xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 2daf7fab)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trace.h"
15 #include "xfs_log.h"
16 #include "xfs_log_recover.h"
17 #include "xfs_log_priv.h"
18 #include "xfs_trans.h"
19 #include "xfs_buf_item.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_ag.h"
23 
24 static struct kmem_cache *xfs_buf_cache;
25 
26 /*
27  * Locking orders
28  *
29  * xfs_buf_ioacct_inc:
30  * xfs_buf_ioacct_dec:
31  *	b_sema (caller holds)
32  *	  b_lock
33  *
34  * xfs_buf_stale:
35  *	b_sema (caller holds)
36  *	  b_lock
37  *	    lru_lock
38  *
39  * xfs_buf_rele:
40  *	b_lock
41  *	  pag_buf_lock
42  *	    lru_lock
43  *
44  * xfs_buftarg_drain_rele
45  *	lru_lock
46  *	  b_lock (trylock due to inversion)
47  *
48  * xfs_buftarg_isolate
49  *	lru_lock
50  *	  b_lock (trylock due to inversion)
51  */
52 
53 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
54 
55 static inline int
56 xfs_buf_submit(
57 	struct xfs_buf		*bp)
58 {
59 	return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
60 }
61 
62 static inline int
63 xfs_buf_is_vmapped(
64 	struct xfs_buf	*bp)
65 {
66 	/*
67 	 * Return true if the buffer is vmapped.
68 	 *
69 	 * b_addr is null if the buffer is not mapped, but the code is clever
70 	 * enough to know it doesn't have to map a single page, so the check has
71 	 * to be both for b_addr and bp->b_page_count > 1.
72 	 */
73 	return bp->b_addr && bp->b_page_count > 1;
74 }
75 
76 static inline int
77 xfs_buf_vmap_len(
78 	struct xfs_buf	*bp)
79 {
80 	return (bp->b_page_count * PAGE_SIZE);
81 }
82 
83 /*
84  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
85  * this buffer. The count is incremented once per buffer (per hold cycle)
86  * because the corresponding decrement is deferred to buffer release. Buffers
87  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
88  * tracking adds unnecessary overhead. This is used for sychronization purposes
89  * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
90  * in-flight buffers.
91  *
92  * Buffers that are never released (e.g., superblock, iclog buffers) must set
93  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
94  * never reaches zero and unmount hangs indefinitely.
95  */
96 static inline void
97 xfs_buf_ioacct_inc(
98 	struct xfs_buf	*bp)
99 {
100 	if (bp->b_flags & XBF_NO_IOACCT)
101 		return;
102 
103 	ASSERT(bp->b_flags & XBF_ASYNC);
104 	spin_lock(&bp->b_lock);
105 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
106 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
107 		percpu_counter_inc(&bp->b_target->bt_io_count);
108 	}
109 	spin_unlock(&bp->b_lock);
110 }
111 
112 /*
113  * Clear the in-flight state on a buffer about to be released to the LRU or
114  * freed and unaccount from the buftarg.
115  */
116 static inline void
117 __xfs_buf_ioacct_dec(
118 	struct xfs_buf	*bp)
119 {
120 	lockdep_assert_held(&bp->b_lock);
121 
122 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
123 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
124 		percpu_counter_dec(&bp->b_target->bt_io_count);
125 	}
126 }
127 
128 static inline void
129 xfs_buf_ioacct_dec(
130 	struct xfs_buf	*bp)
131 {
132 	spin_lock(&bp->b_lock);
133 	__xfs_buf_ioacct_dec(bp);
134 	spin_unlock(&bp->b_lock);
135 }
136 
137 /*
138  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
139  * b_lru_ref count so that the buffer is freed immediately when the buffer
140  * reference count falls to zero. If the buffer is already on the LRU, we need
141  * to remove the reference that LRU holds on the buffer.
142  *
143  * This prevents build-up of stale buffers on the LRU.
144  */
145 void
146 xfs_buf_stale(
147 	struct xfs_buf	*bp)
148 {
149 	ASSERT(xfs_buf_islocked(bp));
150 
151 	bp->b_flags |= XBF_STALE;
152 
153 	/*
154 	 * Clear the delwri status so that a delwri queue walker will not
155 	 * flush this buffer to disk now that it is stale. The delwri queue has
156 	 * a reference to the buffer, so this is safe to do.
157 	 */
158 	bp->b_flags &= ~_XBF_DELWRI_Q;
159 
160 	/*
161 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
162 	 * could reset b_flags. There is no guarantee that the buffer is
163 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
164 	 * status now to preserve accounting consistency.
165 	 */
166 	spin_lock(&bp->b_lock);
167 	__xfs_buf_ioacct_dec(bp);
168 
169 	atomic_set(&bp->b_lru_ref, 0);
170 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
171 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
172 		atomic_dec(&bp->b_hold);
173 
174 	ASSERT(atomic_read(&bp->b_hold) >= 1);
175 	spin_unlock(&bp->b_lock);
176 }
177 
178 static int
179 xfs_buf_get_maps(
180 	struct xfs_buf		*bp,
181 	int			map_count)
182 {
183 	ASSERT(bp->b_maps == NULL);
184 	bp->b_map_count = map_count;
185 
186 	if (map_count == 1) {
187 		bp->b_maps = &bp->__b_map;
188 		return 0;
189 	}
190 
191 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
192 				KM_NOFS);
193 	if (!bp->b_maps)
194 		return -ENOMEM;
195 	return 0;
196 }
197 
198 /*
199  *	Frees b_pages if it was allocated.
200  */
201 static void
202 xfs_buf_free_maps(
203 	struct xfs_buf	*bp)
204 {
205 	if (bp->b_maps != &bp->__b_map) {
206 		kmem_free(bp->b_maps);
207 		bp->b_maps = NULL;
208 	}
209 }
210 
211 static int
212 _xfs_buf_alloc(
213 	struct xfs_buftarg	*target,
214 	struct xfs_buf_map	*map,
215 	int			nmaps,
216 	xfs_buf_flags_t		flags,
217 	struct xfs_buf		**bpp)
218 {
219 	struct xfs_buf		*bp;
220 	int			error;
221 	int			i;
222 
223 	*bpp = NULL;
224 	bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL);
225 
226 	/*
227 	 * We don't want certain flags to appear in b_flags unless they are
228 	 * specifically set by later operations on the buffer.
229 	 */
230 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
231 
232 	atomic_set(&bp->b_hold, 1);
233 	atomic_set(&bp->b_lru_ref, 1);
234 	init_completion(&bp->b_iowait);
235 	INIT_LIST_HEAD(&bp->b_lru);
236 	INIT_LIST_HEAD(&bp->b_list);
237 	INIT_LIST_HEAD(&bp->b_li_list);
238 	sema_init(&bp->b_sema, 0); /* held, no waiters */
239 	spin_lock_init(&bp->b_lock);
240 	bp->b_target = target;
241 	bp->b_mount = target->bt_mount;
242 	bp->b_flags = flags;
243 
244 	/*
245 	 * Set length and io_length to the same value initially.
246 	 * I/O routines should use io_length, which will be the same in
247 	 * most cases but may be reset (e.g. XFS recovery).
