1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include <linux/backing-dev.h> 8 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_trace.h" 16 #include "xfs_log.h" 17 #include "xfs_errortag.h" 18 #include "xfs_error.h" 19 20 static kmem_zone_t *xfs_buf_zone; 21 22 #define xb_to_gfp(flags) \ 23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 24 25 /* 26 * Locking orders 27 * 28 * xfs_buf_ioacct_inc: 29 * xfs_buf_ioacct_dec: 30 * b_sema (caller holds) 31 * b_lock 32 * 33 * xfs_buf_stale: 34 * b_sema (caller holds) 35 * b_lock 36 * lru_lock 37 * 38 * xfs_buf_rele: 39 * b_lock 40 * pag_buf_lock 41 * lru_lock 42 * 43 * xfs_buftarg_wait_rele 44 * lru_lock 45 * b_lock (trylock due to inversion) 46 * 47 * xfs_buftarg_isolate 48 * lru_lock 49 * b_lock (trylock due to inversion) 50 */ 51 52 static inline int 53 xfs_buf_is_vmapped( 54 struct xfs_buf *bp) 55 { 56 /* 57 * Return true if the buffer is vmapped. 58 * 59 * b_addr is null if the buffer is not mapped, but the code is clever 60 * enough to know it doesn't have to map a single page, so the check has 61 * to be both for b_addr and bp->b_page_count > 1. 62 */ 63 return bp->b_addr && bp->b_page_count > 1; 64 } 65 66 static inline int 67 xfs_buf_vmap_len( 68 struct xfs_buf *bp) 69 { 70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 71 } 72 73 /* 74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 75 * this buffer. The count is incremented once per buffer (per hold cycle) 76 * because the corresponding decrement is deferred to buffer release. Buffers 77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 78 * tracking adds unnecessary overhead. This is used for sychronization purposes 79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of 80 * in-flight buffers. 81 * 82 * Buffers that are never released (e.g., superblock, iclog buffers) must set 83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 84 * never reaches zero and unmount hangs indefinitely. 85 */ 86 static inline void 87 xfs_buf_ioacct_inc( 88 struct xfs_buf *bp) 89 { 90 if (bp->b_flags & XBF_NO_IOACCT) 91 return; 92 93 ASSERT(bp->b_flags & XBF_ASYNC); 94 spin_lock(&bp->b_lock); 95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { 96 bp->b_state |= XFS_BSTATE_IN_FLIGHT; 97 percpu_counter_inc(&bp->b_target->bt_io_count); 98 } 99 spin_unlock(&bp->b_lock); 100 } 101 102 /* 103 * Clear the in-flight state on a buffer about to be released to the LRU or 104 * freed and unaccount from the buftarg. 105 */ 106 static inline void 107 __xfs_buf_ioacct_dec( 108 struct xfs_buf *bp) 109 { 110 lockdep_assert_held(&bp->b_lock); 111 112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { 113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; 114 percpu_counter_dec(&bp->b_target->bt_io_count); 115 } 116 } 117 118 static inline void 119 xfs_buf_ioacct_dec( 120 struct xfs_buf *bp) 121 { 122 spin_lock(&bp->b_lock); 123 __xfs_buf_ioacct_dec(bp); 124 spin_unlock(&bp->b_lock); 125 } 126 127 /* 128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 129 * b_lru_ref count so that the buffer is freed immediately when the buffer 130 * reference count falls to zero. If the buffer is already on the LRU, we need 131 * to remove the reference that LRU holds on the buffer. 132 * 133 * This prevents build-up of stale buffers on the LRU. 134 */ 135 void 136 xfs_buf_stale( 137 struct xfs_buf *bp) 138 { 139 ASSERT(xfs_buf_islocked(bp)); 140 141 bp->b_flags |= XBF_STALE; 142 143 /* 144 * Clear the delwri status so that a delwri queue walker will not 145 * flush this buffer to disk now that it is stale. The delwri queue has 146 * a reference to the buffer, so this is safe to do. 147 */ 148 bp->b_flags &= ~_XBF_DELWRI_Q; 149 150 /* 151 * Once the buffer is marked stale and unlocked, a subsequent lookup 152 * could reset b_flags. There is no guarantee that the buffer is 153 * unaccounted (released to LRU) before that occurs. Drop in-flight 154 * status now to preserve accounting consistency. 155 */ 156 spin_lock(&bp->b_lock); 157 __xfs_buf_ioacct_dec(bp); 158 159 atomic_set(&bp->b_lru_ref, 0); 160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 162 atomic_dec(&bp->b_hold); 163 164 ASSERT(atomic_read(&bp->b_hold) >= 1); 165 spin_unlock(&bp->b_lock); 166 } 167 168 static int 169 xfs_buf_get_maps( 170 struct xfs_buf *bp, 171 int map_count) 172 { 173 ASSERT(bp->b_maps == NULL); 174 bp->b_map_count = map_count; 175 176 if (map_count == 1) { 177 bp->b_maps = &bp->__b_map; 178 return 0; 179 } 180 181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 182 KM_NOFS); 183 if (!bp->b_maps) 184 return -ENOMEM; 185 return 0; 186 } 187 188 /* 189 * Frees b_pages if it was allocated. 190 */ 191 static void 192 xfs_buf_free_maps( 193 struct xfs_buf *bp) 194 { 195 if (bp->b_maps != &bp->__b_map) { 196 kmem_free(bp->b_maps); 197 bp->b_maps = NULL; 198 } 199 } 200 201 static struct xfs_buf * 202 _xfs_buf_alloc( 203 struct xfs_buftarg *target, 204 struct xfs_buf_map *map, 205 int nmaps, 206 xfs_buf_flags_t flags) 207 { 208 struct xfs_buf *bp; 209 int error; 210 int i; 211 212 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 213 if (unlikely(!bp)) 214 return NULL; 215 216 /* 217 * We don't want certain flags to appear in b_flags unless they are 218 * specifically set by later operations on the buffer. 219 */ 220 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 221 222 atomic_set(&bp->b_hold, 1); 223 atomic_set(&bp->b_lru_ref, 1); 224 init_completion(&bp->b_iowait); 225 INIT_LIST_HEAD(&bp->b_lru); 226 INIT_LIST_HEAD(&bp->b_list); 227 INIT_LIST_HEAD(&bp->b_li_list); 228 sema_init(&bp->b_sema, 0); /* held, no waiters */ 229 spin_lock_init(&bp->b_lock); 230 bp->b_target = target; 231 bp->b_mount = target->bt_mount; 232 bp->b_flags = flags; 233 234 /* 235 * Set length and io_length to the same value initially. 236 * I/O routines should use io_length, which will be the same in 237 * most cases but may be reset (e.g. XFS recovery). 238 */ 239 error = xfs_buf_get_maps(bp, nmaps); 240 if (error) { 241 kmem_zone_free(xfs_buf_zone, bp); 242 return NULL; 243 } 244 245 bp->b_bn = map[0].bm_bn; 246 bp->b_length = 0; 247 for (i = 0; i < nmaps; i++) { 248 bp->b_maps[i].bm_bn = map[i].bm_bn; 249 bp->b_maps[i].bm_len = map[i].bm_len; 250 bp->b_length += map[i].bm_len; 251 } 252 253 atomic_set(&bp->b_pin_count, 0); 254 init_waitqueue_head(&bp->b_waiters); 255 256 XFS_STATS_INC(bp->b_mount, xb_create); 257 trace_xfs_buf_init(bp, _RET_IP_); 258 259 return bp; 260 } 261 262 /* 263 * Allocate a page array capable of holding a specified number 264 * of pages, and point the page buf at it. 265 */ 266 STATIC int 267 _xfs_buf_get_pages( 268 xfs_buf_t *bp, 269 int page_count) 270 { 271 /* Make sure that we have a page list */ 272 if (bp->b_pages == NULL) { 273 bp->b_page_count = page_count; 274 if (page_count <= XB_PAGES) { 275 bp->b_pages = bp->b_page_array; 276 } else { 277 bp->b_pages = kmem_alloc(sizeof(struct page *) * 278 page_count, KM_NOFS); 279 if (bp->b_pages == NULL) 280 return -ENOMEM; 281 } 282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 283 } 284 return 0; 285 } 286 287 /* 288 * Frees b_pages if it was allocated. 