xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 4a3fad70)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 #include <linux/sched/mm.h>
37 
38 #include "xfs_format.h"
39 #include "xfs_log_format.h"
40 #include "xfs_trans_resv.h"
41 #include "xfs_sb.h"
42 #include "xfs_mount.h"
43 #include "xfs_trace.h"
44 #include "xfs_log.h"
45 #include "xfs_errortag.h"
46 #include "xfs_error.h"
47 
48 static kmem_zone_t *xfs_buf_zone;
49 
50 #ifdef XFS_BUF_LOCK_TRACKING
51 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
52 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
53 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
54 #else
55 # define XB_SET_OWNER(bp)	do { } while (0)
56 # define XB_CLEAR_OWNER(bp)	do { } while (0)
57 # define XB_GET_OWNER(bp)	do { } while (0)
58 #endif
59 
60 #define xb_to_gfp(flags) \
61 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
62 
63 
64 static inline int
65 xfs_buf_is_vmapped(
66 	struct xfs_buf	*bp)
67 {
68 	/*
69 	 * Return true if the buffer is vmapped.
70 	 *
71 	 * b_addr is null if the buffer is not mapped, but the code is clever
72 	 * enough to know it doesn't have to map a single page, so the check has
73 	 * to be both for b_addr and bp->b_page_count > 1.
74 	 */
75 	return bp->b_addr && bp->b_page_count > 1;
76 }
77 
78 static inline int
79 xfs_buf_vmap_len(
80 	struct xfs_buf	*bp)
81 {
82 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83 }
84 
85 /*
86  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
87  * this buffer. The count is incremented once per buffer (per hold cycle)
88  * because the corresponding decrement is deferred to buffer release. Buffers
89  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
90  * tracking adds unnecessary overhead. This is used for sychronization purposes
91  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
92  * in-flight buffers.
93  *
94  * Buffers that are never released (e.g., superblock, iclog buffers) must set
95  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
96  * never reaches zero and unmount hangs indefinitely.
97  */
98 static inline void
99 xfs_buf_ioacct_inc(
100 	struct xfs_buf	*bp)
101 {
102 	if (bp->b_flags & XBF_NO_IOACCT)
103 		return;
104 
105 	ASSERT(bp->b_flags & XBF_ASYNC);
106 	spin_lock(&bp->b_lock);
107 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
108 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
109 		percpu_counter_inc(&bp->b_target->bt_io_count);
110 	}
111 	spin_unlock(&bp->b_lock);
112 }
113 
114 /*
115  * Clear the in-flight state on a buffer about to be released to the LRU or
116  * freed and unaccount from the buftarg.
117  */
118 static inline void
119 __xfs_buf_ioacct_dec(
120 	struct xfs_buf	*bp)
121 {
122 	lockdep_assert_held(&bp->b_lock);
123 
124 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
125 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
126 		percpu_counter_dec(&bp->b_target->bt_io_count);
127 	}
128 }
129 
130 static inline void
131 xfs_buf_ioacct_dec(
132 	struct xfs_buf	*bp)
133 {
134 	spin_lock(&bp->b_lock);
135 	__xfs_buf_ioacct_dec(bp);
136 	spin_unlock(&bp->b_lock);
137 }
138 
139 /*
140  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
141  * b_lru_ref count so that the buffer is freed immediately when the buffer
142  * reference count falls to zero. If the buffer is already on the LRU, we need
143  * to remove the reference that LRU holds on the buffer.
144  *
145  * This prevents build-up of stale buffers on the LRU.
146  */
147 void
148 xfs_buf_stale(
149 	struct xfs_buf	*bp)
150 {
151 	ASSERT(xfs_buf_islocked(bp));
152 
153 	bp->b_flags |= XBF_STALE;
154 
155 	/*
156 	 * Clear the delwri status so that a delwri queue walker will not
157 	 * flush this buffer to disk now that it is stale. The delwri queue has
158 	 * a reference to the buffer, so this is safe to do.
159 	 */
160 	bp->b_flags &= ~_XBF_DELWRI_Q;
161 
162 	/*
163 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
164 	 * could reset b_flags. There is no guarantee that the buffer is
165 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
166 	 * status now to preserve accounting consistency.
167 	 */
168 	spin_lock(&bp->b_lock);
169 	__xfs_buf_ioacct_dec(bp);
170 
171 	atomic_set(&bp->b_lru_ref, 0);
172 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
173 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
174 		atomic_dec(&bp->b_hold);
175 
176 	ASSERT(atomic_read(&bp->b_hold) >= 1);
177 	spin_unlock(&bp->b_lock);
178 }
179 
180 static int
181 xfs_buf_get_maps(
182 	struct xfs_buf		*bp,
183 	int			map_count)
184 {
185 	ASSERT(bp->b_maps == NULL);
186 	bp->b_map_count = map_count;
187 
188 	if (map_count == 1) {
189 		bp->b_maps = &bp->__b_map;
190 		return 0;
191 	}
192 
193 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
194 				KM_NOFS);
195 	if (!bp->b_maps)
196 		return -ENOMEM;
197 	return 0;
198 }
199 
200 /*
201  *	Frees b_pages if it was allocated.
202  */
203 static void
204 xfs_buf_free_maps(
205 	struct xfs_buf	*bp)
206 {
207 	if (bp->b_maps != &bp->__b_map) {
208 		kmem_free(bp->b_maps);
209 		bp->b_maps = NULL;
210 	}
211 }
212 
213 struct xfs_buf *
214 _xfs_buf_alloc(
215 	struct xfs_buftarg	*target,
216 	struct xfs_buf_map	*map,
217 	int			nmaps,
218 	xfs_buf_flags_t		flags)
219 {
220 	struct xfs_buf		*bp;
221 	int			error;
222 	int			i;
223 
224 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
225 	if (unlikely(!bp))
226 		return NULL;
227 
228 	/*
229 	 * We don't want certain flags to appear in b_flags unless they are
230 	 * specifically set by later operations on the buffer.
231 	 */
232 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
233 
234 	atomic_set(&bp->b_hold, 1);
235 	atomic_set(&bp->b_lru_ref, 1);
236 	init_completion(&bp->b_iowait);
237 	INIT_LIST_HEAD(&bp->b_lru);
238 	INIT_LIST_HEAD(&bp->b_list);
239 	sema_init(&bp->b_sema, 0); /* held, no waiters */
240 	spin_lock_init(&bp->b_lock);
241 	XB_SET_OWNER(bp);
242 	bp->b_target = target;
243 	bp->b_flags = flags;
244 
245 	/*
246 	 * Set length and io_length to the same value initially.
247 	 * I/O routines should use io_length, which will be the same in
248 	 * most cases but may be reset (e.g. XFS recovery).
249 	 */
250 	error = xfs_buf_get_maps(bp, nmaps);
251 	if (error)  {
252 		kmem_zone_free(xfs_buf_zone, bp);
253 		return NULL;
254 	}
255 
256 	bp->b_bn = map[0].bm_bn;
257 	bp->b_length = 0;
258 	for (i = 0; i < nmaps; i++) {
259 		bp->b_maps[i].bm_bn = map[i].bm_bn;
260 		bp->b_maps[i].bm_len = map[i].bm_len;
261 		bp->b_length += map[i].bm_len;
262 	}
263 	bp->b_io_length = bp->b_length;
264 
265 	atomic_set(&bp->b_pin_count, 0);
266 	init_waitqueue_head(&bp->b_waiters);
267 
268 	XFS_STATS_INC(target->bt_mount, xb_create);
269 	trace_xfs_buf_init(bp, _RET_IP_);
270 
271 	return bp;
272 }
273 
274 /*
275  *	Allocate a page array capable of holding a specified number
276  *	of pages, and point the page buf at it.
277  */
278 STATIC int
279 _xfs_buf_get_pages(
280 	xfs_buf_t		*bp,
281 	int			page_count)
282 {
283 	/* Make sure that we have a page list */
284 	if (bp->b_pages == NULL) {
285 		bp->b_page_count = page_count;
286 		if (page_count <= XB_PAGES) {
287 			bp->b_pages = bp->b_page_array;
288 		} else {
289 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
290 						 page_count, KM_NOFS);
291 			if (bp->b_pages == NULL)
292 				return -ENOMEM;
293 		}
294 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
295 	}
296 	return 0;
297 }
298 
299 /*
300  *	Frees b_pages if it was allocated.
