1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 37 #include "xfs_format.h" 38 #include "xfs_log_format.h" 39 #include "xfs_trans_resv.h" 40 #include "xfs_sb.h" 41 #include "xfs_mount.h" 42 #include "xfs_trace.h" 43 #include "xfs_log.h" 44 45 static kmem_zone_t *xfs_buf_zone; 46 47 #ifdef XFS_BUF_LOCK_TRACKING 48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 51 #else 52 # define XB_SET_OWNER(bp) do { } while (0) 53 # define XB_CLEAR_OWNER(bp) do { } while (0) 54 # define XB_GET_OWNER(bp) do { } while (0) 55 #endif 56 57 #define xb_to_gfp(flags) \ 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 59 60 61 static inline int 62 xfs_buf_is_vmapped( 63 struct xfs_buf *bp) 64 { 65 /* 66 * Return true if the buffer is vmapped. 67 * 68 * b_addr is null if the buffer is not mapped, but the code is clever 69 * enough to know it doesn't have to map a single page, so the check has 70 * to be both for b_addr and bp->b_page_count > 1. 71 */ 72 return bp->b_addr && bp->b_page_count > 1; 73 } 74 75 static inline int 76 xfs_buf_vmap_len( 77 struct xfs_buf *bp) 78 { 79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 80 } 81 82 /* 83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 84 * this buffer. The count is incremented once per buffer (per hold cycle) 85 * because the corresponding decrement is deferred to buffer release. Buffers 86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 87 * tracking adds unnecessary overhead. This is used for sychronization purposes 88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of 89 * in-flight buffers. 90 * 91 * Buffers that are never released (e.g., superblock, iclog buffers) must set 92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 93 * never reaches zero and unmount hangs indefinitely. 94 */ 95 static inline void 96 xfs_buf_ioacct_inc( 97 struct xfs_buf *bp) 98 { 99 if (bp->b_flags & (XBF_NO_IOACCT|_XBF_IN_FLIGHT)) 100 return; 101 102 ASSERT(bp->b_flags & XBF_ASYNC); 103 bp->b_flags |= _XBF_IN_FLIGHT; 104 percpu_counter_inc(&bp->b_target->bt_io_count); 105 } 106 107 /* 108 * Clear the in-flight state on a buffer about to be released to the LRU or 109 * freed and unaccount from the buftarg. 110 */ 111 static inline void 112 xfs_buf_ioacct_dec( 113 struct xfs_buf *bp) 114 { 115 if (!(bp->b_flags & _XBF_IN_FLIGHT)) 116 return; 117 118 bp->b_flags &= ~_XBF_IN_FLIGHT; 119 percpu_counter_dec(&bp->b_target->bt_io_count); 120 } 121 122 /* 123 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 124 * b_lru_ref count so that the buffer is freed immediately when the buffer 125 * reference count falls to zero. If the buffer is already on the LRU, we need 126 * to remove the reference that LRU holds on the buffer. 127 * 128 * This prevents build-up of stale buffers on the LRU. 129 */ 130 void 131 xfs_buf_stale( 132 struct xfs_buf *bp) 133 { 134 ASSERT(xfs_buf_islocked(bp)); 135 136 bp->b_flags |= XBF_STALE; 137 138 /* 139 * Clear the delwri status so that a delwri queue walker will not 140 * flush this buffer to disk now that it is stale. The delwri queue has 141 * a reference to the buffer, so this is safe to do. 142 */ 143 bp->b_flags &= ~_XBF_DELWRI_Q; 144 145 /* 146 * Once the buffer is marked stale and unlocked, a subsequent lookup 147 * could reset b_flags. There is no guarantee that the buffer is 148 * unaccounted (released to LRU) before that occurs. Drop in-flight 149 * status now to preserve accounting consistency. 150 */ 151 xfs_buf_ioacct_dec(bp); 152 153 spin_lock(&bp->b_lock); 154 atomic_set(&bp->b_lru_ref, 0); 155 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 156 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 157 atomic_dec(&bp->b_hold); 158 159 ASSERT(atomic_read(&bp->b_hold) >= 1); 160 spin_unlock(&bp->b_lock); 161 } 162 163 static int 164 xfs_buf_get_maps( 165 struct xfs_buf *bp, 166 int map_count) 167 { 168 ASSERT(bp->b_maps == NULL); 169 bp->b_map_count = map_count; 170 171 if (map_count == 1) { 172 bp->b_maps = &bp->__b_map; 173 return 0; 174 } 175 176 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 177 KM_NOFS); 178 if (!bp->b_maps) 179 return -ENOMEM; 180 return 0; 181 } 182 183 /* 184 * Frees b_pages if it was allocated. 185 */ 186 static void 187 xfs_buf_free_maps( 188 struct xfs_buf *bp) 189 { 190 if (bp->b_maps != &bp->__b_map) { 191 kmem_free(bp->b_maps); 192 bp->b_maps = NULL; 193 } 194 } 195 196 struct xfs_buf * 197 _xfs_buf_alloc( 198 struct xfs_buftarg *target, 199 struct xfs_buf_map *map, 200 int nmaps, 201 xfs_buf_flags_t flags) 202 { 203 struct xfs_buf *bp; 204 int error; 205 int i; 206 207 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 208 if (unlikely(!bp)) 209 return NULL; 210 211 /* 212 * We don't want certain flags to appear in b_flags unless they are 213 * specifically set by later operations on the buffer. 214 */ 215 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 216 217 atomic_set(&bp->b_hold, 1); 218 atomic_set(&bp->b_lru_ref, 1); 219 init_completion(&bp->b_iowait); 220 INIT_LIST_HEAD(&bp->b_lru); 221 INIT_LIST_HEAD(&bp->b_list); 222 sema_init(&bp->b_sema, 0); /* held, no waiters */ 223 spin_lock_init(&bp->b_lock); 224 XB_SET_OWNER(bp); 225 bp->b_target = target; 226 bp->b_flags = flags; 227 228 /* 229 * Set length and io_length to the same value initially. 230 * I/O routines should use io_length, which will be the same in 231 * most cases but may be reset (e.g. XFS recovery). 232 */ 233 error = xfs_buf_get_maps(bp, nmaps); 234 if (error) { 235 kmem_zone_free(xfs_buf_zone, bp); 236 return NULL; 237 } 238 239 bp->b_bn = map[0].bm_bn; 240 bp->b_length = 0; 241 for (i = 0; i < nmaps; i++) { 242 bp->b_maps[i].bm_bn = map[i].bm_bn; 243 bp->b_maps[i].bm_len = map[i].bm_len; 244 bp->b_length += map[i].bm_len; 245 } 246 bp->b_io_length = bp->b_length; 247 248 atomic_set(&bp->b_pin_count, 0); 249 init_waitqueue_head(&bp->b_waiters); 250 251 XFS_STATS_INC(target->bt_mount, xb_create); 252 trace_xfs_buf_init(bp, _RET_IP_); 253 254 return bp; 255 } 256 257 /* 258 * Allocate a page array capable of holding a specified number 259 * of pages, and point the page buf at it. 260 */ 261 STATIC int 262 _xfs_buf_get_pages( 263 xfs_buf_t *bp, 264 int page_count) 265 { 266 /* Make sure that we have a page list */ 267 if (bp->b_pages == NULL) { 268 bp->b_page_count = page_count; 269 if (page_count <= XB_PAGES) { 270 bp->b_pages = bp->b_page_array; 271 } else { 272 bp->b_pages = kmem_alloc(sizeof(struct page *) * 273 page_count, KM_NOFS); 274 if (bp->b_pages == NULL) 275 return -ENOMEM; 276 } 277 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 278 } 279 return 0; 280 } 281 282 /* 283 * Frees b_pages if it was allocated. 