289 */ 290 STATIC void 291 _xfs_buf_free_pages( 292 xfs_buf_t *bp) 293 { 294 if (bp->b_pages != bp->b_page_array) { 295 kmem_free(bp->b_pages); 296 bp->b_pages = NULL; 297 } 298 } 299 300 /* 301 * Releases the specified buffer. 302 * 303 * The modification state of any associated pages is left unchanged. 304 * The buffer must not be on any hash - use xfs_buf_rele instead for 305 * hashed and refcounted buffers 306 */ 307 void 308 xfs_buf_free( 309 xfs_buf_t *bp) 310 { 311 trace_xfs_buf_free(bp, _RET_IP_); 312 313 ASSERT(list_empty(&bp->b_lru)); 314 315 if (bp->b_flags & _XBF_PAGES) { 316 uint i; 317 318 if (xfs_buf_is_vmapped(bp)) 319 vm_unmap_ram(bp->b_addr - bp->b_offset, 320 bp->b_page_count); 321 322 for (i = 0; i < bp->b_page_count; i++) { 323 struct page *page = bp->b_pages[i]; 324 325 __free_page(page); 326 } 327 } else if (bp->b_flags & _XBF_KMEM) 328 kmem_free(bp->b_addr); 329 _xfs_buf_free_pages(bp); 330 xfs_buf_free_maps(bp); 331 kmem_zone_free(xfs_buf_zone, bp); 332 } 333 334 /* 335 * Allocates all the pages for buffer in question and builds it's page list. 336 */ 337 STATIC int 338 xfs_buf_allocate_memory( 339 xfs_buf_t *bp, 340 uint flags) 341 { 342 size_t size; 343 size_t nbytes, offset; 344 gfp_t gfp_mask = xb_to_gfp(flags); 345 unsigned short page_count, i; 346 xfs_off_t start, end; 347 int error; 348 xfs_km_flags_t kmflag_mask = 0; 349 350 /* 351 * assure zeroed buffer for non-read cases. 352 */ 353 if (!(flags & XBF_READ)) { 354 kmflag_mask |= KM_ZERO; 355 gfp_mask |= __GFP_ZERO; 356 } 357 358 /* 359 * for buffers that are contained within a single page, just allocate 360 * the memory from the heap - there's no need for the complexity of 361 * page arrays to keep allocation down to order 0. 362 */ 363 size = BBTOB(bp->b_length); 364 if (size < PAGE_SIZE) { 365 int align_mask = xfs_buftarg_dma_alignment(bp->b_target); 366 bp->b_addr = kmem_alloc_io(size, align_mask, 367 KM_NOFS | kmflag_mask); 368 if (!bp->b_addr) { 369 /* low memory - use alloc_page loop instead */ 370 goto use_alloc_page; 371 } 372 373 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 374 ((unsigned long)bp->b_addr & PAGE_MASK)) { 375 /* b_addr spans two pages - use alloc_page instead */ 376 kmem_free(bp->b_addr); 377 bp->b_addr = NULL; 378 goto use_alloc_page; 379 } 380 bp->b_offset = offset_in_page(bp->b_addr); 381 bp->b_pages = bp->b_page_array; 382 bp->b_pages[0] = kmem_to_page(bp->b_addr); 383 bp->b_page_count = 1; 384 bp->b_flags |= _XBF_KMEM; 385 return 0; 386 } 387 388 use_alloc_page: 389 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 390 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 391 >> PAGE_SHIFT; 392 page_count = end - start; 393 error = _xfs_buf_get_pages(bp, page_count); 394 if (unlikely(error)) 395 return error; 396 397 offset = bp->b_offset; 398 bp->b_flags |= _XBF_PAGES; 399 400 for (i = 0; i < bp->b_page_count; i++) { 401 struct page *page; 402 uint retries = 0; 403 retry: 404 page = alloc_page(gfp_mask); 405 if (unlikely(page == NULL)) { 406 if (flags & XBF_READ_AHEAD) { 407 bp->b_page_count = i; 408 error = -ENOMEM; 409 goto out_free_pages; 410 } 411 412 /* 413 * This could deadlock. 414 * 415 * But until all the XFS lowlevel code is revamped to 416 * handle buffer allocation failures we can't do much. 417 */ 418 if (!(++retries % 100)) 419 xfs_err(NULL, 420 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", 421 current->comm, current->pid, 422 __func__, gfp_mask); 423 424 XFS_STATS_INC(bp->b_mount, xb_page_retries); 425 congestion_wait(BLK_RW_ASYNC, HZ/50); 426 goto retry; 427 } 428 429 XFS_STATS_INC(bp->b_mount, xb_page_found); 430 431 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 432 size -= nbytes; 433 bp->b_pages[i] = page; 434 offset = 0; 435 } 436 return 0; 437 438 out_free_pages: 439 for (i = 0; i < bp->b_page_count; i++) 440 __free_page(bp->b_pages[i]); 441 bp->b_flags &= ~_XBF_PAGES; 442 return error; 443 } 444 445 /* 446 * Map buffer into kernel address-space if necessary. 447 */ 448 STATIC int 449 _xfs_buf_map_pages( 450 xfs_buf_t *bp, 451 uint flags) 452 { 453 ASSERT(bp->b_flags & _XBF_PAGES); 454 if (bp->b_page_count == 1) { 455 /* A single page buffer is always mappable */ 456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 457 } else if (flags & XBF_UNMAPPED) { 458 bp->b_addr = NULL; 459 } else { 460 int retried = 0; 461 unsigned nofs_flag; 462 463 /* 464 * vm_map_ram() will allocate auxillary structures (e.g. 465 * pagetables) with GFP_KERNEL, yet we are likely to be under 466 * GFP_NOFS context here. Hence we need to tell memory reclaim 467 * that we are in such a context via PF_MEMALLOC_NOFS to prevent 468 * memory reclaim re-entering the filesystem here and 469 * potentially deadlocking. 470 */ 471 nofs_flag = memalloc_nofs_save(); 472 do { 473 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 474 -1, PAGE_KERNEL); 475 if (bp->b_addr) 476 break; 477 vm_unmap_aliases(); 478 } while (retried++ <= 1); 479 memalloc_nofs_restore(nofs_flag); 480 481 if (!bp->b_addr) 482 return -ENOMEM; 483 bp->b_addr += bp->b_offset; 484 } 485 486 return 0; 487 } 488 489 /* 490 * Finding and Reading Buffers 491 */ 492 static int 493 _xfs_buf_obj_cmp( 494 struct rhashtable_compare_arg *arg, 495 const void *obj) 496 { 497 const struct xfs_buf_map *map = arg->key; 498 const struct xfs_buf *bp = obj; 499 500 /* 501 * The key hashing in the lookup path depends on the key being the 502 * first element of the compare_arg, make sure to assert this. 503 */ 504 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 505 506 if (bp->b_bn != map->bm_bn) 507 return 1; 508 509 if (unlikely(bp->b_length != map->bm_len)) { 510 /* 511 * found a block number match. If the range doesn't 512 * match, the only way this is allowed is if the buffer 513 * in the cache is stale and the transaction that made 514 * it stale has not yet committed. i.e. we are 515 * reallocating a busy extent. Skip this buffer and 516 * continue searching for an exact match. 517 */ 518 ASSERT(bp->b_flags & XBF_STALE); 519 return 1; 520 } 521 return 0; 522 } 523 524 static const struct rhashtable_params xfs_buf_hash_params = { 525 .min_size = 32, /* empty AGs have minimal footprint */ 526 .nelem_hint = 16, 527 .key_len = sizeof(xfs_daddr_t), 528 .key_offset = offsetof(struct xfs_buf, b_bn), 529 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 530 .automatic_shrinking = true, 531 .obj_cmpfn = _xfs_buf_obj_cmp, 532 }; 533 534 int 535 xfs_buf_hash_init( 536 struct xfs_perag *pag) 537 { 538 spin_lock_init(&pag->pag_buf_lock); 539 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params); 540 } 541 542 void 543 xfs_buf_hash_destroy( 544 struct xfs_perag *pag) 545 { 546 rhashtable_destroy(&pag->pag_buf_hash); 547 } 548 549 /* 550 * Look up a buffer in the buffer cache and return it referenced and locked 551 * in @found_bp. 552 * 553 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the 554 * cache. 555 * 556 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return 557 * -EAGAIN if we fail to lock it. 558 * 559 * Return values are: 560 * -EFSCORRUPTED if have been supplied with an invalid address 561 * -EAGAIN on trylock failure 562 * -ENOENT if we fail to find a match and @new_bp was NULL 563 * 0, with @found_bp: 564 * - @new_bp if we inserted it into the cache 565 * - the buffer we found and locked. 