xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 4984dd069f2995f239f075199ee8c0d9f020bcd9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
24 
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
28 #include "xfs_sb.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34 
35 static kmem_zone_t *xfs_buf_zone;
36 
37 #define xb_to_gfp(flags) \
38 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
39 
40 /*
41  * Locking orders
42  *
43  * xfs_buf_ioacct_inc:
44  * xfs_buf_ioacct_dec:
45  *	b_sema (caller holds)
46  *	  b_lock
47  *
48  * xfs_buf_stale:
49  *	b_sema (caller holds)
50  *	  b_lock
51  *	    lru_lock
52  *
53  * xfs_buf_rele:
54  *	b_lock
55  *	  pag_buf_lock
56  *	    lru_lock
57  *
58  * xfs_buftarg_wait_rele
59  *	lru_lock
60  *	  b_lock (trylock due to inversion)
61  *
62  * xfs_buftarg_isolate
63  *	lru_lock
64  *	  b_lock (trylock due to inversion)
65  */
66 
67 static inline int
68 xfs_buf_is_vmapped(
69 	struct xfs_buf	*bp)
70 {
71 	/*
72 	 * Return true if the buffer is vmapped.
73 	 *
74 	 * b_addr is null if the buffer is not mapped, but the code is clever
75 	 * enough to know it doesn't have to map a single page, so the check has
76 	 * to be both for b_addr and bp->b_page_count > 1.
77 	 */
78 	return bp->b_addr && bp->b_page_count > 1;
79 }
80 
81 static inline int
82 xfs_buf_vmap_len(
83 	struct xfs_buf	*bp)
84 {
85 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
86 }
87 
88 /*
89  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
90  * this buffer. The count is incremented once per buffer (per hold cycle)
91  * because the corresponding decrement is deferred to buffer release. Buffers
92  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
93  * tracking adds unnecessary overhead. This is used for sychronization purposes
94  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
95  * in-flight buffers.
96  *
97  * Buffers that are never released (e.g., superblock, iclog buffers) must set
98  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
99  * never reaches zero and unmount hangs indefinitely.
100  */
101 static inline void
102 xfs_buf_ioacct_inc(
103 	struct xfs_buf	*bp)
104 {
105 	if (bp->b_flags & XBF_NO_IOACCT)
106 		return;
107 
108 	ASSERT(bp->b_flags & XBF_ASYNC);
109 	spin_lock(&bp->b_lock);
110 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
111 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
112 		percpu_counter_inc(&bp->b_target->bt_io_count);
113 	}
114 	spin_unlock(&bp->b_lock);
115 }
116 
117 /*
118  * Clear the in-flight state on a buffer about to be released to the LRU or
119  * freed and unaccount from the buftarg.
120  */
121 static inline void
122 __xfs_buf_ioacct_dec(
123 	struct xfs_buf	*bp)
124 {
125 	lockdep_assert_held(&bp->b_lock);
126 
127 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
128 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
129 		percpu_counter_dec(&bp->b_target->bt_io_count);
130 	}
131 }
132 
133 static inline void
134 xfs_buf_ioacct_dec(
135 	struct xfs_buf	*bp)
136 {
137 	spin_lock(&bp->b_lock);
138 	__xfs_buf_ioacct_dec(bp);
139 	spin_unlock(&bp->b_lock);
140 }
141 
142 /*
143  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144  * b_lru_ref count so that the buffer is freed immediately when the buffer
145  * reference count falls to zero. If the buffer is already on the LRU, we need
146  * to remove the reference that LRU holds on the buffer.
147  *
148  * This prevents build-up of stale buffers on the LRU.
149  */
150 void
151 xfs_buf_stale(
152 	struct xfs_buf	*bp)
153 {
154 	ASSERT(xfs_buf_islocked(bp));
155 
156 	bp->b_flags |= XBF_STALE;
157 
158 	/*
159 	 * Clear the delwri status so that a delwri queue walker will not
160 	 * flush this buffer to disk now that it is stale. The delwri queue has
161 	 * a reference to the buffer, so this is safe to do.
162 	 */
163 	bp->b_flags &= ~_XBF_DELWRI_Q;
164 
165 	/*
166 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
167 	 * could reset b_flags. There is no guarantee that the buffer is
168 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
169 	 * status now to preserve accounting consistency.
170 	 */
171 	spin_lock(&bp->b_lock);
172 	__xfs_buf_ioacct_dec(bp);
173 
174 	atomic_set(&bp->b_lru_ref, 0);
175 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
176 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
177 		atomic_dec(&bp->b_hold);
178 
179 	ASSERT(atomic_read(&bp->b_hold) >= 1);
180 	spin_unlock(&bp->b_lock);
181 }
182 
183 static int
184 xfs_buf_get_maps(
185 	struct xfs_buf		*bp,
186 	int			map_count)
187 {
188 	ASSERT(bp->b_maps == NULL);
189 	bp->b_map_count = map_count;
190 
191 	if (map_count == 1) {
192 		bp->b_maps = &bp->__b_map;
193 		return 0;
194 	}
195 
196 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
197 				KM_NOFS);
198 	if (!bp->b_maps)
199 		return -ENOMEM;
200 	return 0;
201 }
202 
203 /*
204  *	Frees b_pages if it was allocated.
205  */
206 static void
207 xfs_buf_free_maps(
208 	struct xfs_buf	*bp)
209 {
210 	if (bp->b_maps != &bp->__b_map) {
211 		kmem_free(bp->b_maps);
212 		bp->b_maps = NULL;
213 	}
214 }
215 
216 struct xfs_buf *
217 _xfs_buf_alloc(
218 	struct xfs_buftarg	*target,
219 	struct xfs_buf_map	*map,
220 	int			nmaps,
221 	xfs_buf_flags_t		flags)
222 {
223 	struct xfs_buf		*bp;
224 	int			error;
225 	int			i;
226 
227 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
228 	if (unlikely(!bp))
229 		return NULL;
230 
231 	/*
232 	 * We don't want certain flags to appear in b_flags unless they are
233 	 * specifically set by later operations on the buffer.
234 	 */
235 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
236 
237 	atomic_set(&bp->b_hold, 1);
238 	atomic_set(&bp->b_lru_ref, 1);
239 	init_completion(&bp->b_iowait);
240 	INIT_LIST_HEAD(&bp->b_lru);
241 	INIT_LIST_HEAD(&bp->b_list);
242 	INIT_LIST_HEAD(&bp->b_li_list);
243 	sema_init(&bp->b_sema, 0); /* held, no waiters */
244 	spin_lock_init(&bp->b_lock);
245 	bp->b_target = target;
246 	bp->b_flags = flags;
247 
248 	/*
249 	 * Set length and io_length to the same value initially.
250 	 * I/O routines should use io_length, which will be the same in
251 	 * most cases but may be reset (e.g. XFS recovery).
252 	 */
253 	error = xfs_buf_get_maps(bp, nmaps);
254 	if (error)  {
255 		kmem_zone_free(xfs_buf_zone, bp);
256 		return NULL;
257 	}
258 
259 	bp->b_bn = map[0].bm_bn;
260 	bp->b_length = 0;
261 	for (i = 0; i < nmaps; i++) {
262 		bp->b_maps[i].bm_bn = map[i].bm_bn;
263 		bp->b_maps[i].bm_len = map[i].bm_len;
264 		bp->b_length += map[i].bm_len;
265 	}
266 	bp->b_io_length = bp->b_length;
267 
268 	atomic_set(&bp->b_pin_count, 0);
269 	init_waitqueue_head(&bp->b_waiters);
270 
271 	XFS_STATS_INC(target->bt_mount, xb_create);
272 	trace_xfs_buf_init(bp, _RET_IP_);
273 
274 	return bp;
275 }
276 
277 /*
278  *	Allocate a page array capable of holding a specified number
279  *	of pages, and point the page buf at it.
280  */
281 STATIC int
282 _xfs_buf_get_pages(
283 	xfs_buf_t		*bp,
284 	int			page_count)
285 {
286 	/* Make sure that we have a page list */
287 	if (bp->b_pages == NULL) {
288 		bp->b_page_count = page_count;
289 		if (page_count <= XB_PAGES) {
290 			bp->b_pages = bp->b_page_array;
291 		} else {
292 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
293 						 page_count, KM_NOFS);
294 			if (bp->b_pages == NULL)
295 				return -ENOMEM;
296 		}
297 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
298 	}
299 	return 0;
300 }
301 
302 /*
303  *	Frees b_pages if it was allocated.
304  */
305 STATIC void
306 _xfs_buf_free_pages(
307 	xfs_buf_t	*bp)
308 {
309 	if (bp->b_pages != bp->b_page_array) {
310 		kmem_free(bp->b_pages);
311 		bp->b_pages = NULL;
312 	}
313 }
314 
315 /*
316  *	Releases the specified buffer.
