1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include <linux/stddef.h> 20 #include <linux/errno.h> 21 #include <linux/gfp.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/vmalloc.h> 25 #include <linux/bio.h> 26 #include <linux/sysctl.h> 27 #include <linux/proc_fs.h> 28 #include <linux/workqueue.h> 29 #include <linux/percpu.h> 30 #include <linux/blkdev.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/migrate.h> 34 #include <linux/backing-dev.h> 35 #include <linux/freezer.h> 36 37 #include "xfs_format.h" 38 #include "xfs_log_format.h" 39 #include "xfs_trans_resv.h" 40 #include "xfs_sb.h" 41 #include "xfs_mount.h" 42 #include "xfs_trace.h" 43 #include "xfs_log.h" 44 45 static kmem_zone_t *xfs_buf_zone; 46 47 #ifdef XFS_BUF_LOCK_TRACKING 48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid) 49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1) 50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder) 51 #else 52 # define XB_SET_OWNER(bp) do { } while (0) 53 # define XB_CLEAR_OWNER(bp) do { } while (0) 54 # define XB_GET_OWNER(bp) do { } while (0) 55 #endif 56 57 #define xb_to_gfp(flags) \ 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN) 59 60 61 static inline int 62 xfs_buf_is_vmapped( 63 struct xfs_buf *bp) 64 { 65 /* 66 * Return true if the buffer is vmapped. 67 * 68 * b_addr is null if the buffer is not mapped, but the code is clever 69 * enough to know it doesn't have to map a single page, so the check has 70 * to be both for b_addr and bp->b_page_count > 1. 71 */ 72 return bp->b_addr && bp->b_page_count > 1; 73 } 74 75 static inline int 76 xfs_buf_vmap_len( 77 struct xfs_buf *bp) 78 { 79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset; 80 } 81 82 /* 83 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 84 * b_lru_ref count so that the buffer is freed immediately when the buffer 85 * reference count falls to zero. If the buffer is already on the LRU, we need 86 * to remove the reference that LRU holds on the buffer. 87 * 88 * This prevents build-up of stale buffers on the LRU. 89 */ 90 void 91 xfs_buf_stale( 92 struct xfs_buf *bp) 93 { 94 ASSERT(xfs_buf_islocked(bp)); 95 96 bp->b_flags |= XBF_STALE; 97 98 /* 99 * Clear the delwri status so that a delwri queue walker will not 100 * flush this buffer to disk now that it is stale. The delwri queue has 101 * a reference to the buffer, so this is safe to do. 102 */ 103 bp->b_flags &= ~_XBF_DELWRI_Q; 104 105 spin_lock(&bp->b_lock); 106 atomic_set(&bp->b_lru_ref, 0); 107 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 108 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru))) 109 atomic_dec(&bp->b_hold); 110 111 ASSERT(atomic_read(&bp->b_hold) >= 1); 112 spin_unlock(&bp->b_lock); 113 } 114 115 static int 116 xfs_buf_get_maps( 117 struct xfs_buf *bp, 118 int map_count) 119 { 120 ASSERT(bp->b_maps == NULL); 121 bp->b_map_count = map_count; 122 123 if (map_count == 1) { 124 bp->b_maps = &bp->__b_map; 125 return 0; 126 } 127 128 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map), 129 KM_NOFS); 130 if (!bp->b_maps) 131 return -ENOMEM; 132 return 0; 133 } 134 135 /* 136 * Frees b_pages if it was allocated. 