566 */ 567 static int 568 xfs_buf_find( 569 struct xfs_buftarg *btp, 570 struct xfs_buf_map *map, 571 int nmaps, 572 xfs_buf_flags_t flags, 573 struct xfs_buf *new_bp, 574 struct xfs_buf **found_bp) 575 { 576 struct xfs_perag *pag; 577 xfs_buf_t *bp; 578 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 579 xfs_daddr_t eofs; 580 int i; 581 582 *found_bp = NULL; 583 584 for (i = 0; i < nmaps; i++) 585 cmap.bm_len += map[i].bm_len; 586 587 /* Check for IOs smaller than the sector size / not sector aligned */ 588 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize)); 589 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 590 591 /* 592 * Corrupted block numbers can get through to here, unfortunately, so we 593 * have to check that the buffer falls within the filesystem bounds. 594 */ 595 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 596 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) { 597 xfs_alert(btp->bt_mount, 598 "%s: daddr 0x%llx out of range, EOFS 0x%llx", 599 __func__, cmap.bm_bn, eofs); 600 WARN_ON(1); 601 return -EFSCORRUPTED; 602 } 603 604 pag = xfs_perag_get(btp->bt_mount, 605 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn)); 606 607 spin_lock(&pag->pag_buf_lock); 608 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap, 609 xfs_buf_hash_params); 610 if (bp) { 611 atomic_inc(&bp->b_hold); 612 goto found; 613 } 614 615 /* No match found */ 616 if (!new_bp) { 617 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 618 spin_unlock(&pag->pag_buf_lock); 619 xfs_perag_put(pag); 620 return -ENOENT; 621 } 622 623 /* the buffer keeps the perag reference until it is freed */ 624 new_bp->b_pag = pag; 625 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head, 626 xfs_buf_hash_params); 627 spin_unlock(&pag->pag_buf_lock); 628 *found_bp = new_bp; 629 return 0; 630 631 found: 632 spin_unlock(&pag->pag_buf_lock); 633 xfs_perag_put(pag); 634 635 if (!xfs_buf_trylock(bp)) { 636 if (flags & XBF_TRYLOCK) { 637 xfs_buf_rele(bp); 638 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 639 return -EAGAIN; 640 } 641 xfs_buf_lock(bp); 642 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 643 } 644 645 /* 646 * if the buffer is stale, clear all the external state associated with 647 * it. We need to keep flags such as how we allocated the buffer memory 648 * intact here. 649 */ 650 if (bp->b_flags & XBF_STALE) { 651 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 652 ASSERT(bp->b_iodone == NULL); 653 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 654 bp->b_ops = NULL; 655 } 656 657 trace_xfs_buf_find(bp, flags, _RET_IP_); 658 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 659 *found_bp = bp; 660 return 0; 661 } 662 663 struct xfs_buf * 664 xfs_buf_incore( 665 struct xfs_buftarg *target, 666 xfs_daddr_t blkno, 667 size_t numblks, 668 xfs_buf_flags_t flags) 669 { 670 struct xfs_buf *bp; 671 int error; 672 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks); 673 674 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp); 675 if (error) 676 return NULL; 677 return bp; 678 } 679 680 /* 681 * Assembles a buffer covering the specified range. The code is optimised for 682 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 683 * more hits than misses. 684 */ 685 struct xfs_buf * 686 xfs_buf_get_map( 687 struct xfs_buftarg *target, 688 struct xfs_buf_map *map, 689 int nmaps, 690 xfs_buf_flags_t flags) 691 { 692 struct xfs_buf *bp; 693 struct xfs_buf *new_bp; 694 int error = 0; 695 696 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp); 697 698 switch (error) { 699 case 0: 700 /* cache hit */ 701 goto found; 702 case -EAGAIN: 703 /* cache hit, trylock failure, caller handles failure */ 704 ASSERT(flags & XBF_TRYLOCK); 705 return NULL; 706 case -ENOENT: 707 /* cache miss, go for insert */ 708 break; 709 case -EFSCORRUPTED: 710 default: 711 /* 712 * None of the higher layers understand failure types 713 * yet, so return NULL to signal a fatal lookup error. 714 */ 715 return NULL; 716 } 717 718 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 719 if (unlikely(!new_bp)) 720 return NULL; 721 722 error = xfs_buf_allocate_memory(new_bp, flags); 723 if (error) { 724 xfs_buf_free(new_bp); 725 return NULL; 726 } 727 728 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp); 729 if (error) { 730 xfs_buf_free(new_bp); 731 return NULL; 732 } 733 734 if (bp != new_bp) 735 xfs_buf_free(new_bp); 736 737 found: 738 if (!bp->b_addr) { 739 error = _xfs_buf_map_pages(bp, flags); 740 if (unlikely(error)) { 741 xfs_warn(target->bt_mount, 742 "%s: failed to map pagesn", __func__); 743 xfs_buf_relse(bp); 744 return NULL; 745 } 746 } 747 748 /* 749 * Clear b_error if this is a lookup from a caller that doesn't expect 750 * valid data to be found in the buffer. 751 */ 752 if (!(flags & XBF_READ)) 753 xfs_buf_ioerror(bp, 0); 754 755 XFS_STATS_INC(target->bt_mount, xb_get); 756 trace_xfs_buf_get(bp, flags, _RET_IP_); 757 return bp; 758 } 759 760 STATIC int 761 _xfs_buf_read( 762 xfs_buf_t *bp, 763 xfs_buf_flags_t flags) 764 { 765 ASSERT(!(flags & XBF_WRITE)); 766 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 767 768 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 769 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 770 771 return xfs_buf_submit(bp); 772 } 773 774 /* 775 * Reverify a buffer found in cache without an attached ->b_ops. 776 * 777 * If the caller passed an ops structure and the buffer doesn't have ops 778 * assigned, set the ops and use it to verify the contents. If verification 779 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is 780 * already in XBF_DONE state on entry. 781 * 782 * Under normal operations, every in-core buffer is verified on read I/O 783 * completion. There are two scenarios that can lead to in-core buffers without 784 * an assigned ->b_ops. The first is during log recovery of buffers on a V4 785 * filesystem, though these buffers are purged at the end of recovery. The 786 * other is online repair, which intentionally reads with a NULL buffer ops to 787 * run several verifiers across an in-core buffer in order to establish buffer 788 * type. If repair can't establish that, the buffer will be left in memory 789 * with NULL buffer ops. 790 */ 791 int 792 xfs_buf_reverify( 793 struct xfs_buf *bp, 794 const struct xfs_buf_ops *ops) 795 { 796 ASSERT(bp->b_flags & XBF_DONE); 797 ASSERT(bp->b_error == 0); 798 799 if (!ops || bp->b_ops) 800 return 0; 801 802 bp->b_ops = ops; 803 bp->b_ops->verify_read(bp); 804 if (bp->b_error) 805 bp->b_flags &= ~XBF_DONE; 806 return bp->b_error; 807 } 808 809 xfs_buf_t * 810 xfs_buf_read_map( 811 struct xfs_buftarg *target, 812 struct xfs_buf_map *map, 813 int nmaps, 814 xfs_buf_flags_t flags, 815 const struct xfs_buf_ops *ops) 816 { 817 struct xfs_buf *bp; 818 819 flags |= XBF_READ; 820 821 bp = xfs_buf_get_map(target, map, nmaps, flags); 822 if (!bp) 823 return NULL; 824 825 trace_xfs_buf_read(bp, flags, _RET_IP_); 826 827 if (!