808 809 flags |= XBF_READ; 810 811 bp = xfs_buf_get_map(target, map, nmaps, flags); 812 if (!bp) 813 return NULL; 814 815 trace_xfs_buf_read(bp, flags, _RET_IP_); 816 817 if (!(bp->b_flags & XBF_DONE)) { 818 XFS_STATS_INC(target->bt_mount, xb_get_read); 819 bp->b_ops = ops; 820 _xfs_buf_read(bp, flags); 821 return bp; 822 } 823 824 xfs_buf_reverify(bp, ops); 825 826 if (flags & XBF_ASYNC) { 827 /* 828 * Read ahead call which is already satisfied, 829 * drop the buffer 830 */ 831 xfs_buf_relse(bp); 832 return NULL; 833 } 834 835 /* We do not want read in the flags */ 836 bp->b_flags &= ~XBF_READ; 837 ASSERT(bp->b_ops != NULL || ops == NULL); 838 return bp; 839 } 840 841 /* 842 * If we are not low on memory then do the readahead in a deadlock 843 * safe manner. 844 */ 845 void 846 xfs_buf_readahead_map( 847 struct xfs_buftarg *target, 848 struct xfs_buf_map *map, 849 int nmaps, 850 const struct xfs_buf_ops *ops) 851 { 852 if (bdi_read_congested(target->bt_bdev->bd_bdi)) 853 return; 854 855 xfs_buf_read_map(target, map, nmaps, 856 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 857 } 858 859 /* 860 * Read an uncached buffer from disk. Allocates and returns a locked 861 * buffer containing the disk contents or nothing. 862 */ 863 int 864 xfs_buf_read_uncached( 865 struct xfs_buftarg *target, 866 xfs_daddr_t daddr, 867 size_t numblks, 868 int flags, 869 struct xfs_buf **bpp, 870 const struct xfs_buf_ops *ops) 871 { 872 struct xfs_buf *bp; 873 874 *bpp = NULL; 875 876 bp = xfs_buf_get_uncached(target, numblks, flags); 877 if (!bp) 878 return -ENOMEM; 879 880 /* set up the buffer for a read IO */ 881 ASSERT(bp->b_map_count == 1); 882 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 883 bp->b_maps[0].bm_bn = daddr; 884 bp->b_flags |= XBF_READ; 885 bp->b_ops = ops; 886 887 xfs_buf_submit(bp); 888 if (bp->b_error) { 889 int error = bp->b_error; 890 xfs_buf_relse(bp); 891 return error; 892 } 893 894 *bpp = bp; 895 return 0; 896 } 897 898 xfs_buf_t * 899 xfs_buf_get_uncached( 900 struct xfs_buftarg *target, 901 size_t numblks, 902 int flags) 903 { 904 unsigned long page_count; 905 int error, i; 906 struct xfs_buf *bp; 907 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 908 909 /* flags might contain irrelevant bits, pass only what we care about */ 910 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT); 911 if (unlikely(bp == NULL)) 912 goto fail; 913 914 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 915 error = _xfs_buf_get_pages(bp, page_count); 916 if (error) 917 goto fail_free_buf; 918 919 for (i = 0; i < page_count; i++) { 920 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 921 if (!bp->b_pages[i]) 922 goto fail_free_mem; 923 } 924 bp->b_flags |= _XBF_PAGES; 925 926 error = _xfs_buf_map_pages(bp, 0); 927 if (unlikely(error)) { 928 xfs_warn(target->bt_mount, 929 "%s: failed to map pages", __func__); 930 goto fail_free_mem; 931 } 932 933 trace_xfs_buf_get_uncached(bp, _RET_IP_); 934 return bp; 935 936 fail_free_mem: 937 while (--i >= 0) 938 __free_page(bp->b_pages[i]); 939 _xfs_buf_free_pages(bp); 940 fail_free_buf: 941 xfs_buf_free_maps(bp); 942 kmem_zone_free(xfs_buf_zone, bp); 943 fail: 944 return NULL; 945 } 946 947 /* 948 * Increment reference count on buffer, to hold the buffer concurrently 949 * with another thread which may release (free) the buffer asynchronously. 950 * Must hold the buffer already to call this function. 951 */ 952 void 953 xfs_buf_hold( 954 xfs_buf_t *bp) 955 { 956 trace_xfs_buf_hold(bp, _RET_IP_); 957 atomic_inc(&bp->b_hold); 958 } 959 960 /* 961 * Release a hold on the specified buffer. If the hold count is 1, the buffer is 962 * placed on LRU or freed (depending on b_lru_ref). 963 */ 964 void 965 xfs_buf_rele( 966 xfs_buf_t *bp) 967 { 968 struct xfs_perag *pag = bp->b_pag; 969 bool release; 970 bool freebuf = false; 971 972 trace_xfs_buf_rele(bp, _RET_IP_); 973 974 if (!pag) { 975 ASSERT(list_empty(&bp->b_lru)); 976 if (atomic_dec_and_test(&bp->b_hold)) { 977 xfs_buf_ioacct_dec(bp); 978 xfs_buf_free(bp); 979 } 980 return; 981 } 982 983 ASSERT(atomic_read(&bp->b_hold) > 0); 984 985 /* 986 * We grab the b_lock here first to serialise racing xfs_buf_rele() 987 * calls. The pag_buf_lock being taken on the last reference only 988 * serialises against racing lookups in xfs_buf_find(). IOWs, the second 989 * to last reference we drop here is not serialised against the last 990 * reference until we take bp->b_lock. Hence if we don't grab b_lock 991 * first, the last "release" reference can win the race to the lock and 992 * free the buffer before the second-to-last reference is processed, 993 * leading to a use-after-free scenario. 