xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 4beec1d7)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44 
45 static kmem_zone_t *xfs_buf_zone;
46 
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp)	do { } while (0)
53 # define XB_CLEAR_OWNER(bp)	do { } while (0)
54 # define XB_GET_OWNER(bp)	do { } while (0)
55 #endif
56 
57 #define xb_to_gfp(flags) \
58 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59 
60 
61 static inline int
62 xfs_buf_is_vmapped(
63 	struct xfs_buf	*bp)
64 {
65 	/*
66 	 * Return true if the buffer is vmapped.
67 	 *
68 	 * b_addr is null if the buffer is not mapped, but the code is clever
69 	 * enough to know it doesn't have to map a single page, so the check has
70 	 * to be both for b_addr and bp->b_page_count > 1.
71 	 */
72 	return bp->b_addr && bp->b_page_count > 1;
73 }
74 
75 static inline int
76 xfs_buf_vmap_len(
77 	struct xfs_buf	*bp)
78 {
79 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81 
82 /*
83  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84  * this buffer. The count is incremented once per buffer (per hold cycle)
85  * because the corresponding decrement is deferred to buffer release. Buffers
86  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87  * tracking adds unnecessary overhead. This is used for sychronization purposes
88  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89  * in-flight buffers.
90  *
91  * Buffers that are never released (e.g., superblock, iclog buffers) must set
92  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93  * never reaches zero and unmount hangs indefinitely.
94  */
95 static inline void
96 xfs_buf_ioacct_inc(
97 	struct xfs_buf	*bp)
98 {
99 	if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT))
100 		return;
101 
102 	ASSERT(bp->b_flags & XBF_ASYNC);
103 	bp->b_flags |= _XBF_IN_FLIGHT;
104 	percpu_counter_inc(&bp->b_target->bt_io_count);
105 }
106 
107 /*
108  * Clear the in-flight state on a buffer about to be released to the LRU or
109  * freed and unaccount from the buftarg.
110  */
111 static inline void
112 xfs_buf_ioacct_dec(
113 	struct xfs_buf	*bp)
114 {
115 	if (!(bp->b_flags & _XBF_IN_FLIGHT))
116 		return;
117 
118 	bp->b_flags &= ~_XBF_IN_FLIGHT;
119 	percpu_counter_dec(&bp->b_target->bt_io_count);
120 }
121 
122 /*
123  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
124  * b_lru_ref count so that the buffer is freed immediately when the buffer
125  * reference count falls to zero. If the buffer is already on the LRU, we need
126  * to remove the reference that LRU holds on the buffer.
127  *
128  * This prevents build-up of stale buffers on the LRU.
129  */
130 void
131 xfs_buf_stale(
132 	struct xfs_buf	*bp)
133 {
134 	ASSERT(xfs_buf_islocked(bp));
135 
136 	bp->b_flags |= XBF_STALE;
137 
138 	/*
139 	 * Clear the delwri status so that a delwri queue walker will not
140 	 * flush this buffer to disk now that it is stale. The delwri queue has
141 	 * a reference to the buffer, so this is safe to do.
142 	 */
143 	bp->b_flags &= ~_XBF_DELWRI_Q;
144 
145 	/*
146 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
147 	 * could reset b_flags. There is no guarantee that the buffer is
148 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
149 	 * status now to preserve accounting consistency.
150 	 */
151 	xfs_buf_ioacct_dec(bp);
152 
153 	spin_lock(&bp->b_lock);
154 	atomic_set(&bp->b_lru_ref, 0);
155 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
156 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
157 		atomic_dec(&bp->b_hold);
158 
159 	ASSERT(atomic_read(&bp->b_hold) >= 1);
160 	spin_unlock(&bp->b_lock);
161 }
162 
163 static int
164 xfs_buf_get_maps(
165 	struct xfs_buf		*bp,
166 	int			map_count)
167 {
168 	ASSERT(bp->b_maps == NULL);
169 	bp->b_map_count = map_count;
170 
171 	if (map_count == 1) {
172 		bp->b_maps = &bp->__b_map;
173 		return 0;
174 	}
175 
176 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
177 				KM_NOFS);
178 	if (!bp->b_maps)
179 		return -ENOMEM;
180 	return 0;
181 }
182 
183 /*
184  *	Frees b_pages if it was allocated.
185  */
186 static void
187 xfs_buf_free_maps(
188 	struct xfs_buf	*bp)
189 {
190 	if (bp->b_maps != &bp->__b_map) {
191 		kmem_free(bp->b_maps);
192 		bp->b_maps = NULL;
193 	}
194 }
195 
196 struct xfs_buf *
197 _xfs_buf_alloc(
198 	struct xfs_buftarg	*target,
199 	struct xfs_buf_map	*map,
200 	int			nmaps,
201 	xfs_buf_flags_t		flags)
202 {
203 	struct xfs_buf		*bp;
204 	int			error;
205 	int			i;
206 
207 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
208 	if (unlikely(!bp))
209 		return NULL;
210 
211 	/*
212 	 * We don't want certain flags to appear in b_flags unless they are
213 	 * specifically set by later operations on the buffer.
214 	 */
215 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
216 
217 	atomic_set(&bp->b_hold, 1);
218 	atomic_set(&bp->b_lru_ref, 1);
219 	init_completion(&bp->b_iowait);
220 	INIT_LIST_HEAD(&bp->b_lru);
221 	INIT_LIST_HEAD(&bp->b_list);
222 	sema_init(&bp->b_sema, 0); /* held, no waiters */
223 	spin_lock_init(&bp->b_lock);
224 	XB_SET_OWNER(bp);
225 	bp->b_target = target;
226 	bp->b_flags = flags;
227 
228 	/*
229 	 * Set length and io_length to the same value initially.
230 	 * I/O routines should use io_length, which will be the same in
231 	 * most cases but may be reset (e.g. XFS recovery).
232 	 */
233 	error = xfs_buf_get_maps(bp, nmaps);
234 	if (error)  {
235 		kmem_zone_free(xfs_buf_zone, bp);
236 		return NULL;
237 	}
238 
239 	bp->b_bn = map[0].bm_bn;
240 	bp->b_length = 0;
241 	for (i = 0; i < nmaps; i++) {
242 		bp->b_maps[i].bm_bn = map[i].bm_bn;
243 		bp->b_maps[i].bm_len = map[i].bm_len;
244 		bp->b_length += map[i].bm_len;
245 	}
246 	bp->b_io_length = bp->b_length;
247 
248 	atomic_set(&bp->b_pin_count, 0);
249 	init_waitqueue_head(&bp->b_waiters);
250 
251 	XFS_STATS_INC(target->bt_mount, xb_create);
252 	trace_xfs_buf_init(bp, _RET_IP_);
253 
254 	return bp;
255 }
256 
257 /*
258  *	Allocate a page array capable of holding a specified number
259  *	of pages, and point the page buf at it.
260  */
261 STATIC int
262 _xfs_buf_get_pages(
263 	xfs_buf_t		*bp,
264 	int			page_count)
265 {
266 	/* Make sure that we have a page list */
267 	if (bp->b_pages == NULL) {
268 		bp->b_page_count = page_count;
269 		if (page_count <= XB_PAGES) {
270 			bp->b_pages = bp->b_page_array;
271 		} else {
272 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
273 						 page_count, KM_NOFS);
274 			if (bp->b_pages == NULL)
275 				return -ENOMEM;
276 		}
277 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
278 	}
279 	return 0;
280 }
281 
282 /*
283  *	Frees b_pages if it was allocated.
284  */
285 STATIC void
286 _xfs_buf_free_pages(
287 	xfs_buf_t	*bp)
288 {
289 	if (bp->b_pages != bp->b_page_array) {
290 		kmem_free(bp->b_pages);
291 		bp->b_pages = NULL;
292 	}
293 }
294 
295 /*
296  *	Releases the specified buffer.