284 */ 285 STATIC void 286 _xfs_buf_free_pages( 287 xfs_buf_t *bp) 288 { 289 if (bp->b_pages != bp->b_page_array) { 290 kmem_free(bp->b_pages); 291 bp->b_pages = NULL; 292 } 293 } 294 295 /* 296 * Releases the specified buffer. 297 * 298 * The modification state of any associated pages is left unchanged. 299 * The buffer must not be on any hash - use xfs_buf_rele instead for 300 * hashed and refcounted buffers 301 */ 302 void 303 xfs_buf_free( 304 xfs_buf_t *bp) 305 { 306 trace_xfs_buf_free(bp, _RET_IP_); 307 308 ASSERT(list_empty(&bp->b_lru)); 309 310 if (bp->b_flags & _XBF_PAGES) { 311 uint i; 312 313 if (xfs_buf_is_vmapped(bp)) 314 vm_unmap_ram(bp->b_addr - bp->b_offset, 315 bp->b_page_count); 316 317 for (i = 0; i < bp->b_page_count; i++) { 318 struct page *page = bp->b_pages[i]; 319 320 __free_page(page); 321 } 322 } else if (bp->b_flags & _XBF_KMEM) 323 kmem_free(bp->b_addr); 324 _xfs_buf_free_pages(bp); 325 xfs_buf_free_maps(bp); 326 kmem_zone_free(xfs_buf_zone, bp); 327 } 328 329 /* 330 * Allocates all the pages for buffer in question and builds it's page list. 331 */ 332 STATIC int 333 xfs_buf_allocate_memory( 334 xfs_buf_t *bp, 335 uint flags) 336 { 337 size_t size; 338 size_t nbytes, offset; 339 gfp_t gfp_mask = xb_to_gfp(flags); 340 unsigned short page_count, i; 341 xfs_off_t start, end; 342 int error; 343 344 /* 345 * for buffers that are contained within a single page, just allocate 346 * the memory from the heap - there's no need for the complexity of 347 * page arrays to keep allocation down to order 0. 348 */ 349 size = BBTOB(bp->b_length); 350 if (size < PAGE_SIZE) { 351 bp->b_addr = kmem_alloc(size, KM_NOFS); 352 if (!bp->b_addr) { 353 /* low memory - use alloc_page loop instead */ 354 goto use_alloc_page; 355 } 356 357 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 358 ((unsigned long)bp->b_addr & PAGE_MASK)) { 359 /* b_addr spans two pages - use alloc_page instead */ 360 kmem_free(bp->b_addr); 361 bp->b_addr = NULL; 362 goto use_alloc_page; 363 } 364 bp->b_offset = offset_in_page(bp->b_addr); 365 bp->b_pages = bp->b_page_array; 366 bp->b_pages[0] = virt_to_page(bp->b_addr); 367 bp->b_page_count = 1; 368 bp->b_flags |= _XBF_KMEM; 369 return 0; 370 } 371 372 use_alloc_page: 373 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 374 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 375 >> PAGE_SHIFT; 376 page_count = end - start; 377 error = _xfs_buf_get_pages(bp, page_count); 378 if (unlikely(error)) 379 return error; 380 381 offset = bp->b_offset; 382 bp->b_flags |= _XBF_PAGES; 383 384 for (i = 0; i < bp->b_page_count; i++) { 385 struct page *page; 386 uint retries = 0; 387 retry: 388 page = alloc_page(gfp_mask); 389 if (unlikely(page == NULL)) { 390 if (flags & XBF_READ_AHEAD) { 391 bp->b_page_count = i; 392 error = -ENOMEM; 393 goto out_free_pages; 394 } 395 396 /* 397 * This could deadlock. 398 * 399 * But until all the XFS lowlevel code is revamped to 400 * handle buffer allocation failures we can't do much. 401 */ 402 if (!(++retries % 100)) 403 xfs_err(NULL, 404 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", 405 current->comm, current->pid, 406 __func__, gfp_mask); 407 408 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries); 409 congestion_wait(BLK_RW_ASYNC, HZ/50); 410 goto retry; 411 } 412 413 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found); 414 415 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 416 size -= nbytes; 417 bp->b_pages[i] = page; 418 offset = 0; 419 } 420 return 0; 421 422 out_free_pages: 423 for (i = 0; i < bp->b_page_count; i++) 424 __free_page(bp->b_pages[i]); 425 bp->b_flags &= ~_XBF_PAGES; 426 return error; 427 } 428 429 /* 430 * Map buffer into kernel address-space if necessary. 431 */ 432 STATIC int 433 _xfs_buf_map_pages( 434 xfs_buf_t *bp, 435 uint flags) 436 { 437 ASSERT(bp->b_flags & _XBF_PAGES); 438 if (bp->b_page_count == 1) { 439 /* A single page buffer is always mappable */ 440 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 441 } else if (flags & XBF_UNMAPPED) { 442 bp->b_addr = NULL; 443 } else { 444 int retried = 0; 445 unsigned noio_flag; 446 447 /* 448 * vm_map_ram() will allocate auxillary structures (e.g. 449 * pagetables) with GFP_KERNEL, yet we are likely to be under 450 * GFP_NOFS context here. Hence we need to tell memory reclaim 451 * that we are in such a context via PF_MEMALLOC_NOIO to prevent 452 * memory reclaim re-entering the filesystem here and 453 * potentially deadlocking. 454 */ 455 noio_flag = memalloc_noio_save(); 456 do { 457 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 458 -1, PAGE_KERNEL); 459 if (bp->b_addr) 460 break; 461 vm_unmap_aliases(); 462 } while (retried++ <= 1); 463 memalloc_noio_restore(noio_flag); 464 465 if (!bp->b_addr) 466 return -ENOMEM; 467 bp->b_addr += bp->b_offset; 468 } 469 470 return 0; 471 } 472 473 /* 474 * Finding and Reading Buffers 475 */ 476 static int 477 _xfs_buf_obj_cmp( 478 struct rhashtable_compare_arg *arg, 479 const void *obj) 480 { 481 const struct xfs_buf_map *map = arg->key; 482 const struct xfs_buf *bp = obj; 483 484 /* 485 * The key hashing in the lookup path depends on the key being the 486 * first element of the compare_arg, make sure to assert this. 487 */ 488 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 489 490 if (bp->b_bn != map->bm_bn) 491 return 1; 492 493 if (unlikely(bp->b_length != map->bm_len)) { 494 /* 495 * found a block number match. If the range doesn't 496 * match, the only way this is allowed is if the buffer 497 * in the cache is stale and the transaction that made 498 * it stale has not yet committed. i.e. we are 499 * reallocating a busy extent. Skip this buffer and 500 * continue searching for an exact match. 501 */ 502 ASSERT(bp->b_flags & XBF_STALE); 503 return 1; 504 } 505 return 0; 506 } 507 508 static const struct rhashtable_params xfs_buf_hash_params = { 509 .min_size = 32, /* empty AGs have minimal footprint */ 510 .nelem_hint = 16, 511 .key_len = sizeof(xfs_daddr_t), 512 .key_offset = offsetof(struct xfs_buf, b_bn), 513 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 514 .automatic_shrinking = true, 515 .obj_cmpfn = _xfs_buf_obj_cmp, 516 }; 517 518 int 519 xfs_buf_hash_init( 520 struct xfs_perag *pag) 521 { 522 spin_lock_init(&pag->pag_buf_lock); 523 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); 524 } 525 526 void 527 xfs_buf_hash_destroy( 528 struct xfs_perag *pag) 529 { 530 rhashtable_destroy(&pag->pag_buf_hash); 531 } 532 533 /* 534 * Look up, and creates if absent, a lockable buffer for 535 * a given range of an inode. The buffer is returned 536 * locked. No I/O is implied by this call. 537 */ 538 xfs_buf_t * 539 _xfs_buf_find( 540 struct xfs_buftarg *btp, 541 struct xfs_buf_map *map, 542 int nmaps, 543 xfs_buf_flags_t flags, 544 xfs_buf_t *new_bp) 545 { 546 struct xfs_perag *pag; 547 xfs_buf_t *bp; 548 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 549 xfs_daddr_t eofs; 550 int i; 551 552 for (i = 0; i < nmaps; i++) 553 cmap.bm_len += map[i].bm_len; 554 555 /* Check for IOs smaller than the sector size / not sector aligned */ 556 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize)); 557 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 558 559 /* 560 * Corrupted block numbers can get through to here, unfortunately, so we 561 * have to check that the buffer falls within the filesystem bounds. 