1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include <linux/backing-dev.h> 8 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_trace.h" 15 #include "xfs_log.h" 16 #include "xfs_log_recover.h" 17 #include "xfs_log_priv.h" 18 #include "xfs_trans.h" 19 #include "xfs_buf_item.h" 20 #include "xfs_errortag.h" 21 #include "xfs_error.h" 22 #include "xfs_ag.h" 23 24 static struct kmem_cache *xfs_buf_cache; 25 26 /* 27 * Locking orders 28 * 29 * xfs_buf_ioacct_inc: 30 * xfs_buf_ioacct_dec: 31 * b_sema (caller holds) 32 * b_lock 33 * 34 * xfs_buf_stale: 35 * b_sema (caller holds) 36 * b_lock 37 * lru_lock 38 * 39 * xfs_buf_rele: 40 * b_lock 41 * pag_buf_lock 42 * lru_lock 43 * 44 * xfs_buftarg_drain_rele 45 * lru_lock 46 * b_lock (trylock due to inversion) 47 * 48 * xfs_buftarg_isolate 49 * lru_lock 50 * b_lock (trylock due to inversion) 51 */ 52 53 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait); 54 55 static inline int 56 xfs_buf_submit( 57 struct xfs_buf *bp) 58 { 59 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC)); 60 } 61 62 static inline int 63 xfs_buf_is_vmapped( 64 struct xfs_buf *bp) 65 { 66 /* 67 * Return true if the buffer is vmapped. 68 * 69 * b_addr is null if the buffer is not mapped, but the code is clever 70 * enough to know it doesn't have to map a single page, so the check has 71 * to be both for b_addr and bp->b_page_count > 1. 72 */ 73 return bp->b_addr && bp->b_page_count > 1; 74 } 75 76 static inline int 77 xfs_buf_vmap_len( 78 struct xfs_buf *bp) 79 { 80 return (bp->b_page_count * PAGE_SIZE); 81 } 82 83 /* 84 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 85 * this buffer. The count is incremented once per buffer (per hold cycle) 86 * because the corresponding decrement is deferred to buffer release. Buffers 87 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 88 * tracking adds unnecessary overhead. This is used for sychronization purposes 89 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of 90 * in-flight buffers. 91 * 92 * Buffers that are never released (e.g., superblock, iclog buffers) must set 93 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 94 * never reaches zero and unmount hangs indefinitely. 95 */ 96 static inline void 97 xfs_buf_ioacct_inc( 98 struct xfs_buf *bp) 99 { 100 if (bp->b_flags & XBF_NO_IOACCT) 101 return; 102 103 ASSERT(bp->b_flags & XBF_ASYNC); 104 spin_lock(&bp->b_lock); 105 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { 106 bp->b_state |= XFS_BSTATE_IN_FLIGHT; 107 percpu_counter_inc(&bp->b_target->bt_io_count); 108 } 109 spin_unlock(&bp->b_lock); 110 } 111 112 /* 113 * Clear the in-flight state on a buffer about to be released to the LRU or 114 * freed and unaccount from the buftarg. 115 */ 116 static inline void 117 __xfs_buf_ioacct_dec( 118 struct xfs_buf *bp) 119 { 120 lockdep_assert_held(&bp->b_lock); 121 122 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { 123 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; 124 percpu_counter_dec(&bp->b_target->bt_io_count); 125 } 126 } 127 128 static inline void 129 xfs_buf_ioacct_dec( 130 struct xfs_buf *bp) 131 { 132 spin_lock(&bp->b_lock); 133 __xfs_buf_ioacct_dec(bp); 134 spin_unlock(&bp->b_lock); 135 } 136 137 /* 138 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 139 * b_lru_ref count so that the buffer is freed immediately when the buffer 140 * reference count falls to zero. If the buffer is already on the LRU, we need 141 * to remove the reference that LRU holds on the buffer. 142 * 143 * This prevents build-up of stale buffers on the LRU. 144 */ 145 void 146 xfs_buf_stale( 147 struct xfs_buf *bp) 148 { 149 ASSERT(xfs_buf_islocked(bp)); 150 151 bp->b_flags |= XBF_STALE; 152 153 /* 154 * Clear the delwri status so that a delwri queue walker will not 155 * flush this buffer to disk now that it is stale. The delwri queue has 156 * a reference to the buffer, so this is safe to do. 157 */ 158 bp->b_flags &= ~_XBF_DELWRI_Q; 159 160 /* 161 * Once the buffer is marked stale and unlocked, a subsequent lookup 162 * could reset b_flags. There is no guarantee that the buffer is 163 * unaccounted (released to LRU) before that occurs. Drop in-flight 164 * status now to preserve accounting consistency. 165 */ 166 spin_lock(&bp->b_lock); 167 __xfs_buf_ioacct_dec(bp); 168 169 atomic_set(&bp->b_lru_ref, 0); 170 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 171 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 172 atomic_dec(&bp->b_hold); 173 174 ASSERT(atomic_read(&bp->b_hold) >= 1); 175 spin_unlock(&bp->b_lock); 176 } 177 178 static int 179 xfs_buf_get_maps( 180 struct xfs_buf *bp, 181 int map_count) 182 { 183 ASSERT(bp->b_maps == NULL); 184 bp->b_map_count = map_count; 185 186 if (map_count == 1) { 187 bp->b_maps = &bp->__b_map; 188 return 0; 189 } 190 191 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 192 KM_NOFS); 193 if (!bp->b_maps) 194 return -ENOMEM; 195 return 0; 196 } 197 198 /* 199 * Frees b_pages if it was allocated. 200 */ 201 static void 202 xfs_buf_free_maps( 203 struct xfs_buf *bp) 204 { 205 if (bp->b_maps != &bp->__b_map) { 206 kmem_free(bp->b_maps); 207 bp->b_maps = NULL; 208 } 209 } 210 211 static int 212 _xfs_buf_alloc( 213 struct xfs_buftarg *target, 214 struct xfs_buf_map *map, 215 int nmaps, 216 xfs_buf_flags_t flags, 217 struct xfs_buf **bpp) 218 { 219 struct xfs_buf *bp; 220 int error; 221 int i; 222 223 *bpp = NULL; 224 bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL); 225 226 /* 227 * We don't want certain flags to appear in b_flags unless they are 228 * specifically set by later operations on the buffer. 229 */ 230 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 231 232 atomic_set(&bp->b_hold, 1); 233 atomic_set(&bp->b_lru_ref, 1); 234 init_completion(&bp->b_iowait); 235 INIT_LIST_HEAD(&bp->b_lru); 236 INIT_LIST_HEAD(&bp->b_list); 237 INIT_LIST_HEAD(&bp->b_li_list); 238 sema_init(&bp->b_sema, 0); /* held, no waiters */ 239 spin_lock_init(&bp->b_lock); 240 bp->b_target = target; 241 bp->b_mount = target->bt_mount; 242 bp->b_flags = flags; 243 244 /* 245 * Set length and io_length to the same value initially. 246 * I/O routines should use io_length, which will be the same in 247 * most cases but may be reset (e.g. XFS recovery). 248 */ 249 error = xfs_buf_get_maps(bp, nmaps); 250 if (error) { 251 kmem_cache_free(xfs_buf_cache, bp); 252 return error; 253 } 254 255 bp->b_rhash_key = map[0].bm_bn; 256 bp->b_length = 0; 257 for (i = 0; i < nmaps; i++) { 258 bp->b_maps[i].bm_bn = map[i].bm_bn; 259 bp->b_maps[i].bm_len = map[i].bm_len; 260 bp->b_length += map[i].bm_len; 261 } 262 263 atomic_set(&bp->b_pin_count, 0); 264 init_waitqueue_head(&bp->b_waiters); 265 266 XFS_STATS_INC(bp->b_mount, xb_create); 267 trace_xfs_buf_init(bp, _RET_IP_); 268 269 *bpp = bp; 270 return 0; 271 } 272 273 static void 274 xfs_buf_free_pages( 275 struct xfs_buf *bp) 276 { 277 uint i; 278 279 ASSERT(bp->b_flags & _XBF_PAGES); 280 281 if (xfs_buf_is_vmapped(bp)) 282 vm_unmap_ram(bp->b_addr, bp->b_page_count); 283 284 for (i = 0; i < bp->b_page_count; i++) { 285 if (bp->b_pages[i]) 286 __free_page(bp->b_pages[i]); 287 } 288 if (current->reclaim_state) 289 current->reclaim_state->reclaimed_slab += bp->b_page_count; 290 291 if (bp->b_pages != bp->b_page_array) 292 kmem_free(bp->b_pages); 293 bp->b_pages = NULL; 294 bp->b_flags &= ~_XBF_PAGES; 295 } 296 297 static void 298 xfs_buf_free( 299 struct xfs_buf *bp) 300 { 301 trace_xfs_buf_free(bp, _RET_IP_); 302 303 ASSERT(list_empty(&bp->b_lru)); 304 305 if (bp->b_flags & _XBF_PAGES) 306 xfs_buf_free_pages(bp); 307 else if (bp->b_flags & _XBF_KMEM) 308 kmem_free(bp->b_addr); 309 310 xfs_buf_free_maps(bp); 311 kmem_cache_free(xfs_buf_cache, bp); 312 } 313 314 static int 315 xfs_buf_alloc_kmem( 316 struct xfs_buf *bp, 317 xfs_buf_flags_t flags) 318 { 319 xfs_km_flags_t kmflag_mask = KM_NOFS; 320 size_t size = BBTOB(bp->b_length); 321 322 /* Assure zeroed buffer for non-read cases. */ 323 if (!