297  *
298  * 	The modification state of any associated pages is left unchanged.
299  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
300  * 	hashed and refcounted buffers
301  */
302 void
303 xfs_buf_free(
304 	xfs_buf_t		*bp)
305 {
306 	trace_xfs_buf_free(bp, _RET_IP_);
307 
308 	ASSERT(list_empty(&bp->b_lru));
309 
310 	if (bp->b_flags & _XBF_PAGES) {
311 		uint		i;
312 
313 		if (xfs_buf_is_vmapped(bp))
314 			vm_unmap_ram(bp->b_addr - bp->b_offset,
315 					bp->b_page_count);
316 
317 		for (i = 0; i < bp->b_page_count; i++) {
318 			struct page	*page = bp->b_pages[i];
319 
320 			__free_page(page);
321 		}
322 	} else if (bp->b_flags & _XBF_KMEM)
323 		kmem_free(bp->b_addr);
324 	_xfs_buf_free_pages(bp);
325 	xfs_buf_free_maps(bp);
326 	kmem_zone_free(xfs_buf_zone, bp);
327 }
328 
329 /*
330  * Allocates all the pages for buffer in question and builds it's page list.
331  */
332 STATIC int
333 xfs_buf_allocate_memory(
334 	xfs_buf_t		*bp,
335 	uint			flags)
336 {
337 	size_t			size;
338 	size_t			nbytes, offset;
339 	gfp_t			gfp_mask = xb_to_gfp(flags);
340 	unsigned short		page_count, i;
341 	xfs_off_t		start, end;
342 	int			error;
343 
344 	/*
345 	 * for buffers that are contained within a single page, just allocate
346 	 * the memory from the heap - there's no need for the complexity of
347 	 * page arrays to keep allocation down to order 0.
348 	 */
349 	size = BBTOB(bp->b_length);
350 	if (size < PAGE_SIZE) {
351 		bp->b_addr = kmem_alloc(size, KM_NOFS);
352 		if (!bp->b_addr) {
353 			/* low memory - use alloc_page loop instead */
354 			goto use_alloc_page;
355 		}
356 
357 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
358 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
359 			/* b_addr spans two pages - use alloc_page instead */
360 			kmem_free(bp->b_addr);
361 			bp->b_addr = NULL;
362 			goto use_alloc_page;
363 		}
364 		bp->b_offset = offset_in_page(bp->b_addr);
365 		bp->b_pages = bp->b_page_array;
366 		bp->b_pages[0] = virt_to_page(bp->b_addr);
367 		bp->b_page_count = 1;
368 		bp->b_flags |= _XBF_KMEM;
369 		return 0;
370 	}
371 
372 use_alloc_page:
373 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
374 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
375 								>> PAGE_SHIFT;
376 	page_count = end - start;
377 	error = _xfs_buf_get_pages(bp, page_count);
378 	if (unlikely(error))
379 		return error;
380 
381 	offset = bp->b_offset;
382 	bp->b_flags |= _XBF_PAGES;
383 
384 	for (i = 0; i < bp->b_page_count; i++) {
385 		struct page	*page;
386 		uint		retries = 0;
387 retry:
388 		page = alloc_page(gfp_mask);
389 		if (unlikely(page == NULL)) {
390 			if (flags & XBF_READ_AHEAD) {
391 				bp->b_page_count = i;
392 				error = -ENOMEM;
393 				goto out_free_pages;
394 			}
395 
396 			/*
397 			 * This could deadlock.
398 			 *
399 			 * But until all the XFS lowlevel code is revamped to
400 			 * handle buffer allocation failures we can't do much.
401 			 */
402 			if (!(++retries % 100))
403 				xfs_err(NULL,
404 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
405 					current->comm, current->pid,
406 					__func__, gfp_mask);
407 
408 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
409 			congestion_wait(BLK_RW_ASYNC, HZ/50);
410 			goto retry;
411 		}
412 
413 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
414 
415 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
416 		size -= nbytes;
417 		bp->b_pages[i] = page;
418 		offset = 0;
419 	}
420 	return 0;
421 
422 out_free_pages:
423 	for (i = 0; i < bp->b_page_count; i++)
424 		__free_page(bp->b_pages[i]);
425 	bp->b_flags &= ~_XBF_PAGES;
426 	return error;
427 }
428 
429 /*
430  *	Map buffer into kernel address-space if necessary.
431  */
432 STATIC int
433 _xfs_buf_map_pages(
434 	xfs_buf_t		*bp,
435 	uint			flags)
436 {
437 	ASSERT(bp->b_flags & _XBF_PAGES);
438 	if (bp->b_page_count == 1) {
439 		/* A single page buffer is always mappable */
440 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
441 	} else if (flags & XBF_UNMAPPED) {
442 		bp->b_addr = NULL;
443 	} else {
444 		int retried = 0;
445 		unsigned noio_flag;
446 
447 		/*
448 		 * vm_map_ram() will allocate auxillary structures (e.g.
449 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
450 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
451 		 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
452 		 * memory reclaim re-entering the filesystem here and
453 		 * potentially deadlocking.
454 		 */
455 		noio_flag = memalloc_noio_save();
456 		do {
457 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
458 						-1, PAGE_KERNEL);
459 			if (bp->b_addr)
460 				break;
461 			vm_unmap_aliases();
462 		} while (retried++ <= 1);
463 		memalloc_noio_restore(noio_flag);
464 
465 		if (!bp->b_addr)
466 			return -ENOMEM;
467 		bp->b_addr += bp->b_offset;
468 	}
469 
470 	return 0;
471 }
472 
473 /*
474  *	Finding and Reading Buffers
475  */
476 static int
477 _xfs_buf_obj_cmp(
478 	struct rhashtable_compare_arg	*arg,
479 	const void			*obj)
480 {
481 	const struct xfs_buf_map	*map = arg->key;
482 	const struct xfs_buf		*bp = obj;
483 
484 	/*
485 	 * The key hashing in the lookup path depends on the key being the
486 	 * first element of the compare_arg, make sure to assert this.
487 	 */
488 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
489 
490 	if (bp->b_bn != map->bm_bn)
491 		return 1;
492 
493 	if (unlikely(bp->b_length != map->bm_len)) {
494 		/*
495 		 * found a block number match. If the range doesn't
496 		 * match, the only way this is allowed is if the buffer
497 		 * in the cache is stale and the transaction that made
498 		 * it stale has not yet committed. i.e. we are
499 		 * reallocating a busy extent. Skip this buffer and
500 		 * continue searching for an exact match.
501 		 */
502 		ASSERT(bp->b_flags & XBF_STALE);
503 		return 1;
504 	}
505 	return 0;
506 }
507 
508 static const struct rhashtable_params xfs_buf_hash_params = {
509 	.min_size		= 32,	/* empty AGs have minimal footprint */
510 	.nelem_hint		= 16,
511 	.key_len		= sizeof(xfs_daddr_t),
512 	.key_offset		= offsetof(struct xfs_buf, b_bn),
513 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
514 	.automatic_shrinking	= true,
515 	.obj_cmpfn		= _xfs_buf_obj_cmp,
516 };
517 
518 int
519 xfs_buf_hash_init(
520 	struct xfs_perag	*pag)
521 {
522 	spin_lock_init(&pag->pag_buf_lock);
523 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
524 }
525 
526 void
527 xfs_buf_hash_destroy(
528 	struct xfs_perag	*pag)
529 {
530 	rhashtable_destroy(&pag->pag_buf_hash);
531 }
532 
533 /*
534  *	Look up, and creates if absent, a lockable buffer for
535  *	a given range of an inode.  The buffer is returned
536  *	locked.	No I/O is implied by this call.
