xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_errortag.h"
18 #include "xfs_error.h"
19 
20 static kmem_zone_t *xfs_buf_zone;
21 
22 #define xb_to_gfp(flags) \
23 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
24 
25 /*
26  * Locking orders
27  *
28  * xfs_buf_ioacct_inc:
29  * xfs_buf_ioacct_dec:
30  *	b_sema (caller holds)
31  *	  b_lock
32  *
33  * xfs_buf_stale:
34  *	b_sema (caller holds)
35  *	  b_lock
36  *	    lru_lock
37  *
38  * xfs_buf_rele:
39  *	b_lock
40  *	  pag_buf_lock
41  *	    lru_lock
42  *
43  * xfs_buftarg_wait_rele
44  *	lru_lock
45  *	  b_lock (trylock due to inversion)
46  *
47  * xfs_buftarg_isolate
48  *	lru_lock
49  *	  b_lock (trylock due to inversion)
50  */
51 
52 static inline int
53 xfs_buf_is_vmapped(
54 	struct xfs_buf	*bp)
55 {
56 	/*
57 	 * Return true if the buffer is vmapped.
58 	 *
59 	 * b_addr is null if the buffer is not mapped, but the code is clever
60 	 * enough to know it doesn't have to map a single page, so the check has
61 	 * to be both for b_addr and bp->b_page_count > 1.
62 	 */
63 	return bp->b_addr && bp->b_page_count > 1;
64 }
65 
66 static inline int
67 xfs_buf_vmap_len(
68 	struct xfs_buf	*bp)
69 {
70 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71 }
72 
73 /*
74  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75  * this buffer. The count is incremented once per buffer (per hold cycle)
76  * because the corresponding decrement is deferred to buffer release. Buffers
77  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78  * tracking adds unnecessary overhead. This is used for sychronization purposes
79  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80  * in-flight buffers.
81  *
82  * Buffers that are never released (e.g., superblock, iclog buffers) must set
83  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84  * never reaches zero and unmount hangs indefinitely.
85  */
86 static inline void
87 xfs_buf_ioacct_inc(
88 	struct xfs_buf	*bp)
89 {
90 	if (bp->b_flags & XBF_NO_IOACCT)
91 		return;
92 
93 	ASSERT(bp->b_flags & XBF_ASYNC);
94 	spin_lock(&bp->b_lock);
95 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 		percpu_counter_inc(&bp->b_target->bt_io_count);
98 	}
99 	spin_unlock(&bp->b_lock);
100 }
101 
102 /*
103  * Clear the in-flight state on a buffer about to be released to the LRU or
104  * freed and unaccount from the buftarg.
105  */
106 static inline void
107 __xfs_buf_ioacct_dec(
108 	struct xfs_buf	*bp)
109 {
110 	lockdep_assert_held(&bp->b_lock);
111 
112 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 		percpu_counter_dec(&bp->b_target->bt_io_count);
115 	}
116 }
117 
118 static inline void
119 xfs_buf_ioacct_dec(
120 	struct xfs_buf	*bp)
121 {
122 	spin_lock(&bp->b_lock);
123 	__xfs_buf_ioacct_dec(bp);
124 	spin_unlock(&bp->b_lock);
125 }
126 
127 /*
128  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129  * b_lru_ref count so that the buffer is freed immediately when the buffer
130  * reference count falls to zero. If the buffer is already on the LRU, we need
131  * to remove the reference that LRU holds on the buffer.
132  *
133  * This prevents build-up of stale buffers on the LRU.
134  */
135 void
136 xfs_buf_stale(
137 	struct xfs_buf	*bp)
138 {
139 	ASSERT(xfs_buf_islocked(bp));
140 
141 	bp->b_flags |= XBF_STALE;
142 
143 	/*
144 	 * Clear the delwri status so that a delwri queue walker will not
145 	 * flush this buffer to disk now that it is stale. The delwri queue has
146 	 * a reference to the buffer, so this is safe to do.
147 	 */
148 	bp->b_flags &= ~_XBF_DELWRI_Q;
149 
150 	/*
151 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 	 * could reset b_flags. There is no guarantee that the buffer is
153 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 	 * status now to preserve accounting consistency.
155 	 */
156 	spin_lock(&bp->b_lock);
157 	__xfs_buf_ioacct_dec(bp);
158 
159 	atomic_set(&bp->b_lru_ref, 0);
160 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
161 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 		atomic_dec(&bp->b_hold);
163 
164 	ASSERT(atomic_read(&bp->b_hold) >= 1);
165 	spin_unlock(&bp->b_lock);
166 }
167 
168 static int
169 xfs_buf_get_maps(
170 	struct xfs_buf		*bp,
171 	int			map_count)
172 {
173 	ASSERT(bp->b_maps == NULL);
174 	bp->b_map_count = map_count;
175 
176 	if (map_count == 1) {
177 		bp->b_maps = &bp->__b_map;
178 		return 0;
179 	}
180 
181 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 				KM_NOFS);
183 	if (!bp->b_maps)
184 		return -ENOMEM;
185 	return 0;
186 }
187 
188 /*
189  *	Frees b_pages if it was allocated.
190  */
191 static void
192 xfs_buf_free_maps(
193 	struct xfs_buf	*bp)
194 {
195 	if (bp->b_maps != &bp->__b_map) {
196 		kmem_free(bp->b_maps);
197 		bp->b_maps = NULL;
198 	}
199 }
200 
201 static struct xfs_buf *
202 _xfs_buf_alloc(
203 	struct xfs_buftarg	*target,
204 	struct xfs_buf_map	*map,
205 	int			nmaps,
206 	xfs_buf_flags_t		flags)
207 {
208 	struct xfs_buf		*bp;
209 	int			error;
210 	int			i;
211 
212 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
213 	if (unlikely(!bp))
214 		return NULL;
215 
216 	/*
217 	 * We don't want certain flags to appear in b_flags unless they are
218 	 * specifically set by later operations on the buffer.
219 	 */
220 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
221 
222 	atomic_set(&bp->b_hold, 1);
223 	atomic_set(&bp->b_lru_ref, 1);
224 	init_completion(&bp->b_iowait);
225 	INIT_LIST_HEAD(&bp->b_lru);
226 	INIT_LIST_HEAD(&bp->b_list);
227 	INIT_LIST_HEAD(&bp->b_li_list);
228 	sema_init(&bp->b_sema, 0); /* held, no waiters */
229 	spin_lock_init(&bp->b_lock);
230 	bp->b_target = target;
231 	bp->b_mount = target->bt_mount;
232 	bp->b_flags = flags;
233 
234 	/*
235 	 * Set length and io_length to the same value initially.
236 	 * I/O routines should use io_length, which will be the same in
237 	 * most cases but may be reset (e.g. XFS recovery).
238 	 */
239 	error = xfs_buf_get_maps(bp, nmaps);
240 	if (error)  {
241 		kmem_zone_free(xfs_buf_zone, bp);
242 		return NULL;
243 	}
244 
245 	bp->b_bn = map[0].bm_bn;
246 	bp->b_length = 0;
247 	for (i = 0; i < nmaps; i++) {
248 		bp->b_maps[i].bm_bn = map[i].bm_bn;
249 		bp->b_maps[i].bm_len = map[i].bm_len;
250 		bp->b_length += map[i].bm_len;
251 	}
252 
253 	atomic_set(&bp->b_pin_count, 0);
254 	init_waitqueue_head(&bp->b_waiters);
255 
256 	XFS_STATS_INC(bp->b_mount, xb_create);
257 	trace_xfs_buf_init(bp, _RET_IP_);
258 
259 	return bp;
260 }
261 
262 /*
263  *	Allocate a page array capable of holding a specified number
264  *	of pages, and point the page buf at it.
265  */
266 STATIC int
267 _xfs_buf_get_pages(
268 	xfs_buf_t		*bp,
269 	int			page_count)
270 {
271 	/* Make sure that we have a page list */
272 	if (bp->b_pages == NULL) {
273 		bp->b_page_count = page_count;
274 		if (page_count <= XB_PAGES) {
275 			bp->b_pages = bp->b_page_array;
276 		} else {
277 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
278 						 page_count, KM_NOFS);
279 			if (bp->b_pages == NULL)
280 				return -ENOMEM;
281 		}
282 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
283 	}
284 	return 0;
285 }
286 
287 /*
288  *	Frees b_pages if it was allocated.