(flags & XBF_READ)) 324 kmflag_mask |= KM_ZERO; 325 326 bp->b_addr = kmem_alloc(size, kmflag_mask); 327 if (!bp->b_addr) 328 return -ENOMEM; 329 330 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 331 ((unsigned long)bp->b_addr & PAGE_MASK)) { 332 /* b_addr spans two pages - use alloc_page instead */ 333 kmem_free(bp->b_addr); 334 bp->b_addr = NULL; 335 return -ENOMEM; 336 } 337 bp->b_offset = offset_in_page(bp->b_addr); 338 bp->b_pages = bp->b_page_array; 339 bp->b_pages[0] = kmem_to_page(bp->b_addr); 340 bp->b_page_count = 1; 341 bp->b_flags |= _XBF_KMEM; 342 return 0; 343 } 344 345 static int 346 xfs_buf_alloc_pages( 347 struct xfs_buf *bp, 348 xfs_buf_flags_t flags) 349 { 350 gfp_t gfp_mask = __GFP_NOWARN; 351 long filled = 0; 352 353 if (flags & XBF_READ_AHEAD) 354 gfp_mask |= __GFP_NORETRY; 355 else 356 gfp_mask |= GFP_NOFS; 357 358 /* Make sure that we have a page list */ 359 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE); 360 if (bp->b_page_count <= XB_PAGES) { 361 bp->b_pages = bp->b_page_array; 362 } else { 363 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count, 364 gfp_mask); 365 if (!bp->b_pages) 366 return -ENOMEM; 367 } 368 bp->b_flags |= _XBF_PAGES; 369 370 /* Assure zeroed buffer for non-read cases. */ 371 if (!(flags & XBF_READ)) 372 gfp_mask |= __GFP_ZERO; 373 374 /* 375 * Bulk filling of pages can take multiple calls. Not filling the entire 376 * array is not an allocation failure, so don't back off if we get at 377 * least one extra page. 378 */ 379 for (;;) { 380 long last = filled; 381 382 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count, 383 bp->b_pages); 384 if (filled == bp->b_page_count) { 385 XFS_STATS_INC(bp->b_mount, xb_page_found); 386 break; 387 } 388 389 if (filled != last) 390 continue; 391 392 if (flags & XBF_READ_AHEAD) { 393 xfs_buf_free_pages(bp); 394 return -ENOMEM; 395 } 396 397 XFS_STATS_INC(bp->b_mount, xb_page_retries); 398 memalloc_retry_wait(gfp_mask); 399 } 400 return 0; 401 } 402 403 /* 404 * Map buffer into kernel address-space if necessary. 405 */ 406 STATIC int 407 _xfs_buf_map_pages( 408 struct xfs_buf *bp, 409 uint flags) 410 { 411 ASSERT(bp->b_flags & _XBF_PAGES); 412 if (bp->b_page_count == 1) { 413 /* A single page buffer is always mappable */ 414 bp->b_addr = page_address(bp->b_pages[0]); 415 } else if (flags & XBF_UNMAPPED) { 416 bp->b_addr = NULL; 417 } else { 418 int retried = 0; 419 unsigned nofs_flag; 420 421 /* 422 * vm_map_ram() will allocate auxiliary structures (e.g. 423 * pagetables) with GFP_KERNEL, yet we are likely to be under 424 * GFP_NOFS context here. Hence we need to tell memory reclaim 425 * that we are in such a context via PF_MEMALLOC_NOFS to prevent 426 * memory reclaim re-entering the filesystem here and 427 * potentially deadlocking. 428 */ 429 nofs_flag = memalloc_nofs_save(); 430 do { 431 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 432 -1); 433 if (bp->b_addr) 434 break; 435 vm_unmap_aliases(); 436 } while (retried++ <= 1); 437 memalloc_nofs_restore(nofs_flag); 438 439 if (!bp->b_addr) 440 return -ENOMEM; 441 } 442 443 return 0; 444 } 445 446 /* 447 * Finding and Reading Buffers 448 */ 449 static int 450 _xfs_buf_obj_cmp( 451 struct rhashtable_compare_arg *arg, 452 const void *obj) 453 { 454 const struct xfs_buf_map *map = arg->key; 455 const struct xfs_buf *bp = obj; 456 457 /* 458 * The key hashing in the lookup path depends on the key being the 459 * first element of the compare_arg, make sure to assert this. 460 */ 461 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 462 463 if (bp->b_rhash_key != map->bm_bn) 464 return 1; 465 466 if (unlikely(bp->b_length != map->bm_len)) { 467 /* 468 * found a block number match. If the range doesn't 469 * match, the only way this is allowed is if the buffer 470 * in the cache is stale and the transaction that made 471 * it stale has not yet committed. i.e. we are 472 * reallocating a busy extent. Skip this buffer and 473 * continue searching for an exact match. 474 */ 475 ASSERT(bp->b_flags & XBF_STALE); 476 return 1; 477 } 478 return 0; 479 } 480 481 static const struct rhashtable_params xfs_buf_hash_params = { 482 .min_size = 32, /* empty AGs have minimal footprint */ 483 .nelem_hint = 16, 484 .key_len = sizeof(xfs_daddr_t), 485 .key_offset = offsetof(struct xfs_buf, b_rhash_key), 486 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 487 .automatic_shrinking = true, 488 .obj_cmpfn = _xfs_buf_obj_cmp, 489 }; 490 491 int 492 xfs_buf_hash_init( 493 struct xfs_perag *pag) 494 { 495 spin_lock_init(&pag->pag_buf_lock); 496 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); 497 } 498 499 void 500 xfs_buf_hash_destroy( 501 struct xfs_perag *pag) 502 { 503 rhashtable_destroy(&pag->pag_buf_hash); 504 } 505 506 /* 507 * Look up a buffer in the buffer cache and return it referenced and locked 508 * in @found_bp. 509 * 510 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the 511 * cache. 512 * 513 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return 514 * -EAGAIN if we fail to lock it. 515 * 516 * Return values are: 517 * -EFSCORRUPTED if have been supplied with an invalid address 518 * -EAGAIN on trylock failure 519 * -ENOENT if we fail to find a match and @new_bp was NULL 520 * 0, with @found_bp: 521 * - @new_bp if we inserted it into the cache 522 * - the buffer we found and locked. 523 */ 524 static int 525 xfs_buf_find( 526 struct xfs_buftarg *btp, 527 struct xfs_buf_map *map, 528 int nmaps, 529 xfs_buf_flags_t flags, 530 struct xfs_buf *new_bp, 531 struct xfs_buf **found_bp) 532 { 533 struct xfs_perag *pag; 534 struct xfs_buf *bp; 535 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 536 xfs_daddr_t eofs; 537 int i; 538 539 *found_bp = NULL; 540 541 for (i = 0; i < nmaps; i++) 542 cmap.bm_len += map[i].bm_len; 543 544 /* Check for IOs smaller than the sector size / not sector aligned */ 545 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize)); 546 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 547 548 /* 549 * Corrupted block numbers can get through to here, unfortunately, so we 550 * have to check that the buffer falls within the filesystem bounds. 551 */ 552 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 553 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) { 554 xfs_alert(btp->bt_mount, 555 "%s: daddr 0x%llx out of range, EOFS 0x%llx", 556 __func__, cmap.bm_bn, eofs); 557 WARN_ON(1); 558 return -EFSCORRUPTED; 559 } 560 561 pag = xfs_perag_get(btp->bt_mount, 562 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); 563 564 spin_lock(&pag->pag_buf_lock); 565 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap, 566 xfs_buf_hash_params); 567 if (bp) { 568 atomic_inc(&bp->b_hold); 569 goto found; 570 } 571 572 /* No match found */ 573 if (!new_bp) { 574 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 575 spin_unlock(&pag->pag_buf_lock); 576 xfs_perag_put(pag); 577 return -ENOENT; 578 } 579 580 /* the buffer keeps the perag reference until it is freed */ 581 new_bp->b_pag = pag; 582 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head, 583 xfs_buf_hash_params); 584 spin_unlock(&pag->pag_buf_lock); 585 *found_bp = new_bp; 586 return 0; 587 588 found: 589 spin_unlock(&pag->pag_buf_lock); 590 xfs_perag_put(pag); 591 592 if (!xfs_buf_trylock(bp)) { 593 if (flags & XBF_TRYLOCK) { 594 xfs_buf_rele(bp); 595 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 596 return -EAGAIN; 597 } 598 xfs_buf_lock(bp); 599 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 600 } 601 602 /* 603 * if the buffer is stale, clear all the external state associated with 604 * it. We need to keep flags such as how we allocated the buffer memory 605 * intact here. 606 */ 607 if (bp->b_flags & XBF_STALE) { 608 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 609 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 610 bp->b_ops = NULL; 611 } 612 613 trace_xfs_buf_find(bp, flags, _RET_IP_); 614 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 615 *found_bp = bp; 616 return 0; 617 } 618 619 struct xfs_buf * 620 xfs_buf_incore( 621 struct xfs_buftarg *target, 622 xfs_daddr_t blkno, 623 size_t numblks, 624 xfs_buf_flags_t flags) 625 { 626 struct xfs_buf *bp; 627 int error; 628 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks); 629 630 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp); 631 if (error) 632 return NULL; 633 return bp; 634 } 635 636 /* 637 * Assembles a buffer covering the specified range. The code is optimised for 638 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 639 * more hits than misses. 