317  *
318  * 	The modification state of any associated pages is left unchanged.
319  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
320  * 	hashed and refcounted buffers
321  */
322 void
323 xfs_buf_free(
324 	xfs_buf_t		*bp)
325 {
326 	trace_xfs_buf_free(bp, _RET_IP_);
327 
328 	ASSERT(list_empty(&bp->b_lru));
329 
330 	if (bp->b_flags & _XBF_PAGES) {
331 		uint		i;
332 
333 		if (xfs_buf_is_vmapped(bp))
334 			vm_unmap_ram(bp->b_addr - bp->b_offset,
335 					bp->b_page_count);
336 
337 		for (i = 0; i < bp->b_page_count; i++) {
338 			struct page	*page = bp->b_pages[i];
339 
340 			__free_page(page);
341 		}
342 	} else if (bp->b_flags & _XBF_KMEM)
343 		kmem_free(bp->b_addr);
344 	_xfs_buf_free_pages(bp);
345 	xfs_buf_free_maps(bp);
346 	kmem_zone_free(xfs_buf_zone, bp);
347 }
348 
349 /*
350  * Allocates all the pages for buffer in question and builds it's page list.
351  */
352 STATIC int
353 xfs_buf_allocate_memory(
354 	xfs_buf_t		*bp,
355 	uint			flags)
356 {
357 	size_t			size;
358 	size_t			nbytes, offset;
359 	gfp_t			gfp_mask = xb_to_gfp(flags);
360 	unsigned short		page_count, i;
361 	xfs_off_t		start, end;
362 	int			error;
363 
364 	/*
365 	 * for buffers that are contained within a single page, just allocate
366 	 * the memory from the heap - there's no need for the complexity of
367 	 * page arrays to keep allocation down to order 0.
368 	 */
369 	size = BBTOB(bp->b_length);
370 	if (size < PAGE_SIZE) {
371 		bp->b_addr = kmem_alloc(size, KM_NOFS);
372 		if (!bp->b_addr) {
373 			/* low memory - use alloc_page loop instead */
374 			goto use_alloc_page;
375 		}
376 
377 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
378 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
379 			/* b_addr spans two pages - use alloc_page instead */
380 			kmem_free(bp->b_addr);
381 			bp->b_addr = NULL;
382 			goto use_alloc_page;
383 		}
384 		bp->b_offset = offset_in_page(bp->b_addr);
385 		bp->b_pages = bp->b_page_array;
386 		bp->b_pages[0] = virt_to_page(bp->b_addr);
387 		bp->b_page_count = 1;
388 		bp->b_flags |= _XBF_KMEM;
389 		return 0;
390 	}
391 
392 use_alloc_page:
393 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
394 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
395 								>> PAGE_SHIFT;
396 	page_count = end - start;
397 	error = _xfs_buf_get_pages(bp, page_count);
398 	if (unlikely(error))
399 		return error;
400 
401 	offset = bp->b_offset;
402 	bp->b_flags |= _XBF_PAGES;
403 
404 	for (i = 0; i < bp->b_page_count; i++) {
405 		struct page	*page;
406 		uint		retries = 0;
407 retry:
408 		page = alloc_page(gfp_mask);
409 		if (unlikely(page == NULL)) {
410 			if (flags & XBF_READ_AHEAD) {
411 				bp->b_page_count = i;
412 				error = -ENOMEM;
413 				goto out_free_pages;
414 			}
415 
416 			/*
417 			 * This could deadlock.
418 			 *
419 			 * But until all the XFS lowlevel code is revamped to
420 			 * handle buffer allocation failures we can't do much.
421 			 */
422 			if (!(++retries % 100))
423 				xfs_err(NULL,
424 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
425 					current->comm, current->pid,
426 					__func__, gfp_mask);
427 
428 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
429 			congestion_wait(BLK_RW_ASYNC, HZ/50);
430 			goto retry;
431 		}
432 
433 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
434 
435 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
436 		size -= nbytes;
437 		bp->b_pages[i] = page;
438 		offset = 0;
439 	}
440 	return 0;
441 
442 out_free_pages:
443 	for (i = 0; i < bp->b_page_count; i++)
444 		__free_page(bp->b_pages[i]);
445 	bp->b_flags &= ~_XBF_PAGES;
446 	return error;
447 }
448 
449 /*
450  *	Map buffer into kernel address-space if necessary.
451  */
452 STATIC int
453 _xfs_buf_map_pages(
454 	xfs_buf_t		*bp,
455 	uint			flags)
456 {
457 	ASSERT(bp->b_flags & _XBF_PAGES);
458 	if (bp->b_page_count == 1) {
459 		/* A single page buffer is always mappable */
460 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
461 	} else if (flags & XBF_UNMAPPED) {
462 		bp->b_addr = NULL;
463 	} else {
464 		int retried = 0;
465 		unsigned nofs_flag;
466 
467 		/*
468 		 * vm_map_ram() will allocate auxillary structures (e.g.
469 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
470 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
471 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
472 		 * memory reclaim re-entering the filesystem here and
473 		 * potentially deadlocking.
474 		 */
475 		nofs_flag = memalloc_nofs_save();
476 		do {
477 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
478 						-1, PAGE_KERNEL);
479 			if (bp->b_addr)
480 				break;
481 			vm_unmap_aliases();
482 		} while (retried++ <= 1);
483 		memalloc_nofs_restore(nofs_flag);
484 
485 		if (!bp->b_addr)
486 			return -ENOMEM;
487 		bp->b_addr += bp->b_offset;
488 	}
489 
490 	return 0;
491 }
492 
493 /*
494  *	Finding and Reading Buffers
495  */
496 static int
497 _xfs_buf_obj_cmp(
498 	struct rhashtable_compare_arg	*arg,
499 	const void			*obj)
500 {
501 	const struct xfs_buf_map	*map = arg->key;
502 	const struct xfs_buf		*bp = obj;
503 
504 	/*
505 	 * The key hashing in the lookup path depends on the key being the
506 	 * first element of the compare_arg, make sure to assert this.
507 	 */
508 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
509 
510 	if (bp->b_bn != map->bm_bn)
511 		return 1;
512 
513 	if (unlikely(bp->b_length != map->bm_len)) {
514 		/*
515 		 * found a block number match. If the range doesn't
516 		 * match, the only way this is allowed is if the buffer
517 		 * in the cache is stale and the transaction that made
518 		 * it stale has not yet committed. i.e. we are
519 		 * reallocating a busy extent. Skip this buffer and
520 		 * continue searching for an exact match.
521 		 */
522 		ASSERT(bp->b_flags & XBF_STALE);
523 		return 1;
524 	}
525 	return 0;
526 }
527 
528 static const struct rhashtable_params xfs_buf_hash_params = {
529 	.min_size		= 32,	/* empty AGs have minimal footprint */
530 	.nelem_hint		= 16,
531 	.key_len		= sizeof(xfs_daddr_t),
532 	.key_offset		= offsetof(struct xfs_buf, b_bn),
533 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
534 	.automatic_shrinking	= true,
535 	.obj_cmpfn		= _xfs_buf_obj_cmp,
536 };
537 
538 int
539 xfs_buf_hash_init(
540 	struct xfs_perag	*pag)
541 {
542 	spin_lock_init(&pag->pag_buf_lock);
543 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
544 }
545 
546 void
547 xfs_buf_hash_destroy(
548 	struct xfs_perag	*pag)
549 {
550 	rhashtable_destroy(&pag->pag_buf_hash);
551 }
552 
553 /*
554  * Look up a buffer in the buffer cache and return it referenced and locked
555  * in @found_bp.
556  *
557  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
558  * cache.
559  *
560  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
561  * -EAGAIN if we fail to lock it.
562  *
563  * Return values are:
564  *	-EFSCORRUPTED if have been supplied with an invalid address
565  *	-EAGAIN on trylock failure
566  *	-ENOENT if we fail to find a match and @new_bp was NULL
567  *	0, with @found_bp:
568  *		- @new_bp if we inserted it into the cache
569  *		- the buffer we found and locked.
570  */
571 static int
572 xfs_buf_find(
573 	struct xfs_buftarg	*btp,
574 	struct xfs_buf_map	*map,
575 	int			nmaps,
576 	xfs_buf_flags_t		flags,
577 	struct xfs_buf		*new_bp,
578 	struct xfs_buf		**found_bp)
579 {
580 	struct xfs_perag	*pag;
581 	xfs_buf_t		*bp;
582 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
583 	xfs_daddr_t		eofs;
584 	int			i;
585 
586 	*found_bp = NULL;
587 
588 	for (i = 0; i < nmaps; i++)
589 		cmap.bm_len += map[i].bm_len;
590 
591 	/* Check for IOs smaller than the sector size / not sector aligned */
592 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
593 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
594 
595 	/*
596 	 * Corrupted block numbers can get through to here, unfortunately, so we
597 	 * have to check that the buffer falls within the filesystem bounds.