994 */ 995 spin_lock(&bp->b_lock); 996 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); 997 if (!release) { 998 /* 999 * Drop the in-flight state if the buffer is already on the LRU 1000 * and it holds the only reference. This is racy because we 1001 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 1002 * ensures the decrement occurs only once per-buf. 1003 */ 1004 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 1005 __xfs_buf_ioacct_dec(bp); 1006 goto out_unlock; 1007 } 1008 1009 /* the last reference has been dropped ... */ 1010 __xfs_buf_ioacct_dec(bp); 1011 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 1012 /* 1013 * If the buffer is added to the LRU take a new reference to the 1014 * buffer for the LRU and clear the (now stale) dispose list 1015 * state flag 1016 */ 1017 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 1018 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1019 atomic_inc(&bp->b_hold); 1020 } 1021 spin_unlock(&pag->pag_buf_lock); 1022 } else { 1023 /* 1024 * most of the time buffers will already be removed from the 1025 * LRU, so optimise that case by checking for the 1026 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1027 * was on was the disposal list 1028 */ 1029 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1030 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 1031 } else { 1032 ASSERT(list_empty(&bp->b_lru)); 1033 } 1034 1035 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1036 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, 1037 xfs_buf_hash_params); 1038 spin_unlock(&pag->pag_buf_lock); 1039 xfs_perag_put(pag); 1040 freebuf = true; 1041 } 1042 1043 out_unlock: 1044 spin_unlock(&bp->b_lock); 1045 1046 if (freebuf) 1047 xfs_buf_free(bp); 1048 } 1049 1050 1051 /* 1052 * Lock a buffer object, if it is not already locked. 1053 * 1054 * If we come across a stale, pinned, locked buffer, we know that we are 1055 * being asked to lock a buffer that has been reallocated. Because it is 1056 * pinned, we know that the log has not been pushed to disk and hence it 1057 * will still be locked. Rather than continuing to have trylock attempts 1058 * fail until someone else pushes the log, push it ourselves before 1059 * returning. This means that the xfsaild will not get stuck trying 1060 * to push on stale inode buffers. 1061 */ 1062 int 1063 xfs_buf_trylock( 1064 struct xfs_buf *bp) 1065 { 1066 int locked; 1067 1068 locked = down_trylock(&bp->b_sema) == 0; 1069 if (locked) 1070 trace_xfs_buf_trylock(bp, _RET_IP_); 1071 else 1072 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1073 return locked; 1074 } 1075 1076 /* 1077 * Lock a buffer object. 1078 * 1079 * If we come across a stale, pinned, locked buffer, we know that we 1080 * are being asked to lock a buffer that has been reallocated. Because 1081 * it is pinned, we know that the log has not been pushed to disk and 1082 * hence it will still be locked. Rather than sleeping until someone 1083 * else pushes the log, push it ourselves before trying to get the lock. 1084 */ 1085 void 1086 xfs_buf_lock( 1087 struct xfs_buf *bp) 1088 { 1089 trace_xfs_buf_lock(bp, _RET_IP_); 1090 1091 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1092 xfs_log_force(bp->b_mount, 0); 1093 down(&bp->b_sema); 1094 1095 trace_xfs_buf_lock_done(bp, _RET_IP_); 1096 } 1097 1098 void 1099 xfs_buf_unlock( 1100 struct xfs_buf *bp) 1101 { 1102 ASSERT(xfs_buf_islocked(bp)); 1103 1104 up(&bp->b_sema); 1105 trace_xfs_buf_unlock(bp, _RET_IP_); 1106 } 1107 1108 STATIC void 1109 xfs_buf_wait_unpin( 1110 xfs_buf_t *bp) 1111 { 1112 DECLARE_WAITQUEUE (wait, current); 1113 1114 if (atomic_read(&bp->b_pin_count) == 0) 1115 return; 1116 1117 add_wait_queue(&bp->b_waiters, &wait); 1118 for (;;) { 1119 set_current_state(TASK_UNINTERRUPTIBLE); 1120 if (atomic_read(&bp->b_pin_count) == 0) 1121 break; 1122 io_schedule(); 1123 } 1124 remove_wait_queue(&bp->b_waiters, &wait); 1125 set_current_state(TASK_RUNNING); 1126 } 1127 1128 /* 1129 * Buffer Utility Routines 1130 */ 1131 1132 void 1133 xfs_buf_ioend( 1134 struct xfs_buf *bp) 1135 { 1136 bool read = bp->b_flags & XBF_READ; 1137 1138 trace_xfs_buf_iodone(bp, _RET_IP_); 1139 1140 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1141 1142 /* 1143 * Pull in IO completion errors now. We are guaranteed to be running 1144 * single threaded, so we don't need the lock to read b_io_error. 