562 */ 563 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 564 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) { 565 /* 566 * XXX (dgc): we should really be returning -EFSCORRUPTED here, 567 * but none of the higher level infrastructure supports 568 * returning a specific error on buffer lookup failures. 569 */ 570 xfs_alert(btp->bt_mount, 571 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ", 572 __func__, cmap.bm_bn, eofs); 573 WARN_ON(1); 574 return NULL; 575 } 576 577 pag = xfs_perag_get(btp->bt_mount, 578 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); 579 580 spin_lock(&pag->pag_buf_lock); 581 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap, 582 xfs_buf_hash_params); 583 if (bp) { 584 atomic_inc(&bp->b_hold); 585 goto found; 586 } 587 588 /* No match found */ 589 if (new_bp) { 590 /* the buffer keeps the perag reference until it is freed */ 591 new_bp->b_pag = pag; 592 rhashtable_insert_fast(&pag->pag_buf_hash, 593 &new_bp->b_rhash_head, 594 xfs_buf_hash_params); 595 spin_unlock(&pag->pag_buf_lock); 596 } else { 597 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 598 spin_unlock(&pag->pag_buf_lock); 599 xfs_perag_put(pag); 600 } 601 return new_bp; 602 603 found: 604 spin_unlock(&pag->pag_buf_lock); 605 xfs_perag_put(pag); 606 607 if (!xfs_buf_trylock(bp)) { 608 if (flags & XBF_TRYLOCK) { 609 xfs_buf_rele(bp); 610 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 611 return NULL; 612 } 613 xfs_buf_lock(bp); 614 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 615 } 616 617 /* 618 * if the buffer is stale, clear all the external state associated with 619 * it. We need to keep flags such as how we allocated the buffer memory 620 * intact here. 621 */ 622 if (bp->b_flags & XBF_STALE) { 623 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 624 ASSERT(bp->b_iodone == NULL); 625 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 626 bp->b_ops = NULL; 627 } 628 629 trace_xfs_buf_find(bp, flags, _RET_IP_); 630 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 631 return bp; 632 } 633 634 /* 635 * Assembles a buffer covering the specified range. The code is optimised for 636 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 637 * more hits than misses. 638 */ 639 struct xfs_buf * 640 xfs_buf_get_map( 641 struct xfs_buftarg *target, 642 struct xfs_buf_map *map, 643 int nmaps, 644 xfs_buf_flags_t flags) 645 { 646 struct xfs_buf *bp; 647 struct xfs_buf *new_bp; 648 int error = 0; 649 650 bp = _xfs_buf_find(target, map, nmaps, flags, NULL); 651 if (likely(bp)) 652 goto found; 653 654 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 655 if (unlikely(!new_bp)) 656 return NULL; 657 658 error = xfs_buf_allocate_memory(new_bp, flags); 659 if (error) { 660 xfs_buf_free(new_bp); 661 return NULL; 662 } 663 664 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); 665 if (!bp) { 666 xfs_buf_free(new_bp); 667 return NULL; 668 } 669 670 if (bp != new_bp) 671 xfs_buf_free(new_bp); 672 673 found: 674 if (!bp->b_addr) { 675 error = _xfs_buf_map_pages(bp, flags); 676 if (unlikely(error)) { 677 xfs_warn(target->bt_mount, 678 "%s: failed to map pagesn", __func__); 679 xfs_buf_relse(bp); 680 return NULL; 681 } 682 } 683 684 /* 685 * Clear b_error if this is a lookup from a caller that doesn't expect 686 * valid data to be found in the buffer. 687 */ 688 if (!(flags & XBF_READ)) 689 xfs_buf_ioerror(bp, 0); 690 691 XFS_STATS_INC(target->bt_mount, xb_get); 692 trace_xfs_buf_get(bp, flags, _RET_IP_); 693 return bp; 694 } 695 696 STATIC int 697 _xfs_buf_read( 698 xfs_buf_t *bp, 699 xfs_buf_flags_t flags) 700 { 701 ASSERT(!(flags & XBF_WRITE)); 702 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 703 704 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 705 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 706 707 if (flags & XBF_ASYNC) { 708 xfs_buf_submit(bp); 709 return 0; 710 } 711 return xfs_buf_submit_wait(bp); 712 } 713 714 xfs_buf_t * 715 xfs_buf_read_map( 716 struct xfs_buftarg *target, 717 struct xfs_buf_map *map, 718 int nmaps, 719 xfs_buf_flags_t flags, 720 const struct xfs_buf_ops *ops) 721 { 722 struct xfs_buf *bp; 723 724 flags |= XBF_READ; 725 726 bp = xfs_buf_get_map(target, map, nmaps, flags); 727 if (bp) { 728 trace_xfs_buf_read(bp, flags, _RET_IP_); 729 730 if (!(bp->b_flags & XBF_DONE)) { 731 XFS_STATS_INC(target->bt_mount, xb_get_read); 732 bp->b_ops = ops; 733 _xfs_buf_read(bp, flags); 734 } else if (flags & XBF_ASYNC) { 735 /* 736 * Read ahead call which is already satisfied, 737 * drop the buffer 738 */ 739 xfs_buf_relse(bp); 740 return NULL; 741 } else { 742 /* We do not want read in the flags */ 743 bp->b_flags &= ~XBF_READ; 744 } 745 } 746 747 return bp; 748 } 749 750 /* 751 * If we are not low on memory then do the readahead in a deadlock 752 * safe manner. 753 */ 754 void 755 xfs_buf_readahead_map( 756 struct xfs_buftarg *target, 757 struct xfs_buf_map *map, 758 int nmaps, 759 const struct xfs_buf_ops *ops) 760 { 761 if (bdi_read_congested(target->bt_bdi)) 762 return; 763 764 xfs_buf_read_map(target, map, nmaps, 765 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 766 } 767 768 /* 769 * Read an uncached buffer from disk. Allocates and returns a locked 770 * buffer containing the disk contents or nothing. 771 */ 772 int 773 xfs_buf_read_uncached( 774 struct xfs_buftarg *target, 775 xfs_daddr_t daddr, 776 size_t numblks, 777 int flags, 778 struct xfs_buf **bpp, 779 const struct xfs_buf_ops *ops) 780 { 781 struct xfs_buf *bp; 782 783 *bpp = NULL; 784 785 bp = xfs_buf_get_uncached(target, numblks, flags); 786 if (!bp) 787 return -ENOMEM; 788 789 /* set up the buffer for a read IO */ 790 ASSERT(bp->b_map_count == 1); 791 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 792 bp->b_maps[0].bm_bn = daddr; 793 bp->b_flags |= XBF_READ; 794 bp->b_ops = ops; 795 796 xfs_buf_submit_wait(bp); 797 if (bp->b_error) { 798 int error = bp->b_error; 799 xfs_buf_relse(bp); 800 return error; 801 } 802 803 *bpp = bp; 804 return 0; 805 } 806 807 /* 808 * Return a buffer allocated as an empty buffer and associated to external 809 * memory via xfs_buf_associate_memory() back to it's empty state. 