598 	 */
599 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
600 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
601 		xfs_alert(btp->bt_mount,
602 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
603 			  __func__, cmap.bm_bn, eofs);
604 		WARN_ON(1);
605 		return -EFSCORRUPTED;
606 	}
607 
608 	pag = xfs_perag_get(btp->bt_mount,
609 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
610 
611 	spin_lock(&pag->pag_buf_lock);
612 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
613 				    xfs_buf_hash_params);
614 	if (bp) {
615 		atomic_inc(&bp->b_hold);
616 		goto found;
617 	}
618 
619 	/* No match found */
620 	if (!new_bp) {
621 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
622 		spin_unlock(&pag->pag_buf_lock);
623 		xfs_perag_put(pag);
624 		return -ENOENT;
625 	}
626 
627 	/* the buffer keeps the perag reference until it is freed */
628 	new_bp->b_pag = pag;
629 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
630 			       xfs_buf_hash_params);
631 	spin_unlock(&pag->pag_buf_lock);
632 	*found_bp = new_bp;
633 	return 0;
634 
635 found:
636 	spin_unlock(&pag->pag_buf_lock);
637 	xfs_perag_put(pag);
638 
639 	if (!xfs_buf_trylock(bp)) {
640 		if (flags & XBF_TRYLOCK) {
641 			xfs_buf_rele(bp);
642 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
643 			return -EAGAIN;
644 		}
645 		xfs_buf_lock(bp);
646 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
647 	}
648 
649 	/*
650 	 * if the buffer is stale, clear all the external state associated with
651 	 * it. We need to keep flags such as how we allocated the buffer memory
652 	 * intact here.
653 	 */
654 	if (bp->b_flags & XBF_STALE) {
655 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
656 		ASSERT(bp->b_iodone == NULL);
657 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
658 		bp->b_ops = NULL;
659 	}
660 
661 	trace_xfs_buf_find(bp, flags, _RET_IP_);
662 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
663 	*found_bp = bp;
664 	return 0;
665 }
666 
667 struct xfs_buf *
668 xfs_buf_incore(
669 	struct xfs_buftarg	*target,
670 	xfs_daddr_t		blkno,
671 	size_t			numblks,
672 	xfs_buf_flags_t		flags)
673 {
674 	struct xfs_buf		*bp;
675 	int			error;
676 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
677 
678 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
679 	if (error)
680 		return NULL;
681 	return bp;
682 }
683 
684 /*
685  * Assembles a buffer covering the specified range. The code is optimised for
686  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
687  * more hits than misses.
688  */
689 struct xfs_buf *
690 xfs_buf_get_map(
691 	struct xfs_buftarg	*target,
692 	struct xfs_buf_map	*map,
693 	int			nmaps,
694 	xfs_buf_flags_t		flags)
695 {
696 	struct xfs_buf		*bp;
697 	struct xfs_buf		*new_bp;
698 	int			error = 0;
699 
700 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
701 
702 	switch (error) {
703 	case 0:
704 		/* cache hit */
705 		goto found;
706 	case -EAGAIN:
707 		/* cache hit, trylock failure, caller handles failure */
708 		ASSERT(flags & XBF_TRYLOCK);
709 		return NULL;
710 	case -ENOENT:
711 		/* cache miss, go for insert */
712 		break;
713 	case -EFSCORRUPTED:
714 	default:
715 		/*
716 		 * None of the higher layers understand failure types
717 		 * yet, so return NULL to signal a fatal lookup error.
718 		 */
719 		return NULL;
720 	}
721 
722 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
723 	if (unlikely(!new_bp))
724 		return NULL;
725 
726 	error = xfs_buf_allocate_memory(new_bp, flags);
727 	if (error) {
728 		xfs_buf_free(new_bp);
729 		return NULL;
730 	}
731 
732 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
733 	if (error) {
734 		xfs_buf_free(new_bp);
735 		return NULL;
736 	}
737 
738 	if (bp != new_bp)
739 		xfs_buf_free(new_bp);
740 
741 found:
742 	if (!bp->b_addr) {
743 		error = _xfs_buf_map_pages(bp, flags);
744 		if (unlikely(error)) {
745 			xfs_warn(target->bt_mount,
746 				"%s: failed to map pagesn", __func__);
747 			xfs_buf_relse(bp);
748 			return NULL;
749 		}
750 	}
751 
752 	/*
753 	 * Clear b_error if this is a lookup from a caller that doesn't expect
754 	 * valid data to be found in the buffer.
755 	 */
756 	if (!(flags & XBF_READ))
757 		xfs_buf_ioerror(bp, 0);
758 
759 	XFS_STATS_INC(target->bt_mount, xb_get);
760 	trace_xfs_buf_get(bp, flags, _RET_IP_);
761 	return bp;
762 }
763 
764 STATIC int
765 _xfs_buf_read(
766 	xfs_buf_t		*bp,
767 	xfs_buf_flags_t		flags)
768 {
769 	ASSERT(!(flags & XBF_WRITE));
770 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
771 
772 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
773 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
774 
775 	return xfs_buf_submit(bp);
776 }
777 
778 /*
779  * Reverify a buffer found in cache without an attached ->b_ops.
780  *
781  * If the caller passed an ops structure and the buffer doesn't have ops
782  * assigned, set the ops and use it to verify the contents. If verification
783  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
784  * already in XBF_DONE state on entry.
785  *
786  * Under normal operations, every in-core buffer is verified on read I/O
787  * completion. There are two scenarios that can lead to in-core buffers without
788  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
789  * filesystem, though these buffers are purged at the end of recovery. The
790  * other is online repair, which intentionally reads with a NULL buffer ops to
791  * run several verifiers across an in-core buffer in order to establish buffer
792  * type.  If repair can't establish that, the buffer will be left in memory
793  * with NULL buffer ops.
794  */
795 int
796 xfs_buf_reverify(
797 	struct xfs_buf		*bp,
798 	const struct xfs_buf_ops *ops)
799 {
800 	ASSERT(bp->b_flags & XBF_DONE);
801 	ASSERT(bp->b_error == 0);
802 
803 	if (!ops || bp->b_ops)
804 		return 0;
805 
806 	bp->b_ops = ops;
807 	bp->b_ops->verify_read(bp);
808 	if (bp->b_error)
809 		bp->b_flags &= ~XBF_DONE;
810 	return bp->b_error;
811 }
812 
813 xfs_buf_t *
814 xfs_buf_read_map(
815 	struct xfs_buftarg	*target,
816 	struct xfs_buf_map	*map,
817 	int			nmaps,
818 	xfs_buf_flags_t		flags,
819 	const struct xfs_buf_ops *ops)
820 {
821 	struct xfs_buf		*bp;
822 
823 	flags |= XBF_READ;
824 
825 	bp = xfs_buf_get_map(target, map, nmaps, flags);
826 	if (!bp)
827 		return NULL;
828 
829 	trace_xfs_buf_read(bp, flags, _RET_IP_);
830 
831 	if (!(bp->b_flags & XBF_DONE)) {
832 		XFS_STATS_INC(target->bt_mount, xb_get_read);
833 		bp->b_ops = ops;
834 		_xfs_buf_read(bp, flags);
835 		return bp;
836 	}
837 
838 	xfs_buf_reverify(bp, ops);
839 
840 	if (flags & XBF_ASYNC) {
841 		/*
842 		 * Read ahead call which is already satisfied,
843 		 * drop the buffer
844 		 */
845 		xfs_buf_relse(bp);
846 		return NULL;
847 	}
848 
849 	/* We do not want read in the flags */
850 	bp->b_flags &= ~XBF_READ;
851 	ASSERT(bp->b_ops != NULL || ops == NULL);
852 	return bp;
853 }
854 
855 /*
856  *	If we are not low on memory then do the readahead in a deadlock
857  *	safe manner.
858  */
859 void
860 xfs_buf_readahead_map(
861 	struct xfs_buftarg	*target,
862 	struct xfs_buf_map	*map,
863 	int			nmaps,
864 	const struct xfs_buf_ops *ops)
865 {
866 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
867 		return;
868 
869 	xfs_buf_read_map(target, map, nmaps,
870 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
871 }
872 
873 /*
874  * Read an uncached buffer from disk. Allocates and returns a locked
875  * buffer containing the disk contents or nothing.