1145 */ 1146 if (!bp->b_error && bp->b_io_error) 1147 xfs_buf_ioerror(bp, bp->b_io_error); 1148 1149 /* Only validate buffers that were read without errors */ 1150 if (read && !bp->b_error && bp->b_ops) { 1151 ASSERT(!bp->b_iodone); 1152 bp->b_ops->verify_read(bp); 1153 } 1154 1155 if (!bp->b_error) 1156 bp->b_flags |= XBF_DONE; 1157 1158 if (bp->b_iodone) 1159 (*(bp->b_iodone))(bp); 1160 else if (bp->b_flags & XBF_ASYNC) 1161 xfs_buf_relse(bp); 1162 else 1163 complete(&bp->b_iowait); 1164 } 1165 1166 static void 1167 xfs_buf_ioend_work( 1168 struct work_struct *work) 1169 { 1170 struct xfs_buf *bp = 1171 container_of(work, xfs_buf_t, b_ioend_work); 1172 1173 xfs_buf_ioend(bp); 1174 } 1175 1176 static void 1177 xfs_buf_ioend_async( 1178 struct xfs_buf *bp) 1179 { 1180 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1181 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); 1182 } 1183 1184 void 1185 __xfs_buf_ioerror( 1186 xfs_buf_t *bp, 1187 int error, 1188 xfs_failaddr_t failaddr) 1189 { 1190 ASSERT(error <= 0 && error >= -1000); 1191 bp->b_error = error; 1192 trace_xfs_buf_ioerror(bp, error, failaddr); 1193 } 1194 1195 void 1196 xfs_buf_ioerror_alert( 1197 struct xfs_buf *bp, 1198 const char *func) 1199 { 1200 xfs_alert(bp->b_mount, 1201 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d", 1202 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length, 1203 -bp->b_error); 1204 } 1205 1206 int 1207 xfs_bwrite( 1208 struct xfs_buf *bp) 1209 { 1210 int error; 1211 1212 ASSERT(xfs_buf_islocked(bp)); 1213 1214 bp->b_flags |= XBF_WRITE; 1215 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1216 XBF_WRITE_FAIL | XBF_DONE); 1217 1218 error = xfs_buf_submit(bp); 1219 if (error) 1220 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 1221 return error; 1222 } 1223 1224 static void 1225 xfs_buf_bio_end_io( 1226 struct bio *bio) 1227 { 1228 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1229 1230 /* 1231 * don't overwrite existing errors - otherwise we can lose errors on 1232 * buffers that require multiple bios to complete. 1233 */ 1234 if (bio->bi_status) { 1235 int error = blk_status_to_errno(bio->bi_status); 1236 1237 cmpxchg(&bp->b_io_error, 0, error); 1238 } 1239 1240 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1241 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1242 1243 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1244 xfs_buf_ioend_async(bp); 1245 bio_put(bio); 1246 } 1247 1248 static void 1249 xfs_buf_ioapply_map( 1250 struct xfs_buf *bp, 1251 int map, 1252 int *buf_offset, 1253 int *count, 1254 int op, 1255 int op_flags) 1256 { 1257 int page_index; 1258 int total_nr_pages = bp->b_page_count; 1259 int nr_pages; 1260 struct bio *bio; 1261 sector_t sector = bp->b_maps[map].bm_bn; 1262 int size; 1263 int offset; 1264 1265 /* skip the pages in the buffer before the start offset */ 1266 page_index = 0; 1267 offset = *buf_offset; 1268 while (offset >= PAGE_SIZE) { 1269 page_index++; 1270 offset -= PAGE_SIZE; 1271 } 1272 1273 /* 1274 * Limit the IO size to the length of the current vector, and update the 1275 * remaining IO count for the next time around. 1276 */ 1277 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1278 *count -= size; 1279 *buf_offset += size; 1280 1281 next_chunk: 1282 atomic_inc(&bp->b_io_remaining); 1283 nr_pages = min(total_nr_pages, BIO_MAX_PAGES); 1284 1285 bio = bio_alloc(GFP_NOIO, nr_pages); 1286 bio_set_dev(bio, bp->b_target->bt_bdev); 1287 bio->bi_iter.bi_sector = sector; 1288 bio->bi_end_io = xfs_buf_bio_end_io; 1289 bio->bi_private = bp; 1290 bio_set_op_attrs(bio, op, op_flags); 1291 1292 for (; size && nr_pages; nr_pages--, page_index++) { 1293 int rbytes, nbytes = PAGE_SIZE - offset; 1294 1295 if (nbytes > size) 1296 nbytes = size; 1297 1298 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1299 offset); 1300 if (rbytes < nbytes) 1301 break; 1302 1303 offset = 0; 1304 sector += BTOBB(nbytes); 1305 size -= nbytes; 1306 total_nr_pages--; 1307 } 1308 1309 if (likely(bio->bi_iter.bi_size)) { 1310 if (xfs_buf_is_vmapped(bp)) { 1311 flush_kernel_vmap_range(bp->b_addr, 1312 xfs_buf_vmap_len(bp)); 1313 } 1314 submit_bio(bio); 1315 if (size) 1316 goto next_chunk; 1317 } else { 1318 /* 1319 * This is guaranteed not to be the last io reference count 1320 * because the caller (xfs_buf_submit) holds a count itself. 1321 */ 1322 atomic_dec(&bp->b_io_remaining); 1323 xfs_buf_ioerror(bp, -EIO); 1324 bio_put(bio); 1325 } 1326 1327 } 1328 1329 STATIC void 1330 _xfs_buf_ioapply( 1331 struct xfs_buf *bp) 1332 { 1333 struct blk_plug plug; 1334 int op; 1335 int op_flags = 0; 1336 int offset; 1337 int size; 1338 int i; 1339 1340 /* 1341 * Make sure we capture only current IO errors rather than stale errors 1342 * left over from previous use of the buffer (e.g. failed readahead). 