301  */
302 STATIC void
303 _xfs_buf_free_pages(
304 	xfs_buf_t	*bp)
305 {
306 	if (bp->b_pages != bp->b_page_array) {
307 		kmem_free(bp->b_pages);
308 		bp->b_pages = NULL;
309 	}
310 }
311 
312 /*
313  *	Releases the specified buffer.
314  *
315  * 	The modification state of any associated pages is left unchanged.
316  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
317  * 	hashed and refcounted buffers
318  */
319 void
320 xfs_buf_free(
321 	xfs_buf_t		*bp)
322 {
323 	trace_xfs_buf_free(bp, _RET_IP_);
324 
325 	ASSERT(list_empty(&bp->b_lru));
326 
327 	if (bp->b_flags & _XBF_PAGES) {
328 		uint		i;
329 
330 		if (xfs_buf_is_vmapped(bp))
331 			vm_unmap_ram(bp->b_addr - bp->b_offset,
332 					bp->b_page_count);
333 
334 		for (i = 0; i < bp->b_page_count; i++) {
335 			struct page	*page = bp->b_pages[i];
336 
337 			__free_page(page);
338 		}
339 	} else if (bp->b_flags & _XBF_KMEM)
340 		kmem_free(bp->b_addr);
341 	_xfs_buf_free_pages(bp);
342 	xfs_buf_free_maps(bp);
343 	kmem_zone_free(xfs_buf_zone, bp);
344 }
345 
346 /*
347  * Allocates all the pages for buffer in question and builds it's page list.
348  */
349 STATIC int
350 xfs_buf_allocate_memory(
351 	xfs_buf_t		*bp,
352 	uint			flags)
353 {
354 	size_t			size;
355 	size_t			nbytes, offset;
356 	gfp_t			gfp_mask = xb_to_gfp(flags);
357 	unsigned short		page_count, i;
358 	xfs_off_t		start, end;
359 	int			error;
360 
361 	/*
362 	 * for buffers that are contained within a single page, just allocate
363 	 * the memory from the heap - there's no need for the complexity of
364 	 * page arrays to keep allocation down to order 0.
365 	 */
366 	size = BBTOB(bp->b_length);
367 	if (size < PAGE_SIZE) {
368 		bp->b_addr = kmem_alloc(size, KM_NOFS);
369 		if (!bp->b_addr) {
370 			/* low memory - use alloc_page loop instead */
371 			goto use_alloc_page;
372 		}
373 
374 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
375 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
376 			/* b_addr spans two pages - use alloc_page instead */
377 			kmem_free(bp->b_addr);
378 			bp->b_addr = NULL;
379 			goto use_alloc_page;
380 		}
381 		bp->b_offset = offset_in_page(bp->b_addr);
382 		bp->b_pages = bp->b_page_array;
383 		bp->b_pages[0] = virt_to_page(bp->b_addr);
384 		bp->b_page_count = 1;
385 		bp->b_flags |= _XBF_KMEM;
386 		return 0;
387 	}
388 
389 use_alloc_page:
390 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
391 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
392 								>> PAGE_SHIFT;
393 	page_count = end - start;
394 	error = _xfs_buf_get_pages(bp, page_count);
395 	if (unlikely(error))
396 		return error;
397 
398 	offset = bp->b_offset;
399 	bp->b_flags |= _XBF_PAGES;
400 
401 	for (i = 0; i < bp->b_page_count; i++) {
402 		struct page	*page;
403 		uint		retries = 0;
404 retry:
405 		page = alloc_page(gfp_mask);
406 		if (unlikely(page == NULL)) {
407 			if (flags & XBF_READ_AHEAD) {
408 				bp->b_page_count = i;
409 				error = -ENOMEM;
410 				goto out_free_pages;
411 			}
412 
413 			/*
414 			 * This could deadlock.
415 			 *
416 			 * But until all the XFS lowlevel code is revamped to
417 			 * handle buffer allocation failures we can't do much.
418 			 */
419 			if (!(++retries % 100))
420 				xfs_err(NULL,
421 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
422 					current->comm, current->pid,
423 					__func__, gfp_mask);
424 
425 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
426 			congestion_wait(BLK_RW_ASYNC, HZ/50);
427 			goto retry;
428 		}
429 
430 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
431 
432 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
433 		size -= nbytes;
434 		bp->b_pages[i] = page;
435 		offset = 0;
436 	}
437 	return 0;
438 
439 out_free_pages:
440 	for (i = 0; i < bp->b_page_count; i++)
441 		__free_page(bp->b_pages[i]);
442 	bp->b_flags &= ~_XBF_PAGES;
443 	return error;
444 }
445 
446 /*
447  *	Map buffer into kernel address-space if necessary.
448  */
449 STATIC int
450 _xfs_buf_map_pages(
451 	xfs_buf_t		*bp,
452 	uint			flags)
453 {
454 	ASSERT(bp->b_flags & _XBF_PAGES);
455 	if (bp->b_page_count == 1) {
456 		/* A single page buffer is always mappable */
457 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
458 	} else if (flags & XBF_UNMAPPED) {
459 		bp->b_addr = NULL;
460 	} else {
461 		int retried = 0;
462 		unsigned nofs_flag;
463 
464 		/*
465 		 * vm_map_ram() will allocate auxillary structures (e.g.
466 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
467 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
468 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
469 		 * memory reclaim re-entering the filesystem here and
470 		 * potentially deadlocking.
471 		 */
472 		nofs_flag = memalloc_nofs_save();
473 		do {
474 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
475 						-1, PAGE_KERNEL);
476 			if (bp->b_addr)
477 				break;
478 			vm_unmap_aliases();
479 		} while (retried++ <= 1);
480 		memalloc_nofs_restore(nofs_flag);
481 
482 		if (!bp->b_addr)
483 			return -ENOMEM;
484 		bp->b_addr += bp->b_offset;
485 	}
486 
487 	return 0;
488 }
489 
490 /*
491  *	Finding and Reading Buffers
492  */
493 static int
494 _xfs_buf_obj_cmp(
495 	struct rhashtable_compare_arg	*arg,
496 	const void			*obj)
497 {
498 	const struct xfs_buf_map	*map = arg->key;
499 	const struct xfs_buf		*bp = obj;
500 
501 	/*
502 	 * The key hashing in the lookup path depends on the key being the
503 	 * first element of the compare_arg, make sure to assert this.
504 	 */
505 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
506 
507 	if (bp->b_bn != map->bm_bn)
508 		return 1;
509 
510 	if (unlikely(bp->b_length != map->bm_len)) {
511 		/*
512 		 * found a block number match. If the range doesn't
513 		 * match, the only way this is allowed is if the buffer
514 		 * in the cache is stale and the transaction that made
515 		 * it stale has not yet committed. i.e. we are
516 		 * reallocating a busy extent. Skip this buffer and
517 		 * continue searching for an exact match.
518 		 */
519 		ASSERT(bp->b_flags & XBF_STALE);
520 		return 1;
521 	}
522 	return 0;
523 }
524 
525 static const struct rhashtable_params xfs_buf_hash_params = {
526 	.min_size		= 32,	/* empty AGs have minimal footprint */
527 	.nelem_hint		= 16,
528 	.key_len		= sizeof(xfs_daddr_t),
529 	.key_offset		= offsetof(struct xfs_buf, b_bn),
530 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
531 	.automatic_shrinking	= true,
532 	.obj_cmpfn		= _xfs_buf_obj_cmp,
533 };
534 
535 int
536 xfs_buf_hash_init(
537 	struct xfs_perag	*pag)
538 {
539 	spin_lock_init(&pag->pag_buf_lock);
540 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
541 }
542 
543 void
544 xfs_buf_hash_destroy(
545 	struct xfs_perag	*pag)
546 {
547 	rhashtable_destroy(&pag->pag_buf_hash);
548 }
549 
550 /*
551  *	Look up, and creates if absent, a lockable buffer for
552  *	a given range of an inode.  The buffer is returned
553  *	locked.	No I/O is implied by this call.
554  */
555 xfs_buf_t *
556 _xfs_buf_find(
557 	struct xfs_buftarg	*btp,
558 	struct xfs_buf_map	*map,
559 	int			nmaps,
560 	xfs_buf_flags_t		flags,
561 	xfs_buf_t		*new_bp)
562 {
563 	struct xfs_perag	*pag;
564 	xfs_buf_t		*bp;
565 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
566 	xfs_daddr_t		eofs;
567 	int			i;
568 
569 	for (i = 0; i < nmaps; i++)
570 		cmap.bm_len += map[i].bm_len;
571 
572 	/* Check for IOs smaller than the sector size / not sector aligned */
573 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
574 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
575 
576 	/*
577 	 * Corrupted block numbers can get through to here, unfortunately, so we
578 	 * have to check that the buffer falls within the filesystem bounds.