810 */ 811 void 812 xfs_buf_set_empty( 813 struct xfs_buf *bp, 814 size_t numblks) 815 { 816 if (bp->b_pages) 817 _xfs_buf_free_pages(bp); 818 819 bp->b_pages = NULL; 820 bp->b_page_count = 0; 821 bp->b_addr = NULL; 822 bp->b_length = numblks; 823 bp->b_io_length = numblks; 824 825 ASSERT(bp->b_map_count == 1); 826 bp->b_bn = XFS_BUF_DADDR_NULL; 827 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 828 bp->b_maps[0].bm_len = bp->b_length; 829 } 830 831 static inline struct page * 832 mem_to_page( 833 void *addr) 834 { 835 if ((!is_vmalloc_addr(addr))) { 836 return virt_to_page(addr); 837 } else { 838 return vmalloc_to_page(addr); 839 } 840 } 841 842 int 843 xfs_buf_associate_memory( 844 xfs_buf_t *bp, 845 void *mem, 846 size_t len) 847 { 848 int rval; 849 int i = 0; 850 unsigned long pageaddr; 851 unsigned long offset; 852 size_t buflen; 853 int page_count; 854 855 pageaddr = (unsigned long)mem & PAGE_MASK; 856 offset = (unsigned long)mem - pageaddr; 857 buflen = PAGE_ALIGN(len + offset); 858 page_count = buflen >> PAGE_SHIFT; 859 860 /* Free any previous set of page pointers */ 861 if (bp->b_pages) 862 _xfs_buf_free_pages(bp); 863 864 bp->b_pages = NULL; 865 bp->b_addr = mem; 866 867 rval = _xfs_buf_get_pages(bp, page_count); 868 if (rval) 869 return rval; 870 871 bp->b_offset = offset; 872 873 for (i = 0; i < bp->b_page_count; i++) { 874 bp->b_pages[i] = mem_to_page((void *)pageaddr); 875 pageaddr += PAGE_SIZE; 876 } 877 878 bp->b_io_length = BTOBB(len); 879 bp->b_length = BTOBB(buflen); 880 881 return 0; 882 } 883 884 xfs_buf_t * 885 xfs_buf_get_uncached( 886 struct xfs_buftarg *target, 887 size_t numblks, 888 int flags) 889 { 890 unsigned long page_count; 891 int error, i; 892 struct xfs_buf *bp; 893 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 894 895 /* flags might contain irrelevant bits, pass only what we care about */ 896 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT); 897 if (unlikely(bp == NULL)) 898 goto fail; 899 900 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 901 error = _xfs_buf_get_pages(bp, page_count); 902 if (error) 903 goto fail_free_buf; 904 905 for (i = 0; i < page_count; i++) { 906 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 907 if (!bp->b_pages[i]) 908 goto fail_free_mem; 909 } 910 bp->b_flags |= _XBF_PAGES; 911 912 error = _xfs_buf_map_pages(bp, 0); 913 if (unlikely(error)) { 914 xfs_warn(target->bt_mount, 915 "%s: failed to map pages", __func__); 916 goto fail_free_mem; 917 } 918 919 trace_xfs_buf_get_uncached(bp, _RET_IP_); 920 return bp; 921 922 fail_free_mem: 923 while (--i >= 0) 924 __free_page(bp->b_pages[i]); 925 _xfs_buf_free_pages(bp); 926 fail_free_buf: 927 xfs_buf_free_maps(bp); 928 kmem_zone_free(xfs_buf_zone, bp); 929 fail: 930 return NULL; 931 } 932 933 /* 934 * Increment reference count on buffer, to hold the buffer concurrently 935 * with another thread which may release (free) the buffer asynchronously. 936 * Must hold the buffer already to call this function. 937 */ 938 void 939 xfs_buf_hold( 940 xfs_buf_t *bp) 941 { 942 trace_xfs_buf_hold(bp, _RET_IP_); 943 atomic_inc(&bp->b_hold); 944 } 945 946 /* 947 * Release a hold on the specified buffer. If the hold count is 1, the buffer is 948 * placed on LRU or freed (depending on b_lru_ref). 949 */ 950 void 951 xfs_buf_rele( 952 xfs_buf_t *bp) 953 { 954 struct xfs_perag *pag = bp->b_pag; 955 bool release; 956 bool freebuf = false; 957 958 trace_xfs_buf_rele(bp, _RET_IP_); 959 960 if (!pag) { 961 ASSERT(list_empty(&bp->b_lru)); 962 if (atomic_dec_and_test(&bp->b_hold)) { 963 xfs_buf_ioacct_dec(bp); 964 xfs_buf_free(bp); 965 } 966 return; 967 } 968 969 ASSERT(atomic_read(&bp->b_hold) > 0); 970 971 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); 972 spin_lock(&bp->b_lock); 973 if (!release) { 974 /* 975 * Drop the in-flight state if the buffer is already on the LRU 976 * and it holds the only reference. This is racy because we 977 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 978 * ensures the decrement occurs only once per-buf. 979 */ 980 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 981 xfs_buf_ioacct_dec(bp); 982 goto out_unlock; 983 } 984 985 /* the last reference has been dropped ... */ 986 xfs_buf_ioacct_dec(bp); 987 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 988 /* 989 * If the buffer is added to the LRU take a new reference to the 990 * buffer for the LRU and clear the (now stale) dispose list 991 * state flag 992 */ 993 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 994 bp->b_state &= ~XFS_BSTATE_DISPOSE; 995 atomic_inc(&bp->b_hold); 996 } 997 spin_unlock(&pag->pag_buf_lock); 998 } else { 999 /* 1000 * most of the time buffers will already be removed from the 1001 * LRU, so optimise that case by checking for the 1002 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1003 * was on was the disposal list 1004 */ 1005 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1006 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 1007 } else { 1008 ASSERT(list_empty(&bp->b_lru)); 1009 } 1010 1011 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1012 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, 1013 xfs_buf_hash_params); 1014 spin_unlock(&pag->pag_buf_lock); 1015 xfs_perag_put(pag); 1016 freebuf = true; 1017 } 1018 1019 out_unlock: 1020 spin_unlock(&bp->b_lock); 1021 1022 if (freebuf) 1023 xfs_buf_free(bp); 1024 } 1025 1026 1027 /* 1028 * Lock a buffer object, if it is not already locked. 1029 * 1030 * If we come across a stale, pinned, locked buffer, we know that we are 1031 * being asked to lock a buffer that has been reallocated. Because it is 1032 * pinned, we know that the log has not been pushed to disk and hence it 1033 * will still be locked. Rather than continuing to have trylock attempts 1034 * fail until someone else pushes the log, push it ourselves before 1035 * returning. This means that the xfsaild will not get stuck trying 1036 * to push on stale inode buffers. 1037 */ 1038 int 1039 xfs_buf_trylock( 1040 struct xfs_buf *bp) 1041 { 1042 int locked; 1043 1044 locked = down_trylock(&bp->b_sema) == 0; 1045 if (locked) { 1046 XB_SET_OWNER(bp); 1047 trace_xfs_buf_trylock(bp, _RET_IP_); 1048 } else { 1049 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1050 } 1051 return locked; 1052 } 1053 1054 /* 1055 * Lock a buffer object. 