(bp->b_flags & XBF_DONE)) { 828 XFS_STATS_INC(target->bt_mount, xb_get_read); 829 bp->b_ops = ops; 830 _xfs_buf_read(bp, flags); 831 return bp; 832 } 833 834 xfs_buf_reverify(bp, ops); 835 836 if (flags & XBF_ASYNC) { 837 /* 838 * Read ahead call which is already satisfied, 839 * drop the buffer 840 */ 841 xfs_buf_relse(bp); 842 return NULL; 843 } 844 845 /* We do not want read in the flags */ 846 bp->b_flags &= ~XBF_READ; 847 ASSERT(bp->b_ops != NULL || ops == NULL); 848 return bp; 849 } 850 851 /* 852 * If we are not low on memory then do the readahead in a deadlock 853 * safe manner. 854 */ 855 void 856 xfs_buf_readahead_map( 857 struct xfs_buftarg *target, 858 struct xfs_buf_map *map, 859 int nmaps, 860 const struct xfs_buf_ops *ops) 861 { 862 if (bdi_read_congested(target->bt_bdev->bd_bdi)) 863 return; 864 865 xfs_buf_read_map(target, map, nmaps, 866 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 867 } 868 869 /* 870 * Read an uncached buffer from disk. Allocates and returns a locked 871 * buffer containing the disk contents or nothing. 872 */ 873 int 874 xfs_buf_read_uncached( 875 struct xfs_buftarg *target, 876 xfs_daddr_t daddr, 877 size_t numblks, 878 int flags, 879 struct xfs_buf **bpp, 880 const struct xfs_buf_ops *ops) 881 { 882 struct xfs_buf *bp; 883 884 *bpp = NULL; 885 886 bp = xfs_buf_get_uncached(target, numblks, flags); 887 if (!bp) 888 return -ENOMEM; 889 890 /* set up the buffer for a read IO */ 891 ASSERT(bp->b_map_count == 1); 892 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 893 bp->b_maps[0].bm_bn = daddr; 894 bp->b_flags |= XBF_READ; 895 bp->b_ops = ops; 896 897 xfs_buf_submit(bp); 898 if (bp->b_error) { 899 int error = bp->b_error; 900 xfs_buf_relse(bp); 901 return error; 902 } 903 904 *bpp = bp; 905 return 0; 906 } 907 908 xfs_buf_t * 909 xfs_buf_get_uncached( 910 struct xfs_buftarg *target, 911 size_t numblks, 912 int flags) 913 { 914 unsigned long page_count; 915 int error, i; 916 struct xfs_buf *bp; 917 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 918 919 /* flags might contain irrelevant bits, pass only what we care about */ 920 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT); 921 if (unlikely(bp == NULL)) 922 goto fail; 923 924 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 925 error = _xfs_buf_get_pages(bp, page_count); 926 if (error) 927 goto fail_free_buf; 928 929 for (i = 0; i < page_count; i++) { 930 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 931 if (!bp->b_pages[i]) 932 goto fail_free_mem; 933 } 934 bp->b_flags |= _XBF_PAGES; 935 936 error = _xfs_buf_map_pages(bp, 0); 937 if (unlikely(error)) { 938 xfs_warn(target->bt_mount, 939 "%s: failed to map pages", __func__); 940 goto fail_free_mem; 941 } 942 943 trace_xfs_buf_get_uncached(bp, _RET_IP_); 944 return bp; 945 946 fail_free_mem: 947 while (--i >= 0) 948 __free_page(bp->b_pages[i]); 949 _xfs_buf_free_pages(bp); 950 fail_free_buf: 951 xfs_buf_free_maps(bp); 952 kmem_zone_free(xfs_buf_zone, bp); 953 fail: 954 return NULL; 955 } 956 957 /* 958 * Increment reference count on buffer, to hold the buffer concurrently 959 * with another thread which may release (free) the buffer asynchronously. 960 * Must hold the buffer already to call this function. 961 */ 962 void 963 xfs_buf_hold( 964 xfs_buf_t *bp) 965 { 966 trace_xfs_buf_hold(bp, _RET_IP_); 967 atomic_inc(&bp->b_hold); 968 } 969 970 /* 971 * Release a hold on the specified buffer. If the hold count is 1, the buffer is 972 * placed on LRU or freed (depending on b_lru_ref). 973 */ 974 void 975 xfs_buf_rele( 976 xfs_buf_t *bp) 977 { 978 struct xfs_perag *pag = bp->b_pag; 979 bool release; 980 bool freebuf = false; 981 982 trace_xfs_buf_rele(bp, _RET_IP_); 983 984 if (!pag) { 985 ASSERT(list_empty(&bp->b_lru)); 986 if (atomic_dec_and_test(&bp->b_hold)) { 987 xfs_buf_ioacct_dec(bp); 988 xfs_buf_free(bp); 989 } 990 return; 991 } 992 993 ASSERT(atomic_read(&bp->b_hold) > 0); 994 995 /* 996 * We grab the b_lock here first to serialise racing xfs_buf_rele() 997 * calls. The pag_buf_lock being taken on the last reference only 998 * serialises against racing lookups in xfs_buf_find(). IOWs, the second 999 * to last reference we drop here is not serialised against the last 1000 * reference until we take bp->b_lock. Hence if we don't grab b_lock 1001 * first, the last "release" reference can win the race to the lock and 1002 * free the buffer before the second-to-last reference is processed, 1003 * leading to a use-after-free scenario. 1004 */ 1005 spin_lock(&bp->b_lock); 1006 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock); 1007 if (!release) { 1008 /* 1009 * Drop the in-flight state if the buffer is already on the LRU 1010 * and it holds the only reference. This is racy because we 1011 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 1012 * ensures the decrement occurs only once per-buf. 1013 */ 1014 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 1015 __xfs_buf_ioacct_dec(bp); 1016 goto out_unlock; 1017 } 1018 1019 /* the last reference has been dropped ... */ 1020 __xfs_buf_ioacct_dec(bp); 1021 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 1022 /* 1023 * If the buffer is added to the LRU take a new reference to the 1024 * buffer for the LRU and clear the (now stale) dispose list 1025 * state flag 1026 */ 1027 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 1028 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1029 atomic_inc(&bp->b_hold); 1030 } 1031 spin_unlock(&pag->pag_buf_lock); 1032 } else { 1033 /* 1034 * most of the time buffers will already be removed from the 1035 * LRU, so optimise that case by checking for the 1036 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1037 * was on was the disposal list 1038 */ 1039 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1040 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 1041 } else { 1042 ASSERT(list_empty(&bp->b_lru)); 1043 } 1044 1045 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1046 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head, 1047 xfs_buf_hash_params); 1048 spin_unlock(&pag->pag_buf_lock); 1049 xfs_perag_put(pag); 1050 freebuf = true; 1051 } 1052 1053 out_unlock: 1054 spin_unlock(&bp->b_lock); 1055 1056 if (freebuf) 1057 xfs_buf_free(bp); 1058 } 1059 1060 1061 /* 1062 * Lock a buffer object, if it is not already locked. 1063 * 1064 * If we come across a stale, pinned, locked buffer, we know that we are 1065 * being asked to lock a buffer that has been reallocated. Because it is 1066 * pinned, we know that the log has not been pushed to disk and hence it 1067 * will still be locked. Rather than continuing to have trylock attempts 1068 * fail until someone else pushes the log, push it ourselves before 1069 * returning. This means that the xfsaild will not get stuck trying 1070 * to push on stale inode buffers. 1071 */ 1072 int 1073 xfs_buf_trylock( 1074 struct xfs_buf *bp) 1075 { 1076 int locked; 1077 1078 locked = down_trylock(&bp->b_sema) == 0; 1079 if (locked) 1080 trace_xfs_buf_trylock(bp, _RET_IP_); 1081 else 1082 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1083 return locked; 1084 } 1085 1086 /* 1087 * Lock a buffer object. 