579 	 */
580 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
581 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
582 		/*
583 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
584 		 * but none of the higher level infrastructure supports
585 		 * returning a specific error on buffer lookup failures.
586 		 */
587 		xfs_alert(btp->bt_mount,
588 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
589 			  __func__, cmap.bm_bn, eofs);
590 		WARN_ON(1);
591 		return NULL;
592 	}
593 
594 	pag = xfs_perag_get(btp->bt_mount,
595 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
596 
597 	spin_lock(&pag->pag_buf_lock);
598 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
599 				    xfs_buf_hash_params);
600 	if (bp) {
601 		atomic_inc(&bp->b_hold);
602 		goto found;
603 	}
604 
605 	/* No match found */
606 	if (new_bp) {
607 		/* the buffer keeps the perag reference until it is freed */
608 		new_bp->b_pag = pag;
609 		rhashtable_insert_fast(&pag->pag_buf_hash,
610 				       &new_bp->b_rhash_head,
611 				       xfs_buf_hash_params);
612 		spin_unlock(&pag->pag_buf_lock);
613 	} else {
614 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
615 		spin_unlock(&pag->pag_buf_lock);
616 		xfs_perag_put(pag);
617 	}
618 	return new_bp;
619 
620 found:
621 	spin_unlock(&pag->pag_buf_lock);
622 	xfs_perag_put(pag);
623 
624 	if (!xfs_buf_trylock(bp)) {
625 		if (flags & XBF_TRYLOCK) {
626 			xfs_buf_rele(bp);
627 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
628 			return NULL;
629 		}
630 		xfs_buf_lock(bp);
631 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
632 	}
633 
634 	/*
635 	 * if the buffer is stale, clear all the external state associated with
636 	 * it. We need to keep flags such as how we allocated the buffer memory
637 	 * intact here.
638 	 */
639 	if (bp->b_flags & XBF_STALE) {
640 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
641 		ASSERT(bp->b_iodone == NULL);
642 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
643 		bp->b_ops = NULL;
644 	}
645 
646 	trace_xfs_buf_find(bp, flags, _RET_IP_);
647 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
648 	return bp;
649 }
650 
651 /*
652  * Assembles a buffer covering the specified range. The code is optimised for
653  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
654  * more hits than misses.
655  */
656 struct xfs_buf *
657 xfs_buf_get_map(
658 	struct xfs_buftarg	*target,
659 	struct xfs_buf_map	*map,
660 	int			nmaps,
661 	xfs_buf_flags_t		flags)
662 {
663 	struct xfs_buf		*bp;
664 	struct xfs_buf		*new_bp;
665 	int			error = 0;
666 
667 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
668 	if (likely(bp))
669 		goto found;
670 
671 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
672 	if (unlikely(!new_bp))
673 		return NULL;
674 
675 	error = xfs_buf_allocate_memory(new_bp, flags);
676 	if (error) {
677 		xfs_buf_free(new_bp);
678 		return NULL;
679 	}
680 
681 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
682 	if (!bp) {
683 		xfs_buf_free(new_bp);
684 		return NULL;
685 	}
686 
687 	if (bp != new_bp)
688 		xfs_buf_free(new_bp);
689 
690 found:
691 	if (!bp->b_addr) {
692 		error = _xfs_buf_map_pages(bp, flags);
693 		if (unlikely(error)) {
694 			xfs_warn(target->bt_mount,
695 				"%s: failed to map pagesn", __func__);
696 			xfs_buf_relse(bp);
697 			return NULL;
698 		}
699 	}
700 
701 	/*
702 	 * Clear b_error if this is a lookup from a caller that doesn't expect
703 	 * valid data to be found in the buffer.
704 	 */
705 	if (!(flags & XBF_READ))
706 		xfs_buf_ioerror(bp, 0);
707 
708 	XFS_STATS_INC(target->bt_mount, xb_get);
709 	trace_xfs_buf_get(bp, flags, _RET_IP_);
710 	return bp;
711 }
712 
713 STATIC int
714 _xfs_buf_read(
715 	xfs_buf_t		*bp,
716 	xfs_buf_flags_t		flags)
717 {
718 	ASSERT(!(flags & XBF_WRITE));
719 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
720 
721 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
722 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
723 
724 	if (flags & XBF_ASYNC) {
725 		xfs_buf_submit(bp);
726 		return 0;
727 	}
728 	return xfs_buf_submit_wait(bp);
729 }
730 
731 xfs_buf_t *
732 xfs_buf_read_map(
733 	struct xfs_buftarg	*target,
734 	struct xfs_buf_map	*map,
735 	int			nmaps,
736 	xfs_buf_flags_t		flags,
737 	const struct xfs_buf_ops *ops)
738 {
739 	struct xfs_buf		*bp;
740 
741 	flags |= XBF_READ;
742 
743 	bp = xfs_buf_get_map(target, map, nmaps, flags);
744 	if (bp) {
745 		trace_xfs_buf_read(bp, flags, _RET_IP_);
746 
747 		if (!(bp->b_flags & XBF_DONE)) {
748 			XFS_STATS_INC(target->bt_mount, xb_get_read);
749 			bp->b_ops = ops;
750 			_xfs_buf_read(bp, flags);
751 		} else if (flags & XBF_ASYNC) {
752 			/*
753 			 * Read ahead call which is already satisfied,
754 			 * drop the buffer
755 			 */
756 			xfs_buf_relse(bp);
757 			return NULL;
758 		} else {
759 			/* We do not want read in the flags */
760 			bp->b_flags &= ~XBF_READ;
761 		}
762 	}
763 
764 	return bp;
765 }
766 
767 /*
768  *	If we are not low on memory then do the readahead in a deadlock
769  *	safe manner.
770  */
771 void
772 xfs_buf_readahead_map(
773 	struct xfs_buftarg	*target,
774 	struct xfs_buf_map	*map,
775 	int			nmaps,
776 	const struct xfs_buf_ops *ops)
777 {
778 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
779 		return;
780 
781 	xfs_buf_read_map(target, map, nmaps,
782 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
783 }
784 
785 /*
786  * Read an uncached buffer from disk. Allocates and returns a locked
787  * buffer containing the disk contents or nothing.
788  */
789 int
790 xfs_buf_read_uncached(
791 	struct xfs_buftarg	*target,
792 	xfs_daddr_t		daddr,
793 	size_t			numblks,
794 	int			flags,
795 	struct xfs_buf		**bpp,
796 	const struct xfs_buf_ops *ops)
797 {
798 	struct xfs_buf		*bp;
799 
800 	*bpp = NULL;
801 
802 	bp = xfs_buf_get_uncached(target, numblks, flags);
803 	if (!bp)
804 		return -ENOMEM;
805 
806 	/* set up the buffer for a read IO */
807 	ASSERT(bp->b_map_count == 1);
808 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
809 	bp->b_maps[0].bm_bn = daddr;
810 	bp->b_flags |= XBF_READ;
811 	bp->b_ops = ops;
812 
813 	xfs_buf_submit_wait(bp);
814 	if (bp->b_error) {
815 		int	error = bp->b_error;
816 		xfs_buf_relse(bp);
817 		return error;
818 	}
819 
820 	*bpp = bp;
821 	return 0;
822 }
823 
824 /*
825  * Return a buffer allocated as an empty buffer and associated to external
826  * memory via xfs_buf_associate_memory() back to it's empty state.