1056 * 1057 * If we come across a stale, pinned, locked buffer, we know that we 1058 * are being asked to lock a buffer that has been reallocated. Because 1059 * it is pinned, we know that the log has not been pushed to disk and 1060 * hence it will still be locked. Rather than sleeping until someone 1061 * else pushes the log, push it ourselves before trying to get the lock. 1062 */ 1063 void 1064 xfs_buf_lock( 1065 struct xfs_buf *bp) 1066 { 1067 trace_xfs_buf_lock(bp, _RET_IP_); 1068 1069 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1070 xfs_log_force(bp->b_target->bt_mount, 0); 1071 down(&bp->b_sema); 1072 XB_SET_OWNER(bp); 1073 1074 trace_xfs_buf_lock_done(bp, _RET_IP_); 1075 } 1076 1077 void 1078 xfs_buf_unlock( 1079 struct xfs_buf *bp) 1080 { 1081 XB_CLEAR_OWNER(bp); 1082 up(&bp->b_sema); 1083 1084 trace_xfs_buf_unlock(bp, _RET_IP_); 1085 } 1086 1087 STATIC void 1088 xfs_buf_wait_unpin( 1089 xfs_buf_t *bp) 1090 { 1091 DECLARE_WAITQUEUE (wait, current); 1092 1093 if (atomic_read(&bp->b_pin_count) == 0) 1094 return; 1095 1096 add_wait_queue(&bp->b_waiters, &wait); 1097 for (;;) { 1098 set_current_state(TASK_UNINTERRUPTIBLE); 1099 if (atomic_read(&bp->b_pin_count) == 0) 1100 break; 1101 io_schedule(); 1102 } 1103 remove_wait_queue(&bp->b_waiters, &wait); 1104 set_current_state(TASK_RUNNING); 1105 } 1106 1107 /* 1108 * Buffer Utility Routines 1109 */ 1110 1111 void 1112 xfs_buf_ioend( 1113 struct xfs_buf *bp) 1114 { 1115 bool read = bp->b_flags & XBF_READ; 1116 1117 trace_xfs_buf_iodone(bp, _RET_IP_); 1118 1119 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1120 1121 /* 1122 * Pull in IO completion errors now. We are guaranteed to be running 1123 * single threaded, so we don't need the lock to read b_io_error. 1124 */ 1125 if (!bp->b_error && bp->b_io_error) 1126 xfs_buf_ioerror(bp, bp->b_io_error); 1127 1128 /* Only validate buffers that were read without errors */ 1129 if (read && !bp->b_error && bp->b_ops) { 1130 ASSERT(!bp->b_iodone); 1131 bp->b_ops->verify_read(bp); 1132 } 1133 1134 if (!bp->b_error) 1135 bp->b_flags |= XBF_DONE; 1136 1137 if (bp->b_iodone) 1138 (*(bp->b_iodone))(bp); 1139 else if (bp->b_flags & XBF_ASYNC) 1140 xfs_buf_relse(bp); 1141 else 1142 complete(&bp->b_iowait); 1143 } 1144 1145 static void 1146 xfs_buf_ioend_work( 1147 struct work_struct *work) 1148 { 1149 struct xfs_buf *bp = 1150 container_of(work, xfs_buf_t, b_ioend_work); 1151 1152 xfs_buf_ioend(bp); 1153 } 1154 1155 static void 1156 xfs_buf_ioend_async( 1157 struct xfs_buf *bp) 1158 { 1159 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1160 queue_work(bp->b_ioend_wq, &bp->b_ioend_work); 1161 } 1162 1163 void 1164 xfs_buf_ioerror( 1165 xfs_buf_t *bp, 1166 int error) 1167 { 1168 ASSERT(error <= 0 && error >= -1000); 1169 bp->b_error = error; 1170 trace_xfs_buf_ioerror(bp, error, _RET_IP_); 1171 } 1172 1173 void 1174 xfs_buf_ioerror_alert( 1175 struct xfs_buf *bp, 1176 const char *func) 1177 { 1178 xfs_alert(bp->b_target->bt_mount, 1179 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d", 1180 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length); 1181 } 1182 1183 int 1184 xfs_bwrite( 1185 struct xfs_buf *bp) 1186 { 1187 int error; 1188 1189 ASSERT(xfs_buf_islocked(bp)); 1190 1191 bp->b_flags |= XBF_WRITE; 1192 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1193 XBF_WRITE_FAIL | XBF_DONE); 1194 1195 error = xfs_buf_submit_wait(bp); 1196 if (error) { 1197 xfs_force_shutdown(bp->b_target->bt_mount, 1198 SHUTDOWN_META_IO_ERROR); 1199 } 1200 return error; 1201 } 1202 1203 static void 1204 xfs_buf_bio_end_io( 1205 struct bio *bio) 1206 { 1207 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1208 1209 /* 1210 * don't overwrite existing errors - otherwise we can lose errors on 1211 * buffers that require multiple bios to complete. 1212 */ 1213 if (bio->bi_error) 1214 cmpxchg(&bp->b_io_error, 0, bio->bi_error); 1215 1216 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1217 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1218 1219 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1220 xfs_buf_ioend_async(bp); 1221 bio_put(bio); 1222 } 1223 1224 static void 1225 xfs_buf_ioapply_map( 1226 struct xfs_buf *bp, 1227 int map, 1228 int *buf_offset, 1229 int *count, 1230 int op, 1231 int op_flags) 1232 { 1233 int page_index; 1234 int total_nr_pages = bp->b_page_count; 1235 int nr_pages; 1236 struct bio *bio; 1237 sector_t sector = bp->b_maps[map].bm_bn; 1238 int size; 1239 int offset; 1240 1241 total_nr_pages = bp->b_page_count; 1242 1243 /* skip the pages in the buffer before the start offset */ 1244 page_index = 0; 1245 offset = *buf_offset; 1246 while (offset >= PAGE_SIZE) { 1247 page_index++; 1248 offset -= PAGE_SIZE; 1249 } 1250 1251 /* 1252 * Limit the IO size to the length of the current vector, and update the 1253 * remaining IO count for the next time around. 1254 */ 1255 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1256 *count -= size; 1257 *buf_offset += size; 1258 1259 next_chunk: 1260 atomic_inc(&bp->b_io_remaining); 1261 nr_pages = min(total_nr_pages, BIO_MAX_PAGES); 1262 1263 bio = bio_alloc(GFP_NOIO, nr_pages); 1264 bio->bi_bdev = bp->b_target->bt_bdev; 1265 bio->bi_iter.bi_sector = sector; 1266 bio->bi_end_io = xfs_buf_bio_end_io; 1267 bio->bi_private = bp; 1268 bio_set_op_attrs(bio, op, op_flags); 1269 1270 for (; size && nr_pages; nr_pages--, page_index++) { 1271 int rbytes, nbytes = PAGE_SIZE - offset; 1272 1273 if (nbytes > size) 1274 nbytes = size; 1275 1276 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1277 offset); 1278 if (rbytes < nbytes) 1279 break; 1280 1281 offset = 0; 1282 sector += BTOBB(nbytes); 1283 size -= nbytes; 1284 total_nr_pages--; 1285 } 1286 1287 if (likely(bio->bi_iter.bi_size)) { 1288 if (xfs_buf_is_vmapped(bp)) { 1289 flush_kernel_vmap_range(bp->b_addr, 1290 xfs_buf_vmap_len(bp)); 1291 } 1292 submit_bio(bio); 1293 if (size) 1294 goto next_chunk; 1295 } else { 1296 /* 1297 * This is guaranteed not to be the last io reference count 1298 * because the caller (xfs_buf_submit) holds a count itself. 1299 */ 1300 atomic_dec(&bp->b_io_remaining); 1301 xfs_buf_ioerror(bp, -EIO); 1302 bio_put(bio); 1303 } 1304 1305 } 1306 1307 STATIC void 1308 _xfs_buf_ioapply( 1309 struct xfs_buf *bp) 1310 { 1311 struct blk_plug plug; 1312 int op; 1313 int op_flags = 0; 1314 int offset; 1315 int size; 1316 int i; 1317 1318 /* 1319 * Make sure we capture only current IO errors rather than stale errors 1320 * left over from previous use of the buffer (e.g. failed readahead). 1321 */ 1322 bp->b_error = 0; 1323 1324 /* 1325 * Initialize the I/O completion workqueue if we haven't yet or the 1326 * submitter has not opted to specify a custom one. 1327 */ 1328 if (!bp->b_ioend_wq) 1329 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue; 1330 1331 if (bp->b_flags & XBF_WRITE) { 1332 op = REQ_OP_WRITE; 1333 if (bp->b_flags & XBF_SYNCIO) 1334 op_flags = REQ_SYNC; 1335 if (bp->b_flags & XBF_FUA) 1336 op_flags |= REQ_FUA; 1337 if (bp->b_flags & XBF_FLUSH) 1338 op_flags |= REQ_PREFLUSH; 1339 1340 /* 1341 * Run the write verifier callback function if it exists. If 1342 * this function fails it will mark the buffer with an error and 1343 * the IO should not be dispatched. 