248 	 */
249 	error = xfs_buf_get_maps(bp, nmaps);
250 	if (error)  {
251 		kmem_cache_free(xfs_buf_cache, bp);
252 		return error;
253 	}
254 
255 	bp->b_rhash_key = map[0].bm_bn;
256 	bp->b_length = 0;
257 	for (i = 0; i < nmaps; i++) {
258 		bp->b_maps[i].bm_bn = map[i].bm_bn;
259 		bp->b_maps[i].bm_len = map[i].bm_len;
260 		bp->b_length += map[i].bm_len;
261 	}
262 
263 	atomic_set(&bp->b_pin_count, 0);
264 	init_waitqueue_head(&bp->b_waiters);
265 
266 	XFS_STATS_INC(bp->b_mount, xb_create);
267 	trace_xfs_buf_init(bp, _RET_IP_);
268 
269 	*bpp = bp;
270 	return 0;
271 }
272 
273 static void
274 xfs_buf_free_pages(
275 	struct xfs_buf	*bp)
276 {
277 	uint		i;
278 
279 	ASSERT(bp->b_flags & _XBF_PAGES);
280 
281 	if (xfs_buf_is_vmapped(bp))
282 		vm_unmap_ram(bp->b_addr, bp->b_page_count);
283 
284 	for (i = 0; i < bp->b_page_count; i++) {
285 		if (bp->b_pages[i])
286 			__free_page(bp->b_pages[i]);
287 	}
288 	if (current->reclaim_state)
289 		current->reclaim_state->reclaimed_slab += bp->b_page_count;
290 
291 	if (bp->b_pages != bp->b_page_array)
292 		kmem_free(bp->b_pages);
293 	bp->b_pages = NULL;
294 	bp->b_flags &= ~_XBF_PAGES;
295 }
296 
297 static void
298 xfs_buf_free(
299 	struct xfs_buf		*bp)
300 {
301 	trace_xfs_buf_free(bp, _RET_IP_);
302 
303 	ASSERT(list_empty(&bp->b_lru));
304 
305 	if (bp->b_flags & _XBF_PAGES)
306 		xfs_buf_free_pages(bp);
307 	else if (bp->b_flags & _XBF_KMEM)
308 		kmem_free(bp->b_addr);
309 
310 	xfs_buf_free_maps(bp);
311 	kmem_cache_free(xfs_buf_cache, bp);
312 }
313 
314 static int
315 xfs_buf_alloc_kmem(
316 	struct xfs_buf	*bp,
317 	xfs_buf_flags_t	flags)
318 {
319 	xfs_km_flags_t	kmflag_mask = KM_NOFS;
320 	size_t		size = BBTOB(bp->b_length);
321 
322 	/* Assure zeroed buffer for non-read cases. */
323 	if (!(flags & XBF_READ))
324 		kmflag_mask |= KM_ZERO;
325 
326 	bp->b_addr = kmem_alloc(size, kmflag_mask);
327 	if (!bp->b_addr)
328 		return -ENOMEM;
329 
330 	if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
331 	    ((unsigned long)bp->b_addr & PAGE_MASK)) {
332 		/* b_addr spans two pages - use alloc_page instead */
333 		kmem_free(bp->b_addr);
334 		bp->b_addr = NULL;
335 		return -ENOMEM;
336 	}
337 	bp->b_offset = offset_in_page(bp->b_addr);
338 	bp->b_pages = bp->b_page_array;
339 	bp->b_pages[0] = kmem_to_page(bp->b_addr);
340 	bp->b_page_count = 1;
341 	bp->b_flags |= _XBF_KMEM;
342 	return 0;
343 }
344 
345 static int
346 xfs_buf_alloc_pages(
347 	struct xfs_buf	*bp,
348 	xfs_buf_flags_t	flags)
349 {
350 	gfp_t		gfp_mask = __GFP_NOWARN;
351 	long		filled = 0;
352 
353 	if (flags & XBF_READ_AHEAD)
354 		gfp_mask |= __GFP_NORETRY;
355 	else
356 		gfp_mask |= GFP_NOFS;
357 
358 	/* Make sure that we have a page list */
359 	bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
360 	if (bp->b_page_count <= XB_PAGES) {
361 		bp->b_pages = bp->b_page_array;
362 	} else {
363 		bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
364 					gfp_mask);
365 		if (!bp->b_pages)
366 			return -ENOMEM;
367 	}
368 	bp->b_flags |= _XBF_PAGES;
369 
370 	/* Assure zeroed buffer for non-read cases. */
371 	if (!(flags & XBF_READ))
372 		gfp_mask |= __GFP_ZERO;
373 
374 	/*
375 	 * Bulk filling of pages can take multiple calls. Not filling the entire
376 	 * array is not an allocation failure, so don't back off if we get at
377 	 * least one extra page.
378 	 */
379 	for (;;) {
380 		long	last = filled;
381 
382 		filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
383 						bp->b_pages);
384 		if (filled == bp->b_page_count) {
385 			XFS_STATS_INC(bp->b_mount, xb_page_found);
386 			break;
387 		}
388 
389 		if (filled != last)
390 			continue;
391 
392 		if (flags & XBF_READ_AHEAD) {
393 			xfs_buf_free_pages(bp);
394 			return -ENOMEM;
395 		}
396 
397 		XFS_STATS_INC(bp->b_mount, xb_page_retries);
398 		memalloc_retry_wait(gfp_mask);
399 	}
400 	return 0;
401 }
402 
403 /*
404  *	Map buffer into kernel address-space if necessary.
405  */
406 STATIC int
407 _xfs_buf_map_pages(
408 	struct xfs_buf		*bp,
409 	uint			flags)
410 {
411 	ASSERT(bp->b_flags & _XBF_PAGES);
412 	if (bp->b_page_count == 1) {
413 		/* A single page buffer is always mappable */
414 		bp->b_addr = page_address(bp->b_pages[0]);
415 	} else if (flags & XBF_UNMAPPED) {
416 		bp->b_addr = NULL;
417 	} else {
418 		int retried = 0;
419 		unsigned nofs_flag;
420 
421 		/*
422 		 * vm_map_ram() will allocate auxiliary structures (e.g.
423 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
424 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
425 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
426 		 * memory reclaim re-entering the filesystem here and
427 		 * potentially deadlocking.
428 		 */
429 		nofs_flag = memalloc_nofs_save();
430 		do {
431 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
432 						-1);
433 			if (bp->b_addr)
434 				break;
435 			vm_unmap_aliases();
436 		} while (retried++ <= 1);
437 		memalloc_nofs_restore(nofs_flag);
438 
439 		if (!bp->b_addr)
440 			return -ENOMEM;
441 	}
442 
443 	return 0;
444 }
445 
446 /*
447  *	Finding and Reading Buffers
448  */
449 static int
450 _xfs_buf_obj_cmp(
451 	struct rhashtable_compare_arg	*arg,
452 	const void			*obj)
453 {
454 	const struct xfs_buf_map	*map = arg->key;
455 	const struct xfs_buf		*bp = obj;
456 
457 	/*
458 	 * The key hashing in the lookup path depends on the key being the
459 	 * first element of the compare_arg, make sure to assert this.
460 	 */
461 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
462 
463 	if (bp->b_rhash_key != map->bm_bn)
464 		return 1;
465 
466 	if (unlikely(bp->b_length != map->bm_len)) {
467 		/*
468 		 * found a block number match. If the range doesn't
469 		 * match, the only way this is allowed is if the buffer
470 		 * in the cache is stale and the transaction that made
471 		 * it stale has not yet committed. i.e. we are
472 		 * reallocating a busy extent. Skip this buffer and
473 		 * continue searching for an exact match.
474 		 */
475 		ASSERT(bp->b_flags & XBF_STALE);
476 		return 1;
477 	}
478 	return 0;
479 }
480 
481 static const struct rhashtable_params xfs_buf_hash_params = {
482 	.min_size		= 32,	/* empty AGs have minimal footprint */
483 	.nelem_hint		= 16,
484 	.key_len		= sizeof(xfs_daddr_t),
485 	.key_offset		= offsetof(struct xfs_buf, b_rhash_key),
486 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
487 	.automatic_shrinking	= true,
488 	.obj_cmpfn		= _xfs_buf_obj_cmp,
489 };
490 
491 int
492 xfs_buf_hash_init(
493 	struct xfs_perag	*pag)
494 {
495 	spin_lock_init(&pag->pag_buf_lock);
496 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
497 }
498 
499 void
500 xfs_buf_hash_destroy(
501 	struct xfs_perag	*pag)
502 {
503 	rhashtable_destroy(&pag->pag_buf_hash);
504 }
505 
506 /*
507  * Look up a buffer in the buffer cache and return it referenced and locked
508  * in @found_bp.
509  *
510  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
511  * cache.
512  *
513  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
514  * -EAGAIN if we fail to lock it.
515  *
516  * Return values are:
517  *	-EFSCORRUPTED if have been supplied with an invalid address
518  *	-EAGAIN on trylock failure
519  *	-ENOENT if we fail to find a match and @new_bp was NULL
520  *	0, with @found_bp:
521  *		- @new_bp if we inserted it into the cache
522  *		- the buffer we found and locked.
523  */
524 static int
525 xfs_buf_find(
526 	struct xfs_buftarg	*btp,
527 	struct xfs_buf_map	*map,
528 	int			nmaps,
529 	xfs_buf_flags_t		flags,
530 	struct xfs_buf		*new_bp,
531 	struct xfs_buf		**found_bp)
532 {
533 	struct xfs_perag	*pag;
534 	struct xfs_buf		*bp;
535 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
536 	xfs_daddr_t		eofs;
537 	int			i;
538 
539 	*found_bp = NULL;
540 
541 	for (i = 0; i < nmaps; i++)
542 		cmap.bm_len += map[i].bm_len;
543 
544 	/* Check for IOs smaller than the sector size / not sector aligned */
545 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
546 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
547 
548 	/*
549 	 * Corrupted block numbers can get through to here, unfortunately, so we
550 	 * have to check that the buffer falls within the filesystem bounds.
551 	 */
552 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
553 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
554 		xfs_alert(btp->bt_mount,
555 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
556 			  __func__, cmap.bm_bn, eofs);
557 		WARN_ON(1);
558 		return -EFSCORRUPTED;
559 	}
560 
561 	pag = xfs_perag_get(btp->bt_mount,
562 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
563 
564 	spin_lock(&pag->pag_buf_lock);
565 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
566 				    xfs_buf_hash_params);
567 	if (bp) {
568 		atomic_inc(&bp->b_hold);
569 		goto found;
570 	}
571 
572 	/* No match found */
573 	if (!new_bp) {
574 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
575 		spin_unlock(&pag->pag_buf_lock);
576 		xfs_perag_put(pag);
577 		return -ENOENT;
578 	}
579 
580 	/* the buffer keeps the perag reference until it is freed */
581 	new_bp->b_pag = pag;
582 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
583 			       xfs_buf_hash_params);
584 	spin_unlock(&pag->pag_buf_lock);
585 	*found_bp = new_bp;
586 	return 0;
587 
588 found:
589 	spin_unlock(&pag->pag_buf_lock);
590 	xfs_perag_put(pag);
591 
592 	if (!xfs_buf_trylock(bp)) {
593 		if (flags & XBF_TRYLOCK) {
594 			xfs_buf_rele(bp);
595 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
596 			return -EAGAIN;
597 		}
598 		xfs_buf_lock(bp);
599 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
600 	}
601 
602 	/*
603 	 * if the buffer is stale, clear all the external state associated with
604 	 * it. We need to keep flags such as how we allocated the buffer memory
605 	 * intact here.