537  */
538 xfs_buf_t *
539 _xfs_buf_find(
540 	struct xfs_buftarg	*btp,
541 	struct xfs_buf_map	*map,
542 	int			nmaps,
543 	xfs_buf_flags_t		flags,
544 	xfs_buf_t		*new_bp)
545 {
546 	struct xfs_perag	*pag;
547 	xfs_buf_t		*bp;
548 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
549 	xfs_daddr_t		eofs;
550 	int			i;
551 
552 	for (i = 0; i < nmaps; i++)
553 		cmap.bm_len += map[i].bm_len;
554 
555 	/* Check for IOs smaller than the sector size / not sector aligned */
556 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
557 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
558 
559 	/*
560 	 * Corrupted block numbers can get through to here, unfortunately, so we
561 	 * have to check that the buffer falls within the filesystem bounds.
562 	 */
563 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
564 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
565 		/*
566 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
567 		 * but none of the higher level infrastructure supports
568 		 * returning a specific error on buffer lookup failures.
569 		 */
570 		xfs_alert(btp->bt_mount,
571 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
572 			  __func__, cmap.bm_bn, eofs);
573 		WARN_ON(1);
574 		return NULL;
575 	}
576 
577 	pag = xfs_perag_get(btp->bt_mount,
578 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
579 
580 	spin_lock(&pag->pag_buf_lock);
581 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
582 				    xfs_buf_hash_params);
583 	if (bp) {
584 		atomic_inc(&bp->b_hold);
585 		goto found;
586 	}
587 
588 	/* No match found */
589 	if (new_bp) {
590 		/* the buffer keeps the perag reference until it is freed */
591 		new_bp->b_pag = pag;
592 		rhashtable_insert_fast(&pag->pag_buf_hash,
593 				       &new_bp->b_rhash_head,
594 				       xfs_buf_hash_params);
595 		spin_unlock(&pag->pag_buf_lock);
596 	} else {
597 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
598 		spin_unlock(&pag->pag_buf_lock);
599 		xfs_perag_put(pag);
600 	}
601 	return new_bp;
602 
603 found:
604 	spin_unlock(&pag->pag_buf_lock);
605 	xfs_perag_put(pag);
606 
607 	if (!xfs_buf_trylock(bp)) {
608 		if (flags & XBF_TRYLOCK) {
609 			xfs_buf_rele(bp);
610 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
611 			return NULL;
612 		}
613 		xfs_buf_lock(bp);
614 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
615 	}
616 
617 	/*
618 	 * if the buffer is stale, clear all the external state associated with
619 	 * it. We need to keep flags such as how we allocated the buffer memory
620 	 * intact here.
621 	 */
622 	if (bp->b_flags & XBF_STALE) {
623 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
624 		ASSERT(bp->b_iodone == NULL);
625 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
626 		bp->b_ops = NULL;
627 	}
628 
629 	trace_xfs_buf_find(bp, flags, _RET_IP_);
630 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
631 	return bp;
632 }
633 
634 /*
635  * Assembles a buffer covering the specified range. The code is optimised for
636  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
637  * more hits than misses.
638  */
639 struct xfs_buf *
640 xfs_buf_get_map(
641 	struct xfs_buftarg	*target,
642 	struct xfs_buf_map	*map,
643 	int			nmaps,
644 	xfs_buf_flags_t		flags)
645 {
646 	struct xfs_buf		*bp;
647 	struct xfs_buf		*new_bp;
648 	int			error = 0;
649 
650 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
651 	if (likely(bp))
652 		goto found;
653 
654 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
655 	if (unlikely(!new_bp))
656 		return NULL;
657 
658 	error = xfs_buf_allocate_memory(new_bp, flags);
659 	if (error) {
660 		xfs_buf_free(new_bp);
661 		return NULL;
662 	}
663 
664 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
665 	if (!bp) {
666 		xfs_buf_free(new_bp);
667 		return NULL;
668 	}
669 
670 	if (bp != new_bp)
671 		xfs_buf_free(new_bp);
672 
673 found:
674 	if (!bp->b_addr) {
675 		error = _xfs_buf_map_pages(bp, flags);
676 		if (unlikely(error)) {
677 			xfs_warn(target->bt_mount,
678 				"%s: failed to map pagesn", __func__);
679 			xfs_buf_relse(bp);
680 			return NULL;
681 		}
682 	}
683 
684 	/*
685 	 * Clear b_error if this is a lookup from a caller that doesn't expect
686 	 * valid data to be found in the buffer.
687 	 */
688 	if (!(flags & XBF_READ))
689 		xfs_buf_ioerror(bp, 0);
690 
691 	XFS_STATS_INC(target->bt_mount, xb_get);
692 	trace_xfs_buf_get(bp, flags, _RET_IP_);
693 	return bp;
694 }
695 
696 STATIC int
697 _xfs_buf_read(
698 	xfs_buf_t		*bp,
699 	xfs_buf_flags_t		flags)
700 {
701 	ASSERT(!(flags & XBF_WRITE));
702 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
703 
704 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
705 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
706 
707 	if (flags & XBF_ASYNC) {
708 		xfs_buf_submit(bp);
709 		return 0;
710 	}
711 	return xfs_buf_submit_wait(bp);
712 }
713 
714 xfs_buf_t *
715 xfs_buf_read_map(
716 	struct xfs_buftarg	*target,
717 	struct xfs_buf_map	*map,
718 	int			nmaps,
719 	xfs_buf_flags_t		flags,
720 	const struct xfs_buf_ops *ops)
721 {
722 	struct xfs_buf		*bp;
723 
724 	flags |= XBF_READ;
725 
726 	bp = xfs_buf_get_map(target, map, nmaps, flags);
727 	if (bp) {
728 		trace_xfs_buf_read(bp, flags, _RET_IP_);
729 
730 		if (!(bp->b_flags & XBF_DONE)) {
731 			XFS_STATS_INC(target->bt_mount, xb_get_read);
732 			bp->b_ops = ops;
733 			_xfs_buf_read(bp, flags);
734 		} else if (flags & XBF_ASYNC) {
735 			/*
736 			 * Read ahead call which is already satisfied,
737 			 * drop the buffer
738 			 */
739 			xfs_buf_relse(bp);
740 			return NULL;
741 		} else {
742 			/* We do not want read in the flags */
743 			bp->b_flags &= ~XBF_READ;
744 		}
745 	}
746 
747 	return bp;
748 }
749 
750 /*
751  *	If we are not low on memory then do the readahead in a deadlock
752  *	safe manner.
753  */
754 void
755 xfs_buf_readahead_map(
756 	struct xfs_buftarg	*target,
757 	struct xfs_buf_map	*map,
758 	int			nmaps,
759 	const struct xfs_buf_ops *ops)
760 {
761 	if (bdi_read_congested(target->bt_bdi))
762 		return;
763 
764 	xfs_buf_read_map(target, map, nmaps,
765 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
766 }
767 
768 /*
769  * Read an uncached buffer from disk. Allocates and returns a locked
770  * buffer containing the disk contents or nothing.
771  */
772 int
773 xfs_buf_read_uncached(
774 	struct xfs_buftarg	*target,
775 	xfs_daddr_t		daddr,
776 	size_t			numblks,
777 	int			flags,
778 	struct xfs_buf		**bpp,
779 	const struct xfs_buf_ops *ops)
780 {
781 	struct xfs_buf		*bp;
782 
783 	*bpp = NULL;
784 
785 	bp = xfs_buf_get_uncached(target, numblks, flags);
786 	if (!bp)
787 		return -ENOMEM;
788 
789 	/* set up the buffer for a read IO */
790 	ASSERT(bp->b_map_count == 1);
791 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
792 	bp->b_maps[0].bm_bn = daddr;
793 	bp->b_flags |= XBF_READ;
794 	bp->b_ops = ops;
795 
796 	xfs_buf_submit_wait(bp);
797 	if (bp->b_error) {
798 		int	error = bp->b_error;
799 		xfs_buf_relse(bp);
800 		return error;
801 	}
802 
803 	*bpp = bp;
804 	return 0;
805 }
806 
807 /*
808  * Return a buffer allocated as an empty buffer and associated to external
809  * memory via xfs_buf_associate_memory() back to it's empty state.