1344 */ 1345 if (bp->b_ops) { 1346 bp->b_ops->verify_write(bp); 1347 if (bp->b_error) { 1348 xfs_force_shutdown(bp->b_target->bt_mount, 1349 SHUTDOWN_CORRUPT_INCORE); 1350 return; 1351 } 1352 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1353 struct xfs_mount *mp = bp->b_target->bt_mount; 1354 1355 /* 1356 * non-crc filesystems don't attach verifiers during 1357 * log recovery, so don't warn for such filesystems. 1358 */ 1359 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1360 xfs_warn(mp, 1361 "%s: no ops on block 0x%llx/0x%x", 1362 __func__, bp->b_bn, bp->b_length); 1363 xfs_hex_dump(bp->b_addr, 64); 1364 dump_stack(); 1365 } 1366 } 1367 } else if (bp->b_flags & XBF_READ_AHEAD) { 1368 op = REQ_OP_READ; 1369 op_flags = REQ_RAHEAD; 1370 } else { 1371 op = REQ_OP_READ; 1372 } 1373 1374 /* we only use the buffer cache for meta-data */ 1375 op_flags |= REQ_META; 1376 1377 /* 1378 * Walk all the vectors issuing IO on them. Set up the initial offset 1379 * into the buffer and the desired IO size before we start - 1380 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1381 * subsequent call. 1382 */ 1383 offset = bp->b_offset; 1384 size = BBTOB(bp->b_io_length); 1385 blk_start_plug(&plug); 1386 for (i = 0; i < bp->b_map_count; i++) { 1387 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags); 1388 if (bp->b_error) 1389 break; 1390 if (size <= 0) 1391 break; /* all done */ 1392 } 1393 blk_finish_plug(&plug); 1394 } 1395 1396 /* 1397 * Asynchronous IO submission path. This transfers the buffer lock ownership and 1398 * the current reference to the IO. It is not safe to reference the buffer after 1399 * a call to this function unless the caller holds an additional reference 1400 * itself. 1401 */ 1402 void 1403 xfs_buf_submit( 1404 struct xfs_buf *bp) 1405 { 1406 trace_xfs_buf_submit(bp, _RET_IP_); 1407 1408 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1409 ASSERT(bp->b_flags & XBF_ASYNC); 1410 1411 /* on shutdown we stale and complete the buffer immediately */ 1412 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1413 xfs_buf_ioerror(bp, -EIO); 1414 bp->b_flags &= ~XBF_DONE; 1415 xfs_buf_stale(bp); 1416 xfs_buf_ioend(bp); 1417 return; 1418 } 1419 1420 if (bp->b_flags & XBF_WRITE) 1421 xfs_buf_wait_unpin(bp); 1422 1423 /* clear the internal error state to avoid spurious errors */ 1424 bp->b_io_error = 0; 1425 1426 /* 1427 * The caller's reference is released during I/O completion. 1428 * This occurs some time after the last b_io_remaining reference is 1429 * released, so after we drop our Io reference we have to have some 1430 * other reference to ensure the buffer doesn't go away from underneath 1431 * us. Take a direct reference to ensure we have safe access to the 1432 * buffer until we are finished with it. 1433 */ 1434 xfs_buf_hold(bp); 1435 1436 /* 1437 * Set the count to 1 initially, this will stop an I/O completion 1438 * callout which happens before we have started all the I/O from calling 1439 * xfs_buf_ioend too early. 1440 */ 1441 atomic_set(&bp->b_io_remaining, 1); 1442 xfs_buf_ioacct_inc(bp); 1443 _xfs_buf_ioapply(bp); 1444 1445 /* 1446 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1447 * reference we took above. If we drop it to zero, run completion so 1448 * that we don't return to the caller with completion still pending. 1449 */ 1450 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1451 if (bp->b_error) 1452 xfs_buf_ioend(bp); 1453 else 1454 xfs_buf_ioend_async(bp); 1455 } 1456 1457 xfs_buf_rele(bp); 1458 /* Note: it is not safe to reference bp now we've dropped our ref */ 1459 } 1460 1461 /* 1462 * Synchronous buffer IO submission path, read or write. 1463 */ 1464 int 1465 xfs_buf_submit_wait( 1466 struct xfs_buf *bp) 1467 { 1468 int error; 1469 1470 trace_xfs_buf_submit_wait(bp, _RET_IP_); 1471 1472 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC))); 1473 1474 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1475 xfs_buf_ioerror(bp, -EIO); 1476 xfs_buf_stale(bp); 1477 bp->b_flags &= ~XBF_DONE; 1478 return -EIO; 1479 } 1480 1481 if (bp->b_flags & XBF_WRITE) 1482 xfs_buf_wait_unpin(bp); 1483 1484 /* clear the internal error state to avoid spurious errors */ 1485 bp->b_io_error = 0; 1486 1487 /* 1488 * For synchronous IO, the IO does not inherit the submitters reference 1489 * count, nor the buffer lock. Hence we cannot release the reference we 1490 * are about to take until we've waited for all IO completion to occur, 1491 * including any xfs_buf_ioend_async() work that may be pending. 1492 */ 1493 xfs_buf_hold(bp); 1494 1495 /* 1496 * Set the count to 1 initially, this will stop an I/O completion 1497 * callout which happens before we have started all the I/O from calling 1498 * xfs_buf_ioend too early. 1499 */ 1500 atomic_set(&bp->b_io_remaining, 1); 1501 _xfs_buf_ioapply(bp); 1502 1503 /* 1504 * make sure we run completion synchronously if it raced with us and is 1505 * already complete. 1506 */ 1507 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1508 xfs_buf_ioend(bp); 1509 1510 /* wait for completion before gathering the error from the buffer */ 1511 trace_xfs_buf_iowait(bp, _RET_IP_); 1512 wait_for_completion(&bp->b_iowait); 1513 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1514 error = bp->b_error; 1515 1516 /* 1517 * all done now, we can release the hold that keeps the buffer 1518 * referenced for the entire IO. 1519 */ 1520 xfs_buf_rele(bp); 1521 return error; 1522 } 1523 1524 void * 1525 xfs_buf_offset( 1526 struct xfs_buf *bp, 1527 size_t offset) 1528 { 1529 struct page *page; 1530 1531 if (bp->b_addr) 1532 return bp->b_addr + offset; 1533 1534 offset += bp->b_offset; 1535 page = bp->b_pages[offset >> PAGE_SHIFT]; 1536 return page_address(page) + (offset & (PAGE_SIZE-1)); 1537 } 1538 1539 /* 1540 * Move data into or out of a buffer. 1541 */ 1542 void 1543 xfs_buf_iomove( 1544 xfs_buf_t *bp, /* buffer to process */ 1545 size_t boff, /* starting buffer offset */ 1546 size_t bsize, /* length to copy */ 1547 void *data, /* data address */ 1548 xfs_buf_rw_t mode) /* read/write/zero flag */ 1549 { 1550 size_t bend; 1551 1552 bend = boff + bsize; 1553 while (boff < bend) { 1554 struct page *page; 1555 int page_index, page_offset, csize; 1556 1557 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1558 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1559 page = bp->b_pages[page_index]; 1560 csize = min_t(size_t, PAGE_SIZE - page_offset, 1561 BBTOB(bp->b_io_length) - boff); 1562 1563 ASSERT((csize + page_offset) <= PAGE_SIZE); 1564 1565 switch (mode) { 1566 case XBRW_ZERO: 1567 memset(page_address(page) + page_offset, 0, csize); 1568 break; 1569 case XBRW_READ: 1570 memcpy(data, page_address(page) + page_offset, csize); 1571 break; 1572 case XBRW_WRITE: 1573 memcpy(page_address(page) + page_offset, data, csize); 1574 } 1575 1576 boff += csize; 1577 data += csize; 1578 } 1579 } 1580 1581 /* 1582 * Handling of buffer targets (buftargs). 