876  */
877 int
878 xfs_buf_read_uncached(
879 	struct xfs_buftarg	*target,
880 	xfs_daddr_t		daddr,
881 	size_t			numblks,
882 	int			flags,
883 	struct xfs_buf		**bpp,
884 	const struct xfs_buf_ops *ops)
885 {
886 	struct xfs_buf		*bp;
887 
888 	*bpp = NULL;
889 
890 	bp = xfs_buf_get_uncached(target, numblks, flags);
891 	if (!bp)
892 		return -ENOMEM;
893 
894 	/* set up the buffer for a read IO */
895 	ASSERT(bp->b_map_count == 1);
896 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
897 	bp->b_maps[0].bm_bn = daddr;
898 	bp->b_flags |= XBF_READ;
899 	bp->b_ops = ops;
900 
901 	xfs_buf_submit(bp);
902 	if (bp->b_error) {
903 		int	error = bp->b_error;
904 		xfs_buf_relse(bp);
905 		return error;
906 	}
907 
908 	*bpp = bp;
909 	return 0;
910 }
911 
912 /*
913  * Return a buffer allocated as an empty buffer and associated to external
914  * memory via xfs_buf_associate_memory() back to it's empty state.
915  */
916 void
917 xfs_buf_set_empty(
918 	struct xfs_buf		*bp,
919 	size_t			numblks)
920 {
921 	if (bp->b_pages)
922 		_xfs_buf_free_pages(bp);
923 
924 	bp->b_pages = NULL;
925 	bp->b_page_count = 0;
926 	bp->b_addr = NULL;
927 	bp->b_length = numblks;
928 	bp->b_io_length = numblks;
929 
930 	ASSERT(bp->b_map_count == 1);
931 	bp->b_bn = XFS_BUF_DADDR_NULL;
932 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
933 	bp->b_maps[0].bm_len = bp->b_length;
934 }
935 
936 static inline struct page *
937 mem_to_page(
938 	void			*addr)
939 {
940 	if ((!is_vmalloc_addr(addr))) {
941 		return virt_to_page(addr);
942 	} else {
943 		return vmalloc_to_page(addr);
944 	}
945 }
946 
947 int
948 xfs_buf_associate_memory(
949 	xfs_buf_t		*bp,
950 	void			*mem,
951 	size_t			len)
952 {
953 	int			rval;
954 	int			i = 0;
955 	unsigned long		pageaddr;
956 	unsigned long		offset;
957 	size_t			buflen;
958 	int			page_count;
959 
960 	pageaddr = (unsigned long)mem & PAGE_MASK;
961 	offset = (unsigned long)mem - pageaddr;
962 	buflen = PAGE_ALIGN(len + offset);
963 	page_count = buflen >> PAGE_SHIFT;
964 
965 	/* Free any previous set of page pointers */
966 	if (bp->b_pages)
967 		_xfs_buf_free_pages(bp);
968 
969 	bp->b_pages = NULL;
970 	bp->b_addr = mem;
971 
972 	rval = _xfs_buf_get_pages(bp, page_count);
973 	if (rval)
974 		return rval;
975 
976 	bp->b_offset = offset;
977 
978 	for (i = 0; i < bp->b_page_count; i++) {
979 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
980 		pageaddr += PAGE_SIZE;
981 	}
982 
983 	bp->b_io_length = BTOBB(len);
984 	bp->b_length = BTOBB(buflen);
985 
986 	return 0;
987 }
988 
989 xfs_buf_t *
990 xfs_buf_get_uncached(
991 	struct xfs_buftarg	*target,
992 	size_t			numblks,
993 	int			flags)
994 {
995 	unsigned long		page_count;
996 	int			error, i;
997 	struct xfs_buf		*bp;
998 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
999 
1000 	/* flags might contain irrelevant bits, pass only what we care about */
1001 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1002 	if (unlikely(bp == NULL))
1003 		goto fail;
1004 
1005 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1006 	error = _xfs_buf_get_pages(bp, page_count);
1007 	if (error)
1008 		goto fail_free_buf;
1009 
1010 	for (i = 0; i < page_count; i++) {
1011 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1012 		if (!bp->b_pages[i])
1013 			goto fail_free_mem;
1014 	}
1015 	bp->b_flags |= _XBF_PAGES;
1016 
1017 	error = _xfs_buf_map_pages(bp, 0);
1018 	if (unlikely(error)) {
1019 		xfs_warn(target->bt_mount,
1020 			"%s: failed to map pages", __func__);
1021 		goto fail_free_mem;
1022 	}
1023 
1024 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
1025 	return bp;
1026 
1027  fail_free_mem:
1028 	while (--i >= 0)
1029 		__free_page(bp->b_pages[i]);
1030 	_xfs_buf_free_pages(bp);
1031  fail_free_buf:
1032 	xfs_buf_free_maps(bp);
1033 	kmem_zone_free(xfs_buf_zone, bp);
1034  fail:
1035 	return NULL;
1036 }
1037 
1038 /*
1039  *	Increment reference count on buffer, to hold the buffer concurrently
1040  *	with another thread which may release (free) the buffer asynchronously.
1041  *	Must hold the buffer already to call this function.
1042  */
1043 void
1044 xfs_buf_hold(
1045 	xfs_buf_t		*bp)
1046 {
1047 	trace_xfs_buf_hold(bp, _RET_IP_);
1048 	atomic_inc(&bp->b_hold);
1049 }
1050 
1051 /*
1052  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1053  * placed on LRU or freed (depending on b_lru_ref).
1054  */
1055 void
1056 xfs_buf_rele(
1057 	xfs_buf_t		*bp)
1058 {
1059 	struct xfs_perag	*pag = bp->b_pag;
1060 	bool			release;
1061 	bool			freebuf = false;
1062 
1063 	trace_xfs_buf_rele(bp, _RET_IP_);
1064 
1065 	if (!pag) {
1066 		ASSERT(list_empty(&bp->b_lru));
1067 		if (atomic_dec_and_test(&bp->b_hold)) {
1068 			xfs_buf_ioacct_dec(bp);
1069 			xfs_buf_free(bp);
1070 		}
1071 		return;
1072 	}
1073 
1074 	ASSERT(atomic_read(&bp->b_hold) > 0);
1075 
1076 	/*
1077 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1078 	 * calls. The pag_buf_lock being taken on the last reference only
1079 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1080 	 * to last reference we drop here is not serialised against the last
1081 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1082 	 * first, the last "release" reference can win the race to the lock and
1083 	 * free the buffer before the second-to-last reference is processed,
1084 	 * leading to a use-after-free scenario.
1085 	 */
1086 	spin_lock(&bp->b_lock);
1087 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1088 	if (!release) {
1089 		/*
1090 		 * Drop the in-flight state if the buffer is already on the LRU
1091 		 * and it holds the only reference. This is racy because we
1092 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1093 		 * ensures the decrement occurs only once per-buf.
1094 		 */
1095 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1096 			__xfs_buf_ioacct_dec(bp);
1097 		goto out_unlock;
1098 	}
1099 
1100 	/* the last reference has been dropped ... */
1101 	__xfs_buf_ioacct_dec(bp);
1102 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1103 		/*
1104 		 * If the buffer is added to the LRU take a new reference to the
1105 		 * buffer for the LRU and clear the (now stale) dispose list
1106 		 * state flag
1107 		 */
1108 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1109 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1110 			atomic_inc(&bp->b_hold);
1111 		}
1112 		spin_unlock(&pag->pag_buf_lock);
1113 	} else {
1114 		/*
1115 		 * most of the time buffers will already be removed from the
1116 		 * LRU, so optimise that case by checking for the
1117 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1118 		 * was on was the disposal list
1119 		 */
1120 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1121 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1122 		} else {
1123 			ASSERT(list_empty(&bp->b_lru));
1124 		}
1125 
1126 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1127 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1128 				       xfs_buf_hash_params);
1129 		spin_unlock(&pag->pag_buf_lock);
1130 		xfs_perag_put(pag);
1131 		freebuf = true;
1132 	}
1133 
1134 out_unlock:
1135 	spin_unlock(&bp->b_lock);
1136 
1137 	if (freebuf)
1138 		xfs_buf_free(bp);
1139 }
1140 
1141 
1142 /*
1143  *	Lock a buffer object, if it is not already locked.
1144  *
1145  *	If we come across a stale, pinned, locked buffer, we know that we are
1146  *	being asked to lock a buffer that has been reallocated. Because it is
1147  *	pinned, we know that the log has not been pushed to disk and hence it
1148  *	will still be locked.  Rather than continuing to have trylock attempts
1149  *	fail until someone else pushes the log, push it ourselves before
1150  *	returning.  This means that the xfsaild will not get stuck trying
1151  *	to push on stale inode buffers.
1152  */
1153 int
1154 xfs_buf_trylock(
1155 	struct xfs_buf		*bp)
1156 {
1157 	int			locked;
1158 
1159 	locked = down_trylock(&bp->b_sema) == 0;
1160 	if (locked)
1161 		trace_xfs_buf_trylock(bp, _RET_IP_);
1162 	else
1163 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1164 	return locked;
1165 }
1166 
1167 /*
1168  *	Lock a buffer object.