137 */ 138 static void 139 xfs_buf_free_maps( 140 struct xfs_buf *bp) 141 { 142 if (bp->b_maps != &bp->__b_map) { 143 kmem_free(bp->b_maps); 144 bp->b_maps = NULL; 145 } 146 } 147 148 struct xfs_buf * 149 _xfs_buf_alloc( 150 struct xfs_buftarg *target, 151 struct xfs_buf_map *map, 152 int nmaps, 153 xfs_buf_flags_t flags) 154 { 155 struct xfs_buf *bp; 156 int error; 157 int i; 158 159 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS); 160 if (unlikely(!bp)) 161 return NULL; 162 163 /* 164 * We don't want certain flags to appear in b_flags unless they are 165 * specifically set by later operations on the buffer. 166 */ 167 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 168 169 atomic_set(&bp->b_hold, 1); 170 atomic_set(&bp->b_lru_ref, 1); 171 init_completion(&bp->b_iowait); 172 INIT_LIST_HEAD(&bp->b_lru); 173 INIT_LIST_HEAD(&bp->b_list); 174 RB_CLEAR_NODE(&bp->b_rbnode); 175 sema_init(&bp->b_sema, 0); /* held, no waiters */ 176 spin_lock_init(&bp->b_lock); 177 XB_SET_OWNER(bp); 178 bp->b_target = target; 179 bp->b_flags = flags; 180 181 /* 182 * Set length and io_length to the same value initially. 183 * I/O routines should use io_length, which will be the same in 184 * most cases but may be reset (e.g. XFS recovery). 185 */ 186 error = xfs_buf_get_maps(bp, nmaps); 187 if (error) { 188 kmem_zone_free(xfs_buf_zone, bp); 189 return NULL; 190 } 191 192 bp->b_bn = map[0].bm_bn; 193 bp->b_length = 0; 194 for (i = 0; i < nmaps; i++) { 195 bp->b_maps[i].bm_bn = map[i].bm_bn; 196 bp->b_maps[i].bm_len = map[i].bm_len; 197 bp->b_length += map[i].bm_len; 198 } 199 bp->b_io_length = bp->b_length; 200 201 atomic_set(&bp->b_pin_count, 0); 202 init_waitqueue_head(&bp->b_waiters); 203 204 XFS_STATS_INC(target->bt_mount, xb_create); 205 trace_xfs_buf_init(bp, _RET_IP_); 206 207 return bp; 208 } 209 210 /* 211 * Allocate a page array capable of holding a specified number 212 * of pages, and point the page buf at it. 213 */ 214 STATIC int 215 _xfs_buf_get_pages( 216 xfs_buf_t *bp, 217 int page_count) 218 { 219 /* Make sure that we have a page list */ 220 if (bp->b_pages == NULL) { 221 bp->b_page_count = page_count; 222 if (page_count <= XB_PAGES) { 223 bp->b_pages = bp->b_page_array; 224 } else { 225 bp->b_pages = kmem_alloc(sizeof(struct page *) * 226 page_count, KM_NOFS); 227 if (bp->b_pages == NULL) 228 return -ENOMEM; 229 } 230 memset(bp->b_pages, 0, sizeof(struct page *) * page_count); 231 } 232 return 0; 233 } 234 235 /* 236 * Frees b_pages if it was allocated. 237 */ 238 STATIC void 239 _xfs_buf_free_pages( 240 xfs_buf_t *bp) 241 { 242 if (bp->b_pages != bp->b_page_array) { 243 kmem_free(bp->b_pages); 244 bp->b_pages = NULL; 245 } 246 } 247 248 /* 249 * Releases the specified buffer. 250 * 251 * The modification state of any associated pages is left unchanged. 252 * The buffer must not be on any hash - use xfs_buf_rele instead for 253 * hashed and refcounted buffers 254 */ 255 void 256 xfs_buf_free( 257 xfs_buf_t *bp) 258 { 259 trace_xfs_buf_free(bp, _RET_IP_); 260 261 ASSERT(list_empty(&bp->b_lru)); 262 263 if (bp->b_flags & _XBF_PAGES) { 264 uint i; 265 266 if (xfs_buf_is_vmapped(bp)) 267 vm_unmap_ram(bp->b_addr - bp->b_offset, 268 bp->b_page_count); 269 270 for (i = 0; i < bp->b_page_count; i++) { 271 struct page *page = bp->b_pages[i]; 272 273 __free_page(page); 274 } 275 } else if (bp->b_flags & _XBF_KMEM) 276 kmem_free(bp->b_addr); 277 _xfs_buf_free_pages(bp); 278 xfs_buf_free_maps(bp); 279 kmem_zone_free(xfs_buf_zone, bp); 280 } 281 282 /* 283 * Allocates all the pages for buffer in question and builds it's page list. 284 */ 285 STATIC int 286 xfs_buf_allocate_memory( 287 xfs_buf_t *bp, 288 uint flags) 289 { 290 size_t size; 291 size_t nbytes, offset; 292 gfp_t gfp_mask = xb_to_gfp(flags); 293 unsigned short page_count, i; 294 xfs_off_t start, end; 295 int error; 296 297 /* 298 * for buffers that are contained within a single page, just allocate 299 * the memory from the heap - there's no need for the complexity of 300 * page arrays to keep allocation down to order 0. 301 */ 302 size = BBTOB(bp->b_length); 303 if (size < PAGE_SIZE) { 304 bp->b_addr = kmem_alloc(size, KM_NOFS); 305 if (!bp->b_addr) { 306 /* low memory - use alloc_page loop instead */ 307 goto use_alloc_page; 308 } 309 310 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 311 ((unsigned long)bp->b_addr & PAGE_MASK)) { 312 /* b_addr spans two pages - use alloc_page instead */ 313 kmem_free(bp->b_addr); 314 bp->b_addr = NULL; 315 goto use_alloc_page; 316 } 317 bp->b_offset = offset_in_page(bp->b_addr); 318 bp->b_pages = bp->b_page_array; 319 bp->b_pages[0] = virt_to_page(bp->b_addr); 320 bp->b_page_count = 1; 321 bp->b_flags |= _XBF_KMEM; 322 return 0; 323 } 324 325 use_alloc_page: 326 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT; 327 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1) 328 >> PAGE_SHIFT; 329 page_count = end - start; 330 error = _xfs_buf_get_pages(bp, page_count); 331 if (unlikely(error)) 332 return error; 333 334 offset = bp->b_offset; 335 bp->b_flags |= _XBF_PAGES; 336 337 for (i = 0; i < bp->b_page_count; i++) { 338 struct page *page; 339 uint retries = 0; 340 retry: 341 page = alloc_page(gfp_mask); 342 if (unlikely(page == NULL)) { 343 if (flags & XBF_READ_AHEAD) { 344 bp->b_page_count = i; 345 error = -ENOMEM; 346 goto out_free_pages; 347 } 348 349 /* 350 * This could deadlock. 351 * 352 * But until all the XFS lowlevel code is revamped to 353 * handle buffer allocation failures we can't do much. 354 */ 355 if (!(++retries % 100)) 356 xfs_err(NULL, 357 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)", 358 current->comm, current->pid, 359 __func__, gfp_mask); 360 361 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries); 362 congestion_wait(BLK_RW_ASYNC, HZ/50); 363 goto retry; 364 } 365 366 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found); 367 368 nbytes = min_t(size_t, size, PAGE_SIZE - offset); 369 size -= nbytes; 370 bp->b_pages[i] = page; 371 offset = 0; 372 } 373 return 0; 374 375 out_free_pages: 376 for (i = 0; i < bp->b_page_count; i++) 377 __free_page(bp->b_pages[i]); 378 return error; 379 } 380 381 /* 382 * Map buffer into kernel address-space if necessary. 383 */ 384 STATIC int 385 _xfs_buf_map_pages( 386 xfs_buf_t *bp, 387 uint flags) 388 { 389 ASSERT(bp->b_flags & _XBF_PAGES); 390 if (bp->b_page_count == 1) { 391 /* A single page buffer is always mappable */ 392 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; 393 } else if (flags & XBF_UNMAPPED) { 394 bp->b_addr = NULL; 395 } else { 396 int retried = 0; 397 unsigned noio_flag; 398 399 /* 400 * vm_map_ram() will allocate auxillary structures (e.g. 401 * pagetables) with GFP_KERNEL, yet we are likely to be under 402 * GFP_NOFS context here. Hence we need to tell memory reclaim 403 * that we are in such a context via PF_MEMALLOC_NOIO to prevent 404 * memory reclaim re-entering the filesystem here and 405 * potentially deadlocking. 