640 */ 641 int 642 xfs_buf_get_map( 643 struct xfs_buftarg *target, 644 struct xfs_buf_map *map, 645 int nmaps, 646 xfs_buf_flags_t flags, 647 struct xfs_buf **bpp) 648 { 649 struct xfs_buf *bp; 650 struct xfs_buf *new_bp; 651 int error; 652 653 *bpp = NULL; 654 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp); 655 if (!error) 656 goto found; 657 if (error != -ENOENT) 658 return error; 659 660 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp); 661 if (error) 662 return error; 663 664 /* 665 * For buffers that fit entirely within a single page, first attempt to 666 * allocate the memory from the heap to minimise memory usage. If we 667 * can't get heap memory for these small buffers, we fall back to using 668 * the page allocator. 669 */ 670 if (BBTOB(new_bp->b_length) >= PAGE_SIZE || 671 xfs_buf_alloc_kmem(new_bp, flags) < 0) { 672 error = xfs_buf_alloc_pages(new_bp, flags); 673 if (error) 674 goto out_free_buf; 675 } 676 677 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp); 678 if (error) 679 goto out_free_buf; 680 681 if (bp != new_bp) 682 xfs_buf_free(new_bp); 683 684 found: 685 if (!bp->b_addr) { 686 error = _xfs_buf_map_pages(bp, flags); 687 if (unlikely(error)) { 688 xfs_warn_ratelimited(target->bt_mount, 689 "%s: failed to map %u pages", __func__, 690 bp->b_page_count); 691 xfs_buf_relse(bp); 692 return error; 693 } 694 } 695 696 /* 697 * Clear b_error if this is a lookup from a caller that doesn't expect 698 * valid data to be found in the buffer. 699 */ 700 if (!(flags & XBF_READ)) 701 xfs_buf_ioerror(bp, 0); 702 703 XFS_STATS_INC(target->bt_mount, xb_get); 704 trace_xfs_buf_get(bp, flags, _RET_IP_); 705 *bpp = bp; 706 return 0; 707 out_free_buf: 708 xfs_buf_free(new_bp); 709 return error; 710 } 711 712 int 713 _xfs_buf_read( 714 struct xfs_buf *bp, 715 xfs_buf_flags_t flags) 716 { 717 ASSERT(!(flags & XBF_WRITE)); 718 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 719 720 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE); 721 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 722 723 return xfs_buf_submit(bp); 724 } 725 726 /* 727 * Reverify a buffer found in cache without an attached ->b_ops. 728 * 729 * If the caller passed an ops structure and the buffer doesn't have ops 730 * assigned, set the ops and use it to verify the contents. If verification 731 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is 732 * already in XBF_DONE state on entry. 733 * 734 * Under normal operations, every in-core buffer is verified on read I/O 735 * completion. There are two scenarios that can lead to in-core buffers without 736 * an assigned ->b_ops. The first is during log recovery of buffers on a V4 737 * filesystem, though these buffers are purged at the end of recovery. The 738 * other is online repair, which intentionally reads with a NULL buffer ops to 739 * run several verifiers across an in-core buffer in order to establish buffer 740 * type. If repair can't establish that, the buffer will be left in memory 741 * with NULL buffer ops. 742 */ 743 int 744 xfs_buf_reverify( 745 struct xfs_buf *bp, 746 const struct xfs_buf_ops *ops) 747 { 748 ASSERT(bp->b_flags & XBF_DONE); 749 ASSERT(bp->b_error == 0); 750 751 if (!ops || bp->b_ops) 752 return 0; 753 754 bp->b_ops = ops; 755 bp->b_ops->verify_read(bp); 756 if (bp->b_error) 757 bp->b_flags &= ~XBF_DONE; 758 return bp->b_error; 759 } 760 761 int 762 xfs_buf_read_map( 763 struct xfs_buftarg *target, 764 struct xfs_buf_map *map, 765 int nmaps, 766 xfs_buf_flags_t flags, 767 struct xfs_buf **bpp, 768 const struct xfs_buf_ops *ops, 769 xfs_failaddr_t fa) 770 { 771 struct xfs_buf *bp; 772 int error; 773 774 flags |= XBF_READ; 775 *bpp = NULL; 776 777 error = xfs_buf_get_map(target, map, nmaps, flags, &bp); 778 if (error) 779 return error; 780 781 trace_xfs_buf_read(bp, flags, _RET_IP_); 782 783 if (!(bp->b_flags & XBF_DONE)) { 784 /* Initiate the buffer read and wait. */ 785 XFS_STATS_INC(target->bt_mount, xb_get_read); 786 bp->b_ops = ops; 787 error = _xfs_buf_read(bp, flags); 788 789 /* Readahead iodone already dropped the buffer, so exit. */ 790 if (flags & XBF_ASYNC) 791 return 0; 792 } else { 793 /* Buffer already read; all we need to do is check it. */ 794 error = xfs_buf_reverify(bp, ops); 795 796 /* Readahead already finished; drop the buffer and exit. */ 797 if (flags & XBF_ASYNC) { 798 xfs_buf_relse(bp); 799 return 0; 800 } 801 802 /* We do not want read in the flags */ 803 bp->b_flags &= ~XBF_READ; 804 ASSERT(bp->b_ops != NULL || ops == NULL); 805 } 806 807 /* 808 * If we've had a read error, then the contents of the buffer are 809 * invalid and should not be used. To ensure that a followup read tries 810 * to pull the buffer from disk again, we clear the XBF_DONE flag and 811 * mark the buffer stale. This ensures that anyone who has a current 812 * reference to the buffer will interpret it's contents correctly and 813 * future cache lookups will also treat it as an empty, uninitialised 814 * buffer. 815 */ 816 if (error) { 817 /* 818 * Check against log shutdown for error reporting because 819 * metadata writeback may require a read first and we need to 820 * report errors in metadata writeback until the log is shut 821 * down. High level transaction read functions already check 822 * against mount shutdown, anyway, so we only need to be 823 * concerned about low level IO interactions here. 824 */ 825 if (!xlog_is_shutdown(target->bt_mount->m_log)) 826 xfs_buf_ioerror_alert(bp, fa); 827 828 bp->b_flags &= ~XBF_DONE; 829 xfs_buf_stale(bp); 830 xfs_buf_relse(bp); 831 832 /* bad CRC means corrupted metadata */ 833 if (error == -EFSBADCRC) 834 error = -EFSCORRUPTED; 835 return error; 836 } 837 838 *bpp = bp; 839 return 0; 840 } 841 842 /* 843 * If we are not low on memory then do the readahead in a deadlock 844 * safe manner. 845 */ 846 void 847 xfs_buf_readahead_map( 848 struct xfs_buftarg *target, 849 struct xfs_buf_map *map, 850 int nmaps, 851 const struct xfs_buf_ops *ops) 852 { 853 struct xfs_buf *bp; 854 855 xfs_buf_read_map(target, map, nmaps, 856 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops, 857 __this_address); 858 } 859 860 /* 861 * Read an uncached buffer from disk. Allocates and returns a locked 862 * buffer containing the disk contents or nothing. Uncached buffers always have 863 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer 864 * is cached or uncached during fault diagnosis. 865 */ 866 int 867 xfs_buf_read_uncached( 868 struct xfs_buftarg *target, 869 xfs_daddr_t daddr, 870 size_t numblks, 871 int flags, 872 struct xfs_buf **bpp, 873 const struct xfs_buf_ops *ops) 874 { 875 struct xfs_buf *bp; 876 int error; 877 878 *bpp = NULL; 879 880 error = xfs_buf_get_uncached(target, numblks, flags, &bp); 881 if (error) 882 return error; 883 884 /* set up the buffer for a read IO */ 885 ASSERT(bp->b_map_count == 1); 886 bp->b_rhash_key = XFS_BUF_DADDR_NULL; 887 bp->b_maps[0].bm_bn = daddr; 888 bp->b_flags |= XBF_READ; 889 bp->b_ops = ops; 890 891 xfs_buf_submit(bp); 892 if (bp->b_error) { 893 error = bp->b_error; 894 xfs_buf_relse(bp); 895 return error; 896 } 897 898 *bpp = bp; 899 return 0; 900 } 901 902 int 903 xfs_buf_get_uncached( 904 struct xfs_buftarg *target, 905 size_t numblks, 906 int flags, 907 struct xfs_buf **bpp) 908 { 909 int error; 910 struct xfs_buf *bp; 911 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 912 913 *bpp = NULL; 914 915 /* flags might contain irrelevant bits, pass only what we care about */ 916 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp); 917 if (error) 918 return error; 919 920 error = xfs_buf_alloc_pages(bp, flags); 921 if (error) 922 goto fail_free_buf; 923 924 error = _xfs_buf_map_pages(bp, 0); 925 if (unlikely(error)) { 926 xfs_warn(target->bt_mount, 927 "%s: failed to map pages", __func__); 928 goto fail_free_buf; 929 } 930 931 trace_xfs_buf_get_uncached(bp, _RET_IP_); 932 *bpp = bp; 933 return 0; 934 935 fail_free_buf: 936 xfs_buf_free(bp); 937 return error; 938 } 939 940 /* 941 * Increment reference count on buffer, to hold the buffer concurrently 942 * with another thread which may release (free) the buffer asynchronously. 