1169  *
1170  *	If we come across a stale, pinned, locked buffer, we know that we
1171  *	are being asked to lock a buffer that has been reallocated. Because
1172  *	it is pinned, we know that the log has not been pushed to disk and
1173  *	hence it will still be locked. Rather than sleeping until someone
1174  *	else pushes the log, push it ourselves before trying to get the lock.
1175  */
1176 void
1177 xfs_buf_lock(
1178 	struct xfs_buf		*bp)
1179 {
1180 	trace_xfs_buf_lock(bp, _RET_IP_);
1181 
1182 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1183 		xfs_log_force(bp->b_target->bt_mount, 0);
1184 	down(&bp->b_sema);
1185 
1186 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1187 }
1188 
1189 void
1190 xfs_buf_unlock(
1191 	struct xfs_buf		*bp)
1192 {
1193 	ASSERT(xfs_buf_islocked(bp));
1194 
1195 	up(&bp->b_sema);
1196 	trace_xfs_buf_unlock(bp, _RET_IP_);
1197 }
1198 
1199 STATIC void
1200 xfs_buf_wait_unpin(
1201 	xfs_buf_t		*bp)
1202 {
1203 	DECLARE_WAITQUEUE	(wait, current);
1204 
1205 	if (atomic_read(&bp->b_pin_count) == 0)
1206 		return;
1207 
1208 	add_wait_queue(&bp->b_waiters, &wait);
1209 	for (;;) {
1210 		set_current_state(TASK_UNINTERRUPTIBLE);
1211 		if (atomic_read(&bp->b_pin_count) == 0)
1212 			break;
1213 		io_schedule();
1214 	}
1215 	remove_wait_queue(&bp->b_waiters, &wait);
1216 	set_current_state(TASK_RUNNING);
1217 }
1218 
1219 /*
1220  *	Buffer Utility Routines
1221  */
1222 
1223 void
1224 xfs_buf_ioend(
1225 	struct xfs_buf	*bp)
1226 {
1227 	bool		read = bp->b_flags & XBF_READ;
1228 
1229 	trace_xfs_buf_iodone(bp, _RET_IP_);
1230 
1231 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1232 
1233 	/*
1234 	 * Pull in IO completion errors now. We are guaranteed to be running
1235 	 * single threaded, so we don't need the lock to read b_io_error.
1236 	 */
1237 	if (!bp->b_error && bp->b_io_error)
1238 		xfs_buf_ioerror(bp, bp->b_io_error);
1239 
1240 	/* Only validate buffers that were read without errors */
1241 	if (read && !bp->b_error && bp->b_ops) {
1242 		ASSERT(!bp->b_iodone);
1243 		bp->b_ops->verify_read(bp);
1244 	}
1245 
1246 	if (!bp->b_error)
1247 		bp->b_flags |= XBF_DONE;
1248 
1249 	if (bp->b_iodone)
1250 		(*(bp->b_iodone))(bp);
1251 	else if (bp->b_flags & XBF_ASYNC)
1252 		xfs_buf_relse(bp);
1253 	else
1254 		complete(&bp->b_iowait);
1255 }
1256 
1257 static void
1258 xfs_buf_ioend_work(
1259 	struct work_struct	*work)
1260 {
1261 	struct xfs_buf		*bp =
1262 		container_of(work, xfs_buf_t, b_ioend_work);
1263 
1264 	xfs_buf_ioend(bp);
1265 }
1266 
1267 static void
1268 xfs_buf_ioend_async(
1269 	struct xfs_buf	*bp)
1270 {
1271 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1272 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1273 }
1274 
1275 void
1276 __xfs_buf_ioerror(
1277 	xfs_buf_t		*bp,
1278 	int			error,
1279 	xfs_failaddr_t		failaddr)
1280 {
1281 	ASSERT(error <= 0 && error >= -1000);
1282 	bp->b_error = error;
1283 	trace_xfs_buf_ioerror(bp, error, failaddr);
1284 }
1285 
1286 void
1287 xfs_buf_ioerror_alert(
1288 	struct xfs_buf		*bp,
1289 	const char		*func)
1290 {
1291 	xfs_alert(bp->b_target->bt_mount,
1292 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1293 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1294 			-bp->b_error);
1295 }
1296 
1297 int
1298 xfs_bwrite(
1299 	struct xfs_buf		*bp)
1300 {
1301 	int			error;
1302 
1303 	ASSERT(xfs_buf_islocked(bp));
1304 
1305 	bp->b_flags |= XBF_WRITE;
1306 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1307 			 XBF_WRITE_FAIL | XBF_DONE);
1308 
1309 	error = xfs_buf_submit(bp);
1310 	if (error) {
1311 		xfs_force_shutdown(bp->b_target->bt_mount,
1312 				   SHUTDOWN_META_IO_ERROR);
1313 	}
1314 	return error;
1315 }
1316 
1317 static void
1318 xfs_buf_bio_end_io(
1319 	struct bio		*bio)
1320 {
1321 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1322 
1323 	/*
1324 	 * don't overwrite existing errors - otherwise we can lose errors on
1325 	 * buffers that require multiple bios to complete.
1326 	 */
1327 	if (bio->bi_status) {
1328 		int error = blk_status_to_errno(bio->bi_status);
1329 
1330 		cmpxchg(&bp->b_io_error, 0, error);
1331 	}
1332 
1333 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1334 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1335 
1336 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1337 		xfs_buf_ioend_async(bp);
1338 	bio_put(bio);
1339 }
1340 
1341 static void
1342 xfs_buf_ioapply_map(
1343 	struct xfs_buf	*bp,
1344 	int		map,
1345 	int		*buf_offset,
1346 	int		*count,
1347 	int		op,
1348 	int		op_flags)
1349 {
1350 	int		page_index;
1351 	int		total_nr_pages = bp->b_page_count;
1352 	int		nr_pages;
1353 	struct bio	*bio;
1354 	sector_t	sector =  bp->b_maps[map].bm_bn;
1355 	int		size;
1356 	int		offset;
1357 
1358 	/* skip the pages in the buffer before the start offset */
1359 	page_index = 0;
1360 	offset = *buf_offset;
1361 	while (offset >= PAGE_SIZE) {
1362 		page_index++;
1363 		offset -= PAGE_SIZE;
1364 	}
1365 
1366 	/*
1367 	 * Limit the IO size to the length of the current vector, and update the
1368 	 * remaining IO count for the next time around.
1369 	 */
1370 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1371 	*count -= size;
1372 	*buf_offset += size;
1373 
1374 next_chunk:
1375 	atomic_inc(&bp->b_io_remaining);
1376 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1377 
1378 	bio = bio_alloc(GFP_NOIO, nr_pages);
1379 	bio_set_dev(bio, bp->b_target->bt_bdev);
1380 	bio->bi_iter.bi_sector = sector;
1381 	bio->bi_end_io = xfs_buf_bio_end_io;
1382 	bio->bi_private = bp;
1383 	bio_set_op_attrs(bio, op, op_flags);
1384 
1385 	for (; size && nr_pages; nr_pages--, page_index++) {
1386 		int	rbytes, nbytes = PAGE_SIZE - offset;
1387 
1388 		if (nbytes > size)
1389 			nbytes = size;
1390 
1391 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1392 				      offset);
1393 		if (rbytes < nbytes)
1394 			break;
1395 
1396 		offset = 0;
1397 		sector += BTOBB(nbytes);
1398 		size -= nbytes;
1399 		total_nr_pages--;
1400 	}
1401 
1402 	if (likely(bio->bi_iter.bi_size)) {
1403 		if (xfs_buf_is_vmapped(bp)) {
1404 			flush_kernel_vmap_range(bp->b_addr,
1405 						xfs_buf_vmap_len(bp));
1406 		}
1407 		submit_bio(bio);
1408 		if (size)
1409 			goto next_chunk;
1410 	} else {
1411 		/*
1412 		 * This is guaranteed not to be the last io reference count
1413 		 * because the caller (xfs_buf_submit) holds a count itself.
1414 		 */
1415 		atomic_dec(&bp->b_io_remaining);
1416 		xfs_buf_ioerror(bp, -EIO);
1417 		bio_put(bio);
1418 	}
1419 
1420 }
1421 
1422 STATIC void
1423 _xfs_buf_ioapply(
1424 	struct xfs_buf	*bp)
1425 {
1426 	struct blk_plug	plug;
1427 	int		op;
1428 	int		op_flags = 0;
1429 	int		offset;
1430 	int		size;
1431 	int		i;
1432 
1433 	/*
1434 	 * Make sure we capture only current IO errors rather than stale errors
1435 	 * left over from previous use of the buffer (e.g. failed readahead).