406 */ 407 noio_flag = memalloc_noio_save(); 408 do { 409 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 410 -1, PAGE_KERNEL); 411 if (bp->b_addr) 412 break; 413 vm_unmap_aliases(); 414 } while (retried++ <= 1); 415 memalloc_noio_restore(noio_flag); 416 417 if (!bp->b_addr) 418 return -ENOMEM; 419 bp->b_addr += bp->b_offset; 420 } 421 422 return 0; 423 } 424 425 /* 426 * Finding and Reading Buffers 427 */ 428 429 /* 430 * Look up, and creates if absent, a lockable buffer for 431 * a given range of an inode. The buffer is returned 432 * locked. No I/O is implied by this call. 433 */ 434 xfs_buf_t * 435 _xfs_buf_find( 436 struct xfs_buftarg *btp, 437 struct xfs_buf_map *map, 438 int nmaps, 439 xfs_buf_flags_t flags, 440 xfs_buf_t *new_bp) 441 { 442 struct xfs_perag *pag; 443 struct rb_node **rbp; 444 struct rb_node *parent; 445 xfs_buf_t *bp; 446 xfs_daddr_t blkno = map[0].bm_bn; 447 xfs_daddr_t eofs; 448 int numblks = 0; 449 int i; 450 451 for (i = 0; i < nmaps; i++) 452 numblks += map[i].bm_len; 453 454 /* Check for IOs smaller than the sector size / not sector aligned */ 455 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize)); 456 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask)); 457 458 /* 459 * Corrupted block numbers can get through to here, unfortunately, so we 460 * have to check that the buffer falls within the filesystem bounds. 461 */ 462 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 463 if (blkno < 0 || blkno >= eofs) { 464 /* 465 * XXX (dgc): we should really be returning -EFSCORRUPTED here, 466 * but none of the higher level infrastructure supports 467 * returning a specific error on buffer lookup failures. 468 */ 469 xfs_alert(btp->bt_mount, 470 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ", 471 __func__, blkno, eofs); 472 WARN_ON(1); 473 return NULL; 474 } 475 476 /* get tree root */ 477 pag = xfs_perag_get(btp->bt_mount, 478 xfs_daddr_to_agno(btp->bt_mount, blkno)); 479 480 /* walk tree */ 481 spin_lock(&pag->pag_buf_lock); 482 rbp = &pag->pag_buf_tree.rb_node; 483 parent = NULL; 484 bp = NULL; 485 while (*rbp) { 486 parent = *rbp; 487 bp = rb_entry(parent, struct xfs_buf, b_rbnode); 488 489 if (blkno < bp->b_bn) 490 rbp = &(*rbp)->rb_left; 491 else if (blkno > bp->b_bn) 492 rbp = &(*rbp)->rb_right; 493 else { 494 /* 495 * found a block number match. If the range doesn't 496 * match, the only way this is allowed is if the buffer 497 * in the cache is stale and the transaction that made 498 * it stale has not yet committed. i.e. we are 499 * reallocating a busy extent. Skip this buffer and 500 * continue searching to the right for an exact match. 