606 	 */
607 	if (bp->b_flags & XBF_STALE) {
608 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
609 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
610 		bp->b_ops = NULL;
611 	}
612 
613 	trace_xfs_buf_find(bp, flags, _RET_IP_);
614 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
615 	*found_bp = bp;
616 	return 0;
617 }
618 
619 struct xfs_buf *
620 xfs_buf_incore(
621 	struct xfs_buftarg	*target,
622 	xfs_daddr_t		blkno,
623 	size_t			numblks,
624 	xfs_buf_flags_t		flags)
625 {
626 	struct xfs_buf		*bp;
627 	int			error;
628 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
629 
630 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
631 	if (error)
632 		return NULL;
633 	return bp;
634 }
635 
636 /*
637  * Assembles a buffer covering the specified range. The code is optimised for
638  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
639  * more hits than misses.
640  */
641 int
642 xfs_buf_get_map(
643 	struct xfs_buftarg	*target,
644 	struct xfs_buf_map	*map,
645 	int			nmaps,
646 	xfs_buf_flags_t		flags,
647 	struct xfs_buf		**bpp)
648 {
649 	struct xfs_buf		*bp;
650 	struct xfs_buf		*new_bp;
651 	int			error;
652 
653 	*bpp = NULL;
654 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
655 	if (!error)
656 		goto found;
657 	if (error != -ENOENT)
658 		return error;
659 
660 	error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
661 	if (error)
662 		return error;
663 
664 	/*
665 	 * For buffers that fit entirely within a single page, first attempt to
666 	 * allocate the memory from the heap to minimise memory usage. If we
667 	 * can't get heap memory for these small buffers, we fall back to using
668 	 * the page allocator.
669 	 */
670 	if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
671 	    xfs_buf_alloc_kmem(new_bp, flags) < 0) {
672 		error = xfs_buf_alloc_pages(new_bp, flags);
673 		if (error)
674 			goto out_free_buf;
675 	}
676 
677 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
678 	if (error)
679 		goto out_free_buf;
680 
681 	if (bp != new_bp)
682 		xfs_buf_free(new_bp);
683 
684 found:
685 	if (!bp->b_addr) {
686 		error = _xfs_buf_map_pages(bp, flags);
687 		if (unlikely(error)) {
688 			xfs_warn_ratelimited(target->bt_mount,
689 				"%s: failed to map %u pages", __func__,
690 				bp->b_page_count);
691 			xfs_buf_relse(bp);
692 			return error;
693 		}
694 	}
695 
696 	/*
697 	 * Clear b_error if this is a lookup from a caller that doesn't expect
698 	 * valid data to be found in the buffer.
699 	 */
700 	if (!(flags & XBF_READ))
701 		xfs_buf_ioerror(bp, 0);
702 
703 	XFS_STATS_INC(target->bt_mount, xb_get);
704 	trace_xfs_buf_get(bp, flags, _RET_IP_);
705 	*bpp = bp;
706 	return 0;
707 out_free_buf:
708 	xfs_buf_free(new_bp);
709 	return error;
710 }
711 
712 int
713 _xfs_buf_read(
714 	struct xfs_buf		*bp,
715 	xfs_buf_flags_t		flags)
716 {
717 	ASSERT(!(flags & XBF_WRITE));
718 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
719 
720 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
721 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
722 
723 	return xfs_buf_submit(bp);
724 }
725 
726 /*
727  * Reverify a buffer found in cache without an attached ->b_ops.
728  *
729  * If the caller passed an ops structure and the buffer doesn't have ops
730  * assigned, set the ops and use it to verify the contents. If verification
731  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
732  * already in XBF_DONE state on entry.
733  *
734  * Under normal operations, every in-core buffer is verified on read I/O
735  * completion. There are two scenarios that can lead to in-core buffers without
736  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
737  * filesystem, though these buffers are purged at the end of recovery. The
738  * other is online repair, which intentionally reads with a NULL buffer ops to
739  * run several verifiers across an in-core buffer in order to establish buffer
740  * type.  If repair can't establish that, the buffer will be left in memory
741  * with NULL buffer ops.
742  */
743 int
744 xfs_buf_reverify(
745 	struct xfs_buf		*bp,
746 	const struct xfs_buf_ops *ops)
747 {
748 	ASSERT(bp->b_flags & XBF_DONE);
749 	ASSERT(bp->b_error == 0);
750 
751 	if (!ops || bp->b_ops)
752 		return 0;
753 
754 	bp->b_ops = ops;
755 	bp->b_ops->verify_read(bp);
756 	if (bp->b_error)
757 		bp->b_flags &= ~XBF_DONE;
758 	return bp->b_error;
759 }
760 
761 int
762 xfs_buf_read_map(
763 	struct xfs_buftarg	*target,
764 	struct xfs_buf_map	*map,
765 	int			nmaps,
766 	xfs_buf_flags_t		flags,
767 	struct xfs_buf		**bpp,
768 	const struct xfs_buf_ops *ops,
769 	xfs_failaddr_t		fa)
770 {
771 	struct xfs_buf		*bp;
772 	int			error;
773 
774 	flags |= XBF_READ;
775 	*bpp = NULL;
776 
777 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
778 	if (error)
779 		return error;
780 
781 	trace_xfs_buf_read(bp, flags, _RET_IP_);
782 
783 	if (!(bp->b_flags & XBF_DONE)) {
784 		/* Initiate the buffer read and wait. */
785 		XFS_STATS_INC(target->bt_mount, xb_get_read);
786 		bp->b_ops = ops;
787 		error = _xfs_buf_read(bp, flags);
788 
789 		/* Readahead iodone already dropped the buffer, so exit. */
790 		if (flags & XBF_ASYNC)
791 			return 0;
792 	} else {
793 		/* Buffer already read; all we need to do is check it. */
794 		error = xfs_buf_reverify(bp, ops);
795 
796 		/* Readahead already finished; drop the buffer and exit. */
797 		if (flags & XBF_ASYNC) {
798 			xfs_buf_relse(bp);
799 			return 0;
800 		}
801 
802 		/* We do not want read in the flags */
803 		bp->b_flags &= ~XBF_READ;
804 		ASSERT(bp->b_ops != NULL || ops == NULL);
805 	}
806 
807 	/*
808 	 * If we've had a read error, then the contents of the buffer are
809 	 * invalid and should not be used. To ensure that a followup read tries
810 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
811 	 * mark the buffer stale. This ensures that anyone who has a current
812 	 * reference to the buffer will interpret it's contents correctly and
813 	 * future cache lookups will also treat it as an empty, uninitialised
814 	 * buffer.
815 	 */
816 	if (error) {
817 		/*
818 		 * Check against log shutdown for error reporting because
819 		 * metadata writeback may require a read first and we need to
820 		 * report errors in metadata writeback until the log is shut
821 		 * down. High level transaction read functions already check
822 		 * against mount shutdown, anyway, so we only need to be
823 		 * concerned about low level IO interactions here.
824 		 */
825 		if (!xlog_is_shutdown(target->bt_mount->m_log))
826 			xfs_buf_ioerror_alert(bp, fa);
827 
828 		bp->b_flags &= ~XBF_DONE;
829 		xfs_buf_stale(bp);
830 		xfs_buf_relse(bp);
831 
832 		/* bad CRC means corrupted metadata */
833 		if (error == -EFSBADCRC)
834 			error = -EFSCORRUPTED;
835 		return error;
836 	}
837 
838 	*bpp = bp;
839 	return 0;
840 }
841 
842 /*
843  *	If we are not low on memory then do the readahead in a deadlock
844  *	safe manner.
845  */
846 void
847 xfs_buf_readahead_map(
848 	struct xfs_buftarg	*target,
849 	struct xfs_buf_map	*map,
850 	int			nmaps,
851 	const struct xfs_buf_ops *ops)
852 {
853 	struct xfs_buf		*bp;
854 
855 	xfs_buf_read_map(target, map, nmaps,
856 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
857 		     __this_address);
858 }
859 
860 /*
861  * Read an uncached buffer from disk. Allocates and returns a locked
862  * buffer containing the disk contents or nothing. Uncached buffers always have
863  * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
864  * is cached or uncached during fault diagnosis.
865  */
866 int
867 xfs_buf_read_uncached(
868 	struct xfs_buftarg	*target,
869 	xfs_daddr_t		daddr,
870 	size_t			numblks,
871 	int			flags,
872 	struct xfs_buf		**bpp,
873 	const struct xfs_buf_ops *ops)
874 {
875 	struct xfs_buf		*bp;
876 	int			error;
877 
878 	*bpp = NULL;
879 
880 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
881 	if (error)
882 		return error;
883 
884 	/* set up the buffer for a read IO */
885 	ASSERT(bp->b_map_count == 1);
886 	bp->b_rhash_key = XFS_BUF_DADDR_NULL;
887 	bp->b_maps[0].bm_bn = daddr;
888 	bp->b_flags |= XBF_READ;
889 	bp->b_ops = ops;
890 
891 	xfs_buf_submit(bp);
892 	if (bp->b_error) {
893 		error = bp->b_error;
894 		xfs_buf_relse(bp);
895 		return error;
896 	}
897 
898 	*bpp = bp;
899 	return 0;
900 }
901 
902 int
903 xfs_buf_get_uncached(
904 	struct xfs_buftarg	*target,
905 	size_t			numblks,
906 	int			flags,
907 	struct xfs_buf		**bpp)
908 {
909 	int			error;
910 	struct xfs_buf		*bp;
911 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
912 
913 	*bpp = NULL;
914 
915 	/* flags might contain irrelevant bits, pass only what we care about */
916 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
917 	if (error)
918 		return error;
919 
920 	error = xfs_buf_alloc_pages(bp, flags);
921 	if (error)
922 		goto fail_free_buf;
923 
924 	error = _xfs_buf_map_pages(bp, 0);
925 	if (unlikely(error)) {
926 		xfs_warn(target->bt_mount,
927 			"%s: failed to map pages", __func__);
928 		goto fail_free_buf;
929 	}
930 
931 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
932 	*bpp = bp;
933 	return 0;
934 
935 fail_free_buf:
936 	xfs_buf_free(bp);
937 	return error;
938 }
939 
940 /*
941  *	Increment reference count on buffer, to hold the buffer concurrently
942  *	with another thread which may release (free) the buffer asynchronously.