1436 	 */
1437 	bp->b_error = 0;
1438 
1439 	/*
1440 	 * Initialize the I/O completion workqueue if we haven't yet or the
1441 	 * submitter has not opted to specify a custom one.
1442 	 */
1443 	if (!bp->b_ioend_wq)
1444 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1445 
1446 	if (bp->b_flags & XBF_WRITE) {
1447 		op = REQ_OP_WRITE;
1448 		if (bp->b_flags & XBF_SYNCIO)
1449 			op_flags = REQ_SYNC;
1450 		if (bp->b_flags & XBF_FUA)
1451 			op_flags |= REQ_FUA;
1452 		if (bp->b_flags & XBF_FLUSH)
1453 			op_flags |= REQ_PREFLUSH;
1454 
1455 		/*
1456 		 * Run the write verifier callback function if it exists. If
1457 		 * this function fails it will mark the buffer with an error and
1458 		 * the IO should not be dispatched.
1459 		 */
1460 		if (bp->b_ops) {
1461 			bp->b_ops->verify_write(bp);
1462 			if (bp->b_error) {
1463 				xfs_force_shutdown(bp->b_target->bt_mount,
1464 						   SHUTDOWN_CORRUPT_INCORE);
1465 				return;
1466 			}
1467 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1468 			struct xfs_mount *mp = bp->b_target->bt_mount;
1469 
1470 			/*
1471 			 * non-crc filesystems don't attach verifiers during
1472 			 * log recovery, so don't warn for such filesystems.
1473 			 */
1474 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1475 				xfs_warn(mp,
1476 					"%s: no buf ops on daddr 0x%llx len %d",
1477 					__func__, bp->b_bn, bp->b_length);
1478 				xfs_hex_dump(bp->b_addr,
1479 						XFS_CORRUPTION_DUMP_LEN);
1480 				dump_stack();
1481 			}
1482 		}
1483 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1484 		op = REQ_OP_READ;
1485 		op_flags = REQ_RAHEAD;
1486 	} else {
1487 		op = REQ_OP_READ;
1488 	}
1489 
1490 	/* we only use the buffer cache for meta-data */
1491 	op_flags |= REQ_META;
1492 
1493 	/*
1494 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1495 	 * into the buffer and the desired IO size before we start -
1496 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1497 	 * subsequent call.
1498 	 */
1499 	offset = bp->b_offset;
1500 	size = BBTOB(bp->b_io_length);
1501 	blk_start_plug(&plug);
1502 	for (i = 0; i < bp->b_map_count; i++) {
1503 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1504 		if (bp->b_error)
1505 			break;
1506 		if (size <= 0)
1507 			break;	/* all done */
1508 	}
1509 	blk_finish_plug(&plug);
1510 }
1511 
1512 /*
1513  * Wait for I/O completion of a sync buffer and return the I/O error code.
1514  */
1515 static int
1516 xfs_buf_iowait(
1517 	struct xfs_buf	*bp)
1518 {
1519 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1520 
1521 	trace_xfs_buf_iowait(bp, _RET_IP_);
1522 	wait_for_completion(&bp->b_iowait);
1523 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1524 
1525 	return bp->b_error;
1526 }
1527 
1528 /*
1529  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1530  * the buffer lock ownership and the current reference to the IO. It is not
1531  * safe to reference the buffer after a call to this function unless the caller
1532  * holds an additional reference itself.
1533  */
1534 int
1535 __xfs_buf_submit(
1536 	struct xfs_buf	*bp,
1537 	bool		wait)
1538 {
1539 	int		error = 0;
1540 
1541 	trace_xfs_buf_submit(bp, _RET_IP_);
1542 
1543 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1544 
1545 	/* on shutdown we stale and complete the buffer immediately */
1546 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1547 		xfs_buf_ioerror(bp, -EIO);
1548 		bp->b_flags &= ~XBF_DONE;
1549 		xfs_buf_stale(bp);
1550 		xfs_buf_ioend(bp);
1551 		return -EIO;
1552 	}
1553 
1554 	/*
1555 	 * Grab a reference so the buffer does not go away underneath us. For
1556 	 * async buffers, I/O completion drops the callers reference, which
1557 	 * could occur before submission returns.
1558 	 */
1559 	xfs_buf_hold(bp);
1560 
1561 	if (bp->b_flags & XBF_WRITE)
1562 		xfs_buf_wait_unpin(bp);
1563 
1564 	/* clear the internal error state to avoid spurious errors */
1565 	bp->b_io_error = 0;
1566 
1567 	/*
1568 	 * Set the count to 1 initially, this will stop an I/O completion
1569 	 * callout which happens before we have started all the I/O from calling
1570 	 * xfs_buf_ioend too early.
1571 	 */
1572 	atomic_set(&bp->b_io_remaining, 1);
1573 	if (bp->b_flags & XBF_ASYNC)
1574 		xfs_buf_ioacct_inc(bp);
1575 	_xfs_buf_ioapply(bp);
1576 
1577 	/*
1578 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1579 	 * reference we took above. If we drop it to zero, run completion so
1580 	 * that we don't return to the caller with completion still pending.
1581 	 */
1582 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1583 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1584 			xfs_buf_ioend(bp);
1585 		else
1586 			xfs_buf_ioend_async(bp);
1587 	}
1588 
1589 	if (wait)
1590 		error = xfs_buf_iowait(bp);
1591 
1592 	/*
1593 	 * Release the hold that keeps the buffer referenced for the entire
1594 	 * I/O. Note that if the buffer is async, it is not safe to reference
1595 	 * after this release.
1596 	 */
1597 	xfs_buf_rele(bp);
1598 	return error;
1599 }
1600 
1601 void *
1602 xfs_buf_offset(
1603 	struct xfs_buf		*bp,
1604 	size_t			offset)
1605 {
1606 	struct page		*page;
1607 
1608 	if (bp->b_addr)
1609 		return bp->b_addr + offset;
1610 
1611 	offset += bp->b_offset;
1612 	page = bp->b_pages[offset >> PAGE_SHIFT];
1613 	return page_address(page) + (offset & (PAGE_SIZE-1));
1614 }
1615 
1616 /*
1617  *	Move data into or out of a buffer.
1618  */
1619 void
1620 xfs_buf_iomove(
1621 	xfs_buf_t		*bp,	/* buffer to process		*/
1622 	size_t			boff,	/* starting buffer offset	*/
1623 	size_t			bsize,	/* length to copy		*/
1624 	void			*data,	/* data address			*/
1625 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1626 {
1627 	size_t			bend;
1628 
1629 	bend = boff + bsize;
1630 	while (boff < bend) {
1631 		struct page	*page;
1632 		int		page_index, page_offset, csize;
1633 
1634 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1635 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1636 		page = bp->b_pages[page_index];
1637 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1638 				      BBTOB(bp->b_io_length) - boff);
1639 
1640 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1641 
1642 		switch (mode) {
1643 		case XBRW_ZERO:
1644 			memset(page_address(page) + page_offset, 0, csize);
1645 			break;
1646 		case XBRW_READ:
1647 			memcpy(data, page_address(page) + page_offset, csize);
1648 			break;
1649 		case XBRW_WRITE:
1650 			memcpy(page_address(page) + page_offset, data, csize);
1651 		}
1652 
1653 		boff += csize;
1654 		data += csize;
1655 	}
1656 }
1657 
1658 /*
1659  *	Handling of buffer targets (buftargs).
1660  */
1661 
1662 /*
1663  * Wait for any bufs with callbacks that have been submitted but have not yet
1664  * returned. These buffers will have an elevated hold count, so wait on those
1665  * while freeing all the buffers only held by the LRU.
1666  */
1667 static enum lru_status
1668 xfs_buftarg_wait_rele(
1669 	struct list_head	*item,
1670 	struct list_lru_one	*lru,
1671 	spinlock_t		*lru_lock,
1672 	void			*arg)
1673 
1674 {
1675 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1676 	struct list_head	*dispose = arg;
1677 
1678 	if (atomic_read(&bp->b_hold) > 1) {
1679 		/* need to wait, so skip it this pass */
1680 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1681 		return LRU_SKIP;
1682 	}
1683 	if (!spin_trylock(&bp->b_lock))
1684 		return LRU_SKIP;
1685 
1686 	/*
1687 	 * clear the LRU reference count so the buffer doesn't get
1688 	 * ignored in xfs_buf_rele().
1689 	 */
1690 	atomic_set(&bp->b_lru_ref, 0);
1691 	bp->b_state |= XFS_BSTATE_DISPOSE;
1692 	list_lru_isolate_move(lru, item, dispose);
1693 	spin_unlock(&bp->b_lock);
1694 	return LRU_REMOVED;
1695 }
1696 
1697 void
1698 xfs_wait_buftarg(
1699 	struct xfs_buftarg	*btp)
1700 {
1701 	LIST_HEAD(dispose);
1702 	int loop = 0;
1703 
1704 	/*
1705 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1706 	 * released. This is critical as new buffers do not make the LRU until
1707 	 * they are released.