1343 */ 1344 bp->b_error = 0; 1345 1346 if (bp->b_flags & XBF_WRITE) { 1347 op = REQ_OP_WRITE; 1348 1349 /* 1350 * Run the write verifier callback function if it exists. If 1351 * this function fails it will mark the buffer with an error and 1352 * the IO should not be dispatched. 1353 */ 1354 if (bp->b_ops) { 1355 bp->b_ops->verify_write(bp); 1356 if (bp->b_error) { 1357 xfs_force_shutdown(bp->b_mount, 1358 SHUTDOWN_CORRUPT_INCORE); 1359 return; 1360 } 1361 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1362 struct xfs_mount *mp = bp->b_mount; 1363 1364 /* 1365 * non-crc filesystems don't attach verifiers during 1366 * log recovery, so don't warn for such filesystems. 1367 */ 1368 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1369 xfs_warn(mp, 1370 "%s: no buf ops on daddr 0x%llx len %d", 1371 __func__, bp->b_bn, bp->b_length); 1372 xfs_hex_dump(bp->b_addr, 1373 XFS_CORRUPTION_DUMP_LEN); 1374 dump_stack(); 1375 } 1376 } 1377 } else if (bp->b_flags & XBF_READ_AHEAD) { 1378 op = REQ_OP_READ; 1379 op_flags = REQ_RAHEAD; 1380 } else { 1381 op = REQ_OP_READ; 1382 } 1383 1384 /* we only use the buffer cache for meta-data */ 1385 op_flags |= REQ_META; 1386 1387 /* 1388 * Walk all the vectors issuing IO on them. Set up the initial offset 1389 * into the buffer and the desired IO size before we start - 1390 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1391 * subsequent call. 1392 */ 1393 offset = bp->b_offset; 1394 size = BBTOB(bp->b_length); 1395 blk_start_plug(&plug); 1396 for (i = 0; i < bp->b_map_count; i++) { 1397 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags); 1398 if (bp->b_error) 1399 break; 1400 if (size <= 0) 1401 break; /* all done */ 1402 } 1403 blk_finish_plug(&plug); 1404 } 1405 1406 /* 1407 * Wait for I/O completion of a sync buffer and return the I/O error code. 1408 */ 1409 static int 1410 xfs_buf_iowait( 1411 struct xfs_buf *bp) 1412 { 1413 ASSERT(!(bp->b_flags & XBF_ASYNC)); 1414 1415 trace_xfs_buf_iowait(bp, _RET_IP_); 1416 wait_for_completion(&bp->b_iowait); 1417 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1418 1419 return bp->b_error; 1420 } 1421 1422 /* 1423 * Buffer I/O submission path, read or write. Asynchronous submission transfers 1424 * the buffer lock ownership and the current reference to the IO. It is not 1425 * safe to reference the buffer after a call to this function unless the caller 1426 * holds an additional reference itself. 1427 */ 1428 int 1429 __xfs_buf_submit( 1430 struct xfs_buf *bp, 1431 bool wait) 1432 { 1433 int error = 0; 1434 1435 trace_xfs_buf_submit(bp, _RET_IP_); 1436 1437 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1438 1439 /* on shutdown we stale and complete the buffer immediately */ 1440 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) { 1441 xfs_buf_ioerror(bp, -EIO); 1442 bp->b_flags &= ~XBF_DONE; 1443 xfs_buf_stale(bp); 1444 xfs_buf_ioend(bp); 1445 return -EIO; 1446 } 1447 1448 /* 1449 * Grab a reference so the buffer does not go away underneath us. For 1450 * async buffers, I/O completion drops the callers reference, which 1451 * could occur before submission returns. 1452 */ 1453 xfs_buf_hold(bp); 1454 1455 if (bp->b_flags & XBF_WRITE) 1456 xfs_buf_wait_unpin(bp); 1457 1458 /* clear the internal error state to avoid spurious errors */ 1459 bp->b_io_error = 0; 1460 1461 /* 1462 * Set the count to 1 initially, this will stop an I/O completion 1463 * callout which happens before we have started all the I/O from calling 1464 * xfs_buf_ioend too early. 1465 */ 1466 atomic_set(&bp->b_io_remaining, 1); 1467 if (bp->b_flags & XBF_ASYNC) 1468 xfs_buf_ioacct_inc(bp); 1469 _xfs_buf_ioapply(bp); 1470 1471 /* 1472 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1473 * reference we took above. If we drop it to zero, run completion so 1474 * that we don't return to the caller with completion still pending. 1475 */ 1476 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1477 if (bp->b_error || !(bp->b_flags & XBF_ASYNC)) 1478 xfs_buf_ioend(bp); 1479 else 1480 xfs_buf_ioend_async(bp); 1481 } 1482 1483 if (wait) 1484 error = xfs_buf_iowait(bp); 1485 1486 /* 1487 * Release the hold that keeps the buffer referenced for the entire 1488 * I/O. Note that if the buffer is async, it is not safe to reference 1489 * after this release. 