810  */
811 void
812 xfs_buf_set_empty(
813 	struct xfs_buf		*bp,
814 	size_t			numblks)
815 {
816 	if (bp->b_pages)
817 		_xfs_buf_free_pages(bp);
818 
819 	bp->b_pages = NULL;
820 	bp->b_page_count = 0;
821 	bp->b_addr = NULL;
822 	bp->b_length = numblks;
823 	bp->b_io_length = numblks;
824 
825 	ASSERT(bp->b_map_count == 1);
826 	bp->b_bn = XFS_BUF_DADDR_NULL;
827 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
828 	bp->b_maps[0].bm_len = bp->b_length;
829 }
830 
831 static inline struct page *
832 mem_to_page(
833 	void			*addr)
834 {
835 	if ((!is_vmalloc_addr(addr))) {
836 		return virt_to_page(addr);
837 	} else {
838 		return vmalloc_to_page(addr);
839 	}
840 }
841 
842 int
843 xfs_buf_associate_memory(
844 	xfs_buf_t		*bp,
845 	void			*mem,
846 	size_t			len)
847 {
848 	int			rval;
849 	int			i = 0;
850 	unsigned long		pageaddr;
851 	unsigned long		offset;
852 	size_t			buflen;
853 	int			page_count;
854 
855 	pageaddr = (unsigned long)mem & PAGE_MASK;
856 	offset = (unsigned long)mem - pageaddr;
857 	buflen = PAGE_ALIGN(len + offset);
858 	page_count = buflen >> PAGE_SHIFT;
859 
860 	/* Free any previous set of page pointers */
861 	if (bp->b_pages)
862 		_xfs_buf_free_pages(bp);
863 
864 	bp->b_pages = NULL;
865 	bp->b_addr = mem;
866 
867 	rval = _xfs_buf_get_pages(bp, page_count);
868 	if (rval)
869 		return rval;
870 
871 	bp->b_offset = offset;
872 
873 	for (i = 0; i < bp->b_page_count; i++) {
874 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
875 		pageaddr += PAGE_SIZE;
876 	}
877 
878 	bp->b_io_length = BTOBB(len);
879 	bp->b_length = BTOBB(buflen);
880 
881 	return 0;
882 }
883 
884 xfs_buf_t *
885 xfs_buf_get_uncached(
886 	struct xfs_buftarg	*target,
887 	size_t			numblks,
888 	int			flags)
889 {
890 	unsigned long		page_count;
891 	int			error, i;
892 	struct xfs_buf		*bp;
893 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
894 
895 	/* flags might contain irrelevant bits, pass only what we care about */
896 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
897 	if (unlikely(bp == NULL))
898 		goto fail;
899 
900 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
901 	error = _xfs_buf_get_pages(bp, page_count);
902 	if (error)
903 		goto fail_free_buf;
904 
905 	for (i = 0; i < page_count; i++) {
906 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
907 		if (!bp->b_pages[i])
908 			goto fail_free_mem;
909 	}
910 	bp->b_flags |= _XBF_PAGES;
911 
912 	error = _xfs_buf_map_pages(bp, 0);
913 	if (unlikely(error)) {
914 		xfs_warn(target->bt_mount,
915 			"%s: failed to map pages", __func__);
916 		goto fail_free_mem;
917 	}
918 
919 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
920 	return bp;
921 
922  fail_free_mem:
923 	while (--i >= 0)
924 		__free_page(bp->b_pages[i]);
925 	_xfs_buf_free_pages(bp);
926  fail_free_buf:
927 	xfs_buf_free_maps(bp);
928 	kmem_zone_free(xfs_buf_zone, bp);
929  fail:
930 	return NULL;
931 }
932 
933 /*
934  *	Increment reference count on buffer, to hold the buffer concurrently
935  *	with another thread which may release (free) the buffer asynchronously.
936  *	Must hold the buffer already to call this function.
937  */
938 void
939 xfs_buf_hold(
940 	xfs_buf_t		*bp)
941 {
942 	trace_xfs_buf_hold(bp, _RET_IP_);
943 	atomic_inc(&bp->b_hold);
944 }
945 
946 /*
947  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
948  * placed on LRU or freed (depending on b_lru_ref).
949  */
950 void
951 xfs_buf_rele(
952 	xfs_buf_t		*bp)
953 {
954 	struct xfs_perag	*pag = bp->b_pag;
955 	bool			release;
956 	bool			freebuf = false;
957 
958 	trace_xfs_buf_rele(bp, _RET_IP_);
959 
960 	if (!pag) {
961 		ASSERT(list_empty(&bp->b_lru));
962 		if (atomic_dec_and_test(&bp->b_hold)) {
963 			xfs_buf_ioacct_dec(bp);
964 			xfs_buf_free(bp);
965 		}
966 		return;
967 	}
968 
969 	ASSERT(atomic_read(&bp->b_hold) > 0);
970 
971 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
972 	spin_lock(&bp->b_lock);
973 	if (!release) {
974 		/*
975 		 * Drop the in-flight state if the buffer is already on the LRU
976 		 * and it holds the only reference. This is racy because we
977 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
978 		 * ensures the decrement occurs only once per-buf.
979 		 */
980 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
981 			xfs_buf_ioacct_dec(bp);
982 		goto out_unlock;
983 	}
984 
985 	/* the last reference has been dropped ... */
986 	xfs_buf_ioacct_dec(bp);
987 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
988 		/*
989 		 * If the buffer is added to the LRU take a new reference to the
990 		 * buffer for the LRU and clear the (now stale) dispose list
991 		 * state flag
992 		 */
993 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
994 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
995 			atomic_inc(&bp->b_hold);
996 		}
997 		spin_unlock(&pag->pag_buf_lock);
998 	} else {
999 		/*
1000 		 * most of the time buffers will already be removed from the
1001 		 * LRU, so optimise that case by checking for the
1002 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1003 		 * was on was the disposal list
1004 		 */
1005 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1006 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1007 		} else {
1008 			ASSERT(list_empty(&bp->b_lru));
1009 		}
1010 
1011 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1012 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1013 				       xfs_buf_hash_params);
1014 		spin_unlock(&pag->pag_buf_lock);
1015 		xfs_perag_put(pag);
1016 		freebuf = true;
1017 	}
1018 
1019 out_unlock:
1020 	spin_unlock(&bp->b_lock);
1021 
1022 	if (freebuf)
1023 		xfs_buf_free(bp);
1024 }
1025 
1026 
1027 /*
1028  *	Lock a buffer object, if it is not already locked.
1029  *
1030  *	If we come across a stale, pinned, locked buffer, we know that we are
1031  *	being asked to lock a buffer that has been reallocated. Because it is
1032  *	pinned, we know that the log has not been pushed to disk and hence it
1033  *	will still be locked.  Rather than continuing to have trylock attempts
1034  *	fail until someone else pushes the log, push it ourselves before
1035  *	returning.  This means that the xfsaild will not get stuck trying
1036  *	to push on stale inode buffers.
1037  */
1038 int
1039 xfs_buf_trylock(
1040 	struct xfs_buf		*bp)
1041 {
1042 	int			locked;
1043 
1044 	locked = down_trylock(&bp->b_sema) == 0;
1045 	if (locked) {
1046 		XB_SET_OWNER(bp);
1047 		trace_xfs_buf_trylock(bp, _RET_IP_);
1048 	} else {
1049 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1050 	}
1051 	return locked;
1052 }
1053 
1054 /*
1055  *	Lock a buffer object.
1056  *
1057  *	If we come across a stale, pinned, locked buffer, we know that we
1058  *	are being asked to lock a buffer that has been reallocated. Because
1059  *	it is pinned, we know that the log has not been pushed to disk and
1060  *	hence it will still be locked. Rather than sleeping until someone
1061  *	else pushes the log, push it ourselves before trying to get the lock.