827  */
828 void
829 xfs_buf_set_empty(
830 	struct xfs_buf		*bp,
831 	size_t			numblks)
832 {
833 	if (bp->b_pages)
834 		_xfs_buf_free_pages(bp);
835 
836 	bp->b_pages = NULL;
837 	bp->b_page_count = 0;
838 	bp->b_addr = NULL;
839 	bp->b_length = numblks;
840 	bp->b_io_length = numblks;
841 
842 	ASSERT(bp->b_map_count == 1);
843 	bp->b_bn = XFS_BUF_DADDR_NULL;
844 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
845 	bp->b_maps[0].bm_len = bp->b_length;
846 }
847 
848 static inline struct page *
849 mem_to_page(
850 	void			*addr)
851 {
852 	if ((!is_vmalloc_addr(addr))) {
853 		return virt_to_page(addr);
854 	} else {
855 		return vmalloc_to_page(addr);
856 	}
857 }
858 
859 int
860 xfs_buf_associate_memory(
861 	xfs_buf_t		*bp,
862 	void			*mem,
863 	size_t			len)
864 {
865 	int			rval;
866 	int			i = 0;
867 	unsigned long		pageaddr;
868 	unsigned long		offset;
869 	size_t			buflen;
870 	int			page_count;
871 
872 	pageaddr = (unsigned long)mem & PAGE_MASK;
873 	offset = (unsigned long)mem - pageaddr;
874 	buflen = PAGE_ALIGN(len + offset);
875 	page_count = buflen >> PAGE_SHIFT;
876 
877 	/* Free any previous set of page pointers */
878 	if (bp->b_pages)
879 		_xfs_buf_free_pages(bp);
880 
881 	bp->b_pages = NULL;
882 	bp->b_addr = mem;
883 
884 	rval = _xfs_buf_get_pages(bp, page_count);
885 	if (rval)
886 		return rval;
887 
888 	bp->b_offset = offset;
889 
890 	for (i = 0; i < bp->b_page_count; i++) {
891 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
892 		pageaddr += PAGE_SIZE;
893 	}
894 
895 	bp->b_io_length = BTOBB(len);
896 	bp->b_length = BTOBB(buflen);
897 
898 	return 0;
899 }
900 
901 xfs_buf_t *
902 xfs_buf_get_uncached(
903 	struct xfs_buftarg	*target,
904 	size_t			numblks,
905 	int			flags)
906 {
907 	unsigned long		page_count;
908 	int			error, i;
909 	struct xfs_buf		*bp;
910 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
911 
912 	/* flags might contain irrelevant bits, pass only what we care about */
913 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
914 	if (unlikely(bp == NULL))
915 		goto fail;
916 
917 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
918 	error = _xfs_buf_get_pages(bp, page_count);
919 	if (error)
920 		goto fail_free_buf;
921 
922 	for (i = 0; i < page_count; i++) {
923 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
924 		if (!bp->b_pages[i])
925 			goto fail_free_mem;
926 	}
927 	bp->b_flags |= _XBF_PAGES;
928 
929 	error = _xfs_buf_map_pages(bp, 0);
930 	if (unlikely(error)) {
931 		xfs_warn(target->bt_mount,
932 			"%s: failed to map pages", __func__);
933 		goto fail_free_mem;
934 	}
935 
936 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
937 	return bp;
938 
939  fail_free_mem:
940 	while (--i >= 0)
941 		__free_page(bp->b_pages[i]);
942 	_xfs_buf_free_pages(bp);
943  fail_free_buf:
944 	xfs_buf_free_maps(bp);
945 	kmem_zone_free(xfs_buf_zone, bp);
946  fail:
947 	return NULL;
948 }
949 
950 /*
951  *	Increment reference count on buffer, to hold the buffer concurrently
952  *	with another thread which may release (free) the buffer asynchronously.
953  *	Must hold the buffer already to call this function.
954  */
955 void
956 xfs_buf_hold(
957 	xfs_buf_t		*bp)
958 {
959 	trace_xfs_buf_hold(bp, _RET_IP_);
960 	atomic_inc(&bp->b_hold);
961 }
962 
963 /*
964  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
965  * placed on LRU or freed (depending on b_lru_ref).
966  */
967 void
968 xfs_buf_rele(
969 	xfs_buf_t		*bp)
970 {
971 	struct xfs_perag	*pag = bp->b_pag;
972 	bool			release;
973 	bool			freebuf = false;
974 
975 	trace_xfs_buf_rele(bp, _RET_IP_);
976 
977 	if (!pag) {
978 		ASSERT(list_empty(&bp->b_lru));
979 		if (atomic_dec_and_test(&bp->b_hold)) {
980 			xfs_buf_ioacct_dec(bp);
981 			xfs_buf_free(bp);
982 		}
983 		return;
984 	}
985 
986 	ASSERT(atomic_read(&bp->b_hold) > 0);
987 
988 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
989 	spin_lock(&bp->b_lock);
990 	if (!release) {
991 		/*
992 		 * Drop the in-flight state if the buffer is already on the LRU
993 		 * and it holds the only reference. This is racy because we
994 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
995 		 * ensures the decrement occurs only once per-buf.
996 		 */
997 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
998 			__xfs_buf_ioacct_dec(bp);
999 		goto out_unlock;
1000 	}
1001 
1002 	/* the last reference has been dropped ... */
1003 	__xfs_buf_ioacct_dec(bp);
1004 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1005 		/*
1006 		 * If the buffer is added to the LRU take a new reference to the
1007 		 * buffer for the LRU and clear the (now stale) dispose list
1008 		 * state flag
1009 		 */
1010 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1011 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1012 			atomic_inc(&bp->b_hold);
1013 		}
1014 		spin_unlock(&pag->pag_buf_lock);
1015 	} else {
1016 		/*
1017 		 * most of the time buffers will already be removed from the
1018 		 * LRU, so optimise that case by checking for the
1019 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1020 		 * was on was the disposal list
1021 		 */
1022 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1023 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1024 		} else {
1025 			ASSERT(list_empty(&bp->b_lru));
1026 		}
1027 
1028 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1029 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1030 				       xfs_buf_hash_params);
1031 		spin_unlock(&pag->pag_buf_lock);
1032 		xfs_perag_put(pag);
1033 		freebuf = true;
1034 	}
1035 
1036 out_unlock:
1037 	spin_unlock(&bp->b_lock);
1038 
1039 	if (freebuf)
1040 		xfs_buf_free(bp);
1041 }
1042 
1043 
1044 /*
1045  *	Lock a buffer object, if it is not already locked.
1046  *
1047  *	If we come across a stale, pinned, locked buffer, we know that we are
1048  *	being asked to lock a buffer that has been reallocated. Because it is
1049  *	pinned, we know that the log has not been pushed to disk and hence it
1050  *	will still be locked.  Rather than continuing to have trylock attempts
1051  *	fail until someone else pushes the log, push it ourselves before
1052  *	returning.  This means that the xfsaild will not get stuck trying
1053  *	to push on stale inode buffers.
1054  */
1055 int
1056 xfs_buf_trylock(
1057 	struct xfs_buf		*bp)
1058 {
1059 	int			locked;
1060 
1061 	locked = down_trylock(&bp->b_sema) == 0;
1062 	if (locked) {
1063 		XB_SET_OWNER(bp);
1064 		trace_xfs_buf_trylock(bp, _RET_IP_);
1065 	} else {
1066 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1067 	}
1068 	return locked;
1069 }
1070 
1071 /*
1072  *	Lock a buffer object.
1073  *
1074  *	If we come across a stale, pinned, locked buffer, we know that we
1075  *	are being asked to lock a buffer that has been reallocated. Because
1076  *	it is pinned, we know that the log has not been pushed to disk and
1077  *	hence it will still be locked. Rather than sleeping until someone
1078  *	else pushes the log, push it ourselves before trying to get the lock.
1079  */
1080 void
1081 xfs_buf_lock(
1082 	struct xfs_buf		*bp)
1083 {
1084 	trace_xfs_buf_lock(bp, _RET_IP_);
1085 
1086 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1087 		xfs_log_force(bp->b_target->bt_mount, 0);
1088 	down(&bp->b_sema);
1089 	XB_SET_OWNER(bp);
1090 
1091 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1092 }
1093 
1094 void
1095 xfs_buf_unlock(
1096 	struct xfs_buf		*bp)
1097 {
1098 	ASSERT(xfs_buf_islocked(bp));
1099 
1100 	XB_CLEAR_OWNER(bp);
1101 	up(&bp->b_sema);
1102 
1103 	trace_xfs_buf_unlock(bp, _RET_IP_);
1104 }
1105 
1106 STATIC void
1107 xfs_buf_wait_unpin(
1108 	xfs_buf_t		*bp)
1109 {
1110 	DECLARE_WAITQUEUE	(wait, current);
1111 
1112 	if (atomic_read(&bp->b_pin_count) == 0)
1113 		return;
1114 
1115 	add_wait_queue(&bp->b_waiters, &wait);
1116 	for (;;) {
1117 		set_current_state(TASK_UNINTERRUPTIBLE);
1118 		if (atomic_read(&bp->b_pin_count) == 0)
1119 			break;
1120 		io_schedule();
1121 	}
1122 	remove_wait_queue(&bp->b_waiters, &wait);
1123 	set_current_state(TASK_RUNNING);
1124 }
1125 
1126 /*
1127  *	Buffer Utility Routines
1128  */
1129 
1130 void
1131 xfs_buf_ioend(
1132 	struct xfs_buf	*bp)
1133 {
1134 	bool		read = bp->b_flags & XBF_READ;
1135 
1136 	trace_xfs_buf_iodone(bp, _RET_IP_);
1137 
1138 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1139 
1140 	/*
1141 	 * Pull in IO completion errors now. We are guaranteed to be running
1142 	 * single threaded, so we don't need the lock to read b_io_error.