289  */
290 STATIC void
291 _xfs_buf_free_pages(
292 	xfs_buf_t	*bp)
293 {
294 	if (bp->b_pages != bp->b_page_array) {
295 		kmem_free(bp->b_pages);
296 		bp->b_pages = NULL;
297 	}
298 }
299 
300 /*
301  *	Releases the specified buffer.
302  *
303  * 	The modification state of any associated pages is left unchanged.
304  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
305  * 	hashed and refcounted buffers
306  */
307 void
308 xfs_buf_free(
309 	xfs_buf_t		*bp)
310 {
311 	trace_xfs_buf_free(bp, _RET_IP_);
312 
313 	ASSERT(list_empty(&bp->b_lru));
314 
315 	if (bp->b_flags & _XBF_PAGES) {
316 		uint		i;
317 
318 		if (xfs_buf_is_vmapped(bp))
319 			vm_unmap_ram(bp->b_addr - bp->b_offset,
320 					bp->b_page_count);
321 
322 		for (i = 0; i < bp->b_page_count; i++) {
323 			struct page	*page = bp->b_pages[i];
324 
325 			__free_page(page);
326 		}
327 	} else if (bp->b_flags & _XBF_KMEM)
328 		kmem_free(bp->b_addr);
329 	_xfs_buf_free_pages(bp);
330 	xfs_buf_free_maps(bp);
331 	kmem_zone_free(xfs_buf_zone, bp);
332 }
333 
334 /*
335  * Allocates all the pages for buffer in question and builds it's page list.
336  */
337 STATIC int
338 xfs_buf_allocate_memory(
339 	xfs_buf_t		*bp,
340 	uint			flags)
341 {
342 	size_t			size;
343 	size_t			nbytes, offset;
344 	gfp_t			gfp_mask = xb_to_gfp(flags);
345 	unsigned short		page_count, i;
346 	xfs_off_t		start, end;
347 	int			error;
348 
349 	/*
350 	 * for buffers that are contained within a single page, just allocate
351 	 * the memory from the heap - there's no need for the complexity of
352 	 * page arrays to keep allocation down to order 0.
353 	 */
354 	size = BBTOB(bp->b_length);
355 	if (size < PAGE_SIZE) {
356 		int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
357 		bp->b_addr = kmem_alloc_io(size, align_mask, KM_NOFS);
358 		if (!bp->b_addr) {
359 			/* low memory - use alloc_page loop instead */
360 			goto use_alloc_page;
361 		}
362 
363 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
364 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
365 			/* b_addr spans two pages - use alloc_page instead */
366 			kmem_free(bp->b_addr);
367 			bp->b_addr = NULL;
368 			goto use_alloc_page;
369 		}
370 		bp->b_offset = offset_in_page(bp->b_addr);
371 		bp->b_pages = bp->b_page_array;
372 		bp->b_pages[0] = kmem_to_page(bp->b_addr);
373 		bp->b_page_count = 1;
374 		bp->b_flags |= _XBF_KMEM;
375 		return 0;
376 	}
377 
378 use_alloc_page:
379 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
380 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
381 								>> PAGE_SHIFT;
382 	page_count = end - start;
383 	error = _xfs_buf_get_pages(bp, page_count);
384 	if (unlikely(error))
385 		return error;
386 
387 	offset = bp->b_offset;
388 	bp->b_flags |= _XBF_PAGES;
389 
390 	for (i = 0; i < bp->b_page_count; i++) {
391 		struct page	*page;
392 		uint		retries = 0;
393 retry:
394 		page = alloc_page(gfp_mask);
395 		if (unlikely(page == NULL)) {
396 			if (flags & XBF_READ_AHEAD) {
397 				bp->b_page_count = i;
398 				error = -ENOMEM;
399 				goto out_free_pages;
400 			}
401 
402 			/*
403 			 * This could deadlock.
404 			 *
405 			 * But until all the XFS lowlevel code is revamped to
406 			 * handle buffer allocation failures we can't do much.
407 			 */
408 			if (!(++retries % 100))
409 				xfs_err(NULL,
410 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
411 					current->comm, current->pid,
412 					__func__, gfp_mask);
413 
414 			XFS_STATS_INC(bp->b_mount, xb_page_retries);
415 			congestion_wait(BLK_RW_ASYNC, HZ/50);
416 			goto retry;
417 		}
418 
419 		XFS_STATS_INC(bp->b_mount, xb_page_found);
420 
421 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
422 		size -= nbytes;
423 		bp->b_pages[i] = page;
424 		offset = 0;
425 	}
426 	return 0;
427 
428 out_free_pages:
429 	for (i = 0; i < bp->b_page_count; i++)
430 		__free_page(bp->b_pages[i]);
431 	bp->b_flags &= ~_XBF_PAGES;
432 	return error;
433 }
434 
435 /*
436  *	Map buffer into kernel address-space if necessary.
437  */
438 STATIC int
439 _xfs_buf_map_pages(
440 	xfs_buf_t		*bp,
441 	uint			flags)
442 {
443 	ASSERT(bp->b_flags & _XBF_PAGES);
444 	if (bp->b_page_count == 1) {
445 		/* A single page buffer is always mappable */
446 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
447 	} else if (flags & XBF_UNMAPPED) {
448 		bp->b_addr = NULL;
449 	} else {
450 		int retried = 0;
451 		unsigned nofs_flag;
452 
453 		/*
454 		 * vm_map_ram() will allocate auxillary structures (e.g.
455 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
456 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
457 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
458 		 * memory reclaim re-entering the filesystem here and
459 		 * potentially deadlocking.
460 		 */
461 		nofs_flag = memalloc_nofs_save();
462 		do {
463 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
464 						-1, PAGE_KERNEL);
465 			if (bp->b_addr)
466 				break;
467 			vm_unmap_aliases();
468 		} while (retried++ <= 1);
469 		memalloc_nofs_restore(nofs_flag);
470 
471 		if (!bp->b_addr)
472 			return -ENOMEM;
473 		bp->b_addr += bp->b_offset;
474 	}
475 
476 	return 0;
477 }
478 
479 /*
480  *	Finding and Reading Buffers
481  */
482 static int
483 _xfs_buf_obj_cmp(
484 	struct rhashtable_compare_arg	*arg,
485 	const void			*obj)
486 {
487 	const struct xfs_buf_map	*map = arg->key;
488 	const struct xfs_buf		*bp = obj;
489 
490 	/*
491 	 * The key hashing in the lookup path depends on the key being the
492 	 * first element of the compare_arg, make sure to assert this.
493 	 */
494 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
495 
496 	if (bp->b_bn != map->bm_bn)
497 		return 1;
498 
499 	if (unlikely(bp->b_length != map->bm_len)) {
500 		/*
501 		 * found a block number match. If the range doesn't
502 		 * match, the only way this is allowed is if the buffer
503 		 * in the cache is stale and the transaction that made
504 		 * it stale has not yet committed. i.e. we are
505 		 * reallocating a busy extent. Skip this buffer and
506 		 * continue searching for an exact match.
507 		 */
508 		ASSERT(bp->b_flags & XBF_STALE);
509 		return 1;
510 	}
511 	return 0;
512 }
513 
514 static const struct rhashtable_params xfs_buf_hash_params = {
515 	.min_size		= 32,	/* empty AGs have minimal footprint */
516 	.nelem_hint		= 16,
517 	.key_len		= sizeof(xfs_daddr_t),
518 	.key_offset		= offsetof(struct xfs_buf, b_bn),
519 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
520 	.automatic_shrinking	= true,
521 	.obj_cmpfn		= _xfs_buf_obj_cmp,
522 };
523 
524 int
525 xfs_buf_hash_init(
526 	struct xfs_perag	*pag)
527 {
528 	spin_lock_init(&pag->pag_buf_lock);
529 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
530 }
531 
532 void
533 xfs_buf_hash_destroy(
534 	struct xfs_perag	*pag)
535 {
536 	rhashtable_destroy(&pag->pag_buf_hash);
537 }
538 
539 /*
540  * Look up a buffer in the buffer cache and return it referenced and locked
541  * in @found_bp.
542  *
543  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
544  * cache.
545  *
546  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
547  * -EAGAIN if we fail to lock it.