1490 */ 1491 xfs_buf_rele(bp); 1492 return error; 1493 } 1494 1495 void * 1496 xfs_buf_offset( 1497 struct xfs_buf *bp, 1498 size_t offset) 1499 { 1500 struct page *page; 1501 1502 if (bp->b_addr) 1503 return bp->b_addr + offset; 1504 1505 offset += bp->b_offset; 1506 page = bp->b_pages[offset >> PAGE_SHIFT]; 1507 return page_address(page) + (offset & (PAGE_SIZE-1)); 1508 } 1509 1510 void 1511 xfs_buf_zero( 1512 struct xfs_buf *bp, 1513 size_t boff, 1514 size_t bsize) 1515 { 1516 size_t bend; 1517 1518 bend = boff + bsize; 1519 while (boff < bend) { 1520 struct page *page; 1521 int page_index, page_offset, csize; 1522 1523 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1524 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1525 page = bp->b_pages[page_index]; 1526 csize = min_t(size_t, PAGE_SIZE - page_offset, 1527 BBTOB(bp->b_length) - boff); 1528 1529 ASSERT((csize + page_offset) <= PAGE_SIZE); 1530 1531 memset(page_address(page) + page_offset, 0, csize); 1532 1533 boff += csize; 1534 } 1535 } 1536 1537 /* 1538 * Handling of buffer targets (buftargs). 1539 */ 1540 1541 /* 1542 * Wait for any bufs with callbacks that have been submitted but have not yet 1543 * returned. These buffers will have an elevated hold count, so wait on those 1544 * while freeing all the buffers only held by the LRU. 1545 */ 1546 static enum lru_status 1547 xfs_buftarg_wait_rele( 1548 struct list_head *item, 1549 struct list_lru_one *lru, 1550 spinlock_t *lru_lock, 1551 void *arg) 1552 1553 { 1554 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1555 struct list_head *dispose = arg; 1556 1557 if (atomic_read(&bp->b_hold) > 1) { 1558 /* need to wait, so skip it this pass */ 1559 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1560 return LRU_SKIP; 1561 } 1562 if (!spin_trylock(&bp->b_lock)) 1563 return LRU_SKIP; 1564 1565 /* 1566 * clear the LRU reference count so the buffer doesn't get 1567 * ignored in xfs_buf_rele(). 1568 */ 1569 atomic_set(&bp->b_lru_ref, 0); 1570 bp->b_state |= XFS_BSTATE_DISPOSE; 1571 list_lru_isolate_move(lru, item, dispose); 1572 spin_unlock(&bp->b_lock); 1573 return LRU_REMOVED; 1574 } 1575 1576 void 1577 xfs_wait_buftarg( 1578 struct xfs_buftarg *btp) 1579 { 1580 LIST_HEAD(dispose); 1581 int loop = 0; 1582 1583 /* 1584 * First wait on the buftarg I/O count for all in-flight buffers to be 1585 * released. This is critical as new buffers do not make the LRU until 1586 * they are released. 1587 * 1588 * Next, flush the buffer workqueue to ensure all completion processing 1589 * has finished. Just waiting on buffer locks is not sufficient for 1590 * async IO as the reference count held over IO is not released until 1591 * after the buffer lock is dropped. Hence we need to ensure here that 1592 * all reference counts have been dropped before we start walking the 1593 * LRU list. 1594 */ 1595 while (percpu_counter_sum(&btp->bt_io_count)) 1596 delay(100); 1597 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1598 1599 /* loop until there is nothing left on the lru list. */ 1600 while (list_lru_count(&btp->bt_lru)) { 1601 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1602 &dispose, LONG_MAX); 1603 1604 while (!list_empty(&dispose)) { 1605 struct xfs_buf *bp; 1606 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1607 list_del_init(&bp->b_lru); 1608 if (bp->b_flags & XBF_WRITE_FAIL) { 1609 xfs_alert(btp->bt_mount, 1610 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", 1611 (long long)bp->b_bn); 1612 xfs_alert(btp->bt_mount, 1613 "Please run xfs_repair to determine the extent of the problem."); 1614 } 1615 xfs_buf_rele(bp); 1616 } 1617 if (loop++ != 0) 1618 delay(100); 1619 } 1620 } 1621 1622 static enum lru_status 1623 xfs_buftarg_isolate( 1624 struct list_head *item, 1625 struct list_lru_one *lru, 1626 spinlock_t *lru_lock, 1627 void *arg) 1628 { 1629 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1630 struct list_head *dispose = arg; 1631 1632 /* 1633 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1634 * If we fail to get the lock, just skip it. 1635 */ 1636 if (!spin_trylock(&bp->b_lock)) 1637 return LRU_SKIP; 1638 /* 1639 * Decrement the b_lru_ref count unless the value is already 1640 * zero. If the value is already zero, we need to reclaim the 1641 * buffer, otherwise it gets another trip through the LRU. 1642 */ 1643 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1644 spin_unlock(&bp->b_lock); 1645 return LRU_ROTATE; 1646 } 1647 1648 bp->b_state |= XFS_BSTATE_DISPOSE; 1649 list_lru_isolate_move(lru, item, dispose); 1650 spin_unlock(&bp->b_lock); 1651 return LRU_REMOVED; 1652 } 1653 1654 static unsigned long 1655 xfs_buftarg_shrink_scan( 1656 struct shrinker *shrink, 1657 struct