1143 	 */
1144 	if (!bp->b_error && bp->b_io_error)
1145 		xfs_buf_ioerror(bp, bp->b_io_error);
1146 
1147 	/* Only validate buffers that were read without errors */
1148 	if (read && !bp->b_error && bp->b_ops) {
1149 		ASSERT(!bp->b_iodone);
1150 		bp->b_ops->verify_read(bp);
1151 	}
1152 
1153 	if (!bp->b_error)
1154 		bp->b_flags |= XBF_DONE;
1155 
1156 	if (bp->b_iodone)
1157 		(*(bp->b_iodone))(bp);
1158 	else if (bp->b_flags & XBF_ASYNC)
1159 		xfs_buf_relse(bp);
1160 	else
1161 		complete(&bp->b_iowait);
1162 }
1163 
1164 static void
1165 xfs_buf_ioend_work(
1166 	struct work_struct	*work)
1167 {
1168 	struct xfs_buf		*bp =
1169 		container_of(work, xfs_buf_t, b_ioend_work);
1170 
1171 	xfs_buf_ioend(bp);
1172 }
1173 
1174 static void
1175 xfs_buf_ioend_async(
1176 	struct xfs_buf	*bp)
1177 {
1178 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1179 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1180 }
1181 
1182 void
1183 xfs_buf_ioerror(
1184 	xfs_buf_t		*bp,
1185 	int			error)
1186 {
1187 	ASSERT(error <= 0 && error >= -1000);
1188 	bp->b_error = error;
1189 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1190 }
1191 
1192 void
1193 xfs_buf_ioerror_alert(
1194 	struct xfs_buf		*bp,
1195 	const char		*func)
1196 {
1197 	xfs_alert(bp->b_target->bt_mount,
1198 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1199 		(uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1200 }
1201 
1202 int
1203 xfs_bwrite(
1204 	struct xfs_buf		*bp)
1205 {
1206 	int			error;
1207 
1208 	ASSERT(xfs_buf_islocked(bp));
1209 
1210 	bp->b_flags |= XBF_WRITE;
1211 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1212 			 XBF_WRITE_FAIL | XBF_DONE);
1213 
1214 	error = xfs_buf_submit_wait(bp);
1215 	if (error) {
1216 		xfs_force_shutdown(bp->b_target->bt_mount,
1217 				   SHUTDOWN_META_IO_ERROR);
1218 	}
1219 	return error;
1220 }
1221 
1222 static void
1223 xfs_buf_bio_end_io(
1224 	struct bio		*bio)
1225 {
1226 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1227 
1228 	/*
1229 	 * don't overwrite existing errors - otherwise we can lose errors on
1230 	 * buffers that require multiple bios to complete.
1231 	 */
1232 	if (bio->bi_status) {
1233 		int error = blk_status_to_errno(bio->bi_status);
1234 
1235 		cmpxchg(&bp->b_io_error, 0, error);
1236 	}
1237 
1238 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1239 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1240 
1241 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1242 		xfs_buf_ioend_async(bp);
1243 	bio_put(bio);
1244 }
1245 
1246 static void
1247 xfs_buf_ioapply_map(
1248 	struct xfs_buf	*bp,
1249 	int		map,
1250 	int		*buf_offset,
1251 	int		*count,
1252 	int		op,
1253 	int		op_flags)
1254 {
1255 	int		page_index;
1256 	int		total_nr_pages = bp->b_page_count;
1257 	int		nr_pages;
1258 	struct bio	*bio;
1259 	sector_t	sector =  bp->b_maps[map].bm_bn;
1260 	int		size;
1261 	int		offset;
1262 
1263 	/* skip the pages in the buffer before the start offset */
1264 	page_index = 0;
1265 	offset = *buf_offset;
1266 	while (offset >= PAGE_SIZE) {
1267 		page_index++;
1268 		offset -= PAGE_SIZE;
1269 	}
1270 
1271 	/*
1272 	 * Limit the IO size to the length of the current vector, and update the
1273 	 * remaining IO count for the next time around.
1274 	 */
1275 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1276 	*count -= size;
1277 	*buf_offset += size;
1278 
1279 next_chunk:
1280 	atomic_inc(&bp->b_io_remaining);
1281 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1282 
1283 	bio = bio_alloc(GFP_NOIO, nr_pages);
1284 	bio_set_dev(bio, bp->b_target->bt_bdev);
1285 	bio->bi_iter.bi_sector = sector;
1286 	bio->bi_end_io = xfs_buf_bio_end_io;
1287 	bio->bi_private = bp;
1288 	bio_set_op_attrs(bio, op, op_flags);
1289 
1290 	for (; size && nr_pages; nr_pages--, page_index++) {
1291 		int	rbytes, nbytes = PAGE_SIZE - offset;
1292 
1293 		if (nbytes > size)
1294 			nbytes = size;
1295 
1296 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1297 				      offset);
1298 		if (rbytes < nbytes)
1299 			break;
1300 
1301 		offset = 0;
1302 		sector += BTOBB(nbytes);
1303 		size -= nbytes;
1304 		total_nr_pages--;
1305 	}
1306 
1307 	if (likely(bio->bi_iter.bi_size)) {
1308 		if (xfs_buf_is_vmapped(bp)) {
1309 			flush_kernel_vmap_range(bp->b_addr,
1310 						xfs_buf_vmap_len(bp));
1311 		}
1312 		submit_bio(bio);
1313 		if (size)
1314 			goto next_chunk;
1315 	} else {
1316 		/*
1317 		 * This is guaranteed not to be the last io reference count
1318 		 * because the caller (xfs_buf_submit) holds a count itself.
1319 		 */
1320 		atomic_dec(&bp->b_io_remaining);
1321 		xfs_buf_ioerror(bp, -EIO);
1322 		bio_put(bio);
1323 	}
1324 
1325 }
1326 
1327 STATIC void
1328 _xfs_buf_ioapply(
1329 	struct xfs_buf	*bp)
1330 {
1331 	struct blk_plug	plug;
1332 	int		op;
1333 	int		op_flags = 0;
1334 	int		offset;
1335 	int		size;
1336 	int		i;
1337 
1338 	/*
1339 	 * Make sure we capture only current IO errors rather than stale errors
1340 	 * left over from previous use of the buffer (e.g. failed readahead).
1341 	 */
1342 	bp->b_error = 0;
1343 
1344 	/*
1345 	 * Initialize the I/O completion workqueue if we haven't yet or the
1346 	 * submitter has not opted to specify a custom one.
1347 	 */
1348 	if (!bp->b_ioend_wq)
1349 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1350 
1351 	if (bp->b_flags & XBF_WRITE) {
1352 		op = REQ_OP_WRITE;
1353 		if (bp->b_flags & XBF_SYNCIO)
1354 			op_flags = REQ_SYNC;
1355 		if (bp->b_flags & XBF_FUA)
1356 			op_flags |= REQ_FUA;
1357 		if (bp->b_flags & XBF_FLUSH)
1358 			op_flags |= REQ_PREFLUSH;
1359 
1360 		/*
1361 		 * Run the write verifier callback function if it exists. If
1362 		 * this function fails it will mark the buffer with an error and
1363 		 * the IO should not be dispatched.
1364 		 */
1365 		if (bp->b_ops) {
1366 			bp->b_ops->verify_write(bp);
1367 			if (bp->b_error) {
1368 				xfs_force_shutdown(bp->b_target->bt_mount,
1369 						   SHUTDOWN_CORRUPT_INCORE);
1370 				return;
1371 			}
1372 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1373 			struct xfs_mount *mp = bp->b_target->bt_mount;
1374 
1375 			/*
1376 			 * non-crc filesystems don't attach verifiers during
1377 			 * log recovery, so don't warn for such filesystems.