548  *
549  * Return values are:
550  *	-EFSCORRUPTED if have been supplied with an invalid address
551  *	-EAGAIN on trylock failure
552  *	-ENOENT if we fail to find a match and @new_bp was NULL
553  *	0, with @found_bp:
554  *		- @new_bp if we inserted it into the cache
555  *		- the buffer we found and locked.
556  */
557 static int
558 xfs_buf_find(
559 	struct xfs_buftarg	*btp,
560 	struct xfs_buf_map	*map,
561 	int			nmaps,
562 	xfs_buf_flags_t		flags,
563 	struct xfs_buf		*new_bp,
564 	struct xfs_buf		**found_bp)
565 {
566 	struct xfs_perag	*pag;
567 	xfs_buf_t		*bp;
568 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
569 	xfs_daddr_t		eofs;
570 	int			i;
571 
572 	*found_bp = NULL;
573 
574 	for (i = 0; i < nmaps; i++)
575 		cmap.bm_len += map[i].bm_len;
576 
577 	/* Check for IOs smaller than the sector size / not sector aligned */
578 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
579 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
580 
581 	/*
582 	 * Corrupted block numbers can get through to here, unfortunately, so we
583 	 * have to check that the buffer falls within the filesystem bounds.
584 	 */
585 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
586 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
587 		xfs_alert(btp->bt_mount,
588 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
589 			  __func__, cmap.bm_bn, eofs);
590 		WARN_ON(1);
591 		return -EFSCORRUPTED;
592 	}
593 
594 	pag = xfs_perag_get(btp->bt_mount,
595 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
596 
597 	spin_lock(&pag->pag_buf_lock);
598 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
599 				    xfs_buf_hash_params);
600 	if (bp) {
601 		atomic_inc(&bp->b_hold);
602 		goto found;
603 	}
604 
605 	/* No match found */
606 	if (!new_bp) {
607 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
608 		spin_unlock(&pag->pag_buf_lock);
609 		xfs_perag_put(pag);
610 		return -ENOENT;
611 	}
612 
613 	/* the buffer keeps the perag reference until it is freed */
614 	new_bp->b_pag = pag;
615 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
616 			       xfs_buf_hash_params);
617 	spin_unlock(&pag->pag_buf_lock);
618 	*found_bp = new_bp;
619 	return 0;
620 
621 found:
622 	spin_unlock(&pag->pag_buf_lock);
623 	xfs_perag_put(pag);
624 
625 	if (!xfs_buf_trylock(bp)) {
626 		if (flags & XBF_TRYLOCK) {
627 			xfs_buf_rele(bp);
628 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
629 			return -EAGAIN;
630 		}
631 		xfs_buf_lock(bp);
632 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
633 	}
634 
635 	/*
636 	 * if the buffer is stale, clear all the external state associated with
637 	 * it. We need to keep flags such as how we allocated the buffer memory
638 	 * intact here.
639 	 */
640 	if (bp->b_flags & XBF_STALE) {
641 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
642 		ASSERT(bp->b_iodone == NULL);
643 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
644 		bp->b_ops = NULL;
645 	}
646 
647 	trace_xfs_buf_find(bp, flags, _RET_IP_);
648 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
649 	*found_bp = bp;
650 	return 0;
651 }
652 
653 struct xfs_buf *
654 xfs_buf_incore(
655 	struct xfs_buftarg	*target,
656 	xfs_daddr_t		blkno,
657 	size_t			numblks,
658 	xfs_buf_flags_t		flags)
659 {
660 	struct xfs_buf		*bp;
661 	int			error;
662 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
663 
664 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
665 	if (error)
666 		return NULL;
667 	return bp;
668 }
669 
670 /*
671  * Assembles a buffer covering the specified range. The code is optimised for
672  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
673  * more hits than misses.
674  */
675 struct xfs_buf *
676 xfs_buf_get_map(
677 	struct xfs_buftarg	*target,
678 	struct xfs_buf_map	*map,
679 	int			nmaps,
680 	xfs_buf_flags_t		flags)
681 {
682 	struct xfs_buf		*bp;
683 	struct xfs_buf		*new_bp;
684 	int			error = 0;
685 
686 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
687 
688 	switch (error) {
689 	case 0:
690 		/* cache hit */
691 		goto found;
692 	case -EAGAIN:
693 		/* cache hit, trylock failure, caller handles failure */
694 		ASSERT(flags & XBF_TRYLOCK);
695 		return NULL;
696 	case -ENOENT:
697 		/* cache miss, go for insert */
698 		break;
699 	case -EFSCORRUPTED:
700 	default:
701 		/*
702 		 * None of the higher layers understand failure types
703 		 * yet, so return NULL to signal a fatal lookup error.
704 		 */
705 		return NULL;
706 	}
707 
708 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
709 	if (unlikely(!new_bp))
710 		return NULL;
711 
712 	error = xfs_buf_allocate_memory(new_bp, flags);
713 	if (error) {
714 		xfs_buf_free(new_bp);
715 		return NULL;
716 	}
717 
718 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
719 	if (error) {
720 		xfs_buf_free(new_bp);
721 		return NULL;
722 	}
723 
724 	if (bp != new_bp)
725 		xfs_buf_free(new_bp);
726 
727 found:
728 	if (!bp->b_addr) {
729 		error = _xfs_buf_map_pages(bp, flags);
730 		if (unlikely(error)) {
731 			xfs_warn(target->bt_mount,
732 				"%s: failed to map pagesn", __func__);
733 			xfs_buf_relse(bp);
734 			return NULL;
735 		}
736 	}
737 
738 	/*
739 	 * Clear b_error if this is a lookup from a caller that doesn't expect
740 	 * valid data to be found in the buffer.
741 	 */
742 	if (!(flags & XBF_READ))
743 		xfs_buf_ioerror(bp, 0);
744 
745 	XFS_STATS_INC(target->bt_mount, xb_get);
746 	trace_xfs_buf_get(bp, flags, _RET_IP_);
747 	return bp;
748 }
749 
750 STATIC int
751 _xfs_buf_read(
752 	xfs_buf_t		*bp,
753 	xfs_buf_flags_t		flags)
754 {
755 	ASSERT(!(flags & XBF_WRITE));
756 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
757 
758 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
759 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
760 
761 	return xfs_buf_submit(bp);
762 }
763 
764 /*
765  * Reverify a buffer found in cache without an attached ->b_ops.
766  *
767  * If the caller passed an ops structure and the buffer doesn't have ops
768  * assigned, set the ops and use it to verify the contents. If verification
769  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
770  * already in XBF_DONE state on entry.
771  *
772  * Under normal operations, every in-core buffer is verified on read I/O
773  * completion. There are two scenarios that can lead to in-core buffers without
774  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
775  * filesystem, though these buffers are purged at the end of recovery. The
776  * other is online repair, which intentionally reads with a NULL buffer ops to
777  * run several verifiers across an in-core buffer in order to establish buffer
778  * type.  If repair can't establish that, the buffer will be left in memory
779  * with NULL buffer ops.
780  */
781 int
782 xfs_buf_reverify(
783 	struct xfs_buf		*bp,
784 	const struct xfs_buf_ops *ops)
785 {
786 	ASSERT(bp->b_flags & XBF_DONE);
787 	ASSERT(bp->b_error == 0);
788 
789 	if (!ops || bp->b_ops)
790 		return 0;
791 
792 	bp->b_ops = ops;
793 	bp->b_ops->verify_read(bp);
794 	if (bp->b_error)
795 		bp->b_flags &= ~XBF_DONE;
796 	return bp->b_error;
797 }
798 
799 xfs_buf_t *
800 xfs_buf_read_map(
801 	struct xfs_buftarg	*target,
802 	struct xfs_buf_map	*map,
803 	int			nmaps,
804 	xfs_buf_flags_t		flags,
805 	const struct xfs_buf_ops *ops)
806 {
807 	struct xfs_buf		*bp;
808 
809 	flags |= XBF_READ;
810 
811 	bp = xfs_buf_get_map(target, map, nmaps, flags);
812 	if (!bp)
813 		return NULL;
814 
815 	trace_xfs_buf_read(bp, flags, _RET_IP_);
816 
817 	if (!(bp->b_flags & XBF_DONE)) {
818 		XFS_STATS_INC(target->bt_mount, xb_get_read);
819 		bp->b_ops = ops;
820 		_xfs_buf_read(bp, flags);
821 		return bp;
822 	}
823 
824 	xfs_buf_reverify(bp, ops);
825 
826 	if (flags & XBF_ASYNC) {
827 		/*
828 		 * Read ahead call which is already satisfied,
829 		 * drop the buffer
830 		 */
831 		xfs_buf_relse(bp);
832 		return NULL;
833 	}
834 
835 	/* We do not want read in the flags */
836 	bp->b_flags &= ~XBF_READ;
837 	ASSERT(bp->b_ops != NULL || ops == NULL);
838 	return bp;
839 }
840 
841 /*
842  *	If we are not low on memory then do the readahead in a deadlock
843  *	safe manner.