1062  */
1063 void
1064 xfs_buf_lock(
1065 	struct xfs_buf		*bp)
1066 {
1067 	trace_xfs_buf_lock(bp, _RET_IP_);
1068 
1069 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1070 		xfs_log_force(bp->b_target->bt_mount, 0);
1071 	down(&bp->b_sema);
1072 	XB_SET_OWNER(bp);
1073 
1074 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1075 }
1076 
1077 void
1078 xfs_buf_unlock(
1079 	struct xfs_buf		*bp)
1080 {
1081 	XB_CLEAR_OWNER(bp);
1082 	up(&bp->b_sema);
1083 
1084 	trace_xfs_buf_unlock(bp, _RET_IP_);
1085 }
1086 
1087 STATIC void
1088 xfs_buf_wait_unpin(
1089 	xfs_buf_t		*bp)
1090 {
1091 	DECLARE_WAITQUEUE	(wait, current);
1092 
1093 	if (atomic_read(&bp->b_pin_count) == 0)
1094 		return;
1095 
1096 	add_wait_queue(&bp->b_waiters, &wait);
1097 	for (;;) {
1098 		set_current_state(TASK_UNINTERRUPTIBLE);
1099 		if (atomic_read(&bp->b_pin_count) == 0)
1100 			break;
1101 		io_schedule();
1102 	}
1103 	remove_wait_queue(&bp->b_waiters, &wait);
1104 	set_current_state(TASK_RUNNING);
1105 }
1106 
1107 /*
1108  *	Buffer Utility Routines
1109  */
1110 
1111 void
1112 xfs_buf_ioend(
1113 	struct xfs_buf	*bp)
1114 {
1115 	bool		read = bp->b_flags & XBF_READ;
1116 
1117 	trace_xfs_buf_iodone(bp, _RET_IP_);
1118 
1119 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1120 
1121 	/*
1122 	 * Pull in IO completion errors now. We are guaranteed to be running
1123 	 * single threaded, so we don't need the lock to read b_io_error.
1124 	 */
1125 	if (!bp->b_error && bp->b_io_error)
1126 		xfs_buf_ioerror(bp, bp->b_io_error);
1127 
1128 	/* Only validate buffers that were read without errors */
1129 	if (read && !bp->b_error && bp->b_ops) {
1130 		ASSERT(!bp->b_iodone);
1131 		bp->b_ops->verify_read(bp);
1132 	}
1133 
1134 	if (!bp->b_error)
1135 		bp->b_flags |= XBF_DONE;
1136 
1137 	if (bp->b_iodone)
1138 		(*(bp->b_iodone))(bp);
1139 	else if (bp->b_flags & XBF_ASYNC)
1140 		xfs_buf_relse(bp);
1141 	else
1142 		complete(&bp->b_iowait);
1143 }
1144 
1145 static void
1146 xfs_buf_ioend_work(
1147 	struct work_struct	*work)
1148 {
1149 	struct xfs_buf		*bp =
1150 		container_of(work, xfs_buf_t, b_ioend_work);
1151 
1152 	xfs_buf_ioend(bp);
1153 }
1154 
1155 static void
1156 xfs_buf_ioend_async(
1157 	struct xfs_buf	*bp)
1158 {
1159 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1160 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1161 }
1162 
1163 void
1164 xfs_buf_ioerror(
1165 	xfs_buf_t		*bp,
1166 	int			error)
1167 {
1168 	ASSERT(error <= 0 && error >= -1000);
1169 	bp->b_error = error;
1170 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1171 }
1172 
1173 void
1174 xfs_buf_ioerror_alert(
1175 	struct xfs_buf		*bp,
1176 	const char		*func)
1177 {
1178 	xfs_alert(bp->b_target->bt_mount,
1179 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1180 		(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1181 }
1182 
1183 int
1184 xfs_bwrite(
1185 	struct xfs_buf		*bp)
1186 {
1187 	int			error;
1188 
1189 	ASSERT(xfs_buf_islocked(bp));
1190 
1191 	bp->b_flags |= XBF_WRITE;
1192 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1193 			 XBF_WRITE_FAIL | XBF_DONE);
1194 
1195 	error = xfs_buf_submit_wait(bp);
1196 	if (error) {
1197 		xfs_force_shutdown(bp->b_target->bt_mount,
1198 				   SHUTDOWN_META_IO_ERROR);
1199 	}
1200 	return error;
1201 }
1202 
1203 static void
1204 xfs_buf_bio_end_io(
1205 	struct bio		*bio)
1206 {
1207 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1208 
1209 	/*
1210 	 * don't overwrite existing errors - otherwise we can lose errors on
1211 	 * buffers that require multiple bios to complete.
1212 	 */
1213 	if (bio->bi_error)
1214 		cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1215 
1216 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1217 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1218 
1219 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1220 		xfs_buf_ioend_async(bp);
1221 	bio_put(bio);
1222 }
1223 
1224 static void
1225 xfs_buf_ioapply_map(
1226 	struct xfs_buf	*bp,
1227 	int		map,
1228 	int		*buf_offset,
1229 	int		*count,
1230 	int		op,
1231 	int		op_flags)
1232 {
1233 	int		page_index;
1234 	int		total_nr_pages = bp->b_page_count;
1235 	int		nr_pages;
1236 	struct bio	*bio;
1237 	sector_t	sector =  bp->b_maps[map].bm_bn;
1238 	int		size;
1239 	int		offset;
1240 
1241 	total_nr_pages = bp->b_page_count;
1242 
1243 	/* skip the pages in the buffer before the start offset */
1244 	page_index = 0;
1245 	offset = *buf_offset;
1246 	while (offset >= PAGE_SIZE) {
1247 		page_index++;
1248 		offset -= PAGE_SIZE;
1249 	}
1250 
1251 	/*
1252 	 * Limit the IO size to the length of the current vector, and update the
1253 	 * remaining IO count for the next time around.
1254 	 */
1255 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1256 	*count -= size;
1257 	*buf_offset += size;
1258 
1259 next_chunk:
1260 	atomic_inc(&bp->b_io_remaining);
1261 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1262 
1263 	bio = bio_alloc(GFP_NOIO, nr_pages);
1264 	bio->bi_bdev = bp->b_target->bt_bdev;
1265 	bio->bi_iter.bi_sector = sector;
1266 	bio->bi_end_io = xfs_buf_bio_end_io;
1267 	bio->bi_private = bp;
1268 	bio_set_op_attrs(bio, op, op_flags);
1269 
1270 	for (; size && nr_pages; nr_pages--, page_index++) {
1271 		int	rbytes, nbytes = PAGE_SIZE - offset;
1272 
1273 		if (nbytes > size)
1274 			nbytes = size;
1275 
1276 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1277 				      offset);
1278 		if (rbytes < nbytes)
1279 			break;
1280 
1281 		offset = 0;
1282 		sector += BTOBB(nbytes);
1283 		size -= nbytes;
1284 		total_nr_pages--;
1285 	}
1286 
1287 	if (likely(bio->bi_iter.bi_size)) {
1288 		if (xfs_buf_is_vmapped(bp)) {
1289 			flush_kernel_vmap_range(bp->b_addr,
1290 						xfs_buf_vmap_len(bp));
1291 		}
1292 		submit_bio(bio);
1293 		if (size)
1294 			goto next_chunk;
1295 	} else {
1296 		/*
1297 		 * This is guaranteed not to be the last io reference count
1298 		 * because the caller (xfs_buf_submit) holds a count itself.