1088 * 1089 * If we come across a stale, pinned, locked buffer, we know that we 1090 * are being asked to lock a buffer that has been reallocated. Because 1091 * it is pinned, we know that the log has not been pushed to disk and 1092 * hence it will still be locked. Rather than sleeping until someone 1093 * else pushes the log, push it ourselves before trying to get the lock. 1094 */ 1095 void 1096 xfs_buf_lock( 1097 struct xfs_buf *bp) 1098 { 1099 trace_xfs_buf_lock(bp, _RET_IP_); 1100 1101 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1102 xfs_log_force(bp->b_mount, 0); 1103 down(&bp->b_sema); 1104 1105 trace_xfs_buf_lock_done(bp, _RET_IP_); 1106 } 1107 1108 void 1109 xfs_buf_unlock( 1110 struct xfs_buf *bp) 1111 { 1112 ASSERT(xfs_buf_islocked(bp)); 1113 1114 up(&bp->b_sema); 1115 trace_xfs_buf_unlock(bp, _RET_IP_); 1116 } 1117 1118 STATIC void 1119 xfs_buf_wait_unpin( 1120 xfs_buf_t *bp) 1121 { 1122 DECLARE_WAITQUEUE (wait, current); 1123 1124 if (atomic_read(&bp->b_pin_count) == 0) 1125 return; 1126 1127 add_wait_queue(&bp->b_waiters, &wait); 1128 for (;;) { 1129 set_current_state(TASK_UNINTERRUPTIBLE); 1130 if (atomic_read(&bp->b_pin_count) == 0) 1131 break; 1132 io_schedule(); 1133 } 1134 remove_wait_queue(&bp->b_waiters, &wait); 1135 set_current_state(TASK_RUNNING); 1136 } 1137 1138 /* 1139 * Buffer Utility Routines 1140 */ 1141 1142 void 1143 xfs_buf_ioend( 1144 struct xfs_buf *bp) 1145 { 1146 bool read = bp->b_flags & XBF_READ; 1147 1148 trace_xfs_buf_iodone(bp, _RET_IP_); 1149 1150 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1151 1152 /* 1153 * Pull in IO completion errors now. We are guaranteed to be running 1154 * single threaded, so we don't need the lock to read b_io_error. 1155 */ 1156 if (!bp->b_error && bp->b_io_error) 1157 xfs_buf_ioerror(bp, bp->b_io_error); 1158 1159 /* Only validate buffers that were read without errors */ 1160 if (read && !bp->b_error && bp->b_ops) { 1161 ASSERT(!bp->b_iodone); 1162 bp->b_ops->verify_read(bp); 1163 } 1164 1165 if (!bp->b_error) 1166 bp->b_flags |= XBF_DONE; 1167 1168 if (bp->b_iodone) 1169 (*(bp->b_iodone))(bp); 1170 else if (bp->b_flags & XBF_ASYNC) 1171 xfs_buf_relse(bp); 1172 else 1173 complete(&bp->b_iowait); 1174 } 1175 1176 static void 1177 xfs_buf_ioend_work( 1178 struct work_struct *work) 1179 { 1180 struct xfs_buf *bp = 1181 container_of(work, xfs_buf_t, b_ioend_work); 1182 1183 xfs_buf_ioend(bp); 1184 } 1185 1186 static void 1187 xfs_buf_ioend_async( 1188 struct xfs_buf *bp) 1189 { 1190 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1191 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); 1192 } 1193 1194 void 1195 __xfs_buf_ioerror( 1196 xfs_buf_t *bp, 1197 int error, 1198 xfs_failaddr_t failaddr) 1199 { 1200 ASSERT(error <= 0 && error >= -1000); 1201 bp->b_error = error; 1202 trace_xfs_buf_ioerror(bp, error, failaddr); 1203 } 1204 1205 void 1206 xfs_buf_ioerror_alert( 1207 struct xfs_buf *bp, 1208 const char *func) 1209 { 1210 xfs_alert(bp->b_mount, 1211 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d", 1212 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length, 1213 -bp->b_error); 1214 } 1215 1216 int 1217 xfs_bwrite( 1218 struct xfs_buf *bp) 1219 { 1220 int error; 1221 1222 ASSERT(xfs_buf_islocked(bp)); 1223 1224 bp->b_flags |= XBF_WRITE; 1225 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1226 XBF_WRITE_FAIL | XBF_DONE); 1227 1228 error = xfs_buf_submit(bp); 1229 if (error) 1230 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 1231 return error; 1232 } 1233 1234 static void 1235 xfs_buf_bio_end_io( 1236 struct bio *bio) 1237 { 1238 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1239 1240 /* 1241 * don't overwrite existing errors - otherwise we can lose errors on 1242 * buffers that require multiple bios to complete. 1243 */ 1244 if (bio->bi_status) { 1245 int error = blk_status_to_errno(bio->bi_status); 1246 1247 cmpxchg(&bp->b_io_error, 0, error); 1248 } 1249 1250 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1251 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1252 1253 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1254 xfs_buf_ioend_async(bp); 1255 bio_put(bio); 1256 } 1257 1258 static void 1259 xfs_buf_ioapply_map( 1260 struct xfs_buf *bp, 1261 int map, 1262 int *buf_offset, 1263 int *count, 1264 int op, 1265 int op_flags) 1266 { 1267 int page_index; 1268 int total_nr_pages = bp->b_page_count; 1269 int nr_pages; 1270 struct bio *bio; 1271 sector_t sector = bp->b_maps[map].bm_bn; 1272 int size; 1273 int offset; 1274 1275 /* skip the pages in the buffer before the start offset */ 1276 page_index = 0; 1277 offset = *buf_offset; 1278 while (offset >= PAGE_SIZE) { 1279 page_index++; 1280 offset -= PAGE_SIZE; 1281 } 1282 1283 /* 1284 * Limit the IO size to the length of the current vector, and update the 1285 * remaining IO count for the next time around. 1286 */ 1287 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1288 *count -= size; 1289 *buf_offset += size; 1290 1291 next_chunk: 1292 atomic_inc(&bp->b_io_remaining); 1293 nr_pages = min(total_nr_pages, BIO_MAX_PAGES); 1294 1295 bio = bio_alloc(GFP_NOIO, nr_pages); 1296 bio_set_dev(bio, bp->b_target->bt_bdev); 1297 bio->bi_iter.bi_sector = sector; 1298 bio->bi_end_io = xfs_buf_bio_end_io; 1299 bio->bi_private = bp; 1300 bio_set_op_attrs(bio, op, op_flags); 1301 1302 for (; size && nr_pages; nr_pages--, page_index++) { 1303 int rbytes, nbytes = PAGE_SIZE - offset; 1304 1305 if (nbytes > size) 1306 nbytes = size; 1307 1308 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1309 offset); 1310 if (rbytes < nbytes) 1311 break; 1312 1313 offset = 0; 1314 sector += BTOBB(nbytes); 1315 size -= nbytes; 1316 total_nr_pages--; 1317 } 1318 1319 if (likely(bio->bi_iter.bi_size)) { 1320 if (xfs_buf_is_vmapped(bp)) { 1321 flush_kernel_vmap_range(bp->b_addr, 1322 xfs_buf_vmap_len(bp)); 1323 } 1324 submit_bio(bio); 1325 if (size) 1326 goto next_chunk; 1327 } else { 1328 /* 1329 * This is guaranteed not to be the last io reference count 1330 * because the caller (xfs_buf_submit) holds a count itself. 1331 */ 1332 atomic_dec(&bp->b_io_remaining); 1333 xfs_buf_ioerror(bp, -EIO); 1334 bio_put(bio); 1335 } 1336 1337 } 1338 1339 STATIC void 1340 _xfs_buf_ioapply( 1341 struct xfs_buf *bp) 1342 { 1343 struct blk_plug plug; 1344 int op; 1345 int op_flags = 0; 1346 int offset; 1347 int size; 1348 int i; 1349 1350 /* 1351 * Make sure we capture only current IO errors rather than stale errors 1352 * left over from previous use of the buffer (e.g. failed readahead). 1353 */ 1354 bp->b_error = 0; 1355 1356 if (bp->b_flags & XBF_WRITE) { 1357 op = REQ_OP_WRITE; 1358 1359 /* 1360 * Run the write verifier callback function if it exists. If 1361 * this function fails it will mark the buffer with an error and 1362 * the IO should not be dispatched. 1363 */ 1364 if (bp->b_ops) { 1365 bp->b_ops->verify_write(bp); 1366 if (bp->b_error) { 1367 xfs_force_shutdown(bp->b_mount, 1368 SHUTDOWN_CORRUPT_INCORE); 1369 return; 1370 } 1371 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1372 struct xfs_mount *mp = bp->b_mount; 1373 1374 /* 1375 * non-crc filesystems don't attach verifiers during 1376 * log recovery, so don't warn for such filesystems. 