501 */ 502 if (bp->b_length != numblks) { 503 ASSERT(bp->b_flags & XBF_STALE); 504 rbp = &(*rbp)->rb_right; 505 continue; 506 } 507 atomic_inc(&bp->b_hold); 508 goto found; 509 } 510 } 511 512 /* No match found */ 513 if (new_bp) { 514 rb_link_node(&new_bp->b_rbnode, parent, rbp); 515 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree); 516 /* the buffer keeps the perag reference until it is freed */ 517 new_bp->b_pag = pag; 518 spin_unlock(&pag->pag_buf_lock); 519 } else { 520 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 521 spin_unlock(&pag->pag_buf_lock); 522 xfs_perag_put(pag); 523 } 524 return new_bp; 525 526 found: 527 spin_unlock(&pag->pag_buf_lock); 528 xfs_perag_put(pag); 529 530 if (!xfs_buf_trylock(bp)) { 531 if (flags & XBF_TRYLOCK) { 532 xfs_buf_rele(bp); 533 XFS_STATS_INC(btp->bt_mount, xb_busy_locked); 534 return NULL; 535 } 536 xfs_buf_lock(bp); 537 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited); 538 } 539 540 /* 541 * if the buffer is stale, clear all the external state associated with 542 * it. We need to keep flags such as how we allocated the buffer memory 543 * intact here. 544 */ 545 if (bp->b_flags & XBF_STALE) { 546 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 547 ASSERT(bp->b_iodone == NULL); 548 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 549 bp->b_ops = NULL; 550 } 551 552 trace_xfs_buf_find(bp, flags, _RET_IP_); 553 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 554 return bp; 555 } 556 557 /* 558 * Assembles a buffer covering the specified range. The code is optimised for 559 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 560 * more hits than misses. 561 */ 562 struct xfs_buf * 563 xfs_buf_get_map( 564 struct xfs_buftarg *target, 565 struct xfs_buf_map *map, 566 int nmaps, 567 xfs_buf_flags_t flags) 568 { 569 struct xfs_buf *bp; 570 struct xfs_buf *new_bp; 571 int error = 0; 572 573 bp = _xfs_buf_find(target, map, nmaps, flags, NULL); 574 if (likely(bp)) 575 goto found; 576 577 new_bp = _xfs_buf_alloc(target, map, nmaps, flags); 578 if (unlikely(!new_bp)) 579 return NULL; 580 581 error = xfs_buf_allocate_memory(new_bp, flags); 582 if (error) { 583 xfs_buf_free(new_bp); 584 return NULL; 585 } 586 587 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp); 588 if (!bp) { 589 xfs_buf_free(new_bp); 590 return NULL; 591 } 592 593 if (bp != new_bp) 594 xfs_buf_free(new_bp); 595 596 found: 597 if (!bp->b_addr) { 598 error = _xfs_buf_map_pages(bp, flags); 599 if (unlikely(error)) { 600 xfs_warn(target->bt_mount, 601 "%s: failed to map pagesn", __func__); 602 xfs_buf_relse(bp); 603 return NULL; 604 } 605 } 606 607 /* 608 * Clear b_error if this is a lookup from a caller that doesn't expect 609 * valid data to be found in the buffer. 610 */ 611 if (!(flags & XBF_READ)) 612 xfs_buf_ioerror(bp, 0); 613 614 XFS_STATS_INC(target->bt_mount, xb_get); 615 trace_xfs_buf_get(bp, flags, _RET_IP_); 616 return bp; 617 } 618 619 STATIC int 620 _xfs_buf_read( 621 xfs_buf_t *bp, 622 xfs_buf_flags_t flags) 623 { 624 ASSERT(!(flags & XBF_WRITE)); 625 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 626 627 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); 628 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 629 630 if (flags & XBF_ASYNC) { 631 xfs_buf_submit(bp); 632 return 0; 633 } 634 return xfs_buf_submit_wait(bp); 635 } 636 637 xfs_buf_t * 638 xfs_buf_read_map( 639 struct xfs_buftarg *target, 640 struct xfs_buf_map *map, 641 int nmaps, 642 xfs_buf_flags_t flags, 643 const struct xfs_buf_ops *ops) 644 { 645 struct xfs_buf *bp; 646 647 flags |= XBF_READ; 648 649 bp = xfs_buf_get_map(target, map, nmaps, flags); 650 if (bp) { 651 trace_xfs_buf_read(bp, flags, _RET_IP_); 652 653 if (!