shrink_control *sc) 1658 { 1659 struct xfs_buftarg *btp = container_of(shrink, 1660 struct xfs_buftarg, bt_shrinker); 1661 LIST_HEAD(dispose); 1662 unsigned long freed; 1663 1664 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1665 xfs_buftarg_isolate, &dispose); 1666 1667 while (!list_empty(&dispose)) { 1668 struct xfs_buf *bp; 1669 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1670 list_del_init(&bp->b_lru); 1671 xfs_buf_rele(bp); 1672 } 1673 1674 return freed; 1675 } 1676 1677 static unsigned long 1678 xfs_buftarg_shrink_count( 1679 struct shrinker *shrink, 1680 struct shrink_control *sc) 1681 { 1682 struct xfs_buftarg *btp = container_of(shrink, 1683 struct xfs_buftarg, bt_shrinker); 1684 return list_lru_shrink_count(&btp->bt_lru, sc); 1685 } 1686 1687 void 1688 xfs_free_buftarg( 1689 struct xfs_buftarg *btp) 1690 { 1691 unregister_shrinker(&btp->bt_shrinker); 1692 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1693 percpu_counter_destroy(&btp->bt_io_count); 1694 list_lru_destroy(&btp->bt_lru); 1695 1696 xfs_blkdev_issue_flush(btp); 1697 1698 kmem_free(btp); 1699 } 1700 1701 int 1702 xfs_setsize_buftarg( 1703 xfs_buftarg_t *btp, 1704 unsigned int sectorsize) 1705 { 1706 /* Set up metadata sector size info */ 1707 btp->bt_meta_sectorsize = sectorsize; 1708 btp->bt_meta_sectormask = sectorsize - 1; 1709 1710 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1711 xfs_warn(btp->bt_mount, 1712 "Cannot set_blocksize to %u on device %pg", 1713 sectorsize, btp->bt_bdev); 1714 return -EINVAL; 1715 } 1716 1717 /* Set up device logical sector size mask */ 1718 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1719 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1720 1721 return 0; 1722 } 1723 1724 /* 1725 * When allocating the initial buffer target we have not yet 1726 * read in the superblock, so don't know what sized sectors 1727 * are being used at this early stage. Play safe. 1728 */ 1729 STATIC int 1730 xfs_setsize_buftarg_early( 1731 xfs_buftarg_t *btp, 1732 struct block_device *bdev) 1733 { 1734 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1735 } 1736 1737 xfs_buftarg_t * 1738 xfs_alloc_buftarg( 1739 struct xfs_mount *mp, 1740 struct block_device *bdev, 1741 struct dax_device *dax_dev) 1742 { 1743 xfs_buftarg_t *btp; 1744 1745 btp = kmem_zalloc(sizeof(*btp), KM_NOFS); 1746 1747 btp->bt_mount = mp; 1748 btp->bt_dev = bdev->bd_dev; 1749 btp->bt_bdev = bdev; 1750 btp->bt_daxdev = dax_dev; 1751 1752 if (xfs_setsize_buftarg_early(btp, bdev)) 1753 goto error_free; 1754 1755 if (list_lru_init(&btp->bt_lru)) 1756 goto error_free; 1757 1758 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 1759 goto error_lru; 1760 1761 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1762 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1763 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1764 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1765 if (register_shrinker(&btp->bt_shrinker)) 1766 goto error_pcpu; 1767 return btp; 1768 1769 error_pcpu: 1770 percpu_counter_destroy(&btp->bt_io_count); 1771 error_lru: 1772 list_lru_destroy(&btp->bt_lru); 1773 error_free: 1774 kmem_free(btp); 1775 return NULL; 1776 } 1777 1778 /* 1779 * Cancel a delayed write list. 1780 * 1781 * Remove each buffer from the list, clear the delwri queue flag and drop the 1782 * associated buffer reference. 1783 */ 1784 void 1785 xfs_buf_delwri_cancel( 1786 struct list_head *list) 1787 { 1788 struct xfs_buf *bp; 1789 1790 while (!list_empty(list)) { 1791 bp = list_first_entry(list, struct xfs_buf, b_list); 1792 1793 xfs_buf_lock(bp); 1794 bp->b_flags &= ~_XBF_DELWRI_Q; 1795 list_del_init(&bp->b_list); 1796 xfs_buf_relse(bp); 1797 } 1798 } 1799 1800 /* 1801 * Add a buffer to the delayed write list. 1802 * 1803 * This queues a buffer for writeout if it hasn't already been. Note that 1804 * neither this routine nor the buffer list submission functions perform 1805 * any internal synchronization. It is expected that the lists are thread-local 1806 * to the callers. 1807 * 1808 * Returns true if we queued up the buffer, or false if it already had 1809 * been on the buffer list. 1810 */ 1811 bool 1812 xfs_buf_delwri_queue( 1813 struct xfs_buf *bp, 1814 struct list_head *list) 1815 { 1816 ASSERT(xfs_buf_islocked(bp)); 1817 ASSERT(!