943  *	Must hold the buffer already to call this function.
944  */
945 void
946 xfs_buf_hold(
947 	struct xfs_buf		*bp)
948 {
949 	trace_xfs_buf_hold(bp, _RET_IP_);
950 	atomic_inc(&bp->b_hold);
951 }
952 
953 /*
954  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
955  * placed on LRU or freed (depending on b_lru_ref).
956  */
957 void
958 xfs_buf_rele(
959 	struct xfs_buf		*bp)
960 {
961 	struct xfs_perag	*pag = bp->b_pag;
962 	bool			release;
963 	bool			freebuf = false;
964 
965 	trace_xfs_buf_rele(bp, _RET_IP_);
966 
967 	if (!pag) {
968 		ASSERT(list_empty(&bp->b_lru));
969 		if (atomic_dec_and_test(&bp->b_hold)) {
970 			xfs_buf_ioacct_dec(bp);
971 			xfs_buf_free(bp);
972 		}
973 		return;
974 	}
975 
976 	ASSERT(atomic_read(&bp->b_hold) > 0);
977 
978 	/*
979 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
980 	 * calls. The pag_buf_lock being taken on the last reference only
981 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
982 	 * to last reference we drop here is not serialised against the last
983 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
984 	 * first, the last "release" reference can win the race to the lock and
985 	 * free the buffer before the second-to-last reference is processed,
986 	 * leading to a use-after-free scenario.
987 	 */
988 	spin_lock(&bp->b_lock);
989 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
990 	if (!release) {
991 		/*
992 		 * Drop the in-flight state if the buffer is already on the LRU
993 		 * and it holds the only reference. This is racy because we
994 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
995 		 * ensures the decrement occurs only once per-buf.
996 		 */
997 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
998 			__xfs_buf_ioacct_dec(bp);
999 		goto out_unlock;
1000 	}
1001 
1002 	/* the last reference has been dropped ... */
1003 	__xfs_buf_ioacct_dec(bp);
1004 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1005 		/*
1006 		 * If the buffer is added to the LRU take a new reference to the
1007 		 * buffer for the LRU and clear the (now stale) dispose list
1008 		 * state flag
1009 		 */
1010 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1011 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1012 			atomic_inc(&bp->b_hold);
1013 		}
1014 		spin_unlock(&pag->pag_buf_lock);
1015 	} else {
1016 		/*
1017 		 * most of the time buffers will already be removed from the
1018 		 * LRU, so optimise that case by checking for the
1019 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1020 		 * was on was the disposal list
1021 		 */
1022 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1023 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1024 		} else {
1025 			ASSERT(list_empty(&bp->b_lru));
1026 		}
1027 
1028 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1029 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1030 				       xfs_buf_hash_params);
1031 		spin_unlock(&pag->pag_buf_lock);
1032 		xfs_perag_put(pag);
1033 		freebuf = true;
1034 	}
1035 
1036 out_unlock:
1037 	spin_unlock(&bp->b_lock);
1038 
1039 	if (freebuf)
1040 		xfs_buf_free(bp);
1041 }
1042 
1043 
1044 /*
1045  *	Lock a buffer object, if it is not already locked.
1046  *
1047  *	If we come across a stale, pinned, locked buffer, we know that we are
1048  *	being asked to lock a buffer that has been reallocated. Because it is
1049  *	pinned, we know that the log has not been pushed to disk and hence it
1050  *	will still be locked.  Rather than continuing to have trylock attempts
1051  *	fail until someone else pushes the log, push it ourselves before
1052  *	returning.  This means that the xfsaild will not get stuck trying
1053  *	to push on stale inode buffers.
1054  */
1055 int
1056 xfs_buf_trylock(
1057 	struct xfs_buf		*bp)
1058 {
1059 	int			locked;
1060 
1061 	locked = down_trylock(&bp->b_sema) == 0;
1062 	if (locked)
1063 		trace_xfs_buf_trylock(bp, _RET_IP_);
1064 	else
1065 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1066 	return locked;
1067 }
1068 
1069 /*
1070  *	Lock a buffer object.
1071  *
1072  *	If we come across a stale, pinned, locked buffer, we know that we
1073  *	are being asked to lock a buffer that has been reallocated. Because
1074  *	it is pinned, we know that the log has not been pushed to disk and
1075  *	hence it will still be locked. Rather than sleeping until someone
1076  *	else pushes the log, push it ourselves before trying to get the lock.
1077  */
1078 void
1079 xfs_buf_lock(
1080 	struct xfs_buf		*bp)
1081 {
1082 	trace_xfs_buf_lock(bp, _RET_IP_);
1083 
1084 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1085 		xfs_log_force(bp->b_mount, 0);
1086 	down(&bp->b_sema);
1087 
1088 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1089 }
1090 
1091 void
1092 xfs_buf_unlock(
1093 	struct xfs_buf		*bp)
1094 {
1095 	ASSERT(xfs_buf_islocked(bp));
1096 
1097 	up(&bp->b_sema);
1098 	trace_xfs_buf_unlock(bp, _RET_IP_);
1099 }
1100 
1101 STATIC void
1102 xfs_buf_wait_unpin(
1103 	struct xfs_buf		*bp)
1104 {
1105 	DECLARE_WAITQUEUE	(wait, current);
1106 
1107 	if (atomic_read(&bp->b_pin_count) == 0)
1108 		return;
1109 
1110 	add_wait_queue(&bp->b_waiters, &wait);
1111 	for (;;) {
1112 		set_current_state(TASK_UNINTERRUPTIBLE);
1113 		if (atomic_read(&bp->b_pin_count) == 0)
1114 			break;
1115 		io_schedule();
1116 	}
1117 	remove_wait_queue(&bp->b_waiters, &wait);
1118 	set_current_state(TASK_RUNNING);
1119 }
1120 
1121 static void
1122 xfs_buf_ioerror_alert_ratelimited(
1123 	struct xfs_buf		*bp)
1124 {
1125 	static unsigned long	lasttime;
1126 	static struct xfs_buftarg *lasttarg;
1127 
1128 	if (bp->b_target != lasttarg ||
1129 	    time_after(jiffies, (lasttime + 5*HZ))) {
1130 		lasttime = jiffies;
1131 		xfs_buf_ioerror_alert(bp, __this_address);
1132 	}
1133 	lasttarg = bp->b_target;
1134 }
1135 
1136 /*
1137  * Account for this latest trip around the retry handler, and decide if
1138  * we've failed enough times to constitute a permanent failure.
1139  */
1140 static bool
1141 xfs_buf_ioerror_permanent(
1142 	struct xfs_buf		*bp,
1143 	struct xfs_error_cfg	*cfg)
1144 {
1145 	struct xfs_mount	*mp = bp->b_mount;
1146 
1147 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1148 	    ++bp->b_retries > cfg->max_retries)
1149 		return true;
1150 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1151 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1152 		return true;
1153 
1154 	/* At unmount we may treat errors differently */
1155 	if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1156 		return true;
1157 
1158 	return false;
1159 }
1160 
1161 /*
1162  * On a sync write or shutdown we just want to stale the buffer and let the
1163  * caller handle the error in bp->b_error appropriately.
1164  *
1165  * If the write was asynchronous then no one will be looking for the error.  If
1166  * this is the first failure of this type, clear the error state and write the
1167  * buffer out again. This means we always retry an async write failure at least
1168  * once, but we also need to set the buffer up to behave correctly now for
1169  * repeated failures.
1170  *
1171  * If we get repeated async write failures, then we take action according to the
1172  * error configuration we have been set up to use.
1173  *
1174  * Returns true if this function took care of error handling and the caller must
1175  * not touch the buffer again.  Return false if the caller should proceed with
1176  * normal I/O completion handling.
1177  */
1178 static bool
1179 xfs_buf_ioend_handle_error(
1180 	struct xfs_buf		*bp)
1181 {
1182 	struct xfs_mount	*mp = bp->b_mount;
1183 	struct xfs_error_cfg	*cfg;
1184 
1185 	/*
1186 	 * If we've already shutdown the journal because of I/O errors, there's
1187 	 * no point in giving this a retry.
1188 	 */
1189 	if (xlog_is_shutdown(mp->m_log))
1190 		goto out_stale;
1191 
1192 	xfs_buf_ioerror_alert_ratelimited(bp);
1193 
1194 	/*
1195 	 * We're not going to bother about retrying this during recovery.
1196 	 * One strike!
1197 	 */
1198 	if (bp->b_flags & _XBF_LOGRECOVERY) {
1199 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1200 		return false;
1201 	}
1202 
1203 	/*
1204 	 * Synchronous writes will have callers process the error.