1377 */ 1378 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1379 xfs_warn(mp, 1380 "%s: no buf ops on daddr 0x%llx len %d", 1381 __func__, bp->b_bn, bp->b_length); 1382 xfs_hex_dump(bp->b_addr, 1383 XFS_CORRUPTION_DUMP_LEN); 1384 dump_stack(); 1385 } 1386 } 1387 } else if (bp->b_flags & XBF_READ_AHEAD) { 1388 op = REQ_OP_READ; 1389 op_flags = REQ_RAHEAD; 1390 } else { 1391 op = REQ_OP_READ; 1392 } 1393 1394 /* we only use the buffer cache for meta-data */ 1395 op_flags |= REQ_META; 1396 1397 /* 1398 * Walk all the vectors issuing IO on them. Set up the initial offset 1399 * into the buffer and the desired IO size before we start - 1400 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1401 * subsequent call. 1402 */ 1403 offset = bp->b_offset; 1404 size = BBTOB(bp->b_length); 1405 blk_start_plug(&plug); 1406 for (i = 0; i < bp->b_map_count; i++) { 1407 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags); 1408 if (bp->b_error) 1409 break; 1410 if (size <= 0) 1411 break; /* all done */ 1412 } 1413 blk_finish_plug(&plug); 1414 } 1415 1416 /* 1417 * Wait for I/O completion of a sync buffer and return the I/O error code. 1418 */ 1419 static int 1420 xfs_buf_iowait( 1421 struct xfs_buf *bp) 1422 { 1423 ASSERT(!(bp->b_flags & XBF_ASYNC)); 1424 1425 trace_xfs_buf_iowait(bp, _RET_IP_); 1426 wait_for_completion(&bp->b_iowait); 1427 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1428 1429 return bp->b_error; 1430 } 1431 1432 /* 1433 * Buffer I/O submission path, read or write. Asynchronous submission transfers 1434 * the buffer lock ownership and the current reference to the IO. It is not 1435 * safe to reference the buffer after a call to this function unless the caller 1436 * holds an additional reference itself. 1437 */ 1438 int 1439 __xfs_buf_submit( 1440 struct xfs_buf *bp, 1441 bool wait) 1442 { 1443 int error = 0; 1444 1445 trace_xfs_buf_submit(bp, _RET_IP_); 1446 1447 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1448 1449 /* on shutdown we stale and complete the buffer immediately */ 1450 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) { 1451 xfs_buf_ioerror(bp, -EIO); 1452 bp->b_flags &= ~XBF_DONE; 1453 xfs_buf_stale(bp); 1454 xfs_buf_ioend(bp); 1455 return -EIO; 1456 } 1457 1458 /* 1459 * Grab a reference so the buffer does not go away underneath us. For 1460 * async buffers, I/O completion drops the callers reference, which 1461 * could occur before submission returns. 1462 */ 1463 xfs_buf_hold(bp); 1464 1465 if (bp->b_flags & XBF_WRITE) 1466 xfs_buf_wait_unpin(bp); 1467 1468 /* clear the internal error state to avoid spurious errors */ 1469 bp->b_io_error = 0; 1470 1471 /* 1472 * Set the count to 1 initially, this will stop an I/O completion 1473 * callout which happens before we have started all the I/O from calling 1474 * xfs_buf_ioend too early. 1475 */ 1476 atomic_set(&bp->b_io_remaining, 1); 1477 if (bp->b_flags & XBF_ASYNC) 1478 xfs_buf_ioacct_inc(bp); 1479 _xfs_buf_ioapply(bp); 1480 1481 /* 1482 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1483 * reference we took above. If we drop it to zero, run completion so 1484 * that we don't return to the caller with completion still pending. 1485 */ 1486 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1487 if (bp->b_error || !(bp->b_flags & XBF_ASYNC)) 1488 xfs_buf_ioend(bp); 1489 else 1490 xfs_buf_ioend_async(bp); 1491 } 1492 1493 if (wait) 1494 error = xfs_buf_iowait(bp); 1495 1496 /* 1497 * Release the hold that keeps the buffer referenced for the entire 1498 * I/O. Note that if the buffer is async, it is not safe to reference 1499 * after this release. 1500 */ 1501 xfs_buf_rele(bp); 1502 return error; 1503 } 1504 1505 void * 1506 xfs_buf_offset( 1507 struct xfs_buf *bp, 1508 size_t offset) 1509 { 1510 struct page *page; 1511 1512 if (bp->b_addr) 1513 return bp->b_addr + offset; 1514 1515 offset += bp->b_offset; 1516 page = bp->b_pages[offset >> PAGE_SHIFT]; 1517 return page_address(page) + (offset & (PAGE_SIZE-1)); 1518 } 1519 1520 void 1521 xfs_buf_zero( 1522 struct xfs_buf *bp, 1523 size_t boff, 1524 size_t bsize) 1525 { 1526 size_t bend; 1527 1528 bend = boff + bsize; 1529 while (boff < bend) { 1530 struct page *page; 1531 int page_index, page_offset, csize; 1532 1533 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1534 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1535 page = bp->b_pages[page_index]; 1536 csize = min_t(size_t, PAGE_SIZE - page_offset, 1537 BBTOB(bp->b_length) - boff); 1538 1539 ASSERT((csize + page_offset) <= PAGE_SIZE); 1540 1541 memset(page_address(page) + page_offset, 0, csize); 1542 1543 boff += csize; 1544 } 1545 } 1546 1547 /* 1548 * Handling of buffer targets (buftargs). 1549 */ 1550 1551 /* 1552 * Wait for any bufs with callbacks that have been submitted but have not yet 1553 * returned. These buffers will have an elevated hold count, so wait on those 1554 * while freeing all the buffers only held by the LRU. 1555 */ 1556 static enum lru_status 1557 xfs_buftarg_wait_rele( 1558 struct list_head *item, 1559 struct list_lru_one *lru, 1560 spinlock_t *lru_lock, 1561 void *arg) 1562 1563 { 1564 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1565 struct list_head *dispose = arg; 1566 1567 if (atomic_read(&bp->b_hold) > 1) { 1568 /* need to wait, so skip it this pass */ 1569 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1570 return LRU_SKIP; 1571 } 1572 if (!spin_trylock(&bp->b_lock)) 1573 return LRU_SKIP; 1574 1575 /* 1576 * clear the LRU reference count so the buffer doesn't get 1577 * ignored in xfs_buf_rele(). 1578 */ 1579 atomic_set(&bp->b_lru_ref, 0); 1580 bp->b_state |= XFS_BSTATE_DISPOSE; 1581 list_lru_isolate_move(lru, item, dispose); 1582 spin_unlock(&bp->b_lock); 1583 return LRU_REMOVED; 1584 } 1585 1586 void 1587 xfs_wait_buftarg( 1588 struct xfs_buftarg *btp) 1589 { 1590 LIST_HEAD(dispose); 1591 int loop = 0; 1592 1593 /* 1594 * First wait on the buftarg I/O count for all in-flight buffers to be 1595 * released. This is critical as new buffers do not make the LRU until 1596 * they are released. 1597 * 1598 * Next, flush the buffer workqueue to ensure all completion processing 1599 * has finished. Just waiting on buffer locks is not sufficient for 1600 * async IO as the reference count held over IO is not released until 1601 * after the buffer lock is dropped. Hence we need to ensure here that 1602 * all reference counts have been dropped before we start walking the 1603 * LRU list. 1604 */ 1605 while (percpu_counter_sum(&btp->bt_io_count)) 1606 delay(100); 1607 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1608 1609 /* loop until there is nothing left on the lru list. */ 1610 while (list_lru_count(&btp->bt_lru)) { 1611 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1612 &dispose, LONG_MAX); 1613 1614 while (!list_empty(&dispose)) { 1615 struct xfs_buf *bp; 1616 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1617 list_del_init(&bp->b_lru); 1618 if (bp->b_flags & XBF_WRITE_FAIL) { 1619 xfs_alert(btp->bt_mount, 1620 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", 1621 (long long)bp->b_bn); 1622 xfs_alert(btp->bt_mount, 1623 "Please run xfs_repair to determine the extent of the problem."); 1624 } 1625 xfs_buf_rele(bp); 1626 } 1627 if (loop++ != 0) 1628 delay(100); 1629 } 1630 } 1631 1632 static enum lru_status 1633 xfs_buftarg_isolate( 1634 struct list_head *item, 1635 struct list_lru_one *lru, 1636 spinlock_t *lru_lock, 1637 void *arg) 1638 { 1639 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1640 struct list_head *dispose = arg; 1641 1642 /* 1643 