1708 	 *
1709 	 * Next, flush the buffer workqueue to ensure all completion processing
1710 	 * has finished. Just waiting on buffer locks is not sufficient for
1711 	 * async IO as the reference count held over IO is not released until
1712 	 * after the buffer lock is dropped. Hence we need to ensure here that
1713 	 * all reference counts have been dropped before we start walking the
1714 	 * LRU list.
1715 	 */
1716 	while (percpu_counter_sum(&btp->bt_io_count))
1717 		delay(100);
1718 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1719 
1720 	/* loop until there is nothing left on the lru list. */
1721 	while (list_lru_count(&btp->bt_lru)) {
1722 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1723 			      &dispose, LONG_MAX);
1724 
1725 		while (!list_empty(&dispose)) {
1726 			struct xfs_buf *bp;
1727 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1728 			list_del_init(&bp->b_lru);
1729 			if (bp->b_flags & XBF_WRITE_FAIL) {
1730 				xfs_alert(btp->bt_mount,
1731 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1732 					(long long)bp->b_bn);
1733 				xfs_alert(btp->bt_mount,
1734 "Please run xfs_repair to determine the extent of the problem.");
1735 			}
1736 			xfs_buf_rele(bp);
1737 		}
1738 		if (loop++ != 0)
1739 			delay(100);
1740 	}
1741 }
1742 
1743 static enum lru_status
1744 xfs_buftarg_isolate(
1745 	struct list_head	*item,
1746 	struct list_lru_one	*lru,
1747 	spinlock_t		*lru_lock,
1748 	void			*arg)
1749 {
1750 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1751 	struct list_head	*dispose = arg;
1752 
1753 	/*
1754 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1755 	 * If we fail to get the lock, just skip it.
1756 	 */
1757 	if (!spin_trylock(&bp->b_lock))
1758 		return LRU_SKIP;
1759 	/*
1760 	 * Decrement the b_lru_ref count unless the value is already
1761 	 * zero. If the value is already zero, we need to reclaim the
1762 	 * buffer, otherwise it gets another trip through the LRU.
1763 	 */
1764 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1765 		spin_unlock(&bp->b_lock);
1766 		return LRU_ROTATE;
1767 	}
1768 
1769 	bp->b_state |= XFS_BSTATE_DISPOSE;
1770 	list_lru_isolate_move(lru, item, dispose);
1771 	spin_unlock(&bp->b_lock);
1772 	return LRU_REMOVED;
1773 }
1774 
1775 static unsigned long
1776 xfs_buftarg_shrink_scan(
1777 	struct shrinker		*shrink,
1778 	struct shrink_control	*sc)
1779 {
1780 	struct xfs_buftarg	*btp = container_of(shrink,
1781 					struct xfs_buftarg, bt_shrinker);
1782 	LIST_HEAD(dispose);
1783 	unsigned long		freed;
1784 
1785 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1786 				     xfs_buftarg_isolate, &dispose);
1787 
1788 	while (!list_empty(&dispose)) {
1789 		struct xfs_buf *bp;
1790 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1791 		list_del_init(&bp->b_lru);
1792 		xfs_buf_rele(bp);
1793 	}
1794 
1795 	return freed;
1796 }
1797 
1798 static unsigned long
1799 xfs_buftarg_shrink_count(
1800 	struct shrinker		*shrink,
1801 	struct shrink_control	*sc)
1802 {
1803 	struct xfs_buftarg	*btp = container_of(shrink,
1804 					struct xfs_buftarg, bt_shrinker);
1805 	return list_lru_shrink_count(&btp->bt_lru, sc);
1806 }
1807 
1808 void
1809 xfs_free_buftarg(
1810 	struct xfs_buftarg	*btp)
1811 {
1812 	unregister_shrinker(&btp->bt_shrinker);
1813 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1814 	percpu_counter_destroy(&btp->bt_io_count);
1815 	list_lru_destroy(&btp->bt_lru);
1816 
1817 	xfs_blkdev_issue_flush(btp);
1818 
1819 	kmem_free(btp);
1820 }
1821 
1822 int
1823 xfs_setsize_buftarg(
1824 	xfs_buftarg_t		*btp,
1825 	unsigned int		sectorsize)
1826 {
1827 	/* Set up metadata sector size info */
1828 	btp->bt_meta_sectorsize = sectorsize;
1829 	btp->bt_meta_sectormask = sectorsize - 1;
1830 
1831 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1832 		xfs_warn(btp->bt_mount,
1833 			"Cannot set_blocksize to %u on device %pg",
1834 			sectorsize, btp->bt_bdev);
1835 		return -EINVAL;
1836 	}
1837 
1838 	/* Set up device logical sector size mask */
1839 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1840 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1841 
1842 	return 0;
1843 }
1844 
1845 /*
1846  * When allocating the initial buffer target we have not yet
1847  * read in the superblock, so don't know what sized sectors
1848  * are being used at this early stage.  Play safe.
1849  */
1850 STATIC int
1851 xfs_setsize_buftarg_early(
1852 	xfs_buftarg_t		*btp,
1853 	struct block_device	*bdev)
1854 {
1855 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1856 }
1857 
1858 xfs_buftarg_t *
1859 xfs_alloc_buftarg(
1860 	struct xfs_mount	*mp,
1861 	struct block_device	*bdev,
1862 	struct dax_device	*dax_dev)
1863 {
1864 	xfs_buftarg_t		*btp;
1865 
1866 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1867 
1868 	btp->bt_mount = mp;
1869 	btp->bt_dev =  bdev->bd_dev;
1870 	btp->bt_bdev = bdev;
1871 	btp->bt_daxdev = dax_dev;
1872 
1873 	if (xfs_setsize_buftarg_early(btp, bdev))
1874 		goto error_free;
1875 
1876 	if (list_lru_init(&btp->bt_lru))
1877 		goto error_free;
1878 
1879 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1880 		goto error_lru;
1881 
1882 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1883 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1884 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1885 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1886 	if (register_shrinker(&btp->bt_shrinker))
1887 		goto error_pcpu;
1888 	return btp;
1889 
1890 error_pcpu:
1891 	percpu_counter_destroy(&btp->bt_io_count);
1892 error_lru:
1893 	list_lru_destroy(&btp->bt_lru);
1894 error_free:
1895 	kmem_free(btp);
1896 	return NULL;
1897 }
1898 
1899 /*
1900  * Cancel a delayed write list.
1901  *
1902  * Remove each buffer from the list, clear the delwri queue flag and drop the
1903  * associated buffer reference.
1904  */
1905 void
1906 xfs_buf_delwri_cancel(
1907 	struct list_head	*list)
1908 {
1909 	struct xfs_buf		*bp;
1910 
1911 	while (!list_empty(list)) {
1912 		bp = list_first_entry(list, struct xfs_buf, b_list);
1913 
1914 		xfs_buf_lock(bp);
1915 		bp->b_flags &= ~_XBF_DELWRI_Q;
1916 		list_del_init(&bp->b_list);
1917 		xfs_buf_relse(bp);
1918 	}
1919 }
1920 
1921 /*
1922  * Add a buffer to the delayed write list.
1923  *
1924  * This queues a buffer for writeout if it hasn't already been.  Note that
1925  * neither this routine nor the buffer list submission functions perform
1926  * any internal synchronization.  It is expected that the lists are thread-local
1927  * to the callers.
1928  *
1929  * Returns true if we queued up the buffer, or false if it already had
1930  * been on the buffer list.
1931  */
1932 bool
1933 xfs_buf_delwri_queue(
1934 	struct xfs_buf		*bp,
1935 	struct list_head	*list)
1936 {
1937 	ASSERT(xfs_buf_islocked(bp));
1938 	ASSERT(!(bp->b_flags & XBF_READ));
1939 
1940 	/*
1941 	 * If the buffer is already marked delwri it already is queued up
1942 	 * by someone else for imediate writeout.  Just ignore it in that
1943 	 * case.
1944 	 */
1945 	if (bp->b_flags & _XBF_DELWRI_Q) {
1946 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1947 		return false;
1948 	}
1949 
1950 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1951 
1952 	/*
1953 	 * If a buffer gets written out synchronously or marked stale while it
1954 	 * is on a delwri list we lazily remove it. To do this, the other party
1955 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1956 	 * It remains referenced and on the list.  In a rare corner case it
1957 	 * might get readded to a delwri list after the synchronous writeout, in
1958 	 * which case we need just need to re-add the flag here.