844  */
845 void
846 xfs_buf_readahead_map(
847 	struct xfs_buftarg	*target,
848 	struct xfs_buf_map	*map,
849 	int			nmaps,
850 	const struct xfs_buf_ops *ops)
851 {
852 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
853 		return;
854 
855 	xfs_buf_read_map(target, map, nmaps,
856 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
857 }
858 
859 /*
860  * Read an uncached buffer from disk. Allocates and returns a locked
861  * buffer containing the disk contents or nothing.
862  */
863 int
864 xfs_buf_read_uncached(
865 	struct xfs_buftarg	*target,
866 	xfs_daddr_t		daddr,
867 	size_t			numblks,
868 	int			flags,
869 	struct xfs_buf		**bpp,
870 	const struct xfs_buf_ops *ops)
871 {
872 	struct xfs_buf		*bp;
873 
874 	*bpp = NULL;
875 
876 	bp = xfs_buf_get_uncached(target, numblks, flags);
877 	if (!bp)
878 		return -ENOMEM;
879 
880 	/* set up the buffer for a read IO */
881 	ASSERT(bp->b_map_count == 1);
882 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
883 	bp->b_maps[0].bm_bn = daddr;
884 	bp->b_flags |= XBF_READ;
885 	bp->b_ops = ops;
886 
887 	xfs_buf_submit(bp);
888 	if (bp->b_error) {
889 		int	error = bp->b_error;
890 		xfs_buf_relse(bp);
891 		return error;
892 	}
893 
894 	*bpp = bp;
895 	return 0;
896 }
897 
898 xfs_buf_t *
899 xfs_buf_get_uncached(
900 	struct xfs_buftarg	*target,
901 	size_t			numblks,
902 	int			flags)
903 {
904 	unsigned long		page_count;
905 	int			error, i;
906 	struct xfs_buf		*bp;
907 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
908 
909 	/* flags might contain irrelevant bits, pass only what we care about */
910 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
911 	if (unlikely(bp == NULL))
912 		goto fail;
913 
914 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
915 	error = _xfs_buf_get_pages(bp, page_count);
916 	if (error)
917 		goto fail_free_buf;
918 
919 	for (i = 0; i < page_count; i++) {
920 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
921 		if (!bp->b_pages[i])
922 			goto fail_free_mem;
923 	}
924 	bp->b_flags |= _XBF_PAGES;
925 
926 	error = _xfs_buf_map_pages(bp, 0);
927 	if (unlikely(error)) {
928 		xfs_warn(target->bt_mount,
929 			"%s: failed to map pages", __func__);
930 		goto fail_free_mem;
931 	}
932 
933 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
934 	return bp;
935 
936  fail_free_mem:
937 	while (--i >= 0)
938 		__free_page(bp->b_pages[i]);
939 	_xfs_buf_free_pages(bp);
940  fail_free_buf:
941 	xfs_buf_free_maps(bp);
942 	kmem_zone_free(xfs_buf_zone, bp);
943  fail:
944 	return NULL;
945 }
946 
947 /*
948  *	Increment reference count on buffer, to hold the buffer concurrently
949  *	with another thread which may release (free) the buffer asynchronously.
950  *	Must hold the buffer already to call this function.
951  */
952 void
953 xfs_buf_hold(
954 	xfs_buf_t		*bp)
955 {
956 	trace_xfs_buf_hold(bp, _RET_IP_);
957 	atomic_inc(&bp->b_hold);
958 }
959 
960 /*
961  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
962  * placed on LRU or freed (depending on b_lru_ref).
963  */
964 void
965 xfs_buf_rele(
966 	xfs_buf_t		*bp)
967 {
968 	struct xfs_perag	*pag = bp->b_pag;
969 	bool			release;
970 	bool			freebuf = false;
971 
972 	trace_xfs_buf_rele(bp, _RET_IP_);
973 
974 	if (!pag) {
975 		ASSERT(list_empty(&bp->b_lru));
976 		if (atomic_dec_and_test(&bp->b_hold)) {
977 			xfs_buf_ioacct_dec(bp);
978 			xfs_buf_free(bp);
979 		}
980 		return;
981 	}
982 
983 	ASSERT(atomic_read(&bp->b_hold) > 0);
984 
985 	/*
986 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
987 	 * calls. The pag_buf_lock being taken on the last reference only
988 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
989 	 * to last reference we drop here is not serialised against the last
990 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
991 	 * first, the last "release" reference can win the race to the lock and
992 	 * free the buffer before the second-to-last reference is processed,
993 	 * leading to a use-after-free scenario.
994 	 */
995 	spin_lock(&bp->b_lock);
996 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
997 	if (!release) {
998 		/*
999 		 * Drop the in-flight state if the buffer is already on the LRU
1000 		 * and it holds the only reference. This is racy because we
1001 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1002 		 * ensures the decrement occurs only once per-buf.
1003 		 */
1004 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1005 			__xfs_buf_ioacct_dec(bp);
1006 		goto out_unlock;
1007 	}
1008 
1009 	/* the last reference has been dropped ... */
1010 	__xfs_buf_ioacct_dec(bp);
1011 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1012 		/*
1013 		 * If the buffer is added to the LRU take a new reference to the
1014 		 * buffer for the LRU and clear the (now stale) dispose list
1015 		 * state flag
1016 		 */
1017 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1018 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1019 			atomic_inc(&bp->b_hold);
1020 		}
1021 		spin_unlock(&pag->pag_buf_lock);
1022 	} else {
1023 		/*
1024 		 * most of the time buffers will already be removed from the
1025 		 * LRU, so optimise that case by checking for the
1026 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1027 		 * was on was the disposal list
1028 		 */
1029 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1030 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1031 		} else {
1032 			ASSERT(list_empty(&bp->b_lru));
1033 		}
1034 
1035 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1036 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1037 				       xfs_buf_hash_params);
1038 		spin_unlock(&pag->pag_buf_lock);
1039 		xfs_perag_put(pag);
1040 		freebuf = true;
1041 	}
1042 
1043 out_unlock:
1044 	spin_unlock(&bp->b_lock);
1045 
1046 	if (freebuf)
1047 		xfs_buf_free(bp);
1048 }
1049 
1050 
1051 /*
1052  *	Lock a buffer object, if it is not already locked.
1053  *
1054  *	If we come across a stale, pinned, locked buffer, we know that we are
1055  *	being asked to lock a buffer that has been reallocated. Because it is
1056  *	pinned, we know that the log has not been pushed to disk and hence it
1057  *	will still be locked.  Rather than continuing to have trylock attempts
1058  *	fail until someone else pushes the log, push it ourselves before
1059  *	returning.  This means that the xfsaild will not get stuck trying
1060  *	to push on stale inode buffers.
1061  */
1062 int
1063 xfs_buf_trylock(
1064 	struct xfs_buf		*bp)
1065 {
1066 	int			locked;
1067 
1068 	locked = down_trylock(&bp->b_sema) == 0;
1069 	if (locked)
1070 		trace_xfs_buf_trylock(bp, _RET_IP_);
1071 	else
1072 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1073 	return locked;
1074 }
1075 
1076 /*
1077  *	Lock a buffer object.
1078  *
1079  *	If we come across a stale, pinned, locked buffer, we know that we
1080  *	are being asked to lock a buffer that has been reallocated. Because
1081  *	it is pinned, we know that the log has not been pushed to disk and
1082  *	hence it will still be locked. Rather than sleeping until someone
1083  *	else pushes the log, push it ourselves before trying to get the lock.