1378 			 */
1379 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1380 				xfs_warn(mp,
1381 					"%s: no ops on block 0x%llx/0x%x",
1382 					__func__, bp->b_bn, bp->b_length);
1383 				xfs_hex_dump(bp->b_addr, 64);
1384 				dump_stack();
1385 			}
1386 		}
1387 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1388 		op = REQ_OP_READ;
1389 		op_flags = REQ_RAHEAD;
1390 	} else {
1391 		op = REQ_OP_READ;
1392 	}
1393 
1394 	/* we only use the buffer cache for meta-data */
1395 	op_flags |= REQ_META;
1396 
1397 	/*
1398 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1399 	 * into the buffer and the desired IO size before we start -
1400 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1401 	 * subsequent call.
1402 	 */
1403 	offset = bp->b_offset;
1404 	size = BBTOB(bp->b_io_length);
1405 	blk_start_plug(&plug);
1406 	for (i = 0; i < bp->b_map_count; i++) {
1407 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1408 		if (bp->b_error)
1409 			break;
1410 		if (size <= 0)
1411 			break;	/* all done */
1412 	}
1413 	blk_finish_plug(&plug);
1414 }
1415 
1416 /*
1417  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1418  * the current reference to the IO. It is not safe to reference the buffer after
1419  * a call to this function unless the caller holds an additional reference
1420  * itself.
1421  */
1422 void
1423 xfs_buf_submit(
1424 	struct xfs_buf	*bp)
1425 {
1426 	trace_xfs_buf_submit(bp, _RET_IP_);
1427 
1428 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1429 	ASSERT(bp->b_flags & XBF_ASYNC);
1430 
1431 	/* on shutdown we stale and complete the buffer immediately */
1432 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1433 		xfs_buf_ioerror(bp, -EIO);
1434 		bp->b_flags &= ~XBF_DONE;
1435 		xfs_buf_stale(bp);
1436 		xfs_buf_ioend(bp);
1437 		return;
1438 	}
1439 
1440 	if (bp->b_flags & XBF_WRITE)
1441 		xfs_buf_wait_unpin(bp);
1442 
1443 	/* clear the internal error state to avoid spurious errors */
1444 	bp->b_io_error = 0;
1445 
1446 	/*
1447 	 * The caller's reference is released during I/O completion.
1448 	 * This occurs some time after the last b_io_remaining reference is
1449 	 * released, so after we drop our Io reference we have to have some
1450 	 * other reference to ensure the buffer doesn't go away from underneath
1451 	 * us. Take a direct reference to ensure we have safe access to the
1452 	 * buffer until we are finished with it.
1453 	 */
1454 	xfs_buf_hold(bp);
1455 
1456 	/*
1457 	 * Set the count to 1 initially, this will stop an I/O completion
1458 	 * callout which happens before we have started all the I/O from calling
1459 	 * xfs_buf_ioend too early.
1460 	 */
1461 	atomic_set(&bp->b_io_remaining, 1);
1462 	xfs_buf_ioacct_inc(bp);
1463 	_xfs_buf_ioapply(bp);
1464 
1465 	/*
1466 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1467 	 * reference we took above. If we drop it to zero, run completion so
1468 	 * that we don't return to the caller with completion still pending.
1469 	 */
1470 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1471 		if (bp->b_error)
1472 			xfs_buf_ioend(bp);
1473 		else
1474 			xfs_buf_ioend_async(bp);
1475 	}
1476 
1477 	xfs_buf_rele(bp);
1478 	/* Note: it is not safe to reference bp now we've dropped our ref */
1479 }
1480 
1481 /*
1482  * Synchronous buffer IO submission path, read or write.
1483  */
1484 int
1485 xfs_buf_submit_wait(
1486 	struct xfs_buf	*bp)
1487 {
1488 	int		error;
1489 
1490 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1491 
1492 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1493 
1494 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1495 		xfs_buf_ioerror(bp, -EIO);
1496 		xfs_buf_stale(bp);
1497 		bp->b_flags &= ~XBF_DONE;
1498 		return -EIO;
1499 	}
1500 
1501 	if (bp->b_flags & XBF_WRITE)
1502 		xfs_buf_wait_unpin(bp);
1503 
1504 	/* clear the internal error state to avoid spurious errors */
1505 	bp->b_io_error = 0;
1506 
1507 	/*
1508 	 * For synchronous IO, the IO does not inherit the submitters reference
1509 	 * count, nor the buffer lock. Hence we cannot release the reference we
1510 	 * are about to take until we've waited for all IO completion to occur,
1511 	 * including any xfs_buf_ioend_async() work that may be pending.
1512 	 */
1513 	xfs_buf_hold(bp);
1514 
1515 	/*
1516 	 * Set the count to 1 initially, this will stop an I/O completion
1517 	 * callout which happens before we have started all the I/O from calling
1518 	 * xfs_buf_ioend too early.
1519 	 */
1520 	atomic_set(&bp->b_io_remaining, 1);
1521 	_xfs_buf_ioapply(bp);
1522 
1523 	/*
1524 	 * make sure we run completion synchronously if it raced with us and is
1525 	 * already complete.
1526 	 */
1527 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1528 		xfs_buf_ioend(bp);
1529 
1530 	/* wait for completion before gathering the error from the buffer */
1531 	trace_xfs_buf_iowait(bp, _RET_IP_);
1532 	wait_for_completion(&bp->b_iowait);
1533 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1534 	error = bp->b_error;
1535 
1536 	/*
1537 	 * all done now, we can release the hold that keeps the buffer
1538 	 * referenced for the entire IO.
1539 	 */
1540 	xfs_buf_rele(bp);
1541 	return error;
1542 }
1543 
1544 void *
1545 xfs_buf_offset(
1546 	struct xfs_buf		*bp,
1547 	size_t			offset)
1548 {
1549 	struct page		*page;
1550 
1551 	if (bp->b_addr)
1552 		return bp->b_addr + offset;
1553 
1554 	offset += bp->b_offset;
1555 	page = bp->b_pages[offset >> PAGE_SHIFT];
1556 	return page_address(page) + (offset & (PAGE_SIZE-1));
1557 }
1558 
1559 /*
1560  *	Move data into or out of a buffer.
1561  */
1562 void
1563 xfs_buf_iomove(
1564 	xfs_buf_t		*bp,	/* buffer to process		*/
1565 	size_t			boff,	/* starting buffer offset	*/
1566 	size_t			bsize,	/* length to copy		*/
1567 	void			*data,	/* data address			*/
1568 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1569 {
1570 	size_t			bend;
1571 
1572 	bend = boff + bsize;
1573 	while (boff < bend) {
1574 		struct page	*page;
1575 		int		page_index, page_offset, csize;
1576 
1577 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1578 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1579 		page = bp->b_pages[page_index];
1580 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1581 				      BBTOB(bp->b_io_length) - boff);
1582 
1583 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1584 
1585 		switch (mode) {
1586 		case XBRW_ZERO:
1587 			memset(page_address(page) + page_offset, 0, csize);
1588 			break;
1589 		case XBRW_READ:
1590 			memcpy(data, page_address(page) + page_offset, csize);
1591 			break;
1592 		case XBRW_WRITE:
1593 			memcpy(page_address(page) + page_offset, data, csize);
1594 		}
1595 
1596 		boff += csize;
1597 		data += csize;
1598 	}
1599 }
1600 
1601 /*
1602  *	Handling of buffer targets (buftargs).
1603  */
1604 
1605 /*
1606  * Wait for any bufs with callbacks that have been submitted but have not yet
1607  * returned. These buffers will have an elevated hold count, so wait on those
1608  * while freeing all the buffers only held by the LRU.
1609  */
1610 static enum lru_status
1611 xfs_buftarg_wait_rele(
1612 	struct list_head	*item,
1613 	struct list_lru_one	*lru,
1614 	spinlock_t		*lru_lock,
1615 	void			*arg)
1616 
1617 {
1618 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1619 	struct list_head	*dispose = arg;
1620 
1621 	if (atomic_read(&bp->b_hold) > 1) {
1622 		/* need to wait, so skip it this pass */
1623 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1624 		return LRU_SKIP;
1625 	}
1626 	if (!spin_trylock(&bp->b_lock))
1627 		return LRU_SKIP;
1628 
1629 	/*
1630 	 * clear the LRU reference count so the buffer doesn't get
1631 	 * ignored in xfs_buf_rele().