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1644 * If we fail to get the lock, just skip it. 1645 */ 1646 if (!spin_trylock(&bp->b_lock)) 1647 return LRU_SKIP; 1648 /* 1649 * Decrement the b_lru_ref count unless the value is already 1650 * zero. If the value is already zero, we need to reclaim the 1651 * buffer, otherwise it gets another trip through the LRU. 1652 */ 1653 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1654 spin_unlock(&bp->b_lock); 1655 return LRU_ROTATE; 1656 } 1657 1658 bp->b_state |= XFS_BSTATE_DISPOSE; 1659 list_lru_isolate_move(lru, item, dispose); 1660 spin_unlock(&bp->b_lock); 1661 return LRU_REMOVED; 1662 } 1663 1664 static unsigned long 1665 xfs_buftarg_shrink_scan( 1666 struct shrinker *shrink, 1667 struct shrink_control *sc) 1668 { 1669 struct xfs_buftarg *btp = container_of(shrink, 1670 struct xfs_buftarg, bt_shrinker); 1671 LIST_HEAD(dispose); 1672 unsigned long freed; 1673 1674 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1675 xfs_buftarg_isolate, &dispose); 1676 1677 while (!list_empty(&dispose)) { 1678 struct xfs_buf *bp; 1679 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1680 list_del_init(&bp->b_lru); 1681 xfs_buf_rele(bp); 1682 } 1683 1684 return freed; 1685 } 1686 1687 static unsigned long 1688 xfs_buftarg_shrink_count( 1689 struct shrinker *shrink, 1690 struct shrink_control *sc) 1691 { 1692 struct xfs_buftarg *btp = container_of(shrink, 1693 struct xfs_buftarg, bt_shrinker); 1694 return list_lru_shrink_count(&btp->bt_lru, sc); 1695 } 1696 1697 void 1698 xfs_free_buftarg( 1699 struct xfs_buftarg *btp) 1700 { 1701 unregister_shrinker(&btp->bt_shrinker); 1702 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 1703 percpu_counter_destroy(&btp->bt_io_count); 1704 list_lru_destroy(&btp->bt_lru); 1705 1706 xfs_blkdev_issue_flush(btp); 1707 1708 kmem_free(btp); 1709 } 1710 1711 int 1712 xfs_setsize_buftarg( 1713 xfs_buftarg_t *btp, 1714 unsigned int sectorsize) 1715 { 1716 /* Set up metadata sector size info */ 1717 btp->bt_meta_sectorsize = sectorsize; 1718 btp->bt_meta_sectormask = sectorsize - 1; 1719 1720 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1721 xfs_warn(btp->bt_mount, 1722 "Cannot set_blocksize to %u on device %pg", 1723 sectorsize, btp->bt_bdev); 1724 return -EINVAL; 1725 } 1726 1727 /* Set up device logical sector size mask */ 1728 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1729 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1730 1731 return 0; 1732 } 1733 1734 /* 1735 * When allocating the initial buffer target we have not yet 1736 * read in the superblock, so don't know what sized sectors 1737 * are being used at this early stage. Play safe. 1738 */ 1739 STATIC int 1740 xfs_setsize_buftarg_early( 1741 xfs_buftarg_t *btp, 1742 struct block_device *bdev) 1743 { 1744 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1745 } 1746 1747 xfs_buftarg_t * 1748 xfs_alloc_buftarg( 1749 struct xfs_mount *mp, 1750 struct block_device *bdev, 1751 struct dax_device *dax_dev) 1752 { 1753 xfs_buftarg_t *btp; 1754 1755 btp = kmem_zalloc(sizeof(*btp), KM_NOFS); 1756 1757 btp->bt_mount = mp; 1758 btp->bt_dev = bdev->bd_dev; 1759 btp->bt_bdev = bdev; 1760 btp->bt_daxdev = dax_dev; 1761 1762 if (xfs_setsize_buftarg_early(btp, bdev)) 1763 goto error_free; 1764 1765 if (list_lru_init(&btp->bt_lru)) 1766 goto error_free; 1767 1768 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 1769 goto error_lru; 1770 1771 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1772 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1773 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1774 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1775 if (register_shrinker(&btp->bt_shrinker)) 1776 goto error_pcpu; 1777 return btp; 1778 1779 error_pcpu: 1780 percpu_counter_destroy(&btp->bt_io_count); 1781 error_lru: 1782 list_lru_destroy(&btp->bt_lru); 1783 error_free: 1784 kmem_free(btp); 1785 return NULL; 1786 } 1787 1788 /* 1789 * Cancel a delayed write list. 1790 * 1791 * Remove each buffer from the list, clear the delwri queue flag and drop the 1792 * associated buffer reference. 1793 */ 1794 void 1795 xfs_buf_delwri_cancel( 1796 struct list_head *list) 1797 { 1798 struct xfs_buf *bp; 1799 1800 while (!list_empty(list)) { 1801 bp = list_first_entry(list, struct xfs_buf, b_list); 1802 1803 xfs_buf_lock(bp); 1804 bp->b_flags &= ~_XBF_DELWRI_Q; 1805 list_del_init(&bp->b_list); 1806 xfs_buf_relse(bp); 1807 } 1808 } 1809 1810 /* 1811 * Add a buffer to the delayed write list. 1812 * 1813 * This queues a buffer for writeout if it hasn't already been. Note that 1814 * neither this routine nor the buffer list submission functions perform 1815 * any internal synchronization. It is expected that the lists are thread-local 1816 * to the callers. 1817 * 1818 * Returns true if we queued up the buffer, or false if it already had 1819 * been on the buffer list. 1820 */ 1821 bool 1822 xfs_buf_delwri_queue( 1823 struct xfs_buf *bp, 1824 struct list_head *list) 1825 { 1826 ASSERT(xfs_buf_islocked(bp)); 1827 ASSERT(!(bp->b_flags & XBF_READ)); 1828 1829 /* 1830 * If the buffer is already marked delwri it already is queued up 1831 * by someone else for imediate writeout. Just ignore it in that 1832 * case. 1833 */ 1834 if (bp->b_flags & _XBF_DELWRI_Q) { 1835 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1836 return false; 1837 } 1838 1839 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1840 1841 /* 1842 * If a buffer gets written out synchronously or marked stale while it 1843 * is on a delwri list we lazily remove it. To do this, the other party 1844 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1845 * It remains referenced and on the list. In a rare corner case it 1846 * might get readded to a delwri list after the synchronous writeout, in 1847 * which case we need just need to re-add the flag here. 1848 */ 1849 bp->b_flags |= _XBF_DELWRI_Q; 1850 if (list_empty(&bp->b_list)) { 1851 atomic_inc(&bp->b_hold); 1852 list_add_tail(&bp->b_list, list); 1853 } 1854 1855 return true; 1856 } 1857 1858 /* 1859 * Compare function is more complex than it needs to be because 1860 * the return value is only 32 bits and we are doing comparisons 1861 * on 64 bit values 1862 */ 1863 static int 1864 xfs_buf_cmp( 1865 void *priv, 1866 struct list_head *a, 1867 struct list_head *b) 1868 { 1869 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1870 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1871 xfs_daddr_t diff; 1872 1873 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1874 if (diff < 0) 1875 return -1; 1876 if (diff > 0) 1877 return 1; 1878 return 0; 1879 } 1880 1881 /* 1882 * Submit buffers for write. If wait_list is specified, the buffers are 1883 * submitted using sync I/O and placed on the wait list such that the caller can 1884 * iowait each buffer. Otherwise async I/O is used and the buffers are released 1885 * at I/O completion time. In either case, buffers remain locked until I/O 1886 * completes and the buffer is released from the queue. 