943 * Must hold the buffer already to call this function. 944 */ 945 void 946 xfs_buf_hold( 947 struct xfs_buf *bp) 948 { 949 trace_xfs_buf_hold(bp, _RET_IP_); 950 atomic_inc(&bp->b_hold); 951 } 952 953 /* 954 * Release a hold on the specified buffer. If the hold count is 1, the buffer is 955 * placed on LRU or freed (depending on b_lru_ref). 956 */ 957 void 958 xfs_buf_rele( 959 struct xfs_buf *bp) 960 { 961 struct xfs_perag *pag = bp->b_pag; 962 bool release; 963 bool freebuf = false; 964 965 trace_xfs_buf_rele(bp, _RET_IP_); 966 967 if (!pag) { 968 ASSERT(list_empty(&bp->b_lru)); 969 if (atomic_dec_and_test(&bp->b_hold)) { 970 xfs_buf_ioacct_dec(bp); 971 xfs_buf_free(bp); 972 } 973 return; 974 } 975 976 ASSERT(atomic_read(&bp->b_hold) > 0); 977 978 /* 979 * We grab the b_lock here first to serialise racing xfs_buf_rele() 980 * calls. The pag_buf_lock being taken on the last reference only 981 * serialises against racing lookups in xfs_buf_find(). IOWs, the second 982 * to last reference we drop here is not serialised against the last 983 * reference until we take bp->b_lock. Hence if we don't grab b_lock 984 * first, the last "release" reference can win the race to the lock and 985 * free the buffer before the second-to-last reference is processed, 986 * leading to a use-after-free scenario. 987 */ 988 spin_lock(&bp->b_lock); 989 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); 990 if (!release) { 991 /* 992 * Drop the in-flight state if the buffer is already on the LRU 993 * and it holds the only reference. This is racy because we 994 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 995 * ensures the decrement occurs only once per-buf. 996 */ 997 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 998 __xfs_buf_ioacct_dec(bp); 999 goto out_unlock; 1000 } 1001 1002 /* the last reference has been dropped ... */ 1003 __xfs_buf_ioacct_dec(bp); 1004 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 1005 /* 1006 * If the buffer is added to the LRU take a new reference to the 1007 * buffer for the LRU and clear the (now stale) dispose list 1008 * state flag 1009 */ 1010 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 1011 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1012 atomic_inc(&bp->b_hold); 1013 } 1014 spin_unlock(&pag->pag_buf_lock); 1015 } else { 1016 /* 1017 * most of the time buffers will already be removed from the 1018 * LRU, so optimise that case by checking for the 1019 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1020 * was on was the disposal list 1021 */ 1022 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1023 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 1024 } else { 1025 ASSERT(list_empty(&bp->b_lru)); 1026 } 1027 1028 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1029 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, 1030 xfs_buf_hash_params); 1031 spin_unlock(&pag->pag_buf_lock); 1032 xfs_perag_put(pag); 1033 freebuf = true; 1034 } 1035 1036 out_unlock: 1037 spin_unlock(&bp->b_lock); 1038 1039 if (freebuf) 1040 xfs_buf_free(bp); 1041 } 1042 1043 1044 /* 1045 * Lock a buffer object, if it is not already locked. 1046 * 1047 * If we come across a stale, pinned, locked buffer, we know that we are 1048 * being asked to lock a buffer that has been reallocated. Because it is 1049 * pinned, we know that the log has not been pushed to disk and hence it 1050 * will still be locked. Rather than continuing to have trylock attempts 1051 * fail until someone else pushes the log, push it ourselves before 1052 * returning. This means that the xfsaild will not get stuck trying 1053 * to push on stale inode buffers. 1054 */ 1055 int 1056 xfs_buf_trylock( 1057 struct xfs_buf *bp) 1058 { 1059 int locked; 1060 1061 locked = down_trylock(&bp->b_sema) == 0; 1062 if (locked) 1063 trace_xfs_buf_trylock(bp, _RET_IP_); 1064 else 1065 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1066 return locked; 1067 } 1068 1069 /* 1070 * Lock a buffer object. 1071 * 1072 * If we come across a stale, pinned, locked buffer, we know that we 1073 * are being asked to lock a buffer that has been reallocated. Because 1074 * it is pinned, we know that the log has not been pushed to disk and 1075 * hence it will still be locked. Rather than sleeping until someone 1076 * else pushes the log, push it ourselves before trying to get the lock. 1077 */ 1078 void 1079 xfs_buf_lock( 1080 struct xfs_buf *bp) 1081 { 1082 trace_xfs_buf_lock(bp, _RET_IP_); 1083 1084 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1085 xfs_log_force(bp->b_mount, 0); 1086 down(&bp->b_sema); 1087 1088 trace_xfs_buf_lock_done(bp, _RET_IP_); 1089 } 1090 1091 void 1092 xfs_buf_unlock( 1093 struct xfs_buf *bp) 1094 { 1095 ASSERT(xfs_buf_islocked(bp)); 1096 1097 up(&bp->b_sema); 1098 trace_xfs_buf_unlock(bp, _RET_IP_); 1099 } 1100 1101 STATIC void 1102 xfs_buf_wait_unpin( 1103 struct xfs_buf *bp) 1104 { 1105 DECLARE_WAITQUEUE (wait, current); 1106 1107 if (atomic_read(&bp->b_pin_count) == 0) 1108 return; 1109 1110 add_wait_queue(&bp->b_waiters, &wait); 1111 for (;;) { 1112 set_current_state(TASK_UNINTERRUPTIBLE); 1113 if (atomic_read(&bp->b_pin_count) == 0) 1114 break; 1115 io_schedule(); 1116 } 1117 remove_wait_queue(&bp->b_waiters, &wait); 1118 set_current_state(TASK_RUNNING); 1119 } 1120 1121 static void 1122 xfs_buf_ioerror_alert_ratelimited( 1123 struct xfs_buf *bp) 1124 { 1125 static unsigned long lasttime; 1126 static struct xfs_buftarg *lasttarg; 1127 1128 if (bp->b_target != lasttarg || 1129 time_after(jiffies, (lasttime + 5*HZ))) { 1130 lasttime = jiffies; 1131 xfs_buf_ioerror_alert(bp, __this_address); 1132 } 1133 lasttarg = bp->b_target; 1134 } 1135 1136 /* 1137 * Account for this latest trip around the retry handler, and decide if 1138 * we've failed enough times to constitute a permanent failure. 1139 */ 1140 static bool 1141 xfs_buf_ioerror_permanent( 1142 struct xfs_buf *bp, 1143 struct xfs_error_cfg *cfg) 1144 { 1145 struct xfs_mount *mp = bp->b_mount; 1146 1147 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER && 1148 ++bp->b_retries > cfg->max_retries) 1149 return true; 1150 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1151 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time)) 1152 return true; 1153 1154 /* At unmount we may treat errors differently */ 1155 if (xfs_is_unmounting(mp) && mp->m_fail_unmount) 1156 return true; 1157 1158 return false; 1159 } 1160 1161 /* 1162 * On a sync write or shutdown we just want to stale the buffer and let the 1163 * caller handle the error in bp->b_error appropriately. 1164 * 1165 * If the write was asynchronous then no one will be looking for the error. If 1166 * this is the first failure of this type, clear the error state and write the 1167 * buffer out again. This means we always retry an async write failure at least 1168 * once, but we also need to set the buffer up to behave correctly now for 1169 * repeated failures. 1170 * 1171 * If we get repeated async write failures, then we take action according to the 1172 * error configuration we have been set up to use. 1173 * 1174 * Returns true if this function took care of error handling and the caller must 1175 * not touch the buffer again. Return false if the caller should proceed with 1176 * normal I/O completion handling. 1177 */ 1178 static bool 1179 xfs_buf_ioend_handle_error( 1180 struct xfs_buf *bp) 1181 { 1182 struct xfs_mount *mp = bp->b_mount; 1183 struct xfs_error_cfg *cfg; 1184 1185 /* 1186 * If we've already shutdown the journal because of I/O errors, there's 1187 * no point in giving this a retry. 1188 */ 1189 if (xlog_is_shutdown(mp->m_log)) 1190 goto out_stale; 1191 1192 xfs_buf_ioerror_alert_ratelimited(bp); 1193 1194 /* 1195 * We're not going to bother about retrying this during recovery. 1196 * One strike! 1197 */ 1198 if (bp->b_flags & _XBF_LOGRECOVERY) { 1199 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1200 return false; 1201 } 1202 1203 /* 1204 * Synchronous writes will have callers process the error. 1205 */ 1206 if (!