1299 		 */
1300 		atomic_dec(&bp->b_io_remaining);
1301 		xfs_buf_ioerror(bp, -EIO);
1302 		bio_put(bio);
1303 	}
1304 
1305 }
1306 
1307 STATIC void
1308 _xfs_buf_ioapply(
1309 	struct xfs_buf	*bp)
1310 {
1311 	struct blk_plug	plug;
1312 	int		op;
1313 	int		op_flags = 0;
1314 	int		offset;
1315 	int		size;
1316 	int		i;
1317 
1318 	/*
1319 	 * Make sure we capture only current IO errors rather than stale errors
1320 	 * left over from previous use of the buffer (e.g. failed readahead).
1321 	 */
1322 	bp->b_error = 0;
1323 
1324 	/*
1325 	 * Initialize the I/O completion workqueue if we haven't yet or the
1326 	 * submitter has not opted to specify a custom one.
1327 	 */
1328 	if (!bp->b_ioend_wq)
1329 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1330 
1331 	if (bp->b_flags & XBF_WRITE) {
1332 		op = REQ_OP_WRITE;
1333 		if (bp->b_flags & XBF_SYNCIO)
1334 			op_flags = REQ_SYNC;
1335 		if (bp->b_flags & XBF_FUA)
1336 			op_flags |= REQ_FUA;
1337 		if (bp->b_flags & XBF_FLUSH)
1338 			op_flags |= REQ_PREFLUSH;
1339 
1340 		/*
1341 		 * Run the write verifier callback function if it exists. If
1342 		 * this function fails it will mark the buffer with an error and
1343 		 * the IO should not be dispatched.
1344 		 */
1345 		if (bp->b_ops) {
1346 			bp->b_ops->verify_write(bp);
1347 			if (bp->b_error) {
1348 				xfs_force_shutdown(bp->b_target->bt_mount,
1349 						   SHUTDOWN_CORRUPT_INCORE);
1350 				return;
1351 			}
1352 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1353 			struct xfs_mount *mp = bp->b_target->bt_mount;
1354 
1355 			/*
1356 			 * non-crc filesystems don't attach verifiers during
1357 			 * log recovery, so don't warn for such filesystems.
1358 			 */
1359 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1360 				xfs_warn(mp,
1361 					"%s: no ops on block 0x%llx/0x%x",
1362 					__func__, bp->b_bn, bp->b_length);
1363 				xfs_hex_dump(bp->b_addr, 64);
1364 				dump_stack();
1365 			}
1366 		}
1367 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1368 		op = REQ_OP_READ;
1369 		op_flags = REQ_RAHEAD;
1370 	} else {
1371 		op = REQ_OP_READ;
1372 	}
1373 
1374 	/* we only use the buffer cache for meta-data */
1375 	op_flags |= REQ_META;
1376 
1377 	/*
1378 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1379 	 * into the buffer and the desired IO size before we start -
1380 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1381 	 * subsequent call.
1382 	 */
1383 	offset = bp->b_offset;
1384 	size = BBTOB(bp->b_io_length);
1385 	blk_start_plug(&plug);
1386 	for (i = 0; i < bp->b_map_count; i++) {
1387 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1388 		if (bp->b_error)
1389 			break;
1390 		if (size <= 0)
1391 			break;	/* all done */
1392 	}
1393 	blk_finish_plug(&plug);
1394 }
1395 
1396 /*
1397  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1398  * the current reference to the IO. It is not safe to reference the buffer after
1399  * a call to this function unless the caller holds an additional reference
1400  * itself.
1401  */
1402 void
1403 xfs_buf_submit(
1404 	struct xfs_buf	*bp)
1405 {
1406 	trace_xfs_buf_submit(bp, _RET_IP_);
1407 
1408 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1409 	ASSERT(bp->b_flags & XBF_ASYNC);
1410 
1411 	/* on shutdown we stale and complete the buffer immediately */
1412 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1413 		xfs_buf_ioerror(bp, -EIO);
1414 		bp->b_flags &= ~XBF_DONE;
1415 		xfs_buf_stale(bp);
1416 		xfs_buf_ioend(bp);
1417 		return;
1418 	}
1419 
1420 	if (bp->b_flags & XBF_WRITE)
1421 		xfs_buf_wait_unpin(bp);
1422 
1423 	/* clear the internal error state to avoid spurious errors */
1424 	bp->b_io_error = 0;
1425 
1426 	/*
1427 	 * The caller's reference is released during I/O completion.
1428 	 * This occurs some time after the last b_io_remaining reference is
1429 	 * released, so after we drop our Io reference we have to have some
1430 	 * other reference to ensure the buffer doesn't go away from underneath
1431 	 * us. Take a direct reference to ensure we have safe access to the
1432 	 * buffer until we are finished with it.
1433 	 */
1434 	xfs_buf_hold(bp);
1435 
1436 	/*
1437 	 * Set the count to 1 initially, this will stop an I/O completion
1438 	 * callout which happens before we have started all the I/O from calling
1439 	 * xfs_buf_ioend too early.
1440 	 */
1441 	atomic_set(&bp->b_io_remaining, 1);
1442 	xfs_buf_ioacct_inc(bp);
1443 	_xfs_buf_ioapply(bp);
1444 
1445 	/*
1446 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1447 	 * reference we took above. If we drop it to zero, run completion so
1448 	 * that we don't return to the caller with completion still pending.
1449 	 */
1450 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1451 		if (bp->b_error)
1452 			xfs_buf_ioend(bp);
1453 		else
1454 			xfs_buf_ioend_async(bp);
1455 	}
1456 
1457 	xfs_buf_rele(bp);
1458 	/* Note: it is not safe to reference bp now we've dropped our ref */
1459 }
1460 
1461 /*
1462  * Synchronous buffer IO submission path, read or write.
1463  */
1464 int
1465 xfs_buf_submit_wait(
1466 	struct xfs_buf	*bp)
1467 {
1468 	int		error;
1469 
1470 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1471 
1472 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1473 
1474 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1475 		xfs_buf_ioerror(bp, -EIO);
1476 		xfs_buf_stale(bp);
1477 		bp->b_flags &= ~XBF_DONE;
1478 		return -EIO;
1479 	}
1480 
1481 	if (bp->b_flags & XBF_WRITE)
1482 		xfs_buf_wait_unpin(bp);
1483 
1484 	/* clear the internal error state to avoid spurious errors */
1485 	bp->b_io_error = 0;
1486 
1487 	/*
1488 	 * For synchronous IO, the IO does not inherit the submitters reference
1489 	 * count, nor the buffer lock. Hence we cannot release the reference we
1490 	 * are about to take until we've waited for all IO completion to occur,
1491 	 * including any xfs_buf_ioend_async() work that may be pending.
1492 	 */
1493 	xfs_buf_hold(bp);
1494 
1495 	/*
1496 	 * Set the count to 1 initially, this will stop an I/O completion
1497 	 * callout which happens before we have started all the I/O from calling
1498 	 * xfs_buf_ioend too early.
1499 	 */
1500 	atomic_set(&bp->b_io_remaining, 1);
1501 	_xfs_buf_ioapply(bp);
1502 
1503 	/*
1504 	 * make sure we run completion synchronously if it raced with us and is
1505 	 * already complete.
1506 	 */
1507 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1508 		xfs_buf_ioend(bp);
1509 
1510 	/* wait for completion before gathering the error from the buffer */
1511 	trace_xfs_buf_iowait(bp, _RET_IP_);
1512 	wait_for_completion(&bp->b_iowait);
1513 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1514 	error = bp->b_error;
1515 
1516 	/*
1517 	 * all done now, we can release the hold that keeps the buffer
1518 	 * referenced for the entire IO.
1519 	 */
1520 	xfs_buf_rele(bp);
1521 	return error;
1522 }
1523 
1524 void *
1525 xfs_buf_offset(
1526 	struct xfs_buf		*bp,
1527 	size_t			offset)
1528 {
1529 	struct page		*page;
1530 
1531 	if (bp->b_addr)
1532 		return bp->b_addr + offset;
1533 
1534 	offset += bp->b_offset;
1535 	page = bp->b_pages[offset >> PAGE_SHIFT];
1536 	return page_address(page) + (offset & (PAGE_SIZE-1));
1537 }
1538 
1539 /*
1540  *	Move data into or out of a buffer.