1632 	 */
1633 	atomic_set(&bp->b_lru_ref, 0);
1634 	bp->b_state |= XFS_BSTATE_DISPOSE;
1635 	list_lru_isolate_move(lru, item, dispose);
1636 	spin_unlock(&bp->b_lock);
1637 	return LRU_REMOVED;
1638 }
1639 
1640 void
1641 xfs_wait_buftarg(
1642 	struct xfs_buftarg	*btp)
1643 {
1644 	LIST_HEAD(dispose);
1645 	int loop = 0;
1646 
1647 	/*
1648 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1649 	 * released. This is critical as new buffers do not make the LRU until
1650 	 * they are released.
1651 	 *
1652 	 * Next, flush the buffer workqueue to ensure all completion processing
1653 	 * has finished. Just waiting on buffer locks is not sufficient for
1654 	 * async IO as the reference count held over IO is not released until
1655 	 * after the buffer lock is dropped. Hence we need to ensure here that
1656 	 * all reference counts have been dropped before we start walking the
1657 	 * LRU list.
1658 	 */
1659 	while (percpu_counter_sum(&btp->bt_io_count))
1660 		delay(100);
1661 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1662 
1663 	/* loop until there is nothing left on the lru list. */
1664 	while (list_lru_count(&btp->bt_lru)) {
1665 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1666 			      &dispose, LONG_MAX);
1667 
1668 		while (!list_empty(&dispose)) {
1669 			struct xfs_buf *bp;
1670 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1671 			list_del_init(&bp->b_lru);
1672 			if (bp->b_flags & XBF_WRITE_FAIL) {
1673 				xfs_alert(btp->bt_mount,
1674 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1675 					(long long)bp->b_bn);
1676 				xfs_alert(btp->bt_mount,
1677 "Please run xfs_repair to determine the extent of the problem.");
1678 			}
1679 			xfs_buf_rele(bp);
1680 		}
1681 		if (loop++ != 0)
1682 			delay(100);
1683 	}
1684 }
1685 
1686 static enum lru_status
1687 xfs_buftarg_isolate(
1688 	struct list_head	*item,
1689 	struct list_lru_one	*lru,
1690 	spinlock_t		*lru_lock,
1691 	void			*arg)
1692 {
1693 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1694 	struct list_head	*dispose = arg;
1695 
1696 	/*
1697 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1698 	 * If we fail to get the lock, just skip it.
1699 	 */
1700 	if (!spin_trylock(&bp->b_lock))
1701 		return LRU_SKIP;
1702 	/*
1703 	 * Decrement the b_lru_ref count unless the value is already
1704 	 * zero. If the value is already zero, we need to reclaim the
1705 	 * buffer, otherwise it gets another trip through the LRU.
1706 	 */
1707 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1708 		spin_unlock(&bp->b_lock);
1709 		return LRU_ROTATE;
1710 	}
1711 
1712 	bp->b_state |= XFS_BSTATE_DISPOSE;
1713 	list_lru_isolate_move(lru, item, dispose);
1714 	spin_unlock(&bp->b_lock);
1715 	return LRU_REMOVED;
1716 }
1717 
1718 static unsigned long
1719 xfs_buftarg_shrink_scan(
1720 	struct shrinker		*shrink,
1721 	struct shrink_control	*sc)
1722 {
1723 	struct xfs_buftarg	*btp = container_of(shrink,
1724 					struct xfs_buftarg, bt_shrinker);
1725 	LIST_HEAD(dispose);
1726 	unsigned long		freed;
1727 
1728 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1729 				     xfs_buftarg_isolate, &dispose);
1730 
1731 	while (!list_empty(&dispose)) {
1732 		struct xfs_buf *bp;
1733 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1734 		list_del_init(&bp->b_lru);
1735 		xfs_buf_rele(bp);
1736 	}
1737 
1738 	return freed;
1739 }
1740 
1741 static unsigned long
1742 xfs_buftarg_shrink_count(
1743 	struct shrinker		*shrink,
1744 	struct shrink_control	*sc)
1745 {
1746 	struct xfs_buftarg	*btp = container_of(shrink,
1747 					struct xfs_buftarg, bt_shrinker);
1748 	return list_lru_shrink_count(&btp->bt_lru, sc);
1749 }
1750 
1751 void
1752 xfs_free_buftarg(
1753 	struct xfs_mount	*mp,
1754 	struct xfs_buftarg	*btp)
1755 {
1756 	unregister_shrinker(&btp->bt_shrinker);
1757 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1758 	percpu_counter_destroy(&btp->bt_io_count);
1759 	list_lru_destroy(&btp->bt_lru);
1760 
1761 	xfs_blkdev_issue_flush(btp);
1762 
1763 	kmem_free(btp);
1764 }
1765 
1766 int
1767 xfs_setsize_buftarg(
1768 	xfs_buftarg_t		*btp,
1769 	unsigned int		sectorsize)
1770 {
1771 	/* Set up metadata sector size info */
1772 	btp->bt_meta_sectorsize = sectorsize;
1773 	btp->bt_meta_sectormask = sectorsize - 1;
1774 
1775 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1776 		xfs_warn(btp->bt_mount,
1777 			"Cannot set_blocksize to %u on device %pg",
1778 			sectorsize, btp->bt_bdev);
1779 		return -EINVAL;
1780 	}
1781 
1782 	/* Set up device logical sector size mask */
1783 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1784 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1785 
1786 	return 0;
1787 }
1788 
1789 /*
1790  * When allocating the initial buffer target we have not yet
1791  * read in the superblock, so don't know what sized sectors
1792  * are being used at this early stage.  Play safe.
1793  */
1794 STATIC int
1795 xfs_setsize_buftarg_early(
1796 	xfs_buftarg_t		*btp,
1797 	struct block_device	*bdev)
1798 {
1799 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1800 }
1801 
1802 xfs_buftarg_t *
1803 xfs_alloc_buftarg(
1804 	struct xfs_mount	*mp,
1805 	struct block_device	*bdev,
1806 	struct dax_device	*dax_dev)
1807 {
1808 	xfs_buftarg_t		*btp;
1809 
1810 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1811 
1812 	btp->bt_mount = mp;
1813 	btp->bt_dev =  bdev->bd_dev;
1814 	btp->bt_bdev = bdev;
1815 	btp->bt_daxdev = dax_dev;
1816 
1817 	if (xfs_setsize_buftarg_early(btp, bdev))
1818 		goto error_free;
1819 
1820 	if (list_lru_init(&btp->bt_lru))
1821 		goto error_free;
1822 
1823 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1824 		goto error_lru;
1825 
1826 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1827 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1828 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1829 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1830 	if (register_shrinker(&btp->bt_shrinker))
1831 		goto error_pcpu;
1832 	return btp;
1833 
1834 error_pcpu:
1835 	percpu_counter_destroy(&btp->bt_io_count);
1836 error_lru:
1837 	list_lru_destroy(&btp->bt_lru);
1838 error_free:
1839 	kmem_free(btp);
1840 	return NULL;
1841 }
1842 
1843 /*
1844  * Cancel a delayed write list.
1845  *
1846  * Remove each buffer from the list, clear the delwri queue flag and drop the
1847  * associated buffer reference.
1848  */
1849 void
1850 xfs_buf_delwri_cancel(
1851 	struct list_head	*list)
1852 {
1853 	struct xfs_buf		*bp;
1854 
1855 	while (!list_empty(list)) {
1856 		bp = list_first_entry(list, struct xfs_buf, b_list);
1857 
1858 		xfs_buf_lock(bp);
1859 		bp->b_flags &= ~_XBF_DELWRI_Q;
1860 		list_del_init(&bp->b_list);
1861 		xfs_buf_relse(bp);
1862 	}
1863 }
1864 
1865 /*
1866  * Add a buffer to the delayed write list.
1867  *
1868  * This queues a buffer for writeout if it hasn't already been.  Note that
1869  * neither this routine nor the buffer list submission functions perform
1870  * any internal synchronization.  It is expected that the lists are thread-local
1871  * to the callers.
1872  *
1873  * Returns true if we queued up the buffer, or false if it already had
1874  * been on the buffer list.
1875  */
1876 bool
1877 xfs_buf_delwri_queue(
1878 	struct xfs_buf		*bp,
1879 	struct list_head	*list)
1880 {
1881 	ASSERT(xfs_buf_islocked(bp));
1882 	ASSERT(!(bp->b_flags & XBF_READ));
1883 
1884 	/*
1885 	 * If the buffer is already marked delwri it already is queued up
1886 	 * by someone else for imediate writeout.  Just ignore it in that
1887 	 * case.