1084  */
1085 void
1086 xfs_buf_lock(
1087 	struct xfs_buf		*bp)
1088 {
1089 	trace_xfs_buf_lock(bp, _RET_IP_);
1090 
1091 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1092 		xfs_log_force(bp->b_mount, 0);
1093 	down(&bp->b_sema);
1094 
1095 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1096 }
1097 
1098 void
1099 xfs_buf_unlock(
1100 	struct xfs_buf		*bp)
1101 {
1102 	ASSERT(xfs_buf_islocked(bp));
1103 
1104 	up(&bp->b_sema);
1105 	trace_xfs_buf_unlock(bp, _RET_IP_);
1106 }
1107 
1108 STATIC void
1109 xfs_buf_wait_unpin(
1110 	xfs_buf_t		*bp)
1111 {
1112 	DECLARE_WAITQUEUE	(wait, current);
1113 
1114 	if (atomic_read(&bp->b_pin_count) == 0)
1115 		return;
1116 
1117 	add_wait_queue(&bp->b_waiters, &wait);
1118 	for (;;) {
1119 		set_current_state(TASK_UNINTERRUPTIBLE);
1120 		if (atomic_read(&bp->b_pin_count) == 0)
1121 			break;
1122 		io_schedule();
1123 	}
1124 	remove_wait_queue(&bp->b_waiters, &wait);
1125 	set_current_state(TASK_RUNNING);
1126 }
1127 
1128 /*
1129  *	Buffer Utility Routines
1130  */
1131 
1132 void
1133 xfs_buf_ioend(
1134 	struct xfs_buf	*bp)
1135 {
1136 	bool		read = bp->b_flags & XBF_READ;
1137 
1138 	trace_xfs_buf_iodone(bp, _RET_IP_);
1139 
1140 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1141 
1142 	/*
1143 	 * Pull in IO completion errors now. We are guaranteed to be running
1144 	 * single threaded, so we don't need the lock to read b_io_error.
1145 	 */
1146 	if (!bp->b_error && bp->b_io_error)
1147 		xfs_buf_ioerror(bp, bp->b_io_error);
1148 
1149 	/* Only validate buffers that were read without errors */
1150 	if (read && !bp->b_error && bp->b_ops) {
1151 		ASSERT(!bp->b_iodone);
1152 		bp->b_ops->verify_read(bp);
1153 	}
1154 
1155 	if (!bp->b_error)
1156 		bp->b_flags |= XBF_DONE;
1157 
1158 	if (bp->b_iodone)
1159 		(*(bp->b_iodone))(bp);
1160 	else if (bp->b_flags & XBF_ASYNC)
1161 		xfs_buf_relse(bp);
1162 	else
1163 		complete(&bp->b_iowait);
1164 }
1165 
1166 static void
1167 xfs_buf_ioend_work(
1168 	struct work_struct	*work)
1169 {
1170 	struct xfs_buf		*bp =
1171 		container_of(work, xfs_buf_t, b_ioend_work);
1172 
1173 	xfs_buf_ioend(bp);
1174 }
1175 
1176 static void
1177 xfs_buf_ioend_async(
1178 	struct xfs_buf	*bp)
1179 {
1180 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1181 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1182 }
1183 
1184 void
1185 __xfs_buf_ioerror(
1186 	xfs_buf_t		*bp,
1187 	int			error,
1188 	xfs_failaddr_t		failaddr)
1189 {
1190 	ASSERT(error <= 0 && error >= -1000);
1191 	bp->b_error = error;
1192 	trace_xfs_buf_ioerror(bp, error, failaddr);
1193 }
1194 
1195 void
1196 xfs_buf_ioerror_alert(
1197 	struct xfs_buf		*bp,
1198 	const char		*func)
1199 {
1200 	xfs_alert(bp->b_mount,
1201 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1202 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1203 			-bp->b_error);
1204 }
1205 
1206 int
1207 xfs_bwrite(
1208 	struct xfs_buf		*bp)
1209 {
1210 	int			error;
1211 
1212 	ASSERT(xfs_buf_islocked(bp));
1213 
1214 	bp->b_flags |= XBF_WRITE;
1215 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1216 			 XBF_WRITE_FAIL | XBF_DONE);
1217 
1218 	error = xfs_buf_submit(bp);
1219 	if (error)
1220 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1221 	return error;
1222 }
1223 
1224 static void
1225 xfs_buf_bio_end_io(
1226 	struct bio		*bio)
1227 {
1228 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1229 
1230 	/*
1231 	 * don't overwrite existing errors - otherwise we can lose errors on
1232 	 * buffers that require multiple bios to complete.
1233 	 */
1234 	if (bio->bi_status) {
1235 		int error = blk_status_to_errno(bio->bi_status);
1236 
1237 		cmpxchg(&bp->b_io_error, 0, error);
1238 	}
1239 
1240 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1241 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1242 
1243 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1244 		xfs_buf_ioend_async(bp);
1245 	bio_put(bio);
1246 }
1247 
1248 static void
1249 xfs_buf_ioapply_map(
1250 	struct xfs_buf	*bp,
1251 	int		map,
1252 	int		*buf_offset,
1253 	int		*count,
1254 	int		op,
1255 	int		op_flags)
1256 {
1257 	int		page_index;
1258 	int		total_nr_pages = bp->b_page_count;
1259 	int		nr_pages;
1260 	struct bio	*bio;
1261 	sector_t	sector =  bp->b_maps[map].bm_bn;
1262 	int		size;
1263 	int		offset;
1264 
1265 	/* skip the pages in the buffer before the start offset */
1266 	page_index = 0;
1267 	offset = *buf_offset;
1268 	while (offset >= PAGE_SIZE) {
1269 		page_index++;
1270 		offset -= PAGE_SIZE;
1271 	}
1272 
1273 	/*
1274 	 * Limit the IO size to the length of the current vector, and update the
1275 	 * remaining IO count for the next time around.
1276 	 */
1277 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1278 	*count -= size;
1279 	*buf_offset += size;
1280 
1281 next_chunk:
1282 	atomic_inc(&bp->b_io_remaining);
1283 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1284 
1285 	bio = bio_alloc(GFP_NOIO, nr_pages);
1286 	bio_set_dev(bio, bp->b_target->bt_bdev);
1287 	bio->bi_iter.bi_sector = sector;
1288 	bio->bi_end_io = xfs_buf_bio_end_io;
1289 	bio->bi_private = bp;
1290 	bio_set_op_attrs(bio, op, op_flags);
1291 
1292 	for (; size && nr_pages; nr_pages--, page_index++) {
1293 		int	rbytes, nbytes = PAGE_SIZE - offset;
1294 
1295 		if (nbytes > size)
1296 			nbytes = size;
1297 
1298 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1299 				      offset);
1300 		if (rbytes < nbytes)
1301 			break;
1302 
1303 		offset = 0;
1304 		sector += BTOBB(nbytes);
1305 		size -= nbytes;
1306 		total_nr_pages--;
1307 	}
1308 
1309 	if (likely(bio->bi_iter.bi_size)) {
1310 		if (xfs_buf_is_vmapped(bp)) {
1311 			flush_kernel_vmap_range(bp->b_addr,
1312 						xfs_buf_vmap_len(bp));
1313 		}
1314 		submit_bio(bio);
1315 		if (size)
1316 			goto next_chunk;
1317 	} else {
1318 		/*
1319 		 * This is guaranteed not to be the last io reference count
1320 		 * because the caller (xfs_buf_submit) holds a count itself.
1321 		 */
1322 		atomic_dec(&bp->b_io_remaining);
1323 		xfs_buf_ioerror(bp, -EIO);
1324 		bio_put(bio);
1325 	}
1326 
1327 }
1328 
1329 STATIC void
1330 _xfs_buf_ioapply(
1331 	struct xfs_buf	*bp)
1332 {
1333 	struct blk_plug	plug;
1334 	int		op;
1335 	int		op_flags = 0;
1336 	int		offset;
1337 	int		size;
1338 	int		i;
1339 
1340 	/*
1341 	 * Make sure we capture only current IO errors rather than stale errors
1342 	 * left over from previous use of the buffer (e.g. failed readahead).
1343 	 */
1344 	bp->b_error = 0;
1345 
1346 	if (bp->b_flags & XBF_WRITE) {
1347 		op = REQ_OP_WRITE;
1348 
1349 		/*
1350 		 * Run the write verifier callback function if it exists. If
1351 		 * this function fails it will mark the buffer with an error and
1352 		 * the IO should not be dispatched.