1541  */
1542 void
1543 xfs_buf_iomove(
1544 	xfs_buf_t		*bp,	/* buffer to process		*/
1545 	size_t			boff,	/* starting buffer offset	*/
1546 	size_t			bsize,	/* length to copy		*/
1547 	void			*data,	/* data address			*/
1548 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1549 {
1550 	size_t			bend;
1551 
1552 	bend = boff + bsize;
1553 	while (boff < bend) {
1554 		struct page	*page;
1555 		int		page_index, page_offset, csize;
1556 
1557 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1558 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1559 		page = bp->b_pages[page_index];
1560 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1561 				      BBTOB(bp->b_io_length) - boff);
1562 
1563 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1564 
1565 		switch (mode) {
1566 		case XBRW_ZERO:
1567 			memset(page_address(page) + page_offset, 0, csize);
1568 			break;
1569 		case XBRW_READ:
1570 			memcpy(data, page_address(page) + page_offset, csize);
1571 			break;
1572 		case XBRW_WRITE:
1573 			memcpy(page_address(page) + page_offset, data, csize);
1574 		}
1575 
1576 		boff += csize;
1577 		data += csize;
1578 	}
1579 }
1580 
1581 /*
1582  *	Handling of buffer targets (buftargs).
1583  */
1584 
1585 /*
1586  * Wait for any bufs with callbacks that have been submitted but have not yet
1587  * returned. These buffers will have an elevated hold count, so wait on those
1588  * while freeing all the buffers only held by the LRU.
1589  */
1590 static enum lru_status
1591 xfs_buftarg_wait_rele(
1592 	struct list_head	*item,
1593 	struct list_lru_one	*lru,
1594 	spinlock_t		*lru_lock,
1595 	void			*arg)
1596 
1597 {
1598 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1599 	struct list_head	*dispose = arg;
1600 
1601 	if (atomic_read(&bp->b_hold) > 1) {
1602 		/* need to wait, so skip it this pass */
1603 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1604 		return LRU_SKIP;
1605 	}
1606 	if (!spin_trylock(&bp->b_lock))
1607 		return LRU_SKIP;
1608 
1609 	/*
1610 	 * clear the LRU reference count so the buffer doesn't get
1611 	 * ignored in xfs_buf_rele().
1612 	 */
1613 	atomic_set(&bp->b_lru_ref, 0);
1614 	bp->b_state |= XFS_BSTATE_DISPOSE;
1615 	list_lru_isolate_move(lru, item, dispose);
1616 	spin_unlock(&bp->b_lock);
1617 	return LRU_REMOVED;
1618 }
1619 
1620 void
1621 xfs_wait_buftarg(
1622 	struct xfs_buftarg	*btp)
1623 {
1624 	LIST_HEAD(dispose);
1625 	int loop = 0;
1626 
1627 	/*
1628 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1629 	 * released. This is critical as new buffers do not make the LRU until
1630 	 * they are released.
1631 	 *
1632 	 * Next, flush the buffer workqueue to ensure all completion processing
1633 	 * has finished. Just waiting on buffer locks is not sufficient for
1634 	 * async IO as the reference count held over IO is not released until
1635 	 * after the buffer lock is dropped. Hence we need to ensure here that
1636 	 * all reference counts have been dropped before we start walking the
1637 	 * LRU list.
1638 	 */
1639 	while (percpu_counter_sum(&btp->bt_io_count))
1640 		delay(100);
1641 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1642 
1643 	/* loop until there is nothing left on the lru list. */
1644 	while (list_lru_count(&btp->bt_lru)) {
1645 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1646 			      &dispose, LONG_MAX);
1647 
1648 		while (!list_empty(&dispose)) {
1649 			struct xfs_buf *bp;
1650 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1651 			list_del_init(&bp->b_lru);
1652 			if (bp->b_flags & XBF_WRITE_FAIL) {
1653 				xfs_alert(btp->bt_mount,
1654 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1655 					(long long)bp->b_bn);
1656 				xfs_alert(btp->bt_mount,
1657 "Please run xfs_repair to determine the extent of the problem.");
1658 			}
1659 			xfs_buf_rele(bp);
1660 		}
1661 		if (loop++ != 0)
1662 			delay(100);
1663 	}
1664 }
1665 
1666 static enum lru_status
1667 xfs_buftarg_isolate(
1668 	struct list_head	*item,
1669 	struct list_lru_one	*lru,
1670 	spinlock_t		*lru_lock,
1671 	void			*arg)
1672 {
1673 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1674 	struct list_head	*dispose = arg;
1675 
1676 	/*
1677 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1678 	 * If we fail to get the lock, just skip it.
1679 	 */
1680 	if (!spin_trylock(&bp->b_lock))
1681 		return LRU_SKIP;
1682 	/*
1683 	 * Decrement the b_lru_ref count unless the value is already
1684 	 * zero. If the value is already zero, we need to reclaim the
1685 	 * buffer, otherwise it gets another trip through the LRU.
1686 	 */
1687 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1688 		spin_unlock(&bp->b_lock);
1689 		return LRU_ROTATE;
1690 	}
1691 
1692 	bp->b_state |= XFS_BSTATE_DISPOSE;
1693 	list_lru_isolate_move(lru, item, dispose);
1694 	spin_unlock(&bp->b_lock);
1695 	return LRU_REMOVED;
1696 }
1697 
1698 static unsigned long
1699 xfs_buftarg_shrink_scan(
1700 	struct shrinker		*shrink,
1701 	struct shrink_control	*sc)
1702 {
1703 	struct xfs_buftarg	*btp = container_of(shrink,
1704 					struct xfs_buftarg, bt_shrinker);
1705 	LIST_HEAD(dispose);
1706 	unsigned long		freed;
1707 
1708 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1709 				     xfs_buftarg_isolate, &dispose);
1710 
1711 	while (!list_empty(&dispose)) {
1712 		struct xfs_buf *bp;
1713 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1714 		list_del_init(&bp->b_lru);
1715 		xfs_buf_rele(bp);
1716 	}
1717 
1718 	return freed;
1719 }
1720 
1721 static unsigned long
1722 xfs_buftarg_shrink_count(
1723 	struct shrinker		*shrink,
1724 	struct shrink_control	*sc)
1725 {
1726 	struct xfs_buftarg	*btp = container_of(shrink,
1727 					struct xfs_buftarg, bt_shrinker);
1728 	return list_lru_shrink_count(&btp->bt_lru, sc);
1729 }
1730 
1731 void
1732 xfs_free_buftarg(
1733 	struct xfs_mount	*mp,
1734 	struct xfs_buftarg	*btp)
1735 {
1736 	unregister_shrinker(&btp->bt_shrinker);
1737 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1738 	percpu_counter_destroy(&btp->bt_io_count);
1739 	list_lru_destroy(&btp->bt_lru);
1740 
1741 	xfs_blkdev_issue_flush(btp);
1742 
1743 	kmem_free(btp);
1744 }
1745 
1746 int
1747 xfs_setsize_buftarg(
1748 	xfs_buftarg_t		*btp,
1749 	unsigned int		sectorsize)
1750 {
1751 	/* Set up metadata sector size info */
1752 	btp->bt_meta_sectorsize = sectorsize;
1753 	btp->bt_meta_sectormask = sectorsize - 1;
1754 
1755 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1756 		xfs_warn(btp->bt_mount,
1757 			"Cannot set_blocksize to %u on device %pg",
1758 			sectorsize, btp->bt_bdev);
1759 		return -EINVAL;
1760 	}
1761 
1762 	/* Set up device logical sector size mask */
1763 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1764 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1765 
1766 	return 0;
1767 }
1768 
1769 /*
1770  * When allocating the initial buffer target we have not yet
1771  * read in the superblock, so don't know what sized sectors
1772  * are being used at this early stage.  Play safe.