(bp->b_flags & XBF_READ)); 1818 1819 /* 1820 * If the buffer is already marked delwri it already is queued up 1821 * by someone else for imediate writeout. Just ignore it in that 1822 * case. 1823 */ 1824 if (bp->b_flags & _XBF_DELWRI_Q) { 1825 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1826 return false; 1827 } 1828 1829 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1830 1831 /* 1832 * If a buffer gets written out synchronously or marked stale while it 1833 * is on a delwri list we lazily remove it. To do this, the other party 1834 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1835 * It remains referenced and on the list. In a rare corner case it 1836 * might get readded to a delwri list after the synchronous writeout, in 1837 * which case we need just need to re-add the flag here. 1838 */ 1839 bp->b_flags |= _XBF_DELWRI_Q; 1840 if (list_empty(&bp->b_list)) { 1841 atomic_inc(&bp->b_hold); 1842 list_add_tail(&bp->b_list, list); 1843 } 1844 1845 return true; 1846 } 1847 1848 /* 1849 * Compare function is more complex than it needs to be because 1850 * the return value is only 32 bits and we are doing comparisons 1851 * on 64 bit values 1852 */ 1853 static int 1854 xfs_buf_cmp( 1855 void *priv, 1856 struct list_head *a, 1857 struct list_head *b) 1858 { 1859 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1860 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1861 xfs_daddr_t diff; 1862 1863 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1864 if (diff < 0) 1865 return -1; 1866 if (diff > 0) 1867 return 1; 1868 return 0; 1869 } 1870 1871 /* 1872 * Submit buffers for write. If wait_list is specified, the buffers are 1873 * submitted using sync I/O and placed on the wait list such that the caller can 1874 * iowait each buffer. Otherwise async I/O is used and the buffers are released 1875 * at I/O completion time. In either case, buffers remain locked until I/O 1876 * completes and the buffer is released from the queue. 1877 */ 1878 static int 1879 xfs_buf_delwri_submit_buffers( 1880 struct list_head *buffer_list, 1881 struct list_head *wait_list) 1882 { 1883 struct xfs_buf *bp, *n; 1884 int pinned = 0; 1885 struct blk_plug plug; 1886 1887 list_sort(NULL, buffer_list, xfs_buf_cmp); 1888 1889 blk_start_plug(&plug); 1890 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1891 if (!wait_list) { 1892 if (xfs_buf_ispinned(bp)) { 1893 pinned++; 1894 continue; 1895 } 1896 if (!xfs_buf_trylock(bp)) 1897 continue; 1898 } else { 1899 xfs_buf_lock(bp); 1900 } 1901 1902 /* 1903 * Someone else might have written the buffer synchronously or 1904 * marked it stale in the meantime. In that case only the 1905 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1906 * reference and remove it from the list here. 1907 */ 1908 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1909 list_del_init(&bp->b_list); 1910 xfs_buf_relse(bp); 1911 continue; 1912 } 1913 1914 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1915 1916 /* 1917 * If we have a wait list, each buffer (and associated delwri 1918 * queue reference) transfers to it and is submitted 1919 * synchronously. Otherwise, drop the buffer from the delwri 1920 * queue and submit async. 1921 */ 1922 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL); 1923 bp->b_flags |= XBF_WRITE; 1924 if (wait_list) { 1925 bp->b_flags &= ~XBF_ASYNC; 1926 list_move_tail(&bp->b_list, wait_list); 1927 } else { 1928 bp->b_flags |= XBF_ASYNC; 1929 list_del_init(&bp->b_list); 1930 } 1931 __xfs_buf_submit(bp, false); 1932 } 1933 blk_finish_plug(&plug); 1934 1935 return pinned; 1936 } 1937 1938 /* 1939 * Write out a buffer list asynchronously. 1940 * 1941 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1942 * out and not wait for I/O completion on any of the buffers. This interface 1943 * is only safely useable for callers that can track I/O completion by higher 1944 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1945 * function. 1946 * 1947 * Note: this function will skip buffers it would block on, and in doing so 1948 * leaves them on @buffer_list so they can be retried on a later pass. As such, 1949 * it is up to the caller to ensure that the buffer list is fully submitted or 1950 * cancelled appropriately when they are finished with the list. Failure to 1951 * cancel or resubmit the list until it is empty will result in leaked buffers 1952 * at unmount time. 1953 */ 1954 int 1955 xfs_buf_delwri_submit_nowait( 1956 struct list_head *buffer_list) 1957 { 1958 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 1959 } 1960 1961 /* 1962 * Write out a buffer list synchronously. 1963 * 1964 * This will take the @buffer_list, write all buffers out and wait for I/O 1965 * completion on all of the buffers. @buffer_list is consumed by the function, 1966 * so callers must have some other way of tracking buffers if they require such 1967 * functionality. 