1353 		 */
1354 		if (bp->b_ops) {
1355 			bp->b_ops->verify_write(bp);
1356 			if (bp->b_error) {
1357 				xfs_force_shutdown(bp->b_mount,
1358 						   SHUTDOWN_CORRUPT_INCORE);
1359 				return;
1360 			}
1361 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1362 			struct xfs_mount *mp = bp->b_mount;
1363 
1364 			/*
1365 			 * non-crc filesystems don't attach verifiers during
1366 			 * log recovery, so don't warn for such filesystems.
1367 			 */
1368 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1369 				xfs_warn(mp,
1370 					"%s: no buf ops on daddr 0x%llx len %d",
1371 					__func__, bp->b_bn, bp->b_length);
1372 				xfs_hex_dump(bp->b_addr,
1373 						XFS_CORRUPTION_DUMP_LEN);
1374 				dump_stack();
1375 			}
1376 		}
1377 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1378 		op = REQ_OP_READ;
1379 		op_flags = REQ_RAHEAD;
1380 	} else {
1381 		op = REQ_OP_READ;
1382 	}
1383 
1384 	/* we only use the buffer cache for meta-data */
1385 	op_flags |= REQ_META;
1386 
1387 	/*
1388 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1389 	 * into the buffer and the desired IO size before we start -
1390 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1391 	 * subsequent call.
1392 	 */
1393 	offset = bp->b_offset;
1394 	size = BBTOB(bp->b_length);
1395 	blk_start_plug(&plug);
1396 	for (i = 0; i < bp->b_map_count; i++) {
1397 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1398 		if (bp->b_error)
1399 			break;
1400 		if (size <= 0)
1401 			break;	/* all done */
1402 	}
1403 	blk_finish_plug(&plug);
1404 }
1405 
1406 /*
1407  * Wait for I/O completion of a sync buffer and return the I/O error code.
1408  */
1409 static int
1410 xfs_buf_iowait(
1411 	struct xfs_buf	*bp)
1412 {
1413 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1414 
1415 	trace_xfs_buf_iowait(bp, _RET_IP_);
1416 	wait_for_completion(&bp->b_iowait);
1417 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1418 
1419 	return bp->b_error;
1420 }
1421 
1422 /*
1423  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1424  * the buffer lock ownership and the current reference to the IO. It is not
1425  * safe to reference the buffer after a call to this function unless the caller
1426  * holds an additional reference itself.
1427  */
1428 int
1429 __xfs_buf_submit(
1430 	struct xfs_buf	*bp,
1431 	bool		wait)
1432 {
1433 	int		error = 0;
1434 
1435 	trace_xfs_buf_submit(bp, _RET_IP_);
1436 
1437 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1438 
1439 	/* on shutdown we stale and complete the buffer immediately */
1440 	if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1441 		xfs_buf_ioerror(bp, -EIO);
1442 		bp->b_flags &= ~XBF_DONE;
1443 		xfs_buf_stale(bp);
1444 		xfs_buf_ioend(bp);
1445 		return -EIO;
1446 	}
1447 
1448 	/*
1449 	 * Grab a reference so the buffer does not go away underneath us. For
1450 	 * async buffers, I/O completion drops the callers reference, which
1451 	 * could occur before submission returns.
1452 	 */
1453 	xfs_buf_hold(bp);
1454 
1455 	if (bp->b_flags & XBF_WRITE)
1456 		xfs_buf_wait_unpin(bp);
1457 
1458 	/* clear the internal error state to avoid spurious errors */
1459 	bp->b_io_error = 0;
1460 
1461 	/*
1462 	 * Set the count to 1 initially, this will stop an I/O completion
1463 	 * callout which happens before we have started all the I/O from calling
1464 	 * xfs_buf_ioend too early.
1465 	 */
1466 	atomic_set(&bp->b_io_remaining, 1);
1467 	if (bp->b_flags & XBF_ASYNC)
1468 		xfs_buf_ioacct_inc(bp);
1469 	_xfs_buf_ioapply(bp);
1470 
1471 	/*
1472 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1473 	 * reference we took above. If we drop it to zero, run completion so
1474 	 * that we don't return to the caller with completion still pending.
1475 	 */
1476 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1477 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1478 			xfs_buf_ioend(bp);
1479 		else
1480 			xfs_buf_ioend_async(bp);
1481 	}
1482 
1483 	if (wait)
1484 		error = xfs_buf_iowait(bp);
1485 
1486 	/*
1487 	 * Release the hold that keeps the buffer referenced for the entire
1488 	 * I/O. Note that if the buffer is async, it is not safe to reference
1489 	 * after this release.
1490 	 */
1491 	xfs_buf_rele(bp);
1492 	return error;
1493 }
1494 
1495 void *
1496 xfs_buf_offset(
1497 	struct xfs_buf		*bp,
1498 	size_t			offset)
1499 {
1500 	struct page		*page;
1501 
1502 	if (bp->b_addr)
1503 		return bp->b_addr + offset;
1504 
1505 	offset += bp->b_offset;
1506 	page = bp->b_pages[offset >> PAGE_SHIFT];
1507 	return page_address(page) + (offset & (PAGE_SIZE-1));
1508 }
1509 
1510 void
1511 xfs_buf_zero(
1512 	struct xfs_buf		*bp,
1513 	size_t			boff,
1514 	size_t			bsize)
1515 {
1516 	size_t			bend;
1517 
1518 	bend = boff + bsize;
1519 	while (boff < bend) {
1520 		struct page	*page;
1521 		int		page_index, page_offset, csize;
1522 
1523 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1524 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1525 		page = bp->b_pages[page_index];
1526 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1527 				      BBTOB(bp->b_length) - boff);
1528 
1529 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1530 
1531 		memset(page_address(page) + page_offset, 0, csize);
1532 
1533 		boff += csize;
1534 	}
1535 }
1536 
1537 /*
1538  *	Handling of buffer targets (buftargs).
1539  */
1540 
1541 /*
1542  * Wait for any bufs with callbacks that have been submitted but have not yet
1543  * returned. These buffers will have an elevated hold count, so wait on those
1544  * while freeing all the buffers only held by the LRU.
1545  */
1546 static enum lru_status
1547 xfs_buftarg_wait_rele(
1548 	struct list_head	*item,
1549 	struct list_lru_one	*lru,
1550 	spinlock_t		*lru_lock,
1551 	void			*arg)
1552 
1553 {
1554 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1555 	struct list_head	*dispose = arg;
1556 
1557 	if (atomic_read(&bp->b_hold) > 1) {
1558 		/* need to wait, so skip it this pass */
1559 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1560 		return LRU_SKIP;
1561 	}
1562 	if (!spin_trylock(&bp->b_lock))
1563 		return LRU_SKIP;
1564 
1565 	/*
1566 	 * clear the LRU reference count so the buffer doesn't get
1567 	 * ignored in xfs_buf_rele().
1568 	 */
1569 	atomic_set(&bp->b_lru_ref, 0);
1570 	bp->b_state |= XFS_BSTATE_DISPOSE;
1571 	list_lru_isolate_move(lru, item, dispose);
1572 	spin_unlock(&bp->b_lock);
1573 	return LRU_REMOVED;
1574 }
1575 
1576 void
1577 xfs_wait_buftarg(
1578 	struct xfs_buftarg	*btp)
1579 {
1580 	LIST_HEAD(dispose);
1581 	int loop = 0;
1582 
1583 	/*
1584 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1585 	 * released. This is critical as new buffers do not make the LRU until
1586 	 * they are released.
1587 	 *
1588 	 * Next, flush the buffer workqueue to ensure all completion processing
1589 	 * has finished. Just waiting on buffer locks is not sufficient for
1590 	 * async IO as the reference count held over IO is not released until
1591 	 * after the buffer lock is dropped. Hence we need to ensure here that
1592 	 * all reference counts have been dropped before we start walking the
1593 	 * LRU list.