1887 */ 1888 static int 1889 xfs_buf_delwri_submit_buffers( 1890 struct list_head *buffer_list, 1891 struct list_head *wait_list) 1892 { 1893 struct xfs_buf *bp, *n; 1894 int pinned = 0; 1895 struct blk_plug plug; 1896 1897 list_sort(NULL, buffer_list, xfs_buf_cmp); 1898 1899 blk_start_plug(&plug); 1900 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1901 if (!wait_list) { 1902 if (xfs_buf_ispinned(bp)) { 1903 pinned++; 1904 continue; 1905 } 1906 if (!xfs_buf_trylock(bp)) 1907 continue; 1908 } else { 1909 xfs_buf_lock(bp); 1910 } 1911 1912 /* 1913 * Someone else might have written the buffer synchronously or 1914 * marked it stale in the meantime. In that case only the 1915 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1916 * reference and remove it from the list here. 1917 */ 1918 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1919 list_del_init(&bp->b_list); 1920 xfs_buf_relse(bp); 1921 continue; 1922 } 1923 1924 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1925 1926 /* 1927 * If we have a wait list, each buffer (and associated delwri 1928 * queue reference) transfers to it and is submitted 1929 * synchronously. Otherwise, drop the buffer from the delwri 1930 * queue and submit async. 1931 */ 1932 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL); 1933 bp->b_flags |= XBF_WRITE; 1934 if (wait_list) { 1935 bp->b_flags &= ~XBF_ASYNC; 1936 list_move_tail(&bp->b_list, wait_list); 1937 } else { 1938 bp->b_flags |= XBF_ASYNC; 1939 list_del_init(&bp->b_list); 1940 } 1941 __xfs_buf_submit(bp, false); 1942 } 1943 blk_finish_plug(&plug); 1944 1945 return pinned; 1946 } 1947 1948 /* 1949 * Write out a buffer list asynchronously. 1950 * 1951 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1952 * out and not wait for I/O completion on any of the buffers. This interface 1953 * is only safely useable for callers that can track I/O completion by higher 1954 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1955 * function. 1956 * 1957 * Note: this function will skip buffers it would block on, and in doing so 1958 * leaves them on @buffer_list so they can be retried on a later pass. As such, 1959 * it is up to the caller to ensure that the buffer list is fully submitted or 1960 * cancelled appropriately when they are finished with the list. Failure to 1961 * cancel or resubmit the list until it is empty will result in leaked buffers 1962 * at unmount time. 1963 */ 1964 int 1965 xfs_buf_delwri_submit_nowait( 1966 struct list_head *buffer_list) 1967 { 1968 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 1969 } 1970 1971 /* 1972 * Write out a buffer list synchronously. 1973 * 1974 * This will take the @buffer_list, write all buffers out and wait for I/O 1975 * completion on all of the buffers. @buffer_list is consumed by the function, 1976 * so callers must have some other way of tracking buffers if they require such 1977 * functionality. 1978 */ 1979 int 1980 xfs_buf_delwri_submit( 1981 struct list_head *buffer_list) 1982 { 1983 LIST_HEAD (wait_list); 1984 int error = 0, error2; 1985 struct xfs_buf *bp; 1986 1987 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 1988 1989 /* Wait for IO to complete. */ 1990 while (!list_empty(&wait_list)) { 1991 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 1992 1993 list_del_init(&bp->b_list); 1994 1995 /* 1996 * Wait on the locked buffer, check for errors and unlock and 1997 * release the delwri queue reference. 1998 */ 1999 error2 = xfs_buf_iowait(bp); 2000 xfs_buf_relse(bp); 2001 if (!error) 2002 error = error2; 2003 } 2004 2005 return error; 2006 } 2007 2008 /* 2009 * Push a single buffer on a delwri queue. 2010 * 2011 * The purpose of this function is to submit a single buffer of a delwri queue 2012 * and return with the buffer still on the original queue. The waiting delwri 2013 * buffer submission infrastructure guarantees transfer of the delwri queue 2014 * buffer reference to a temporary wait list. We reuse this infrastructure to 2015 * transfer the buffer back to the original queue. 2016 * 2017 * Note the buffer transitions from the queued state, to the submitted and wait 2018 * listed state and back to the queued state during this call. The buffer 2019 * locking and queue management logic between _delwri_pushbuf() and 2020 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2021 * before returning. 2022 */ 2023 int 2024 xfs_buf_delwri_pushbuf( 2025 struct xfs_buf *bp, 2026 struct list_head *buffer_list) 2027 { 2028 LIST_HEAD (submit_list); 2029 int error; 2030 2031 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2032 2033 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2034 2035 /* 2036 * Isolate the buffer to a new local list so we can submit it for I/O 2037 * independently from the rest of the original list. 2038 */ 2039 xfs_buf_lock(bp); 2040 list_move(&bp->b_list, &submit_list); 2041 xfs_buf_unlock(bp); 2042 2043 /* 2044 * Delwri submission clears the DELWRI_Q buffer flag and returns with 2045 * the buffer on the wait list with the original reference. Rather than 2046 * bounce the buffer from a local wait list back to the original list 2047 * after I/O completion, reuse the original list as the wait list. 2048 */ 2049 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); 2050 2051 /* 2052 * The buffer is now locked, under I/O and wait listed on the original 2053 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and 2054 * return with the buffer unlocked and on the original queue. 2055 */ 2056 error = xfs_buf_iowait(bp); 2057 bp->b_flags |= _XBF_DELWRI_Q; 2058 xfs_buf_unlock(bp); 2059 2060 return error; 2061 } 2062 2063 int __init 2064 xfs_buf_init(void) 2065 { 2066 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 2067 KM_ZONE_HWALIGN, NULL); 2068 if (!xfs_buf_zone) 2069 goto out; 2070 2071 return 0; 2072 2073 out: 2074 return -ENOMEM; 2075 } 2076 2077 void 2078 xfs_buf_terminate(void) 2079 { 2080 kmem_zone_destroy(xfs_buf_zone); 2081 } 2082 2083 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) 2084 { 2085 /* 2086 * Set the lru reference count to 0 based on the error injection tag. 2087 * This allows userspace to disrupt buffer caching for debug/testing 2088 * purposes. 2089 */ 2090 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) 2091 lru_ref = 0; 2092 2093 atomic_set(&bp->b_lru_ref, lru_ref); 2094 } 2095 2096 /* 2097 * Verify an on-disk magic value against the magic value specified in the 2098 * verifier structure. The verifier magic is in disk byte order so the caller is 2099 * expected to pass the value directly from disk. 2100 */ 2101 bool 2102 xfs_verify_magic( 2103 struct xfs_buf *bp, 2104 __be32 dmagic) 2105 { 2106 struct xfs_mount *mp = bp->b_mount; 2107 int idx; 2108 2109 idx = xfs_sb_version_hascrc(&mp->m_sb); 2110 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])) 2111 return false; 2112 return dmagic == bp->b_ops->magic[idx]; 2113 } 2114 /* 2115 * Verify an on-disk magic value against the magic value specified in the 2116 * verifier structure. The verifier magic is in disk byte order so the caller is 2117 * expected to pass the value directly from disk. 2118 */ 2119 bool 2120 xfs_verify_magic16( 2121 struct xfs_buf *bp, 2122 __be16 dmagic) 2123 { 2124 struct xfs_mount *mp = bp->b_mount; 2125 int idx; 2126 2127 idx = xfs_sb_version_hascrc(&mp->m_sb); 2128 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])) 2129 return false; 2130 return dmagic == bp->b_ops->magic16[idx]; 2131 } 2132