1773  */
1774 STATIC int
1775 xfs_setsize_buftarg_early(
1776 	xfs_buftarg_t		*btp,
1777 	struct block_device	*bdev)
1778 {
1779 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1780 }
1781 
1782 xfs_buftarg_t *
1783 xfs_alloc_buftarg(
1784 	struct xfs_mount	*mp,
1785 	struct block_device	*bdev)
1786 {
1787 	xfs_buftarg_t		*btp;
1788 
1789 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1790 
1791 	btp->bt_mount = mp;
1792 	btp->bt_dev =  bdev->bd_dev;
1793 	btp->bt_bdev = bdev;
1794 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1795 
1796 	if (xfs_setsize_buftarg_early(btp, bdev))
1797 		goto error;
1798 
1799 	if (list_lru_init(&btp->bt_lru))
1800 		goto error;
1801 
1802 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1803 		goto error;
1804 
1805 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1806 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1807 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1808 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1809 	register_shrinker(&btp->bt_shrinker);
1810 	return btp;
1811 
1812 error:
1813 	kmem_free(btp);
1814 	return NULL;
1815 }
1816 
1817 /*
1818  * Add a buffer to the delayed write list.
1819  *
1820  * This queues a buffer for writeout if it hasn't already been.  Note that
1821  * neither this routine nor the buffer list submission functions perform
1822  * any internal synchronization.  It is expected that the lists are thread-local
1823  * to the callers.
1824  *
1825  * Returns true if we queued up the buffer, or false if it already had
1826  * been on the buffer list.
1827  */
1828 bool
1829 xfs_buf_delwri_queue(
1830 	struct xfs_buf		*bp,
1831 	struct list_head	*list)
1832 {
1833 	ASSERT(xfs_buf_islocked(bp));
1834 	ASSERT(!(bp->b_flags & XBF_READ));
1835 
1836 	/*
1837 	 * If the buffer is already marked delwri it already is queued up
1838 	 * by someone else for imediate writeout.  Just ignore it in that
1839 	 * case.
1840 	 */
1841 	if (bp->b_flags & _XBF_DELWRI_Q) {
1842 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1843 		return false;
1844 	}
1845 
1846 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1847 
1848 	/*
1849 	 * If a buffer gets written out synchronously or marked stale while it
1850 	 * is on a delwri list we lazily remove it. To do this, the other party
1851 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1852 	 * It remains referenced and on the list.  In a rare corner case it
1853 	 * might get readded to a delwri list after the synchronous writeout, in
1854 	 * which case we need just need to re-add the flag here.
1855 	 */
1856 	bp->b_flags |= _XBF_DELWRI_Q;
1857 	if (list_empty(&bp->b_list)) {
1858 		atomic_inc(&bp->b_hold);
1859 		list_add_tail(&bp->b_list, list);
1860 	}
1861 
1862 	return true;
1863 }
1864 
1865 /*
1866  * Compare function is more complex than it needs to be because
1867  * the return value is only 32 bits and we are doing comparisons
1868  * on 64 bit values
1869  */
1870 static int
1871 xfs_buf_cmp(
1872 	void		*priv,
1873 	struct list_head *a,
1874 	struct list_head *b)
1875 {
1876 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1877 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1878 	xfs_daddr_t		diff;
1879 
1880 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1881 	if (diff < 0)
1882 		return -1;
1883 	if (diff > 0)
1884 		return 1;
1885 	return 0;
1886 }
1887 
1888 /*
1889  * submit buffers for write.
1890  *
1891  * When we have a large buffer list, we do not want to hold all the buffers
1892  * locked while we block on the request queue waiting for IO dispatch. To avoid
1893  * this problem, we lock and submit buffers in groups of 50, thereby minimising
1894  * the lock hold times for lists which may contain thousands of objects.
1895  *
1896  * To do this, we sort the buffer list before we walk the list to lock and
1897  * submit buffers, and we plug and unplug around each group of buffers we
1898  * submit.
1899  */
1900 static int
1901 xfs_buf_delwri_submit_buffers(
1902 	struct list_head	*buffer_list,
1903 	struct list_head	*wait_list)
1904 {
1905 	struct xfs_buf		*bp, *n;
1906 	LIST_HEAD		(submit_list);
1907 	int			pinned = 0;
1908 	struct blk_plug		plug;
1909 
1910 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1911 
1912 	blk_start_plug(&plug);
1913 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1914 		if (!wait_list) {
1915 			if (xfs_buf_ispinned(bp)) {
1916 				pinned++;
1917 				continue;
1918 			}
1919 			if (!xfs_buf_trylock(bp))
1920 				continue;
1921 		} else {
1922 			xfs_buf_lock(bp);
1923 		}
1924 
1925 		/*
1926 		 * Someone else might have written the buffer synchronously or
1927 		 * marked it stale in the meantime.  In that case only the
1928 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1929 		 * reference and remove it from the list here.
1930 		 */
1931 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1932 			list_del_init(&bp->b_list);
1933 			xfs_buf_relse(bp);
1934 			continue;
1935 		}
1936 
1937 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1938 
1939 		/*
1940 		 * We do all IO submission async. This means if we need
1941 		 * to wait for IO completion we need to take an extra
1942 		 * reference so the buffer is still valid on the other
1943 		 * side. We need to move the buffer onto the io_list
1944 		 * at this point so the caller can still access it.
1945 		 */
1946 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1947 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1948 		if (wait_list) {
1949 			xfs_buf_hold(bp);
1950 			list_move_tail(&bp->b_list, wait_list);
1951 		} else
1952 			list_del_init(&bp->b_list);
1953 
1954 		xfs_buf_submit(bp);
1955 	}
1956 	blk_finish_plug(&plug);
1957 
1958 	return pinned;
1959 }
1960 
1961 /*
1962  * Write out a buffer list asynchronously.
1963  *
1964  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1965  * out and not wait for I/O completion on any of the buffers.  This interface
1966  * is only safely useable for callers that can track I/O completion by higher
1967  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1968  * function.
1969  */
1970 int
1971 xfs_buf_delwri_submit_nowait(
1972 	struct list_head	*buffer_list)
1973 {
1974 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1975 }
1976 
1977 /*
1978  * Write out a buffer list synchronously.
1979  *
1980  * This will take the @buffer_list, write all buffers out and wait for I/O
1981  * completion on all of the buffers. @buffer_list is consumed by the function,
1982  * so callers must have some other way of tracking buffers if they require such
1983  * functionality.
1984  */
1985 int
1986 xfs_buf_delwri_submit(
1987 	struct list_head	*buffer_list)
1988 {
1989 	LIST_HEAD		(wait_list);
1990 	int			error = 0, error2;
1991 	struct xfs_buf		*bp;
1992 
1993 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1994 
1995 	/* Wait for IO to complete. */
1996 	while (!list_empty(&wait_list)) {
1997 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1998 
1999 		list_del_init(&bp->b_list);
2000 
2001 		/* locking the buffer will wait for async IO completion. */
2002 		xfs_buf_lock(bp);
2003 		error2 = bp->b_error;
2004 		xfs_buf_relse(bp);
2005 		if (!error)
2006 			error = error2;
2007 	}
2008 
2009 	return error;
2010 }
2011 
2012 int __init
2013 xfs_buf_init(void)
2014 {
2015 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2016 						KM_ZONE_HWALIGN, NULL);
2017 	if (!xfs_buf_zone)
2018 		goto out;
2019 
2020 	return 0;
2021 
2022  out:
2023 	return -ENOMEM;
2024 }
2025 
2026 void
2027 xfs_buf_terminate(void)
2028 {
2029 	kmem_zone_destroy(xfs_buf_zone);
2030 }
2031