1594 	 */
1595 	while (percpu_counter_sum(&btp->bt_io_count))
1596 		delay(100);
1597 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1598 
1599 	/* loop until there is nothing left on the lru list. */
1600 	while (list_lru_count(&btp->bt_lru)) {
1601 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1602 			      &dispose, LONG_MAX);
1603 
1604 		while (!list_empty(&dispose)) {
1605 			struct xfs_buf *bp;
1606 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1607 			list_del_init(&bp->b_lru);
1608 			if (bp->b_flags & XBF_WRITE_FAIL) {
1609 				xfs_alert(btp->bt_mount,
1610 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1611 					(long long)bp->b_bn);
1612 				xfs_alert(btp->bt_mount,
1613 "Please run xfs_repair to determine the extent of the problem.");
1614 			}
1615 			xfs_buf_rele(bp);
1616 		}
1617 		if (loop++ != 0)
1618 			delay(100);
1619 	}
1620 }
1621 
1622 static enum lru_status
1623 xfs_buftarg_isolate(
1624 	struct list_head	*item,
1625 	struct list_lru_one	*lru,
1626 	spinlock_t		*lru_lock,
1627 	void			*arg)
1628 {
1629 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1630 	struct list_head	*dispose = arg;
1631 
1632 	/*
1633 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1634 	 * If we fail to get the lock, just skip it.
1635 	 */
1636 	if (!spin_trylock(&bp->b_lock))
1637 		return LRU_SKIP;
1638 	/*
1639 	 * Decrement the b_lru_ref count unless the value is already
1640 	 * zero. If the value is already zero, we need to reclaim the
1641 	 * buffer, otherwise it gets another trip through the LRU.
1642 	 */
1643 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1644 		spin_unlock(&bp->b_lock);
1645 		return LRU_ROTATE;
1646 	}
1647 
1648 	bp->b_state |= XFS_BSTATE_DISPOSE;
1649 	list_lru_isolate_move(lru, item, dispose);
1650 	spin_unlock(&bp->b_lock);
1651 	return LRU_REMOVED;
1652 }
1653 
1654 static unsigned long
1655 xfs_buftarg_shrink_scan(
1656 	struct shrinker		*shrink,
1657 	struct shrink_control	*sc)
1658 {
1659 	struct xfs_buftarg	*btp = container_of(shrink,
1660 					struct xfs_buftarg, bt_shrinker);
1661 	LIST_HEAD(dispose);
1662 	unsigned long		freed;
1663 
1664 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1665 				     xfs_buftarg_isolate, &dispose);
1666 
1667 	while (!list_empty(&dispose)) {
1668 		struct xfs_buf *bp;
1669 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1670 		list_del_init(&bp->b_lru);
1671 		xfs_buf_rele(bp);
1672 	}
1673 
1674 	return freed;
1675 }
1676 
1677 static unsigned long
1678 xfs_buftarg_shrink_count(
1679 	struct shrinker		*shrink,
1680 	struct shrink_control	*sc)
1681 {
1682 	struct xfs_buftarg	*btp = container_of(shrink,
1683 					struct xfs_buftarg, bt_shrinker);
1684 	return list_lru_shrink_count(&btp->bt_lru, sc);
1685 }
1686 
1687 void
1688 xfs_free_buftarg(
1689 	struct xfs_buftarg	*btp)
1690 {
1691 	unregister_shrinker(&btp->bt_shrinker);
1692 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1693 	percpu_counter_destroy(&btp->bt_io_count);
1694 	list_lru_destroy(&btp->bt_lru);
1695 
1696 	xfs_blkdev_issue_flush(btp);
1697 
1698 	kmem_free(btp);
1699 }
1700 
1701 int
1702 xfs_setsize_buftarg(
1703 	xfs_buftarg_t		*btp,
1704 	unsigned int		sectorsize)
1705 {
1706 	/* Set up metadata sector size info */
1707 	btp->bt_meta_sectorsize = sectorsize;
1708 	btp->bt_meta_sectormask = sectorsize - 1;
1709 
1710 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1711 		xfs_warn(btp->bt_mount,
1712 			"Cannot set_blocksize to %u on device %pg",
1713 			sectorsize, btp->bt_bdev);
1714 		return -EINVAL;
1715 	}
1716 
1717 	/* Set up device logical sector size mask */
1718 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1719 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1720 
1721 	return 0;
1722 }
1723 
1724 /*
1725  * When allocating the initial buffer target we have not yet
1726  * read in the superblock, so don't know what sized sectors
1727  * are being used at this early stage.  Play safe.
1728  */
1729 STATIC int
1730 xfs_setsize_buftarg_early(
1731 	xfs_buftarg_t		*btp,
1732 	struct block_device	*bdev)
1733 {
1734 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1735 }
1736 
1737 xfs_buftarg_t *
1738 xfs_alloc_buftarg(
1739 	struct xfs_mount	*mp,
1740 	struct block_device	*bdev,
1741 	struct dax_device	*dax_dev)
1742 {
1743 	xfs_buftarg_t		*btp;
1744 
1745 	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1746 
1747 	btp->bt_mount = mp;
1748 	btp->bt_dev =  bdev->bd_dev;
1749 	btp->bt_bdev = bdev;
1750 	btp->bt_daxdev = dax_dev;
1751 
1752 	if (xfs_setsize_buftarg_early(btp, bdev))
1753 		goto error_free;
1754 
1755 	if (list_lru_init(&btp->bt_lru))
1756 		goto error_free;
1757 
1758 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1759 		goto error_lru;
1760 
1761 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1762 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1763 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1764 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1765 	if (register_shrinker(&btp->bt_shrinker))
1766 		goto error_pcpu;
1767 	return btp;
1768 
1769 error_pcpu:
1770 	percpu_counter_destroy(&btp->bt_io_count);
1771 error_lru:
1772 	list_lru_destroy(&btp->bt_lru);
1773 error_free:
1774 	kmem_free(btp);
1775 	return NULL;
1776 }
1777 
1778 /*
1779  * Cancel a delayed write list.
1780  *
1781  * Remove each buffer from the list, clear the delwri queue flag and drop the
1782  * associated buffer reference.
1783  */
1784 void
1785 xfs_buf_delwri_cancel(
1786 	struct list_head	*list)
1787 {
1788 	struct xfs_buf		*bp;
1789 
1790 	while (!list_empty(list)) {
1791 		bp = list_first_entry(list, struct xfs_buf, b_list);
1792 
1793 		xfs_buf_lock(bp);
1794 		bp->b_flags &= ~_XBF_DELWRI_Q;
1795 		list_del_init(&bp->b_list);
1796 		xfs_buf_relse(bp);
1797 	}
1798 }
1799 
1800 /*
1801  * Add a buffer to the delayed write list.
1802  *
1803  * This queues a buffer for writeout if it hasn't already been.  Note that
1804  * neither this routine nor the buffer list submission functions perform
1805  * any internal synchronization.  It is expected that the lists are thread-local
1806  * to the callers.
1807  *
1808  * Returns true if we queued up the buffer, or false if it already had
1809  * been on the buffer list.
1810  */
1811 bool
1812 xfs_buf_delwri_queue(
1813 	struct xfs_buf		*bp,
1814 	struct list_head	*list)
1815 {
1816 	ASSERT(xfs_buf_islocked(bp));
1817 	ASSERT(!(bp->b_flags & XBF_READ));
1818 
1819 	/*
1820 	 * If the buffer is already marked delwri it already is queued up
1821 	 * by someone else for imediate writeout.  Just ignore it in that
1822 	 * case.
1823 	 */
1824 	if (bp->b_flags & _XBF_DELWRI_Q) {
1825 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1826 		return false;
1827 	}
1828 
1829 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1830 
1831 	/*
1832 	 * If a buffer gets written out synchronously or marked stale while it
1833 	 * is on a delwri list we lazily remove it. To do this, the other party
1834 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1835 	 * It remains referenced and on the list.  In a rare corner case it
1836 	 * might get readded to a delwri list after the synchronous writeout, in
1837 	 * which case we need just need to re-add the flag here.
1838 	 */
1839 	bp->b_flags |= _XBF_DELWRI_Q;
1840 	if (list_empty(&bp->b_list)) {
1841 		atomic_inc(&bp->b_hold);
1842 		list_add_tail(&bp->b_list, list);
1843 	}
1844 
1845 	return true;
1846 }
1847 
1848 /*
1849  * Compare function is more complex than it needs to be because
1850  * the return value is only 32 bits and we are doing comparisons
1851  * on 64 bit values
1852  */
1853 static int
1854 xfs_buf_cmp(
1855 	void		*priv,
1856 	struct list_head *a,
1857 	struct list_head *b)
1858 {
1859 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1860 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1861 	xfs_daddr_t		diff;
1862 
1863 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1864 	if (diff < 0)
1865 		return -1;
1866 	if (diff > 0)
1867 		return 1;
1868 	return 0;
1869 }
1870 
1871 /*
1872  * Submit buffers for write. If wait_list is specified, the buffers are
1873  * submitted using sync I/O and placed on the wait list such that the caller can
1874  * iowait each buffer. Otherwise async I/O is used and the buffers are released
1875  * at I/O completion time. In either case, buffers remain locked until I/O
1876  * completes and the buffer is released from the queue.