(bp->b_flags & XBF_ASYNC)) 1207 goto out_stale; 1208 1209 trace_xfs_buf_iodone_async(bp, _RET_IP_); 1210 1211 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error); 1212 if (bp->b_last_error != bp->b_error || 1213 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) { 1214 bp->b_last_error = bp->b_error; 1215 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1216 !bp->b_first_retry_time) 1217 bp->b_first_retry_time = jiffies; 1218 goto resubmit; 1219 } 1220 1221 /* 1222 * Permanent error - we need to trigger a shutdown if we haven't already 1223 * to indicate that inconsistency will result from this action. 1224 */ 1225 if (xfs_buf_ioerror_permanent(bp, cfg)) { 1226 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1227 goto out_stale; 1228 } 1229 1230 /* Still considered a transient error. Caller will schedule retries. */ 1231 if (bp->b_flags & _XBF_INODES) 1232 xfs_buf_inode_io_fail(bp); 1233 else if (bp->b_flags & _XBF_DQUOTS) 1234 xfs_buf_dquot_io_fail(bp); 1235 else 1236 ASSERT(list_empty(&bp->b_li_list)); 1237 xfs_buf_ioerror(bp, 0); 1238 xfs_buf_relse(bp); 1239 return true; 1240 1241 resubmit: 1242 xfs_buf_ioerror(bp, 0); 1243 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL); 1244 xfs_buf_submit(bp); 1245 return true; 1246 out_stale: 1247 xfs_buf_stale(bp); 1248 bp->b_flags |= XBF_DONE; 1249 bp->b_flags &= ~XBF_WRITE; 1250 trace_xfs_buf_error_relse(bp, _RET_IP_); 1251 return false; 1252 } 1253 1254 static void 1255 xfs_buf_ioend( 1256 struct xfs_buf *bp) 1257 { 1258 trace_xfs_buf_iodone(bp, _RET_IP_); 1259 1260 /* 1261 * Pull in IO completion errors now. We are guaranteed to be running 1262 * single threaded, so we don't need the lock to read b_io_error. 1263 */ 1264 if (!bp->b_error && bp->b_io_error) 1265 xfs_buf_ioerror(bp, bp->b_io_error); 1266 1267 if (bp->b_flags & XBF_READ) { 1268 if (!bp->b_error && bp->b_ops) 1269 bp->b_ops->verify_read(bp); 1270 if (!bp->b_error) 1271 bp->b_flags |= XBF_DONE; 1272 } else { 1273 if (!bp->b_error) { 1274 bp->b_flags &= ~XBF_WRITE_FAIL; 1275 bp->b_flags |= XBF_DONE; 1276 } 1277 1278 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp)) 1279 return; 1280 1281 /* clear the retry state */ 1282 bp->b_last_error = 0; 1283 bp->b_retries = 0; 1284 bp->b_first_retry_time = 0; 1285 1286 /* 1287 * Note that for things like remote attribute buffers, there may 1288 * not be a buffer log item here, so processing the buffer log 1289 * item must remain optional. 1290 */ 1291 if (bp->b_log_item) 1292 xfs_buf_item_done(bp); 1293 1294 if (bp->b_flags & _XBF_INODES) 1295 xfs_buf_inode_iodone(bp); 1296 else if (bp->b_flags & _XBF_DQUOTS) 1297 xfs_buf_dquot_iodone(bp); 1298 1299 } 1300 1301 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD | 1302 _XBF_LOGRECOVERY); 1303 1304 if (bp->b_flags & XBF_ASYNC) 1305 xfs_buf_relse(bp); 1306 else 1307 complete(&bp->b_iowait); 1308 } 1309 1310 static void 1311 xfs_buf_ioend_work( 1312 struct work_struct *work) 1313 { 1314 struct xfs_buf *bp = 1315 container_of(work, struct xfs_buf, b_ioend_work); 1316 1317 xfs_buf_ioend(bp); 1318 } 1319 1320 static void 1321 xfs_buf_ioend_async( 1322 struct xfs_buf *bp) 1323 { 1324 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1325 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); 1326 } 1327 1328 void 1329 __xfs_buf_ioerror( 1330 struct xfs_buf *bp, 1331 int error, 1332 xfs_failaddr_t failaddr) 1333 { 1334 ASSERT(error <= 0 && error >= -1000); 1335 bp->b_error = error; 1336 trace_xfs_buf_ioerror(bp, error, failaddr); 1337 } 1338 1339 void 1340 xfs_buf_ioerror_alert( 1341 struct xfs_buf *bp, 1342 xfs_failaddr_t func) 1343 { 1344 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error", 1345 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d", 1346 func, (uint64_t)xfs_buf_daddr(bp), 1347 bp->b_length, -bp->b_error); 1348 } 1349 1350 /* 1351 * To simulate an I/O failure, the buffer must be locked and held with at least 1352 * three references. The LRU reference is dropped by the stale call. The buf 1353 * item reference is dropped via ioend processing. The third reference is owned 1354 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC. 1355 */ 1356 void 1357 xfs_buf_ioend_fail( 1358 struct xfs_buf *bp) 1359 { 1360 bp->b_flags &= ~XBF_DONE; 1361 xfs_buf_stale(bp); 1362 xfs_buf_ioerror(bp, -EIO); 1363 xfs_buf_ioend(bp); 1364 } 1365 1366 int 1367 xfs_bwrite( 1368 struct xfs_buf *bp) 1369 { 1370 int error; 1371 1372 ASSERT(xfs_buf_islocked(bp)); 1373 1374 bp->b_flags |= XBF_WRITE; 1375 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1376 XBF_DONE); 1377 1378 error = xfs_buf_submit(bp); 1379 if (error) 1380 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 1381 return error; 1382 } 1383 1384 static void 1385 xfs_buf_bio_end_io( 1386 struct bio *bio) 1387 { 1388 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1389 1390 if (!bio->bi_status && 1391 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) && 1392 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR)) 1393 bio->bi_status = BLK_STS_IOERR; 1394 1395 /* 1396 * don't overwrite existing errors - otherwise we can lose errors on 1397 * buffers that require multiple bios to complete. 1398 */ 1399 if (bio->bi_status) { 1400 int error = blk_status_to_errno(bio->bi_status); 1401 1402 cmpxchg(&bp->b_io_error, 0, error); 1403 } 1404 1405 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1406 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1407 1408 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1409 xfs_buf_ioend_async(bp); 1410 bio_put(bio); 1411 } 1412 1413 static void 1414 xfs_buf_ioapply_map( 1415 struct xfs_buf *bp, 1416 int map, 1417 int *buf_offset, 1418 int *count, 1419 int op) 1420 { 1421 int page_index; 1422 unsigned int total_nr_pages = bp->b_page_count; 1423 int nr_pages; 1424 struct bio *bio; 1425 sector_t sector = bp->b_maps[map].bm_bn; 1426 int size; 1427 int offset; 1428 1429 /* skip the pages in the buffer before the start offset */ 1430 page_index = 0; 1431 offset = *buf_offset; 1432 while (offset >= PAGE_SIZE) { 1433 page_index++; 1434 offset -= PAGE_SIZE; 1435 } 1436 1437 /* 1438 * Limit the IO size to the length of the current vector, and update the 1439 * remaining IO count for the next time around. 1440 */ 1441 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1442 *count -= size; 1443 *buf_offset += size; 1444 1445 next_chunk: 1446 atomic_inc(&bp->b_io_remaining); 1447 nr_pages = bio_max_segs(total_nr_pages); 1448 1449 bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO); 1450 bio->bi_iter.bi_sector = sector; 1451 bio->bi_end_io = xfs_buf_bio_end_io; 1452 bio->bi_private = bp; 1453 1454 for (; size && nr_pages; nr_pages--, page_index++) { 1455 int rbytes, nbytes = PAGE_SIZE - offset; 1456 1457 if (nbytes > size) 1458 nbytes = size; 1459 1460 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1461 offset); 1462 if (rbytes < nbytes) 1463 break; 1464 1465 offset = 0; 1466 sector += BTOBB(nbytes); 1467 size -= nbytes; 1468 total_nr_pages--; 1469 } 1470 1471 if (likely(bio->bi_iter.bi_size)) { 1472 if (xfs_buf_is_vmapped(bp)) { 1473 flush_kernel_vmap_range(bp->b_addr, 1474 xfs_buf_vmap_len(bp)); 1475 } 1476 submit_bio(bio); 1477 if (size) 1478 goto next_chunk; 1479 } else { 1480 /* 1481 * This is guaranteed not to be the last io reference count 1482 * because the caller (xfs_buf_submit) holds a count itself. 1483 */ 1484 atomic_dec(&bp->b_io_remaining); 1485 xfs_buf_ioerror(bp, -EIO); 1486 bio_put(bio); 1487 } 1488 1489 } 1490 1491 STATIC void 1492 _xfs_buf_ioapply( 1493 struct xfs_buf *bp) 1494 { 1495 struct blk_plug plug; 1496 int op; 1497 int offset; 1498 int size; 1499 int i; 1500 1501 /* 1502 * Make sure we capture only current IO errors rather than stale errors 1503 * left over from previous use of the buffer (e.g. failed readahead). 1504 */ 1505 bp->b_error = 0; 1506 1507 if (bp->b_flags & XBF_WRITE) { 1508 op = REQ_OP_WRITE; 1509 1510 /* 1511 * Run the write verifier callback function if it exists. If 1512 * this function fails it will mark the buffer with an error and 1513 * the IO should not be dispatched. 1514 */ 1515 if (bp->b_ops) { 1516 bp->b_ops->verify_write(bp); 1517 if (bp->b_error) { 1518 xfs_force_shutdown(bp->b_mount, 1519 SHUTDOWN_CORRUPT_INCORE); 1520 return; 1521 } 1522 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) { 1523 struct xfs_mount *mp = bp->b_mount; 1524 1525 /* 1526 * non-crc filesystems don't attach verifiers during 1527 * log recovery, so don't warn for such filesystems. 