1205 	 */
1206 	if (!(bp->b_flags & XBF_ASYNC))
1207 		goto out_stale;
1208 
1209 	trace_xfs_buf_iodone_async(bp, _RET_IP_);
1210 
1211 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1212 	if (bp->b_last_error != bp->b_error ||
1213 	    !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1214 		bp->b_last_error = bp->b_error;
1215 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1216 		    !bp->b_first_retry_time)
1217 			bp->b_first_retry_time = jiffies;
1218 		goto resubmit;
1219 	}
1220 
1221 	/*
1222 	 * Permanent error - we need to trigger a shutdown if we haven't already
1223 	 * to indicate that inconsistency will result from this action.
1224 	 */
1225 	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1226 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1227 		goto out_stale;
1228 	}
1229 
1230 	/* Still considered a transient error. Caller will schedule retries. */
1231 	if (bp->b_flags & _XBF_INODES)
1232 		xfs_buf_inode_io_fail(bp);
1233 	else if (bp->b_flags & _XBF_DQUOTS)
1234 		xfs_buf_dquot_io_fail(bp);
1235 	else
1236 		ASSERT(list_empty(&bp->b_li_list));
1237 	xfs_buf_ioerror(bp, 0);
1238 	xfs_buf_relse(bp);
1239 	return true;
1240 
1241 resubmit:
1242 	xfs_buf_ioerror(bp, 0);
1243 	bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1244 	xfs_buf_submit(bp);
1245 	return true;
1246 out_stale:
1247 	xfs_buf_stale(bp);
1248 	bp->b_flags |= XBF_DONE;
1249 	bp->b_flags &= ~XBF_WRITE;
1250 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1251 	return false;
1252 }
1253 
1254 static void
1255 xfs_buf_ioend(
1256 	struct xfs_buf	*bp)
1257 {
1258 	trace_xfs_buf_iodone(bp, _RET_IP_);
1259 
1260 	/*
1261 	 * Pull in IO completion errors now. We are guaranteed to be running
1262 	 * single threaded, so we don't need the lock to read b_io_error.
1263 	 */
1264 	if (!bp->b_error && bp->b_io_error)
1265 		xfs_buf_ioerror(bp, bp->b_io_error);
1266 
1267 	if (bp->b_flags & XBF_READ) {
1268 		if (!bp->b_error && bp->b_ops)
1269 			bp->b_ops->verify_read(bp);
1270 		if (!bp->b_error)
1271 			bp->b_flags |= XBF_DONE;
1272 	} else {
1273 		if (!bp->b_error) {
1274 			bp->b_flags &= ~XBF_WRITE_FAIL;
1275 			bp->b_flags |= XBF_DONE;
1276 		}
1277 
1278 		if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1279 			return;
1280 
1281 		/* clear the retry state */
1282 		bp->b_last_error = 0;
1283 		bp->b_retries = 0;
1284 		bp->b_first_retry_time = 0;
1285 
1286 		/*
1287 		 * Note that for things like remote attribute buffers, there may
1288 		 * not be a buffer log item here, so processing the buffer log
1289 		 * item must remain optional.
1290 		 */
1291 		if (bp->b_log_item)
1292 			xfs_buf_item_done(bp);
1293 
1294 		if (bp->b_flags & _XBF_INODES)
1295 			xfs_buf_inode_iodone(bp);
1296 		else if (bp->b_flags & _XBF_DQUOTS)
1297 			xfs_buf_dquot_iodone(bp);
1298 
1299 	}
1300 
1301 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1302 			 _XBF_LOGRECOVERY);
1303 
1304 	if (bp->b_flags & XBF_ASYNC)
1305 		xfs_buf_relse(bp);
1306 	else
1307 		complete(&bp->b_iowait);
1308 }
1309 
1310 static void
1311 xfs_buf_ioend_work(
1312 	struct work_struct	*work)
1313 {
1314 	struct xfs_buf		*bp =
1315 		container_of(work, struct xfs_buf, b_ioend_work);
1316 
1317 	xfs_buf_ioend(bp);
1318 }
1319 
1320 static void
1321 xfs_buf_ioend_async(
1322 	struct xfs_buf	*bp)
1323 {
1324 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1325 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1326 }
1327 
1328 void
1329 __xfs_buf_ioerror(
1330 	struct xfs_buf		*bp,
1331 	int			error,
1332 	xfs_failaddr_t		failaddr)
1333 {
1334 	ASSERT(error <= 0 && error >= -1000);
1335 	bp->b_error = error;
1336 	trace_xfs_buf_ioerror(bp, error, failaddr);
1337 }
1338 
1339 void
1340 xfs_buf_ioerror_alert(
1341 	struct xfs_buf		*bp,
1342 	xfs_failaddr_t		func)
1343 {
1344 	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1345 		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1346 				  func, (uint64_t)xfs_buf_daddr(bp),
1347 				  bp->b_length, -bp->b_error);
1348 }
1349 
1350 /*
1351  * To simulate an I/O failure, the buffer must be locked and held with at least
1352  * three references. The LRU reference is dropped by the stale call. The buf
1353  * item reference is dropped via ioend processing. The third reference is owned
1354  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1355  */
1356 void
1357 xfs_buf_ioend_fail(
1358 	struct xfs_buf	*bp)
1359 {
1360 	bp->b_flags &= ~XBF_DONE;
1361 	xfs_buf_stale(bp);
1362 	xfs_buf_ioerror(bp, -EIO);
1363 	xfs_buf_ioend(bp);
1364 }
1365 
1366 int
1367 xfs_bwrite(
1368 	struct xfs_buf		*bp)
1369 {
1370 	int			error;
1371 
1372 	ASSERT(xfs_buf_islocked(bp));
1373 
1374 	bp->b_flags |= XBF_WRITE;
1375 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1376 			 XBF_DONE);
1377 
1378 	error = xfs_buf_submit(bp);
1379 	if (error)
1380 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1381 	return error;
1382 }
1383 
1384 static void
1385 xfs_buf_bio_end_io(
1386 	struct bio		*bio)
1387 {
1388 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1389 
1390 	if (!bio->bi_status &&
1391 	    (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1392 	    XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1393 		bio->bi_status = BLK_STS_IOERR;
1394 
1395 	/*
1396 	 * don't overwrite existing errors - otherwise we can lose errors on
1397 	 * buffers that require multiple bios to complete.
1398 	 */
1399 	if (bio->bi_status) {
1400 		int error = blk_status_to_errno(bio->bi_status);
1401 
1402 		cmpxchg(&bp->b_io_error, 0, error);
1403 	}
1404 
1405 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1406 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1407 
1408 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1409 		xfs_buf_ioend_async(bp);
1410 	bio_put(bio);
1411 }
1412 
1413 static void
1414 xfs_buf_ioapply_map(
1415 	struct xfs_buf	*bp,
1416 	int		map,
1417 	int		*buf_offset,
1418 	int		*count,
1419 	int		op)
1420 {
1421 	int		page_index;
1422 	unsigned int	total_nr_pages = bp->b_page_count;
1423 	int		nr_pages;
1424 	struct bio	*bio;
1425 	sector_t	sector =  bp->b_maps[map].bm_bn;
1426 	int		size;
1427 	int		offset;
1428 
1429 	/* skip the pages in the buffer before the start offset */
1430 	page_index = 0;
1431 	offset = *buf_offset;
1432 	while (offset >= PAGE_SIZE) {
1433 		page_index++;
1434 		offset -= PAGE_SIZE;
1435 	}
1436 
1437 	/*
1438 	 * Limit the IO size to the length of the current vector, and update the
1439 	 * remaining IO count for the next time around.
1440 	 */
1441 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1442 	*count -= size;
1443 	*buf_offset += size;
1444 
1445 next_chunk:
1446 	atomic_inc(&bp->b_io_remaining);
1447 	nr_pages = bio_max_segs(total_nr_pages);
1448 
1449 	bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1450 	bio->bi_iter.bi_sector = sector;
1451 	bio->bi_end_io = xfs_buf_bio_end_io;
1452 	bio->bi_private = bp;
1453 
1454 	for (; size && nr_pages; nr_pages--, page_index++) {
1455 		int	rbytes, nbytes = PAGE_SIZE - offset;
1456 
1457 		if (nbytes > size)
1458 			nbytes = size;
1459 
1460 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1461 				      offset);
1462 		if (rbytes < nbytes)
1463 			break;
1464 
1465 		offset = 0;
1466 		sector += BTOBB(nbytes);
1467 		size -= nbytes;
1468 		total_nr_pages--;
1469 	}
1470 
1471 	if (likely(bio->bi_iter.bi_size)) {
1472 		if (xfs_buf_is_vmapped(bp)) {
1473 			flush_kernel_vmap_range(bp->b_addr,
1474 						xfs_buf_vmap_len(bp));
1475 		}
1476 		submit_bio(bio);
1477 		if (size)
1478 			goto next_chunk;
1479 	} else {
1480 		/*
1481 		 * This is guaranteed not to be the last io reference count
1482 		 * because the caller (xfs_buf_submit) holds a count itself.
1483 		 */
1484 		atomic_dec(&bp->b_io_remaining);
1485 		xfs_buf_ioerror(bp, -EIO);
1486 		bio_put(bio);
1487 	}
1488 
1489 }
1490 
1491 STATIC void
1492 _xfs_buf_ioapply(
1493 	struct xfs_buf	*bp)
1494 {
1495 	struct blk_plug	plug;
1496 	int		op;
1497 	int		offset;
1498 	int		size;
1499 	int		i;
1500 
1501 	/*
1502 	 * Make sure we capture only current IO errors rather than stale errors
1503 	 * left over from previous use of the buffer (e.g. failed readahead).