1888 	 */
1889 	if (bp->b_flags & _XBF_DELWRI_Q) {
1890 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1891 		return false;
1892 	}
1893 
1894 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1895 
1896 	/*
1897 	 * If a buffer gets written out synchronously or marked stale while it
1898 	 * is on a delwri list we lazily remove it. To do this, the other party
1899 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1900 	 * It remains referenced and on the list.  In a rare corner case it
1901 	 * might get readded to a delwri list after the synchronous writeout, in
1902 	 * which case we need just need to re-add the flag here.
1903 	 */
1904 	bp->b_flags |= _XBF_DELWRI_Q;
1905 	if (list_empty(&bp->b_list)) {
1906 		atomic_inc(&bp->b_hold);
1907 		list_add_tail(&bp->b_list, list);
1908 	}
1909 
1910 	return true;
1911 }
1912 
1913 /*
1914  * Compare function is more complex than it needs to be because
1915  * the return value is only 32 bits and we are doing comparisons
1916  * on 64 bit values
1917  */
1918 static int
1919 xfs_buf_cmp(
1920 	void		*priv,
1921 	struct list_head *a,
1922 	struct list_head *b)
1923 {
1924 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1925 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1926 	xfs_daddr_t		diff;
1927 
1928 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1929 	if (diff < 0)
1930 		return -1;
1931 	if (diff > 0)
1932 		return 1;
1933 	return 0;
1934 }
1935 
1936 /*
1937  * submit buffers for write.
1938  *
1939  * When we have a large buffer list, we do not want to hold all the buffers
1940  * locked while we block on the request queue waiting for IO dispatch. To avoid
1941  * this problem, we lock and submit buffers in groups of 50, thereby minimising
1942  * the lock hold times for lists which may contain thousands of objects.
1943  *
1944  * To do this, we sort the buffer list before we walk the list to lock and
1945  * submit buffers, and we plug and unplug around each group of buffers we
1946  * submit.
1947  */
1948 static int
1949 xfs_buf_delwri_submit_buffers(
1950 	struct list_head	*buffer_list,
1951 	struct list_head	*wait_list)
1952 {
1953 	struct xfs_buf		*bp, *n;
1954 	LIST_HEAD		(submit_list);
1955 	int			pinned = 0;
1956 	struct blk_plug		plug;
1957 
1958 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1959 
1960 	blk_start_plug(&plug);
1961 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1962 		if (!wait_list) {
1963 			if (xfs_buf_ispinned(bp)) {
1964 				pinned++;
1965 				continue;
1966 			}
1967 			if (!xfs_buf_trylock(bp))
1968 				continue;
1969 		} else {
1970 			xfs_buf_lock(bp);
1971 		}
1972 
1973 		/*
1974 		 * Someone else might have written the buffer synchronously or
1975 		 * marked it stale in the meantime.  In that case only the
1976 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1977 		 * reference and remove it from the list here.
1978 		 */
1979 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1980 			list_del_init(&bp->b_list);
1981 			xfs_buf_relse(bp);
1982 			continue;
1983 		}
1984 
1985 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1986 
1987 		/*
1988 		 * We do all IO submission async. This means if we need
1989 		 * to wait for IO completion we need to take an extra
1990 		 * reference so the buffer is still valid on the other
1991 		 * side. We need to move the buffer onto the io_list
1992 		 * at this point so the caller can still access it.
1993 		 */
1994 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1995 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1996 		if (wait_list) {
1997 			xfs_buf_hold(bp);
1998 			list_move_tail(&bp->b_list, wait_list);
1999 		} else
2000 			list_del_init(&bp->b_list);
2001 
2002 		xfs_buf_submit(bp);
2003 	}
2004 	blk_finish_plug(&plug);
2005 
2006 	return pinned;
2007 }
2008 
2009 /*
2010  * Write out a buffer list asynchronously.
2011  *
2012  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2013  * out and not wait for I/O completion on any of the buffers.  This interface
2014  * is only safely useable for callers that can track I/O completion by higher
2015  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2016  * function.
2017  */
2018 int
2019 xfs_buf_delwri_submit_nowait(
2020 	struct list_head	*buffer_list)
2021 {
2022 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2023 }
2024 
2025 /*
2026  * Write out a buffer list synchronously.
2027  *
2028  * This will take the @buffer_list, write all buffers out and wait for I/O
2029  * completion on all of the buffers. @buffer_list is consumed by the function,
2030  * so callers must have some other way of tracking buffers if they require such
2031  * functionality.
2032  */
2033 int
2034 xfs_buf_delwri_submit(
2035 	struct list_head	*buffer_list)
2036 {
2037 	LIST_HEAD		(wait_list);
2038 	int			error = 0, error2;
2039 	struct xfs_buf		*bp;
2040 
2041 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2042 
2043 	/* Wait for IO to complete. */
2044 	while (!list_empty(&wait_list)) {
2045 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2046 
2047 		list_del_init(&bp->b_list);
2048 
2049 		/* locking the buffer will wait for async IO completion. */
2050 		xfs_buf_lock(bp);
2051 		error2 = bp->b_error;
2052 		xfs_buf_relse(bp);
2053 		if (!error)
2054 			error = error2;
2055 	}
2056 
2057 	return error;
2058 }
2059 
2060 /*
2061  * Push a single buffer on a delwri queue.
2062  *
2063  * The purpose of this function is to submit a single buffer of a delwri queue
2064  * and return with the buffer still on the original queue. The waiting delwri
2065  * buffer submission infrastructure guarantees transfer of the delwri queue
2066  * buffer reference to a temporary wait list. We reuse this infrastructure to
2067  * transfer the buffer back to the original queue.
2068  *
2069  * Note the buffer transitions from the queued state, to the submitted and wait
2070  * listed state and back to the queued state during this call. The buffer
2071  * locking and queue management logic between _delwri_pushbuf() and
2072  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2073  * before returning.
2074  */
2075 int
2076 xfs_buf_delwri_pushbuf(
2077 	struct xfs_buf		*bp,
2078 	struct list_head	*buffer_list)
2079 {
2080 	LIST_HEAD		(submit_list);
2081 	int			error;
2082 
2083 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2084 
2085 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2086 
2087 	/*
2088 	 * Isolate the buffer to a new local list so we can submit it for I/O
2089 	 * independently from the rest of the original list.
2090 	 */
2091 	xfs_buf_lock(bp);
2092 	list_move(&bp->b_list, &submit_list);
2093 	xfs_buf_unlock(bp);
2094 
2095 	/*
2096 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2097 	 * the buffer on the wait list with an associated reference. Rather than
2098 	 * bounce the buffer from a local wait list back to the original list
2099 	 * after I/O completion, reuse the original list as the wait list.
2100 	 */
2101 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2102 
2103 	/*
2104 	 * The buffer is now under I/O and wait listed as during typical delwri
2105 	 * submission. Lock the buffer to wait for I/O completion. Rather than
2106 	 * remove the buffer from the wait list and release the reference, we
2107 	 * want to return with the buffer queued to the original list. The
2108 	 * buffer already sits on the original list with a wait list reference,
2109 	 * however. If we let the queue inherit that wait list reference, all we
2110 	 * need to do is reset the DELWRI_Q flag.
2111 	 */
2112 	xfs_buf_lock(bp);
2113 	error = bp->b_error;
2114 	bp->b_flags |= _XBF_DELWRI_Q;
2115 	xfs_buf_unlock(bp);
2116 
2117 	return error;
2118 }
2119 
2120 int __init
2121 xfs_buf_init(void)
2122 {
2123 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2124 						KM_ZONE_HWALIGN, NULL);
2125 	if (!xfs_buf_zone)
2126 		goto out;
2127 
2128 	return 0;
2129 
2130  out:
2131 	return -ENOMEM;
2132 }
2133 
2134 void
2135 xfs_buf_terminate(void)
2136 {
2137 	kmem_zone_destroy(xfs_buf_zone);
2138 }
2139 
2140 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2141 {
2142 	/*
2143 	 * Set the lru reference count to 0 based on the error injection tag.
2144 	 * This allows userspace to disrupt buffer caching for debug/testing
2145 	 * purposes.
2146 	 */
2147 	if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2148 			   XFS_ERRTAG_BUF_LRU_REF))
2149 		lru_ref = 0;
2150 
2151 	atomic_set(&bp->b_lru_ref, lru_ref);
2152 }
2153