1528 */ 1529 if (xfs_has_crc(mp)) { 1530 xfs_warn(mp, 1531 "%s: no buf ops on daddr 0x%llx len %d", 1532 __func__, xfs_buf_daddr(bp), 1533 bp->b_length); 1534 xfs_hex_dump(bp->b_addr, 1535 XFS_CORRUPTION_DUMP_LEN); 1536 dump_stack(); 1537 } 1538 } 1539 } else { 1540 op = REQ_OP_READ; 1541 if (bp->b_flags & XBF_READ_AHEAD) 1542 op |= REQ_RAHEAD; 1543 } 1544 1545 /* we only use the buffer cache for meta-data */ 1546 op |= REQ_META; 1547 1548 /* 1549 * Walk all the vectors issuing IO on them. Set up the initial offset 1550 * into the buffer and the desired IO size before we start - 1551 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1552 * subsequent call. 1553 */ 1554 offset = bp->b_offset; 1555 size = BBTOB(bp->b_length); 1556 blk_start_plug(&plug); 1557 for (i = 0; i < bp->b_map_count; i++) { 1558 xfs_buf_ioapply_map(bp, i, &offset, &size, op); 1559 if (bp->b_error) 1560 break; 1561 if (size <= 0) 1562 break; /* all done */ 1563 } 1564 blk_finish_plug(&plug); 1565 } 1566 1567 /* 1568 * Wait for I/O completion of a sync buffer and return the I/O error code. 1569 */ 1570 static int 1571 xfs_buf_iowait( 1572 struct xfs_buf *bp) 1573 { 1574 ASSERT(!(bp->b_flags & XBF_ASYNC)); 1575 1576 trace_xfs_buf_iowait(bp, _RET_IP_); 1577 wait_for_completion(&bp->b_iowait); 1578 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1579 1580 return bp->b_error; 1581 } 1582 1583 /* 1584 * Buffer I/O submission path, read or write. Asynchronous submission transfers 1585 * the buffer lock ownership and the current reference to the IO. It is not 1586 * safe to reference the buffer after a call to this function unless the caller 1587 * holds an additional reference itself. 1588 */ 1589 static int 1590 __xfs_buf_submit( 1591 struct xfs_buf *bp, 1592 bool wait) 1593 { 1594 int error = 0; 1595 1596 trace_xfs_buf_submit(bp, _RET_IP_); 1597 1598 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1599 1600 /* 1601 * On log shutdown we stale and complete the buffer immediately. We can 1602 * be called to read the superblock before the log has been set up, so 1603 * be careful checking the log state. 1604 * 1605 * Checking the mount shutdown state here can result in the log tail 1606 * moving inappropriately on disk as the log may not yet be shut down. 1607 * i.e. failing this buffer on mount shutdown can remove it from the AIL 1608 * and move the tail of the log forwards without having written this 1609 * buffer to disk. This corrupts the log tail state in memory, and 1610 * because the log may not be shut down yet, it can then be propagated 1611 * to disk before the log is shutdown. Hence we check log shutdown 1612 * state here rather than mount state to avoid corrupting the log tail 1613 * on shutdown. 1614 */ 1615 if (bp->b_mount->m_log && 1616 xlog_is_shutdown(bp->b_mount->m_log)) { 1617 xfs_buf_ioend_fail(bp); 1618 return -EIO; 1619 } 1620 1621 /* 1622 * Grab a reference so the buffer does not go away underneath us. For 1623 * async buffers, I/O completion drops the callers reference, which 1624 * could occur before submission returns. 1625 */ 1626 xfs_buf_hold(bp); 1627 1628 if (bp->b_flags & XBF_WRITE) 1629 xfs_buf_wait_unpin(bp); 1630 1631 /* clear the internal error state to avoid spurious errors */ 1632 bp->b_io_error = 0; 1633 1634 /* 1635 * Set the count to 1 initially, this will stop an I/O completion 1636 * callout which happens before we have started all the I/O from calling 1637 * xfs_buf_ioend too early. 1638 */ 1639 atomic_set(&bp->b_io_remaining, 1); 1640 if (bp->b_flags & XBF_ASYNC) 1641 xfs_buf_ioacct_inc(bp); 1642 _xfs_buf_ioapply(bp); 1643 1644 /* 1645 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1646 * reference we took above. If we drop it to zero, run completion so 1647 * that we don't return to the caller with completion still pending. 1648 */ 1649 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1650 if (bp->b_error || !(bp->b_flags & XBF_ASYNC)) 1651 xfs_buf_ioend(bp); 1652 else 1653 xfs_buf_ioend_async(bp); 1654 } 1655 1656 if (wait) 1657 error = xfs_buf_iowait(bp); 1658 1659 /* 1660 * Release the hold that keeps the buffer referenced for the entire 1661 * I/O. Note that if the buffer is async, it is not safe to reference 1662 * after this release. 1663 */ 1664 xfs_buf_rele(bp); 1665 return error; 1666 } 1667 1668 void * 1669 xfs_buf_offset( 1670 struct xfs_buf *bp, 1671 size_t offset) 1672 { 1673 struct page *page; 1674 1675 if (bp->b_addr) 1676 return bp->b_addr + offset; 1677 1678 page = bp->b_pages[offset >> PAGE_SHIFT]; 1679 return page_address(page) + (offset & (PAGE_SIZE-1)); 1680 } 1681 1682 void 1683 xfs_buf_zero( 1684 struct xfs_buf *bp, 1685 size_t boff, 1686 size_t bsize) 1687 { 1688 size_t bend; 1689 1690 bend = boff + bsize; 1691 while (boff < bend) { 1692 struct page *page; 1693 int page_index, page_offset, csize; 1694 1695 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1696 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1697 page = bp->b_pages[page_index]; 1698 csize = min_t(size_t, PAGE_SIZE - page_offset, 1699 BBTOB(bp->b_length) - boff); 1700 1701 ASSERT((csize + page_offset) <= PAGE_SIZE); 1702 1703 memset(page_address(page) + page_offset, 0, csize); 1704 1705 boff += csize; 1706 } 1707 } 1708 1709 /* 1710 * Log a message about and stale a buffer that a caller has decided is corrupt. 1711 * 1712 * This function should be called for the kinds of metadata corruption that 1713 * cannot be detect from a verifier, such as incorrect inter-block relationship 1714 * data. Do /not/ call this function from a verifier function. 1715 * 1716 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will 1717 * be marked stale, but b_error will not be set. The caller is responsible for 1718 * releasing the buffer or fixing it. 1719 */ 1720 void 1721 __xfs_buf_mark_corrupt( 1722 struct xfs_buf *bp, 1723 xfs_failaddr_t fa) 1724 { 1725 ASSERT(bp->b_flags & XBF_DONE); 1726 1727 xfs_buf_corruption_error(bp, fa); 1728 xfs_buf_stale(bp); 1729 } 1730 1731 /* 1732 * Handling of buffer targets (buftargs). 1733 */ 1734 1735 /* 1736 * Wait for any bufs with callbacks that have been submitted but have not yet 1737 * returned. These buffers will have an elevated hold count, so wait on those 1738 * while freeing all the buffers only held by the LRU. 1739 */ 1740 static enum lru_status 1741 xfs_buftarg_drain_rele( 1742 struct list_head *item, 1743 struct list_lru_one *lru, 1744 spinlock_t *lru_lock, 1745 void *arg) 1746 1747 { 1748 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1749 struct list_head *dispose = arg; 1750 1751 if (atomic_read(&bp->b_hold) > 1) { 1752 /* need to wait, so skip it this pass */ 1753 trace_xfs_buf_drain_buftarg(bp, _RET_IP_); 1754 return LRU_SKIP; 1755 } 1756 if (!spin_trylock(&bp->b_lock)) 1757 return LRU_SKIP; 1758 1759 /* 1760 * clear the LRU reference count so the buffer doesn't get 1761 * ignored in xfs_buf_rele(). 1762 */ 1763 atomic_set(&bp->b_lru_ref, 0); 1764 bp->b_state |= XFS_BSTATE_DISPOSE; 1765 list_lru_isolate_move(lru, item, dispose); 1766 spin_unlock(&bp->b_lock); 1767 return LRU_REMOVED; 1768 } 1769 1770 /* 1771 * Wait for outstanding I/O on the buftarg to complete. 1772 */ 1773 void 1774 xfs_buftarg_wait( 1775 struct xfs_buftarg *btp) 1776 { 1777 /* 1778 * First wait on the buftarg I/O count for all in-flight buffers to be 1779 * released. This is critical as new buffers do not make the LRU until 1780 * they are released. 