1504 	 */
1505 	bp->b_error = 0;
1506 
1507 	if (bp->b_flags & XBF_WRITE) {
1508 		op = REQ_OP_WRITE;
1509 
1510 		/*
1511 		 * Run the write verifier callback function if it exists. If
1512 		 * this function fails it will mark the buffer with an error and
1513 		 * the IO should not be dispatched.
1514 		 */
1515 		if (bp->b_ops) {
1516 			bp->b_ops->verify_write(bp);
1517 			if (bp->b_error) {
1518 				xfs_force_shutdown(bp->b_mount,
1519 						   SHUTDOWN_CORRUPT_INCORE);
1520 				return;
1521 			}
1522 		} else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1523 			struct xfs_mount *mp = bp->b_mount;
1524 
1525 			/*
1526 			 * non-crc filesystems don't attach verifiers during
1527 			 * log recovery, so don't warn for such filesystems.
1528 			 */
1529 			if (xfs_has_crc(mp)) {
1530 				xfs_warn(mp,
1531 					"%s: no buf ops on daddr 0x%llx len %d",
1532 					__func__, xfs_buf_daddr(bp),
1533 					bp->b_length);
1534 				xfs_hex_dump(bp->b_addr,
1535 						XFS_CORRUPTION_DUMP_LEN);
1536 				dump_stack();
1537 			}
1538 		}
1539 	} else {
1540 		op = REQ_OP_READ;
1541 		if (bp->b_flags & XBF_READ_AHEAD)
1542 			op |= REQ_RAHEAD;
1543 	}
1544 
1545 	/* we only use the buffer cache for meta-data */
1546 	op |= REQ_META;
1547 
1548 	/*
1549 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1550 	 * into the buffer and the desired IO size before we start -
1551 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1552 	 * subsequent call.
1553 	 */
1554 	offset = bp->b_offset;
1555 	size = BBTOB(bp->b_length);
1556 	blk_start_plug(&plug);
1557 	for (i = 0; i < bp->b_map_count; i++) {
1558 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1559 		if (bp->b_error)
1560 			break;
1561 		if (size <= 0)
1562 			break;	/* all done */
1563 	}
1564 	blk_finish_plug(&plug);
1565 }
1566 
1567 /*
1568  * Wait for I/O completion of a sync buffer and return the I/O error code.
1569  */
1570 static int
1571 xfs_buf_iowait(
1572 	struct xfs_buf	*bp)
1573 {
1574 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1575 
1576 	trace_xfs_buf_iowait(bp, _RET_IP_);
1577 	wait_for_completion(&bp->b_iowait);
1578 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1579 
1580 	return bp->b_error;
1581 }
1582 
1583 /*
1584  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1585  * the buffer lock ownership and the current reference to the IO. It is not
1586  * safe to reference the buffer after a call to this function unless the caller
1587  * holds an additional reference itself.
1588  */
1589 static int
1590 __xfs_buf_submit(
1591 	struct xfs_buf	*bp,
1592 	bool		wait)
1593 {
1594 	int		error = 0;
1595 
1596 	trace_xfs_buf_submit(bp, _RET_IP_);
1597 
1598 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1599 
1600 	/*
1601 	 * On log shutdown we stale and complete the buffer immediately. We can
1602 	 * be called to read the superblock before the log has been set up, so
1603 	 * be careful checking the log state.
1604 	 *
1605 	 * Checking the mount shutdown state here can result in the log tail
1606 	 * moving inappropriately on disk as the log may not yet be shut down.
1607 	 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1608 	 * and move the tail of the log forwards without having written this
1609 	 * buffer to disk. This corrupts the log tail state in memory, and
1610 	 * because the log may not be shut down yet, it can then be propagated
1611 	 * to disk before the log is shutdown. Hence we check log shutdown
1612 	 * state here rather than mount state to avoid corrupting the log tail
1613 	 * on shutdown.
1614 	 */
1615 	if (bp->b_mount->m_log &&
1616 	    xlog_is_shutdown(bp->b_mount->m_log)) {
1617 		xfs_buf_ioend_fail(bp);
1618 		return -EIO;
1619 	}
1620 
1621 	/*
1622 	 * Grab a reference so the buffer does not go away underneath us. For
1623 	 * async buffers, I/O completion drops the callers reference, which
1624 	 * could occur before submission returns.
1625 	 */
1626 	xfs_buf_hold(bp);
1627 
1628 	if (bp->b_flags & XBF_WRITE)
1629 		xfs_buf_wait_unpin(bp);
1630 
1631 	/* clear the internal error state to avoid spurious errors */
1632 	bp->b_io_error = 0;
1633 
1634 	/*
1635 	 * Set the count to 1 initially, this will stop an I/O completion
1636 	 * callout which happens before we have started all the I/O from calling
1637 	 * xfs_buf_ioend too early.
1638 	 */
1639 	atomic_set(&bp->b_io_remaining, 1);
1640 	if (bp->b_flags & XBF_ASYNC)
1641 		xfs_buf_ioacct_inc(bp);
1642 	_xfs_buf_ioapply(bp);
1643 
1644 	/*
1645 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1646 	 * reference we took above. If we drop it to zero, run completion so
1647 	 * that we don't return to the caller with completion still pending.
1648 	 */
1649 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1650 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1651 			xfs_buf_ioend(bp);
1652 		else
1653 			xfs_buf_ioend_async(bp);
1654 	}
1655 
1656 	if (wait)
1657 		error = xfs_buf_iowait(bp);
1658 
1659 	/*
1660 	 * Release the hold that keeps the buffer referenced for the entire
1661 	 * I/O. Note that if the buffer is async, it is not safe to reference
1662 	 * after this release.
1663 	 */
1664 	xfs_buf_rele(bp);
1665 	return error;
1666 }
1667 
1668 void *
1669 xfs_buf_offset(
1670 	struct xfs_buf		*bp,
1671 	size_t			offset)
1672 {
1673 	struct page		*page;
1674 
1675 	if (bp->b_addr)
1676 		return bp->b_addr + offset;
1677 
1678 	page = bp->b_pages[offset >> PAGE_SHIFT];
1679 	return page_address(page) + (offset & (PAGE_SIZE-1));
1680 }
1681 
1682 void
1683 xfs_buf_zero(
1684 	struct xfs_buf		*bp,
1685 	size_t			boff,
1686 	size_t			bsize)
1687 {
1688 	size_t			bend;
1689 
1690 	bend = boff + bsize;
1691 	while (boff < bend) {
1692 		struct page	*page;
1693 		int		page_index, page_offset, csize;
1694 
1695 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1696 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1697 		page = bp->b_pages[page_index];
1698 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1699 				      BBTOB(bp->b_length) - boff);
1700 
1701 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1702 
1703 		memset(page_address(page) + page_offset, 0, csize);
1704 
1705 		boff += csize;
1706 	}
1707 }
1708 
1709 /*
1710  * Log a message about and stale a buffer that a caller has decided is corrupt.
1711  *
1712  * This function should be called for the kinds of metadata corruption that
1713  * cannot be detect from a verifier, such as incorrect inter-block relationship
1714  * data.  Do /not/ call this function from a verifier function.
1715  *
1716  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1717  * be marked stale, but b_error will not be set.  The caller is responsible for
1718  * releasing the buffer or fixing it.
1719  */
1720 void
1721 __xfs_buf_mark_corrupt(
1722 	struct xfs_buf		*bp,
1723 	xfs_failaddr_t		fa)
1724 {
1725 	ASSERT(bp->b_flags & XBF_DONE);
1726 
1727 	xfs_buf_corruption_error(bp, fa);
1728 	xfs_buf_stale(bp);
1729 }
1730 
1731 /*
1732  *	Handling of buffer targets (buftargs).
1733  */
1734 
1735 /*
1736  * Wait for any bufs with callbacks that have been submitted but have not yet
1737  * returned. These buffers will have an elevated hold count, so wait on those
1738  * while freeing all the buffers only held by the LRU.
1739  */
1740 static enum lru_status
1741 xfs_buftarg_drain_rele(
1742 	struct list_head	*item,
1743 	struct list_lru_one	*lru,
1744 	spinlock_t		*lru_lock,
1745 	void			*arg)
1746 
1747 {
1748 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1749 	struct list_head	*dispose = arg;
1750 
1751 	if (atomic_read(&bp->b_hold) > 1) {
1752 		/* need to wait, so skip it this pass */
1753 		trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1754 		return LRU_SKIP;
1755 	}
1756 	if (!spin_trylock(&bp->b_lock))
1757 		return LRU_SKIP;
1758 
1759 	/*
1760 	 * clear the LRU reference count so the buffer doesn't get
1761 	 * ignored in xfs_buf_rele().
1762 	 */
1763 	atomic_set(&bp->b_lru_ref, 0);
1764 	bp->b_state |= XFS_BSTATE_DISPOSE;
1765 	list_lru_isolate_move(lru, item, dispose);
1766 	spin_unlock(&bp->b_lock);
1767 	return LRU_REMOVED;
1768 }
1769 
1770 /*
1771  * Wait for outstanding I/O on the buftarg to complete.