1583 */ 1584 1585 /* 1586 * Wait for any bufs with callbacks that have been submitted but have not yet 1587 * returned. These buffers will have an elevated hold count, so wait on those 1588 * while freeing all the buffers only held by the LRU. 1589 */ 1590 static enum lru_status 1591 xfs_buftarg_wait_rele( 1592 struct list_head *item, 1593 struct list_lru_one *lru, 1594 spinlock_t *lru_lock, 1595 void *arg) 1596 1597 { 1598 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1599 struct list_head *dispose = arg; 1600 1601 if (atomic_read(&bp->b_hold) > 1) { 1602 /* need to wait, so skip it this pass */ 1603 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1604 return LRU_SKIP; 1605 } 1606 if (!spin_trylock(&bp->b_lock)) 1607 return LRU_SKIP; 1608 1609 /* 1610 * clear the LRU reference count so the buffer doesn't get 1611 * ignored in xfs_buf_rele(). 1612 */ 1613 atomic_set(&bp->b_lru_ref, 0); 1614 bp->b_state |= XFS_BSTATE_DISPOSE; 1615 list_lru_isolate_move(lru, item, dispose); 1616 spin_unlock(&bp->b_lock); 1617 return LRU_REMOVED; 1618 } 1619 1620 void 1621 xfs_wait_buftarg( 1622 struct xfs_buftarg *btp) 1623 { 1624 LIST_HEAD(dispose); 1625 int loop = 0; 1626 1627 /* 1628 * First wait on the buftarg I/O count for all in-flight buffers to be 1629 * released. This is critical as new buffers do not make the LRU until 1630 * they are released. 1631 * 1632 * Next, flush the buffer workqueue to ensure all completion processing 1633 * has finished. Just waiting on buffer locks is not sufficient for 1634 * async IO as the reference count held over IO is not released until 1635 * after the buffer lock is dropped. Hence we need to ensure here that 1636 * all reference counts have been dropped before we start walking the 1637 * LRU list. 1638 */ 1639 while (percpu_counter_sum(&btp->bt_io_count)) 1640 delay(100); 1641 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1642 1643 /* loop until there is nothing left on the lru list. */ 1644 while (list_lru_count(&btp->bt_lru)) { 1645 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1646 &dispose, LONG_MAX); 1647 1648 while (!list_empty(&dispose)) { 1649 struct xfs_buf *bp; 1650 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1651 list_del_init(&bp->b_lru); 1652 if (bp->b_flags & XBF_WRITE_FAIL) { 1653 xfs_alert(btp->bt_mount, 1654 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!", 1655 (long long)bp->b_bn); 1656 xfs_alert(btp->bt_mount, 1657 "Please run xfs_repair to determine the extent of the problem."); 1658 } 1659 xfs_buf_rele(bp); 1660 } 1661 if (loop++ != 0) 1662 delay(100); 1663 } 1664 } 1665 1666 static enum lru_status 1667 xfs_buftarg_isolate( 1668 struct list_head *item, 1669 struct list_lru_one *lru, 1670 spinlock_t *lru_lock, 1671 void *arg) 1672 { 1673 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1674 struct list_head *dispose = arg; 1675 1676 /* 1677 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1678 * If we fail to get the lock, just skip it. 1679 */ 1680 if (!spin_trylock(&bp->b_lock)) 1681 return LRU_SKIP; 1682 /* 1683 * Decrement the b_lru_ref count unless the value is already 1684 * zero. If the value is already zero, we need to reclaim the 1685 * buffer, otherwise it gets another trip through the LRU. 1686 */ 1687 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1688 spin_unlock(&bp->b_lock); 1689 return LRU_ROTATE; 1690 } 1691 1692 bp->b_state |= XFS_BSTATE_DISPOSE; 1693 list_lru_isolate_move(lru, item, dispose); 1694 spin_unlock(&bp->b_lock); 1695 return LRU_REMOVED; 1696 } 1697 1698 static unsigned long 1699 xfs_buftarg_shrink_scan( 1700 struct shrinker *shrink, 1701 struct shrink_control *sc) 1702 { 1703 struct xfs_buftarg *btp = container_of(shrink, 1704 struct xfs_buftarg, bt_shrinker); 1705 LIST_HEAD(dispose); 1706 unsigned long freed; 1707 1708 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1709 xfs_buftarg_isolate, &dispose); 1710 1711 while (!list_empty(&dispose)) { 1712 struct xfs_buf *bp; 1713 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1714 list_del_init(&bp->b_lru); 1715 xfs_buf_rele(bp); 1716 } 1717 1718 return freed; 1719 } 1720 1721 static unsigned long 1722 xfs_buftarg_shrink_count( 1723 struct shrinker *shrink, 1724 struct shrink_control *sc) 1725 { 1726 struct xfs_buftarg *btp = container_of(shrink, 1727 struct xfs_buftarg, bt_shrinker); 1728 return list_lru_shrink_count(&btp->bt_lru, sc); 1729 } 1730 1731 void 1732 xfs_free_buftarg( 1733 struct xfs_mount *mp, 1734 struct xfs_buftarg *btp) 1735 { 1736 unregister_shrinker(&btp->bt_shrinker); 1737 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1738 percpu_counter_destroy(&btp->bt_io_count); 1739 list_lru_destroy(&btp->bt_lru); 1740 1741 xfs_blkdev_issue_flush(btp); 1742 1743 kmem_free(btp); 1744 } 1745 1746 int 1747 xfs_setsize_buftarg( 1748 xfs_buftarg_t *btp, 1749 unsigned int sectorsize) 1750 { 1751 /* Set up metadata sector size info */ 1752 btp->bt_meta_sectorsize = sectorsize; 1753 btp->bt_meta_sectormask = sectorsize - 1; 1754 1755 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1756 xfs_warn(btp->bt_mount, 1757 "Cannot set_blocksize to %u on device %pg", 1758 sectorsize, btp->bt_bdev); 1759 return -EINVAL; 1760 } 1761 1762 /* Set up device logical sector size mask */ 1763 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1764 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1765 1766 return 0; 1767 } 1768 1769 /* 1770 * When allocating the initial buffer target we have not yet 1771 * read in the superblock, so don't know what sized sectors 1772 * are being used at this early stage. Play safe. 1773 */ 1774 STATIC int 1775 xfs_setsize_buftarg_early( 1776 xfs_buftarg_t *btp, 1777 struct block_device *bdev) 1778 { 1779 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1780 } 1781 1782 xfs_buftarg_t * 1783 xfs_alloc_buftarg( 1784 struct xfs_mount *mp, 1785 struct block_device *bdev) 1786 { 1787 xfs_buftarg_t *btp; 1788 1789 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); 1790 1791 btp->bt_mount = mp; 1792 btp->bt_dev = bdev->bd_dev; 1793 btp->bt_bdev = bdev; 1794 btp->bt_bdi = blk_get_backing_dev_info(bdev); 1795 1796 if (xfs_setsize_buftarg_early(btp, bdev)) 1797 goto error; 1798 1799 if (list_lru_init(&btp->bt_lru)) 1800 goto error; 1801 1802 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 1803 goto error; 1804 1805 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1806 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1807 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1808 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1809 register_shrinker(&btp->bt_shrinker); 1810 return btp; 1811 1812 error: 1813 kmem_free(btp); 1814 return NULL; 1815 } 1816 1817 /* 1818 * Add a buffer to the delayed write list. 1819 * 1820 * This queues a buffer for writeout if it hasn't already been. Note that 1821 * neither this routine nor the buffer list submission functions perform 1822 * any internal synchronization. It is expected that the lists are thread-local 1823 * to the callers. 