1781 * 1782 * Next, flush the buffer workqueue to ensure all completion processing 1783 * has finished. Just waiting on buffer locks is not sufficient for 1784 * async IO as the reference count held over IO is not released until 1785 * after the buffer lock is dropped. Hence we need to ensure here that 1786 * all reference counts have been dropped before we start walking the 1787 * LRU list. 1788 */ 1789 while (percpu_counter_sum(&btp->bt_io_count)) 1790 delay(100); 1791 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1792 } 1793 1794 void 1795 xfs_buftarg_drain( 1796 struct xfs_buftarg *btp) 1797 { 1798 LIST_HEAD(dispose); 1799 int loop = 0; 1800 bool write_fail = false; 1801 1802 xfs_buftarg_wait(btp); 1803 1804 /* loop until there is nothing left on the lru list. */ 1805 while (list_lru_count(&btp->bt_lru)) { 1806 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele, 1807 &dispose, LONG_MAX); 1808 1809 while (!list_empty(&dispose)) { 1810 struct xfs_buf *bp; 1811 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1812 list_del_init(&bp->b_lru); 1813 if (bp->b_flags & XBF_WRITE_FAIL) { 1814 write_fail = true; 1815 xfs_buf_alert_ratelimited(bp, 1816 "XFS: Corruption Alert", 1817 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", 1818 (long long)xfs_buf_daddr(bp)); 1819 } 1820 xfs_buf_rele(bp); 1821 } 1822 if (loop++ != 0) 1823 delay(100); 1824 } 1825 1826 /* 1827 * If one or more failed buffers were freed, that means dirty metadata 1828 * was thrown away. This should only ever happen after I/O completion 1829 * handling has elevated I/O error(s) to permanent failures and shuts 1830 * down the journal. 1831 */ 1832 if (write_fail) { 1833 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log)); 1834 xfs_alert(btp->bt_mount, 1835 "Please run xfs_repair to determine the extent of the problem."); 1836 } 1837 } 1838 1839 static enum lru_status 1840 xfs_buftarg_isolate( 1841 struct list_head *item, 1842 struct list_lru_one *lru, 1843 spinlock_t *lru_lock, 1844 void *arg) 1845 { 1846 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1847 struct list_head *dispose = arg; 1848 1849 /* 1850 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1851 * If we fail to get the lock, just skip it. 1852 */ 1853 if (!spin_trylock(&bp->b_lock)) 1854 return LRU_SKIP; 1855 /* 1856 * Decrement the b_lru_ref count unless the value is already 1857 * zero. If the value is already zero, we need to reclaim the 1858 * buffer, otherwise it gets another trip through the LRU. 1859 */ 1860 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1861 spin_unlock(&bp->b_lock); 1862 return LRU_ROTATE; 1863 } 1864 1865 bp->b_state |= XFS_BSTATE_DISPOSE; 1866 list_lru_isolate_move(lru, item, dispose); 1867 spin_unlock(&bp->b_lock); 1868 return LRU_REMOVED; 1869 } 1870 1871 static unsigned long 1872 xfs_buftarg_shrink_scan( 1873 struct shrinker *shrink, 1874 struct shrink_control *sc) 1875 { 1876 struct xfs_buftarg *btp = container_of(shrink, 1877 struct xfs_buftarg, bt_shrinker); 1878 LIST_HEAD(dispose); 1879 unsigned long freed; 1880 1881 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1882 xfs_buftarg_isolate, &dispose); 1883 1884 while (!list_empty(&dispose)) { 1885 struct xfs_buf *bp; 1886 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1887 list_del_init(&bp->b_lru); 1888 xfs_buf_rele(bp); 1889 } 1890 1891 return freed; 1892 } 1893 1894 static unsigned long 1895 xfs_buftarg_shrink_count( 1896 struct shrinker *shrink, 1897 struct shrink_control *sc) 1898 { 1899 struct xfs_buftarg *btp = container_of(shrink, 1900 struct xfs_buftarg, bt_shrinker); 1901 return list_lru_shrink_count(&btp->bt_lru, sc); 1902 } 1903 1904 void 1905 xfs_free_buftarg( 1906 struct xfs_buftarg *btp) 1907 { 1908 unregister_shrinker(&btp->bt_shrinker); 1909 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1910 percpu_counter_destroy(&btp->bt_io_count); 1911 list_lru_destroy(&btp->bt_lru); 1912 1913 blkdev_issue_flush(btp->bt_bdev); 1914 fs_put_dax(btp->bt_daxdev); 1915 1916 kmem_free(btp); 1917 } 1918 1919 int 1920 xfs_setsize_buftarg( 1921 xfs_buftarg_t *btp, 1922 unsigned int sectorsize) 1923 { 1924 /* Set up metadata sector size info */ 1925 btp->bt_meta_sectorsize = sectorsize; 1926 btp->bt_meta_sectormask = sectorsize - 1; 1927 1928 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1929 xfs_warn(btp->bt_mount, 1930 "Cannot set_blocksize to %u on device %pg", 1931 sectorsize, btp->bt_bdev); 1932 return -EINVAL; 1933 } 1934 1935 /* Set up device logical sector size mask */ 1936 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1937 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1938 1939 return 0; 1940 } 1941 1942 /* 1943 * When allocating the initial buffer target we have not yet 1944 * read in the superblock, so don't know what sized sectors 1945 * are being used at this early stage. Play safe. 1946 */ 1947 STATIC int 1948 xfs_setsize_buftarg_early( 1949 xfs_buftarg_t *btp, 1950 struct block_device *bdev) 1951 { 1952 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1953 } 1954 1955 struct xfs_buftarg * 1956 xfs_alloc_buftarg( 1957 struct xfs_mount *mp, 1958 struct block_device *bdev) 1959 { 1960 xfs_buftarg_t *btp; 1961 1962 btp = kmem_zalloc(sizeof(*btp), KM_NOFS); 1963 1964 btp->bt_mount = mp; 1965 btp->bt_dev = bdev->bd_dev; 1966 btp->bt_bdev = bdev; 1967 btp->bt_daxdev = fs_dax_get_by_bdev(bdev, &btp->bt_dax_part_off); 1968 1969 /* 1970 * Buffer IO error rate limiting. Limit it to no more than 10 messages 1971 * per 30 seconds so as to not spam logs too much on repeated errors. 1972 */ 1973 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ, 1974 DEFAULT_RATELIMIT_BURST); 1975 1976 if (xfs_setsize_buftarg_early(btp, bdev)) 1977 goto error_free; 1978 1979 if (list_lru_init(&btp->bt_lru)) 1980 goto error_free; 1981 1982 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 1983 goto error_lru; 1984 1985 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1986 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1987 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1988 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1989 if (register_shrinker(&btp->bt_shrinker)) 1990 goto error_pcpu; 1991 return btp; 1992 1993 error_pcpu: 1994 percpu_counter_destroy(&btp->bt_io_count); 1995 error_lru: 1996 list_lru_destroy(&btp->bt_lru); 1997 error_free: 1998 kmem_free(btp); 1999 return NULL; 2000 } 2001 2002 /* 2003 * Cancel a delayed write list. 2004 * 2005 * Remove each buffer from the list, clear the delwri queue flag and drop the 2006 * associated buffer reference. 2007 */ 2008 void 2009 xfs_buf_delwri_cancel( 2010 struct list_head *list) 2011 { 2012 struct xfs_buf *bp; 2013 2014 while (!list_empty(list)) { 2015 bp = list_first_entry(list, struct xfs_buf, b_list); 2016 2017 xfs_buf_lock(bp); 2018 bp->b_flags &= ~_XBF_DELWRI_Q; 2019 list_del_init(&bp->b_list); 2020 xfs_buf_relse(bp); 2021 } 2022 } 2023 2024 /* 2025 * Add a buffer to the delayed write list. 2026 * 2027 * This queues a buffer for writeout if it hasn't already been. Note that 2028 * neither this routine nor the buffer list submission functions perform 2029 * any internal synchronization. It is expected that the lists are thread-local 2030 * to the callers. 2031 * 2032 * Returns true if we queued up the buffer, or false if it already had 2033 * been on the buffer list. 2034 */ 2035 bool 2036 xfs_buf_delwri_queue( 2037 struct xfs_buf *bp, 2038 struct list_head *list) 2039 { 2040 ASSERT(xfs_buf_islocked(bp)); 2041 ASSERT(!(bp->b_flags & XBF_READ)); 2042 2043 /* 2044 * If the buffer is already marked delwri it already is queued up 2045 * by someone else for imediate writeout. Just ignore it in that 2046 * case. 2047 */ 2048 if (bp->b_flags & _XBF_DELWRI_Q) { 2049 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 2050 return false; 2051 } 2052 2053 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 2054 2055 /* 2056 * If a buffer gets written out synchronously or marked stale while it 2057 * is on a delwri list we lazily remove it. To do this, the other party 2058 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 2059 * It remains referenced and on the list. In a rare corner case it 2060 * might get readded to a delwri list after the synchronous writeout, in 2061 * which case we need just need to re-add the flag here. 2062 */ 2063 bp->b_flags |= _XBF_DELWRI_Q; 2064 if (list_empty(&bp->b_list)) { 2065 atomic_inc(&bp->b_hold); 2066 list_add_tail(&bp->b_list, list); 2067 } 2068 2069 return true; 2070 } 2071 2072 /* 2073 * Compare function is more complex than it needs to be because 2074 * the return value is only 32 bits and we are doing comparisons 2075 * on 64 bit values 2076 */ 2077 static int 2078 xfs_buf_cmp( 2079 void *priv, 2080 const struct list_head *a, 2081 const struct list_head *b) 2082 { 2083 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 2084 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 2085 xfs_daddr_t diff; 2086 2087 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 2088 if (diff < 0) 2089 return -1; 2090 if (diff > 0) 2091 return 1; 2092 return 0; 2093 } 2094 2095 /* 2096 * Submit buffers for write. If wait_list is specified, the buffers are 2097 * submitted using sync I/O and placed on the wait list such that the caller can 2098 * iowait each buffer. Otherwise async I/O is used and the buffers are released 2099 * at I/O completion time. In either case, buffers remain locked until I/O 2100 * completes and the buffer is released from the queue. 