1968 */ 1969 int 1970 xfs_buf_delwri_submit( 1971 struct list_head *buffer_list) 1972 { 1973 LIST_HEAD (wait_list); 1974 int error = 0, error2; 1975 struct xfs_buf *bp; 1976 1977 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 1978 1979 /* Wait for IO to complete. */ 1980 while (!list_empty(&wait_list)) { 1981 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 1982 1983 list_del_init(&bp->b_list); 1984 1985 /* 1986 * Wait on the locked buffer, check for errors and unlock and 1987 * release the delwri queue reference. 1988 */ 1989 error2 = xfs_buf_iowait(bp); 1990 xfs_buf_relse(bp); 1991 if (!error) 1992 error = error2; 1993 } 1994 1995 return error; 1996 } 1997 1998 /* 1999 * Push a single buffer on a delwri queue. 2000 * 2001 * The purpose of this function is to submit a single buffer of a delwri queue 2002 * and return with the buffer still on the original queue. The waiting delwri 2003 * buffer submission infrastructure guarantees transfer of the delwri queue 2004 * buffer reference to a temporary wait list. We reuse this infrastructure to 2005 * transfer the buffer back to the original queue. 2006 * 2007 * Note the buffer transitions from the queued state, to the submitted and wait 2008 * listed state and back to the queued state during this call. The buffer 2009 * locking and queue management logic between _delwri_pushbuf() and 2010 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2011 * before returning. 2012 */ 2013 int 2014 xfs_buf_delwri_pushbuf( 2015 struct xfs_buf *bp, 2016 struct list_head *buffer_list) 2017 { 2018 LIST_HEAD (submit_list); 2019 int error; 2020 2021 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2022 2023 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2024 2025 /* 2026 * Isolate the buffer to a new local list so we can submit it for I/O 2027 * independently from the rest of the original list. 2028 */ 2029 xfs_buf_lock(bp); 2030 list_move(&bp->b_list, &submit_list); 2031 xfs_buf_unlock(bp); 2032 2033 /* 2034 * Delwri submission clears the DELWRI_Q buffer flag and returns with 2035 * the buffer on the wait list with the original reference. Rather than 2036 * bounce the buffer from a local wait list back to the original list 2037 * after I/O completion, reuse the original list as the wait list. 2038 */ 2039 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); 2040 2041 /* 2042 * The buffer is now locked, under I/O and wait listed on the original 2043 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and 2044 * return with the buffer unlocked and on the original queue. 2045 */ 2046 error = xfs_buf_iowait(bp); 2047 bp->b_flags |= _XBF_DELWRI_Q; 2048 xfs_buf_unlock(bp); 2049 2050 return error; 2051 } 2052 2053 int __init 2054 xfs_buf_init(void) 2055 { 2056 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 2057 KM_ZONE_HWALIGN, NULL); 2058 if (!xfs_buf_zone) 2059 goto out; 2060 2061 return 0; 2062 2063 out: 2064 return -ENOMEM; 2065 } 2066 2067 void 2068 xfs_buf_terminate(void) 2069 { 2070 kmem_zone_destroy(xfs_buf_zone); 2071 } 2072 2073 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) 2074 { 2075 /* 2076 * Set the lru reference count to 0 based on the error injection tag. 2077 * This allows userspace to disrupt buffer caching for debug/testing 2078 * purposes. 2079 */ 2080 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) 2081 lru_ref = 0; 2082 2083 atomic_set(&bp->b_lru_ref, lru_ref); 2084 } 2085 2086 /* 2087 * Verify an on-disk magic value against the magic value specified in the 2088 * verifier structure. The verifier magic is in disk byte order so the caller is 2089 * expected to pass the value directly from disk. 2090 */ 2091 bool 2092 xfs_verify_magic( 2093 struct xfs_buf *bp, 2094 __be32 dmagic) 2095 { 2096 struct xfs_mount *mp = bp->b_mount; 2097 int idx; 2098 2099 idx = xfs_sb_version_hascrc(&mp->m_sb); 2100 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])) 2101 return false; 2102 return dmagic == bp->b_ops->magic[idx]; 2103 } 2104 /* 2105 * Verify an on-disk magic value against the magic value specified in the 2106 * verifier structure. The verifier magic is in disk byte order so the caller is 2107 * expected to pass the value directly from disk. 2108 */ 2109 bool 2110 xfs_verify_magic16( 2111 struct xfs_buf *bp, 2112 __be16 dmagic) 2113 { 2114 struct xfs_mount *mp = bp->b_mount; 2115 int idx; 2116 2117 idx = xfs_sb_version_hascrc(&mp->m_sb); 2118 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])) 2119 return false; 2120 return dmagic == bp->b_ops->magic16[idx]; 2121 } 2122