1772  */
1773 void
1774 xfs_buftarg_wait(
1775 	struct xfs_buftarg	*btp)
1776 {
1777 	/*
1778 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1779 	 * released. This is critical as new buffers do not make the LRU until
1780 	 * they are released.
1781 	 *
1782 	 * Next, flush the buffer workqueue to ensure all completion processing
1783 	 * has finished. Just waiting on buffer locks is not sufficient for
1784 	 * async IO as the reference count held over IO is not released until
1785 	 * after the buffer lock is dropped. Hence we need to ensure here that
1786 	 * all reference counts have been dropped before we start walking the
1787 	 * LRU list.
1788 	 */
1789 	while (percpu_counter_sum(&btp->bt_io_count))
1790 		delay(100);
1791 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1792 }
1793 
1794 void
1795 xfs_buftarg_drain(
1796 	struct xfs_buftarg	*btp)
1797 {
1798 	LIST_HEAD(dispose);
1799 	int			loop = 0;
1800 	bool			write_fail = false;
1801 
1802 	xfs_buftarg_wait(btp);
1803 
1804 	/* loop until there is nothing left on the lru list. */
1805 	while (list_lru_count(&btp->bt_lru)) {
1806 		list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1807 			      &dispose, LONG_MAX);
1808 
1809 		while (!list_empty(&dispose)) {
1810 			struct xfs_buf *bp;
1811 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1812 			list_del_init(&bp->b_lru);
1813 			if (bp->b_flags & XBF_WRITE_FAIL) {
1814 				write_fail = true;
1815 				xfs_buf_alert_ratelimited(bp,
1816 					"XFS: Corruption Alert",
1817 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1818 					(long long)xfs_buf_daddr(bp));
1819 			}
1820 			xfs_buf_rele(bp);
1821 		}
1822 		if (loop++ != 0)
1823 			delay(100);
1824 	}
1825 
1826 	/*
1827 	 * If one or more failed buffers were freed, that means dirty metadata
1828 	 * was thrown away. This should only ever happen after I/O completion
1829 	 * handling has elevated I/O error(s) to permanent failures and shuts
1830 	 * down the journal.
1831 	 */
1832 	if (write_fail) {
1833 		ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1834 		xfs_alert(btp->bt_mount,
1835 	      "Please run xfs_repair to determine the extent of the problem.");
1836 	}
1837 }
1838 
1839 static enum lru_status
1840 xfs_buftarg_isolate(
1841 	struct list_head	*item,
1842 	struct list_lru_one	*lru,
1843 	spinlock_t		*lru_lock,
1844 	void			*arg)
1845 {
1846 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1847 	struct list_head	*dispose = arg;
1848 
1849 	/*
1850 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1851 	 * If we fail to get the lock, just skip it.
1852 	 */
1853 	if (!spin_trylock(&bp->b_lock))
1854 		return LRU_SKIP;
1855 	/*
1856 	 * Decrement the b_lru_ref count unless the value is already
1857 	 * zero. If the value is already zero, we need to reclaim the
1858 	 * buffer, otherwise it gets another trip through the LRU.
1859 	 */
1860 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1861 		spin_unlock(&bp->b_lock);
1862 		return LRU_ROTATE;
1863 	}
1864 
1865 	bp->b_state |= XFS_BSTATE_DISPOSE;
1866 	list_lru_isolate_move(lru, item, dispose);
1867 	spin_unlock(&bp->b_lock);
1868 	return LRU_REMOVED;
1869 }
1870 
1871 static unsigned long
1872 xfs_buftarg_shrink_scan(
1873 	struct shrinker		*shrink,
1874 	struct shrink_control	*sc)
1875 {
1876 	struct xfs_buftarg	*btp = container_of(shrink,
1877 					struct xfs_buftarg, bt_shrinker);
1878 	LIST_HEAD(dispose);
1879 	unsigned long		freed;
1880 
1881 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1882 				     xfs_buftarg_isolate, &dispose);
1883 
1884 	while (!list_empty(&dispose)) {
1885 		struct xfs_buf *bp;
1886 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1887 		list_del_init(&bp->b_lru);
1888 		xfs_buf_rele(bp);
1889 	}
1890 
1891 	return freed;
1892 }
1893 
1894 static unsigned long
1895 xfs_buftarg_shrink_count(
1896 	struct shrinker		*shrink,
1897 	struct shrink_control	*sc)
1898 {
1899 	struct xfs_buftarg	*btp = container_of(shrink,
1900 					struct xfs_buftarg, bt_shrinker);
1901 	return list_lru_shrink_count(&btp->bt_lru, sc);
1902 }
1903 
1904 void
1905 xfs_free_buftarg(
1906 	struct xfs_buftarg	*btp)
1907 {
1908 	unregister_shrinker(&btp->bt_shrinker);
1909 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1910 	percpu_counter_destroy(&btp->bt_io_count);
1911 	list_lru_destroy(&btp->bt_lru);
1912 
1913 	blkdev_issue_flush(btp->bt_bdev);
1914 	fs_put_dax(btp->bt_daxdev);
1915 
1916 	kmem_free(btp);
1917 }
1918 
1919 int
1920 xfs_setsize_buftarg(
1921 	xfs_buftarg_t		*btp,
1922 	unsigned int		sectorsize)
1923 {
1924 	/* Set up metadata sector size info */
1925 	btp->bt_meta_sectorsize = sectorsize;
1926 	btp->bt_meta_sectormask = sectorsize - 1;
1927 
1928 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1929 		xfs_warn(btp->bt_mount,
1930 			"Cannot set_blocksize to %u on device %pg",
1931 			sectorsize, btp->bt_bdev);
1932 		return -EINVAL;
1933 	}
1934 
1935 	/* Set up device logical sector size mask */
1936 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1937 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1938 
1939 	return 0;
1940 }
1941 
1942 /*
1943  * When allocating the initial buffer target we have not yet
1944  * read in the superblock, so don't know what sized sectors
1945  * are being used at this early stage.  Play safe.
1946  */
1947 STATIC int
1948 xfs_setsize_buftarg_early(
1949 	xfs_buftarg_t		*btp,
1950 	struct block_device	*bdev)
1951 {
1952 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1953 }
1954 
1955 struct xfs_buftarg *
1956 xfs_alloc_buftarg(
1957 	struct xfs_mount	*mp,
1958 	struct block_device	*bdev)
1959 {
1960 	xfs_buftarg_t		*btp;
1961 
1962 	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1963 
1964 	btp->bt_mount = mp;
1965 	btp->bt_dev =  bdev->bd_dev;
1966 	btp->bt_bdev = bdev;
1967 	btp->bt_daxdev = fs_dax_get_by_bdev(bdev, &btp->bt_dax_part_off);
1968 
1969 	/*
1970 	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1971 	 * per 30 seconds so as to not spam logs too much on repeated errors.
1972 	 */
1973 	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1974 			     DEFAULT_RATELIMIT_BURST);
1975 
1976 	if (xfs_setsize_buftarg_early(btp, bdev))
1977 		goto error_free;
1978 
1979 	if (list_lru_init(&btp->bt_lru))
1980 		goto error_free;
1981 
1982 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1983 		goto error_lru;
1984 
1985 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1986 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1987 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1988 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1989 	if (register_shrinker(&btp->bt_shrinker))
1990 		goto error_pcpu;
1991 	return btp;
1992 
1993 error_pcpu:
1994 	percpu_counter_destroy(&btp->bt_io_count);
1995 error_lru:
1996 	list_lru_destroy(&btp->bt_lru);
1997 error_free:
1998 	kmem_free(btp);
1999 	return NULL;
2000 }
2001 
2002 /*
2003  * Cancel a delayed write list.
2004  *
2005  * Remove each buffer from the list, clear the delwri queue flag and drop the
2006  * associated buffer reference.
2007  */
2008 void
2009 xfs_buf_delwri_cancel(
2010 	struct list_head	*list)
2011 {
2012 	struct xfs_buf		*bp;
2013 
2014 	while (!list_empty(list)) {
2015 		bp = list_first_entry(list, struct xfs_buf, b_list);
2016 
2017 		xfs_buf_lock(bp);
2018 		bp->b_flags &= ~_XBF_DELWRI_Q;
2019 		list_del_init(&bp->b_list);
2020 		xfs_buf_relse(bp);
2021 	}
2022 }
2023 
2024 /*
2025  * Add a buffer to the delayed write list.
2026  *
2027  * This queues a buffer for writeout if it hasn't already been.  Note that
2028  * neither this routine nor the buffer list submission functions perform
2029  * any internal synchronization.  It is expected that the lists are thread-local
2030  * to the callers.
2031  *
2032  * Returns true if we queued up the buffer, or false if it already had
2033  * been on the buffer list.
2034  */
2035 bool
2036 xfs_buf_delwri_queue(
2037 	struct xfs_buf		*bp,
2038 	struct list_head	*list)
2039 {
2040 	ASSERT(xfs_buf_islocked(bp));
2041 	ASSERT(!(bp->b_flags & XBF_READ));
2042 
2043 	/*
2044 	 * If the buffer is already marked delwri it already is queued up
2045 	 * by someone else for imediate writeout.  Just ignore it in that
2046 	 * case.
2047 	 */
2048 	if (bp->b_flags & _XBF_DELWRI_Q) {
2049 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2050 		return false;
2051 	}
2052 
2053 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2054 
2055 	/*
2056 	 * If a buffer gets written out synchronously or marked stale while it
2057 	 * is on a delwri list we lazily remove it. To do this, the other party
2058 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2059 	 * It remains referenced and on the list.  In a rare corner case it
2060 	 * might get readded to a delwri list after the synchronous writeout, in
2061 	 * which case we need just need to re-add the flag here.