2101 */ 2102 static int 2103 xfs_buf_delwri_submit_buffers( 2104 struct list_head *buffer_list, 2105 struct list_head *wait_list) 2106 { 2107 struct xfs_buf *bp, *n; 2108 int pinned = 0; 2109 struct blk_plug plug; 2110 2111 list_sort(NULL, buffer_list, xfs_buf_cmp); 2112 2113 blk_start_plug(&plug); 2114 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 2115 if (!wait_list) { 2116 if (!xfs_buf_trylock(bp)) 2117 continue; 2118 if (xfs_buf_ispinned(bp)) { 2119 xfs_buf_unlock(bp); 2120 pinned++; 2121 continue; 2122 } 2123 } else { 2124 xfs_buf_lock(bp); 2125 } 2126 2127 /* 2128 * Someone else might have written the buffer synchronously or 2129 * marked it stale in the meantime. In that case only the 2130 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 2131 * reference and remove it from the list here. 2132 */ 2133 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 2134 list_del_init(&bp->b_list); 2135 xfs_buf_relse(bp); 2136 continue; 2137 } 2138 2139 trace_xfs_buf_delwri_split(bp, _RET_IP_); 2140 2141 /* 2142 * If we have a wait list, each buffer (and associated delwri 2143 * queue reference) transfers to it and is submitted 2144 * synchronously. Otherwise, drop the buffer from the delwri 2145 * queue and submit async. 2146 */ 2147 bp->b_flags &= ~_XBF_DELWRI_Q; 2148 bp->b_flags |= XBF_WRITE; 2149 if (wait_list) { 2150 bp->b_flags &= ~XBF_ASYNC; 2151 list_move_tail(&bp->b_list, wait_list); 2152 } else { 2153 bp->b_flags |= XBF_ASYNC; 2154 list_del_init(&bp->b_list); 2155 } 2156 __xfs_buf_submit(bp, false); 2157 } 2158 blk_finish_plug(&plug); 2159 2160 return pinned; 2161 } 2162 2163 /* 2164 * Write out a buffer list asynchronously. 2165 * 2166 * This will take the @buffer_list, write all non-locked and non-pinned buffers 2167 * out and not wait for I/O completion on any of the buffers. This interface 2168 * is only safely useable for callers that can track I/O completion by higher 2169 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 2170 * function. 2171 * 2172 * Note: this function will skip buffers it would block on, and in doing so 2173 * leaves them on @buffer_list so they can be retried on a later pass. As such, 2174 * it is up to the caller to ensure that the buffer list is fully submitted or 2175 * cancelled appropriately when they are finished with the list. Failure to 2176 * cancel or resubmit the list until it is empty will result in leaked buffers 2177 * at unmount time. 2178 */ 2179 int 2180 xfs_buf_delwri_submit_nowait( 2181 struct list_head *buffer_list) 2182 { 2183 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 2184 } 2185 2186 /* 2187 * Write out a buffer list synchronously. 2188 * 2189 * This will take the @buffer_list, write all buffers out and wait for I/O 2190 * completion on all of the buffers. @buffer_list is consumed by the function, 2191 * so callers must have some other way of tracking buffers if they require such 2192 * functionality. 2193 */ 2194 int 2195 xfs_buf_delwri_submit( 2196 struct list_head *buffer_list) 2197 { 2198 LIST_HEAD (wait_list); 2199 int error = 0, error2; 2200 struct xfs_buf *bp; 2201 2202 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 2203 2204 /* Wait for IO to complete. */ 2205 while (!list_empty(&wait_list)) { 2206 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 2207 2208 list_del_init(&bp->b_list); 2209 2210 /* 2211 * Wait on the locked buffer, check for errors and unlock and 2212 * release the delwri queue reference. 2213 */ 2214 error2 = xfs_buf_iowait(bp); 2215 xfs_buf_relse(bp); 2216 if (!error) 2217 error = error2; 2218 } 2219 2220 return error; 2221 } 2222 2223 /* 2224 * Push a single buffer on a delwri queue. 2225 * 2226 * The purpose of this function is to submit a single buffer of a delwri queue 2227 * and return with the buffer still on the original queue. The waiting delwri 2228 * buffer submission infrastructure guarantees transfer of the delwri queue 2229 * buffer reference to a temporary wait list. We reuse this infrastructure to 2230 * transfer the buffer back to the original queue. 2231 * 2232 * Note the buffer transitions from the queued state, to the submitted and wait 2233 * listed state and back to the queued state during this call. The buffer 2234 * locking and queue management logic between _delwri_pushbuf() and 2235 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2236 * before returning. 2237 */ 2238 int 2239 xfs_buf_delwri_pushbuf( 2240 struct xfs_buf *bp, 2241 struct list_head *buffer_list) 2242 { 2243 LIST_HEAD (submit_list); 2244 int error; 2245 2246 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2247 2248 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2249 2250 /* 2251 * Isolate the buffer to a new local list so we can submit it for I/O 2252 * independently from the rest of the original list. 2253 */ 2254 xfs_buf_lock(bp); 2255 list_move(&bp->b_list, &submit_list); 2256 xfs_buf_unlock(bp); 2257 2258 /* 2259 * Delwri submission clears the DELWRI_Q buffer flag and returns with 2260 * the buffer on the wait list with the original reference. Rather than 2261 * bounce the buffer from a local wait list back to the original list 2262 * after I/O completion, reuse the original list as the wait list. 2263 */ 2264 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); 2265 2266 /* 2267 * The buffer is now locked, under I/O and wait listed on the original 2268 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and 2269 * return with the buffer unlocked and on the original queue. 2270 */ 2271 error = xfs_buf_iowait(bp); 2272 bp->b_flags |= _XBF_DELWRI_Q; 2273 xfs_buf_unlock(bp); 2274 2275 return error; 2276 } 2277 2278 int __init 2279 xfs_buf_init(void) 2280 { 2281 xfs_buf_cache = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0, 2282 SLAB_HWCACHE_ALIGN | 2283 SLAB_RECLAIM_ACCOUNT | 2284 SLAB_MEM_SPREAD, 2285 NULL); 2286 if (!xfs_buf_cache) 2287 goto out; 2288 2289 return 0; 2290 2291 out: 2292 return -ENOMEM; 2293 } 2294 2295 void 2296 xfs_buf_terminate(void) 2297 { 2298 kmem_cache_destroy(xfs_buf_cache); 2299 } 2300 2301 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) 2302 { 2303 /* 2304 * Set the lru reference count to 0 based on the error injection tag. 2305 * This allows userspace to disrupt buffer caching for debug/testing 2306 * purposes. 2307 */ 2308 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) 2309 lru_ref = 0; 2310 2311 atomic_set(&bp->b_lru_ref, lru_ref); 2312 } 2313 2314 /* 2315 * Verify an on-disk magic value against the magic value specified in the 2316 * verifier structure. The verifier magic is in disk byte order so the caller is 2317 * expected to pass the value directly from disk. 2318 */ 2319 bool 2320 xfs_verify_magic( 2321 struct xfs_buf *bp, 2322 __be32 dmagic) 2323 { 2324 struct xfs_mount *mp = bp->b_mount; 2325 int idx; 2326 2327 idx = xfs_has_crc(mp); 2328 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])) 2329 return false; 2330 return dmagic == bp->b_ops->magic[idx]; 2331 } 2332 /* 2333 * Verify an on-disk magic value against the magic value specified in the 2334 * verifier structure. The verifier magic is in disk byte order so the caller is 2335 * expected to pass the value directly from disk. 2336 */ 2337 bool 2338 xfs_verify_magic16( 2339 struct xfs_buf *bp, 2340 __be16 dmagic) 2341 { 2342 struct xfs_mount *mp = bp->b_mount; 2343 int idx; 2344 2345 idx = xfs_has_crc(mp); 2346 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])) 2347 return false; 2348 return dmagic == bp->b_ops->magic16[idx]; 2349 } 2350