1959 	 */
1960 	bp->b_flags |= _XBF_DELWRI_Q;
1961 	if (list_empty(&bp->b_list)) {
1962 		atomic_inc(&bp->b_hold);
1963 		list_add_tail(&bp->b_list, list);
1964 	}
1965 
1966 	return true;
1967 }
1968 
1969 /*
1970  * Compare function is more complex than it needs to be because
1971  * the return value is only 32 bits and we are doing comparisons
1972  * on 64 bit values
1973  */
1974 static int
1975 xfs_buf_cmp(
1976 	void		*priv,
1977 	struct list_head *a,
1978 	struct list_head *b)
1979 {
1980 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1981 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1982 	xfs_daddr_t		diff;
1983 
1984 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1985 	if (diff < 0)
1986 		return -1;
1987 	if (diff > 0)
1988 		return 1;
1989 	return 0;
1990 }
1991 
1992 /*
1993  * Submit buffers for write. If wait_list is specified, the buffers are
1994  * submitted using sync I/O and placed on the wait list such that the caller can
1995  * iowait each buffer. Otherwise async I/O is used and the buffers are released
1996  * at I/O completion time. In either case, buffers remain locked until I/O
1997  * completes and the buffer is released from the queue.
1998  */
1999 static int
2000 xfs_buf_delwri_submit_buffers(
2001 	struct list_head	*buffer_list,
2002 	struct list_head	*wait_list)
2003 {
2004 	struct xfs_buf		*bp, *n;
2005 	int			pinned = 0;
2006 	struct blk_plug		plug;
2007 
2008 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2009 
2010 	blk_start_plug(&plug);
2011 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2012 		if (!wait_list) {
2013 			if (xfs_buf_ispinned(bp)) {
2014 				pinned++;
2015 				continue;
2016 			}
2017 			if (!xfs_buf_trylock(bp))
2018 				continue;
2019 		} else {
2020 			xfs_buf_lock(bp);
2021 		}
2022 
2023 		/*
2024 		 * Someone else might have written the buffer synchronously or
2025 		 * marked it stale in the meantime.  In that case only the
2026 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2027 		 * reference and remove it from the list here.
2028 		 */
2029 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2030 			list_del_init(&bp->b_list);
2031 			xfs_buf_relse(bp);
2032 			continue;
2033 		}
2034 
2035 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2036 
2037 		/*
2038 		 * If we have a wait list, each buffer (and associated delwri
2039 		 * queue reference) transfers to it and is submitted
2040 		 * synchronously. Otherwise, drop the buffer from the delwri
2041 		 * queue and submit async.
2042 		 */
2043 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
2044 		bp->b_flags |= XBF_WRITE;
2045 		if (wait_list) {
2046 			bp->b_flags &= ~XBF_ASYNC;
2047 			list_move_tail(&bp->b_list, wait_list);
2048 		} else {
2049 			bp->b_flags |= XBF_ASYNC;
2050 			list_del_init(&bp->b_list);
2051 		}
2052 		__xfs_buf_submit(bp, false);
2053 	}
2054 	blk_finish_plug(&plug);
2055 
2056 	return pinned;
2057 }
2058 
2059 /*
2060  * Write out a buffer list asynchronously.
2061  *
2062  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2063  * out and not wait for I/O completion on any of the buffers.  This interface
2064  * is only safely useable for callers that can track I/O completion by higher
2065  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2066  * function.
2067  *
2068  * Note: this function will skip buffers it would block on, and in doing so
2069  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2070  * it is up to the caller to ensure that the buffer list is fully submitted or
2071  * cancelled appropriately when they are finished with the list. Failure to
2072  * cancel or resubmit the list until it is empty will result in leaked buffers
2073  * at unmount time.
2074  */
2075 int
2076 xfs_buf_delwri_submit_nowait(
2077 	struct list_head	*buffer_list)
2078 {
2079 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2080 }
2081 
2082 /*
2083  * Write out a buffer list synchronously.
2084  *
2085  * This will take the @buffer_list, write all buffers out and wait for I/O
2086  * completion on all of the buffers. @buffer_list is consumed by the function,
2087  * so callers must have some other way of tracking buffers if they require such
2088  * functionality.
2089  */
2090 int
2091 xfs_buf_delwri_submit(
2092 	struct list_head	*buffer_list)
2093 {
2094 	LIST_HEAD		(wait_list);
2095 	int			error = 0, error2;
2096 	struct xfs_buf		*bp;
2097 
2098 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2099 
2100 	/* Wait for IO to complete. */
2101 	while (!list_empty(&wait_list)) {
2102 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2103 
2104 		list_del_init(&bp->b_list);
2105 
2106 		/*
2107 		 * Wait on the locked buffer, check for errors and unlock and
2108 		 * release the delwri queue reference.
2109 		 */
2110 		error2 = xfs_buf_iowait(bp);
2111 		xfs_buf_relse(bp);
2112 		if (!error)
2113 			error = error2;
2114 	}
2115 
2116 	return error;
2117 }
2118 
2119 /*
2120  * Push a single buffer on a delwri queue.
2121  *
2122  * The purpose of this function is to submit a single buffer of a delwri queue
2123  * and return with the buffer still on the original queue. The waiting delwri
2124  * buffer submission infrastructure guarantees transfer of the delwri queue
2125  * buffer reference to a temporary wait list. We reuse this infrastructure to
2126  * transfer the buffer back to the original queue.
2127  *
2128  * Note the buffer transitions from the queued state, to the submitted and wait
2129  * listed state and back to the queued state during this call. The buffer
2130  * locking and queue management logic between _delwri_pushbuf() and
2131  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2132  * before returning.
2133  */
2134 int
2135 xfs_buf_delwri_pushbuf(
2136 	struct xfs_buf		*bp,
2137 	struct list_head	*buffer_list)
2138 {
2139 	LIST_HEAD		(submit_list);
2140 	int			error;
2141 
2142 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2143 
2144 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2145 
2146 	/*
2147 	 * Isolate the buffer to a new local list so we can submit it for I/O
2148 	 * independently from the rest of the original list.
2149 	 */
2150 	xfs_buf_lock(bp);
2151 	list_move(&bp->b_list, &submit_list);
2152 	xfs_buf_unlock(bp);
2153 
2154 	/*
2155 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2156 	 * the buffer on the wait list with the original reference. Rather than
2157 	 * bounce the buffer from a local wait list back to the original list
2158 	 * after I/O completion, reuse the original list as the wait list.
2159 	 */
2160 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2161 
2162 	/*
2163 	 * The buffer is now locked, under I/O and wait listed on the original
2164 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2165 	 * return with the buffer unlocked and on the original queue.
2166 	 */
2167 	error = xfs_buf_iowait(bp);
2168 	bp->b_flags |= _XBF_DELWRI_Q;
2169 	xfs_buf_unlock(bp);
2170 
2171 	return error;
2172 }
2173 
2174 int __init
2175 xfs_buf_init(void)
2176 {
2177 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2178 						KM_ZONE_HWALIGN, NULL);
2179 	if (!xfs_buf_zone)
2180 		goto out;
2181 
2182 	return 0;
2183 
2184  out:
2185 	return -ENOMEM;
2186 }
2187 
2188 void
2189 xfs_buf_terminate(void)
2190 {
2191 	kmem_zone_destroy(xfs_buf_zone);
2192 }
2193 
2194 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2195 {
2196 	/*
2197 	 * Set the lru reference count to 0 based on the error injection tag.
2198 	 * This allows userspace to disrupt buffer caching for debug/testing
2199 	 * purposes.
2200 	 */
2201 	if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2202 			   XFS_ERRTAG_BUF_LRU_REF))
2203 		lru_ref = 0;
2204 
2205 	atomic_set(&bp->b_lru_ref, lru_ref);
2206 }
2207 
2208 /*
2209  * Verify an on-disk magic value against the magic value specified in the
2210  * verifier structure. The verifier magic is in disk byte order so the caller is
2211  * expected to pass the value directly from disk.
2212  */
2213 bool
2214 xfs_verify_magic(
2215 	struct xfs_buf		*bp,
2216 	__be32			dmagic)
2217 {
2218 	struct xfs_mount	*mp = bp->b_target->bt_mount;
2219 	int			idx;
2220 
2221 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2222 	if (unlikely(WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])))
2223 		return false;
2224 	return dmagic == bp->b_ops->magic[idx];
2225 }
2226 /*
2227  * Verify an on-disk magic value against the magic value specified in the
2228  * verifier structure. The verifier magic is in disk byte order so the caller is
2229  * expected to pass the value directly from disk.
2230  */
2231 bool
2232 xfs_verify_magic16(
2233 	struct xfs_buf		*bp,
2234 	__be16			dmagic)
2235 {
2236 	struct xfs_mount	*mp = bp->b_target->bt_mount;
2237 	int			idx;
2238 
2239 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2240 	if (unlikely(WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])))
2241 		return false;
2242 	return dmagic == bp->b_ops->magic16[idx];
2243 }
2244