2062 	 */
2063 	bp->b_flags |= _XBF_DELWRI_Q;
2064 	if (list_empty(&bp->b_list)) {
2065 		atomic_inc(&bp->b_hold);
2066 		list_add_tail(&bp->b_list, list);
2067 	}
2068 
2069 	return true;
2070 }
2071 
2072 /*
2073  * Compare function is more complex than it needs to be because
2074  * the return value is only 32 bits and we are doing comparisons
2075  * on 64 bit values
2076  */
2077 static int
2078 xfs_buf_cmp(
2079 	void			*priv,
2080 	const struct list_head	*a,
2081 	const struct list_head	*b)
2082 {
2083 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
2084 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
2085 	xfs_daddr_t		diff;
2086 
2087 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2088 	if (diff < 0)
2089 		return -1;
2090 	if (diff > 0)
2091 		return 1;
2092 	return 0;
2093 }
2094 
2095 /*
2096  * Submit buffers for write. If wait_list is specified, the buffers are
2097  * submitted using sync I/O and placed on the wait list such that the caller can
2098  * iowait each buffer. Otherwise async I/O is used and the buffers are released
2099  * at I/O completion time. In either case, buffers remain locked until I/O
2100  * completes and the buffer is released from the queue.
2101  */
2102 static int
2103 xfs_buf_delwri_submit_buffers(
2104 	struct list_head	*buffer_list,
2105 	struct list_head	*wait_list)
2106 {
2107 	struct xfs_buf		*bp, *n;
2108 	int			pinned = 0;
2109 	struct blk_plug		plug;
2110 
2111 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2112 
2113 	blk_start_plug(&plug);
2114 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2115 		if (!wait_list) {
2116 			if (!xfs_buf_trylock(bp))
2117 				continue;
2118 			if (xfs_buf_ispinned(bp)) {
2119 				xfs_buf_unlock(bp);
2120 				pinned++;
2121 				continue;
2122 			}
2123 		} else {
2124 			xfs_buf_lock(bp);
2125 		}
2126 
2127 		/*
2128 		 * Someone else might have written the buffer synchronously or
2129 		 * marked it stale in the meantime.  In that case only the
2130 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2131 		 * reference and remove it from the list here.
2132 		 */
2133 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2134 			list_del_init(&bp->b_list);
2135 			xfs_buf_relse(bp);
2136 			continue;
2137 		}
2138 
2139 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2140 
2141 		/*
2142 		 * If we have a wait list, each buffer (and associated delwri
2143 		 * queue reference) transfers to it and is submitted
2144 		 * synchronously. Otherwise, drop the buffer from the delwri
2145 		 * queue and submit async.
2146 		 */
2147 		bp->b_flags &= ~_XBF_DELWRI_Q;
2148 		bp->b_flags |= XBF_WRITE;
2149 		if (wait_list) {
2150 			bp->b_flags &= ~XBF_ASYNC;
2151 			list_move_tail(&bp->b_list, wait_list);
2152 		} else {
2153 			bp->b_flags |= XBF_ASYNC;
2154 			list_del_init(&bp->b_list);
2155 		}
2156 		__xfs_buf_submit(bp, false);
2157 	}
2158 	blk_finish_plug(&plug);
2159 
2160 	return pinned;
2161 }
2162 
2163 /*
2164  * Write out a buffer list asynchronously.
2165  *
2166  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2167  * out and not wait for I/O completion on any of the buffers.  This interface
2168  * is only safely useable for callers that can track I/O completion by higher
2169  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2170  * function.
2171  *
2172  * Note: this function will skip buffers it would block on, and in doing so
2173  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2174  * it is up to the caller to ensure that the buffer list is fully submitted or
2175  * cancelled appropriately when they are finished with the list. Failure to
2176  * cancel or resubmit the list until it is empty will result in leaked buffers
2177  * at unmount time.
2178  */
2179 int
2180 xfs_buf_delwri_submit_nowait(
2181 	struct list_head	*buffer_list)
2182 {
2183 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2184 }
2185 
2186 /*
2187  * Write out a buffer list synchronously.
2188  *
2189  * This will take the @buffer_list, write all buffers out and wait for I/O
2190  * completion on all of the buffers. @buffer_list is consumed by the function,
2191  * so callers must have some other way of tracking buffers if they require such
2192  * functionality.
2193  */
2194 int
2195 xfs_buf_delwri_submit(
2196 	struct list_head	*buffer_list)
2197 {
2198 	LIST_HEAD		(wait_list);
2199 	int			error = 0, error2;
2200 	struct xfs_buf		*bp;
2201 
2202 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2203 
2204 	/* Wait for IO to complete. */
2205 	while (!list_empty(&wait_list)) {
2206 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2207 
2208 		list_del_init(&bp->b_list);
2209 
2210 		/*
2211 		 * Wait on the locked buffer, check for errors and unlock and
2212 		 * release the delwri queue reference.
2213 		 */
2214 		error2 = xfs_buf_iowait(bp);
2215 		xfs_buf_relse(bp);
2216 		if (!error)
2217 			error = error2;
2218 	}
2219 
2220 	return error;
2221 }
2222 
2223 /*
2224  * Push a single buffer on a delwri queue.
2225  *
2226  * The purpose of this function is to submit a single buffer of a delwri queue
2227  * and return with the buffer still on the original queue. The waiting delwri
2228  * buffer submission infrastructure guarantees transfer of the delwri queue
2229  * buffer reference to a temporary wait list. We reuse this infrastructure to
2230  * transfer the buffer back to the original queue.
2231  *
2232  * Note the buffer transitions from the queued state, to the submitted and wait
2233  * listed state and back to the queued state during this call. The buffer
2234  * locking and queue management logic between _delwri_pushbuf() and
2235  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2236  * before returning.
2237  */
2238 int
2239 xfs_buf_delwri_pushbuf(
2240 	struct xfs_buf		*bp,
2241 	struct list_head	*buffer_list)
2242 {
2243 	LIST_HEAD		(submit_list);
2244 	int			error;
2245 
2246 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2247 
2248 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2249 
2250 	/*
2251 	 * Isolate the buffer to a new local list so we can submit it for I/O
2252 	 * independently from the rest of the original list.
2253 	 */
2254 	xfs_buf_lock(bp);
2255 	list_move(&bp->b_list, &submit_list);
2256 	xfs_buf_unlock(bp);
2257 
2258 	/*
2259 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2260 	 * the buffer on the wait list with the original reference. Rather than
2261 	 * bounce the buffer from a local wait list back to the original list
2262 	 * after I/O completion, reuse the original list as the wait list.
2263 	 */
2264 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2265 
2266 	/*
2267 	 * The buffer is now locked, under I/O and wait listed on the original
2268 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2269 	 * return with the buffer unlocked and on the original queue.
2270 	 */
2271 	error = xfs_buf_iowait(bp);
2272 	bp->b_flags |= _XBF_DELWRI_Q;
2273 	xfs_buf_unlock(bp);
2274 
2275 	return error;
2276 }
2277 
2278 int __init
2279 xfs_buf_init(void)
2280 {
2281 	xfs_buf_cache = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2282 					 SLAB_HWCACHE_ALIGN |
2283 					 SLAB_RECLAIM_ACCOUNT |
2284 					 SLAB_MEM_SPREAD,
2285 					 NULL);
2286 	if (!xfs_buf_cache)
2287 		goto out;
2288 
2289 	return 0;
2290 
2291  out:
2292 	return -ENOMEM;
2293 }
2294 
2295 void
2296 xfs_buf_terminate(void)
2297 {
2298 	kmem_cache_destroy(xfs_buf_cache);
2299 }
2300 
2301 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2302 {
2303 	/*
2304 	 * Set the lru reference count to 0 based on the error injection tag.
2305 	 * This allows userspace to disrupt buffer caching for debug/testing
2306 	 * purposes.
2307 	 */
2308 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2309 		lru_ref = 0;
2310 
2311 	atomic_set(&bp->b_lru_ref, lru_ref);
2312 }
2313 
2314 /*
2315  * Verify an on-disk magic value against the magic value specified in the
2316  * verifier structure. The verifier magic is in disk byte order so the caller is
2317  * expected to pass the value directly from disk.
2318  */
2319 bool
2320 xfs_verify_magic(
2321 	struct xfs_buf		*bp,
2322 	__be32			dmagic)
2323 {
2324 	struct xfs_mount	*mp = bp->b_mount;
2325 	int			idx;
2326 
2327 	idx = xfs_has_crc(mp);
2328 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2329 		return false;
2330 	return dmagic == bp->b_ops->magic[idx];
2331 }
2332 /*
2333  * Verify an on-disk magic value against the magic value specified in the
2334  * verifier structure. The verifier magic is in disk byte order so the caller is
2335  * expected to pass the value directly from disk.
2336  */
2337 bool
2338 xfs_verify_magic16(
2339 	struct xfs_buf		*bp,
2340 	__be16			dmagic)
2341 {
2342 	struct xfs_mount	*mp = bp->b_mount;
2343 	int			idx;
2344 
2345 	idx = xfs_has_crc(mp);
2346 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2347 		return false;
2348 	return dmagic == bp->b_ops->magic16[idx];
2349 }
2350