1824 * 1825 * Returns true if we queued up the buffer, or false if it already had 1826 * been on the buffer list. 1827 */ 1828 bool 1829 xfs_buf_delwri_queue( 1830 struct xfs_buf *bp, 1831 struct list_head *list) 1832 { 1833 ASSERT(xfs_buf_islocked(bp)); 1834 ASSERT(!(bp->b_flags & XBF_READ)); 1835 1836 /* 1837 * If the buffer is already marked delwri it already is queued up 1838 * by someone else for imediate writeout. Just ignore it in that 1839 * case. 1840 */ 1841 if (bp->b_flags & _XBF_DELWRI_Q) { 1842 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1843 return false; 1844 } 1845 1846 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1847 1848 /* 1849 * If a buffer gets written out synchronously or marked stale while it 1850 * is on a delwri list we lazily remove it. To do this, the other party 1851 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1852 * It remains referenced and on the list. In a rare corner case it 1853 * might get readded to a delwri list after the synchronous writeout, in 1854 * which case we need just need to re-add the flag here. 1855 */ 1856 bp->b_flags |= _XBF_DELWRI_Q; 1857 if (list_empty(&bp->b_list)) { 1858 atomic_inc(&bp->b_hold); 1859 list_add_tail(&bp->b_list, list); 1860 } 1861 1862 return true; 1863 } 1864 1865 /* 1866 * Compare function is more complex than it needs to be because 1867 * the return value is only 32 bits and we are doing comparisons 1868 * on 64 bit values 1869 */ 1870 static int 1871 xfs_buf_cmp( 1872 void *priv, 1873 struct list_head *a, 1874 struct list_head *b) 1875 { 1876 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1877 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1878 xfs_daddr_t diff; 1879 1880 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1881 if (diff < 0) 1882 return -1; 1883 if (diff > 0) 1884 return 1; 1885 return 0; 1886 } 1887 1888 /* 1889 * submit buffers for write. 1890 * 1891 * When we have a large buffer list, we do not want to hold all the buffers 1892 * locked while we block on the request queue waiting for IO dispatch. To avoid 1893 * this problem, we lock and submit buffers in groups of 50, thereby minimising 1894 * the lock hold times for lists which may contain thousands of objects. 1895 * 1896 * To do this, we sort the buffer list before we walk the list to lock and 1897 * submit buffers, and we plug and unplug around each group of buffers we 1898 * submit. 1899 */ 1900 static int 1901 xfs_buf_delwri_submit_buffers( 1902 struct list_head *buffer_list, 1903 struct list_head *wait_list) 1904 { 1905 struct xfs_buf *bp, *n; 1906 LIST_HEAD (submit_list); 1907 int pinned = 0; 1908 struct blk_plug plug; 1909 1910 list_sort(NULL, buffer_list, xfs_buf_cmp); 1911 1912 blk_start_plug(&plug); 1913 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1914 if (!wait_list) { 1915 if (xfs_buf_ispinned(bp)) { 1916 pinned++; 1917 continue; 1918 } 1919 if (!xfs_buf_trylock(bp)) 1920 continue; 1921 } else { 1922 xfs_buf_lock(bp); 1923 } 1924 1925 /* 1926 * Someone else might have written the buffer synchronously or 1927 * marked it stale in the meantime. In that case only the 1928 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1929 * reference and remove it from the list here. 1930 */ 1931 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1932 list_del_init(&bp->b_list); 1933 xfs_buf_relse(bp); 1934 continue; 1935 } 1936 1937 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1938 1939 /* 1940 * We do all IO submission async. This means if we need 1941 * to wait for IO completion we need to take an extra 1942 * reference so the buffer is still valid on the other 1943 * side. We need to move the buffer onto the io_list 1944 * at this point so the caller can still access it. 1945 */ 1946 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL); 1947 bp->b_flags |= XBF_WRITE | XBF_ASYNC; 1948 if (wait_list) { 1949 xfs_buf_hold(bp); 1950 list_move_tail(&bp->b_list, wait_list); 1951 } else 1952 list_del_init(&bp->b_list); 1953 1954 xfs_buf_submit(bp); 1955 } 1956 blk_finish_plug(&plug); 1957 1958 return pinned; 1959 } 1960 1961 /* 1962 * Write out a buffer list asynchronously. 1963 * 1964 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1965 * out and not wait for I/O completion on any of the buffers. This interface 1966 * is only safely useable for callers that can track I/O completion by higher 1967 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1968 * function. 1969 */ 1970 int 1971 xfs_buf_delwri_submit_nowait( 1972 struct list_head *buffer_list) 1973 { 1974 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 1975 } 1976 1977 /* 1978 * Write out a buffer list synchronously. 1979 * 1980 * This will take the @buffer_list, write all buffers out and wait for I/O 1981 * completion on all of the buffers. @buffer_list is consumed by the function, 1982 * so callers must have some other way of tracking buffers if they require such 1983 * functionality. 1984 */ 1985 int 1986 xfs_buf_delwri_submit( 1987 struct list_head *buffer_list) 1988 { 1989 LIST_HEAD (wait_list); 1990 int error = 0, error2; 1991 struct xfs_buf *bp; 1992 1993 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 1994 1995 /* Wait for IO to complete. */ 1996 while (!list_empty(&wait_list)) { 1997 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 1998 1999 list_del_init(&bp->b_list); 2000 2001 /* locking the buffer will wait for async IO completion. */ 2002 xfs_buf_lock(bp); 2003 error2 = bp->b_error; 2004 xfs_buf_relse(bp); 2005 if (!error) 2006 error = error2; 2007 } 2008 2009 return error; 2010 } 2011 2012 int __init 2013 xfs_buf_init(void) 2014 { 2015 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 2016 KM_ZONE_HWALIGN, NULL); 2017 if (!xfs_buf_zone) 2018 goto out; 2019 2020 return 0; 2021 2022 out: 2023 return -ENOMEM; 2024 } 2025 2026 void 2027 xfs_buf_terminate(void) 2028 { 2029 kmem_zone_destroy(xfs_buf_zone); 2030 } 2031