1877  */
1878 static int
1879 xfs_buf_delwri_submit_buffers(
1880 	struct list_head	*buffer_list,
1881 	struct list_head	*wait_list)
1882 {
1883 	struct xfs_buf		*bp, *n;
1884 	int			pinned = 0;
1885 	struct blk_plug		plug;
1886 
1887 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1888 
1889 	blk_start_plug(&plug);
1890 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1891 		if (!wait_list) {
1892 			if (xfs_buf_ispinned(bp)) {
1893 				pinned++;
1894 				continue;
1895 			}
1896 			if (!xfs_buf_trylock(bp))
1897 				continue;
1898 		} else {
1899 			xfs_buf_lock(bp);
1900 		}
1901 
1902 		/*
1903 		 * Someone else might have written the buffer synchronously or
1904 		 * marked it stale in the meantime.  In that case only the
1905 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1906 		 * reference and remove it from the list here.
1907 		 */
1908 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1909 			list_del_init(&bp->b_list);
1910 			xfs_buf_relse(bp);
1911 			continue;
1912 		}
1913 
1914 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1915 
1916 		/*
1917 		 * If we have a wait list, each buffer (and associated delwri
1918 		 * queue reference) transfers to it and is submitted
1919 		 * synchronously. Otherwise, drop the buffer from the delwri
1920 		 * queue and submit async.
1921 		 */
1922 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1923 		bp->b_flags |= XBF_WRITE;
1924 		if (wait_list) {
1925 			bp->b_flags &= ~XBF_ASYNC;
1926 			list_move_tail(&bp->b_list, wait_list);
1927 		} else {
1928 			bp->b_flags |= XBF_ASYNC;
1929 			list_del_init(&bp->b_list);
1930 		}
1931 		__xfs_buf_submit(bp, false);
1932 	}
1933 	blk_finish_plug(&plug);
1934 
1935 	return pinned;
1936 }
1937 
1938 /*
1939  * Write out a buffer list asynchronously.
1940  *
1941  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1942  * out and not wait for I/O completion on any of the buffers.  This interface
1943  * is only safely useable for callers that can track I/O completion by higher
1944  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1945  * function.
1946  *
1947  * Note: this function will skip buffers it would block on, and in doing so
1948  * leaves them on @buffer_list so they can be retried on a later pass. As such,
1949  * it is up to the caller to ensure that the buffer list is fully submitted or
1950  * cancelled appropriately when they are finished with the list. Failure to
1951  * cancel or resubmit the list until it is empty will result in leaked buffers
1952  * at unmount time.
1953  */
1954 int
1955 xfs_buf_delwri_submit_nowait(
1956 	struct list_head	*buffer_list)
1957 {
1958 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1959 }
1960 
1961 /*
1962  * Write out a buffer list synchronously.
1963  *
1964  * This will take the @buffer_list, write all buffers out and wait for I/O
1965  * completion on all of the buffers. @buffer_list is consumed by the function,
1966  * so callers must have some other way of tracking buffers if they require such
1967  * functionality.
1968  */
1969 int
1970 xfs_buf_delwri_submit(
1971 	struct list_head	*buffer_list)
1972 {
1973 	LIST_HEAD		(wait_list);
1974 	int			error = 0, error2;
1975 	struct xfs_buf		*bp;
1976 
1977 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1978 
1979 	/* Wait for IO to complete. */
1980 	while (!list_empty(&wait_list)) {
1981 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
1982 
1983 		list_del_init(&bp->b_list);
1984 
1985 		/*
1986 		 * Wait on the locked buffer, check for errors and unlock and
1987 		 * release the delwri queue reference.
1988 		 */
1989 		error2 = xfs_buf_iowait(bp);
1990 		xfs_buf_relse(bp);
1991 		if (!error)
1992 			error = error2;
1993 	}
1994 
1995 	return error;
1996 }
1997 
1998 /*
1999  * Push a single buffer on a delwri queue.
2000  *
2001  * The purpose of this function is to submit a single buffer of a delwri queue
2002  * and return with the buffer still on the original queue. The waiting delwri
2003  * buffer submission infrastructure guarantees transfer of the delwri queue
2004  * buffer reference to a temporary wait list. We reuse this infrastructure to
2005  * transfer the buffer back to the original queue.
2006  *
2007  * Note the buffer transitions from the queued state, to the submitted and wait
2008  * listed state and back to the queued state during this call. The buffer
2009  * locking and queue management logic between _delwri_pushbuf() and
2010  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2011  * before returning.
2012  */
2013 int
2014 xfs_buf_delwri_pushbuf(
2015 	struct xfs_buf		*bp,
2016 	struct list_head	*buffer_list)
2017 {
2018 	LIST_HEAD		(submit_list);
2019 	int			error;
2020 
2021 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2022 
2023 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2024 
2025 	/*
2026 	 * Isolate the buffer to a new local list so we can submit it for I/O
2027 	 * independently from the rest of the original list.
2028 	 */
2029 	xfs_buf_lock(bp);
2030 	list_move(&bp->b_list, &submit_list);
2031 	xfs_buf_unlock(bp);
2032 
2033 	/*
2034 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2035 	 * the buffer on the wait list with the original reference. Rather than
2036 	 * bounce the buffer from a local wait list back to the original list
2037 	 * after I/O completion, reuse the original list as the wait list.
2038 	 */
2039 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2040 
2041 	/*
2042 	 * The buffer is now locked, under I/O and wait listed on the original
2043 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2044 	 * return with the buffer unlocked and on the original queue.
2045 	 */
2046 	error = xfs_buf_iowait(bp);
2047 	bp->b_flags |= _XBF_DELWRI_Q;
2048 	xfs_buf_unlock(bp);
2049 
2050 	return error;
2051 }
2052 
2053 int __init
2054 xfs_buf_init(void)
2055 {
2056 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2057 						KM_ZONE_HWALIGN, NULL);
2058 	if (!xfs_buf_zone)
2059 		goto out;
2060 
2061 	return 0;
2062 
2063  out:
2064 	return -ENOMEM;
2065 }
2066 
2067 void
2068 xfs_buf_terminate(void)
2069 {
2070 	kmem_zone_destroy(xfs_buf_zone);
2071 }
2072 
2073 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2074 {
2075 	/*
2076 	 * Set the lru reference count to 0 based on the error injection tag.
2077 	 * This allows userspace to disrupt buffer caching for debug/testing
2078 	 * purposes.
2079 	 */
2080 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2081 		lru_ref = 0;
2082 
2083 	atomic_set(&bp->b_lru_ref, lru_ref);
2084 }
2085 
2086 /*
2087  * Verify an on-disk magic value against the magic value specified in the
2088  * verifier structure. The verifier magic is in disk byte order so the caller is
2089  * expected to pass the value directly from disk.
2090  */
2091 bool
2092 xfs_verify_magic(
2093 	struct xfs_buf		*bp,
2094 	__be32			dmagic)
2095 {
2096 	struct xfs_mount	*mp = bp->b_mount;
2097 	int			idx;
2098 
2099 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2100 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2101 		return false;
2102 	return dmagic == bp->b_ops->magic[idx];
2103 }
2104 /*
2105  * Verify an on-disk magic value against the magic value specified in the
2106  * verifier structure. The verifier magic is in disk byte order so the caller is
2107  * expected to pass the value directly from disk.
2108  */
2109 bool
2110 xfs_verify_magic16(
2111 	struct xfs_buf		*bp,
2112 	__be16			dmagic)
2113 {
2114 	struct xfs_mount	*mp = bp->b_mount;
2115 	int			idx;
2116 
2117 	idx = xfs_sb_version_hascrc(&mp->m_sb);
2118 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2119 		return false;
2120 	return dmagic == bp->b_ops->magic16[idx];
2121 }
2122