(bp->b_flags & XBF_DONE)) { 654 XFS_STATS_INC(target->bt_mount, xb_get_read); 655 bp->b_ops = ops; 656 _xfs_buf_read(bp, flags); 657 } else if (flags & XBF_ASYNC) { 658 /* 659 * Read ahead call which is already satisfied, 660 * drop the buffer 661 */ 662 xfs_buf_relse(bp); 663 return NULL; 664 } else { 665 /* We do not want read in the flags */ 666 bp->b_flags &= ~XBF_READ; 667 } 668 } 669 670 return bp; 671 } 672 673 /* 674 * If we are not low on memory then do the readahead in a deadlock 675 * safe manner. 676 */ 677 void 678 xfs_buf_readahead_map( 679 struct xfs_buftarg *target, 680 struct xfs_buf_map *map, 681 int nmaps, 682 const struct xfs_buf_ops *ops) 683 { 684 if (bdi_read_congested(target->bt_bdi)) 685 return; 686 687 xfs_buf_read_map(target, map, nmaps, 688 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops); 689 } 690 691 /* 692 * Read an uncached buffer from disk. Allocates and returns a locked 693 * buffer containing the disk contents or nothing. 694 */ 695 int 696 xfs_buf_read_uncached( 697 struct xfs_buftarg *target, 698 xfs_daddr_t daddr, 699 size_t numblks, 700 int flags, 701 struct xfs_buf **bpp, 702 const struct xfs_buf_ops *ops) 703 { 704 struct xfs_buf *bp; 705 706 *bpp = NULL; 707 708 bp = xfs_buf_get_uncached(target, numblks, flags); 709 if (!bp) 710 return -ENOMEM; 711 712 /* set up the buffer for a read IO */ 713 ASSERT(bp->b_map_count == 1); 714 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */ 715 bp->b_maps[0].bm_bn = daddr; 716 bp->b_flags |= XBF_READ; 717 bp->b_ops = ops; 718 719 xfs_buf_submit_wait(bp); 720 if (bp->b_error) { 721 int error = bp->b_error; 722 xfs_buf_relse(bp); 723 return error; 724 } 725 726 *bpp = bp; 727 return 0; 728 } 729 730 /* 731 * Return a buffer allocated as an empty buffer and associated to external 732 * memory via xfs_buf_associate_memory() back to it's empty state. 733 */ 734 void 735 xfs_buf_set_empty( 736 struct xfs_buf *bp, 737 size_t numblks) 738 { 739 if (bp->b_pages) 740 _xfs_buf_free_pages(bp); 741 742 bp->b_pages = NULL; 743 bp->b_page_count = 0; 744 bp->b_addr = NULL; 745 bp->b_length = numblks; 746 bp->b_io_length = numblks; 747 748 ASSERT(bp->b_map_count == 1); 749 bp->b_bn = XFS_BUF_DADDR_NULL; 750 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL; 751 bp->b_maps[0].bm_len = bp->b_length; 752 } 753 754 static inline struct page * 755 mem_to_page( 756 void *addr) 757 { 758 if ((!is_vmalloc_addr(addr))) { 759 return virt_to_page(addr); 760 } else { 761 return vmalloc_to_page(addr); 762 } 763 } 764 765 int 766 xfs_buf_associate_memory( 767 xfs_buf_t *bp, 768 void *mem, 769 size_t len) 770 { 771 int rval; 772 int i = 0; 773 unsigned long pageaddr; 774 unsigned long offset; 775 size_t buflen; 776 int page_count; 777 778 pageaddr = (unsigned long)mem & PAGE_MASK; 779 offset = (unsigned long)mem - pageaddr; 780 buflen = PAGE_ALIGN(len + offset); 781 page_count = buflen >> PAGE_SHIFT; 782 783 /* Free any previous set of page pointers */ 784 if (bp->b_pages) 785 _xfs_buf_free_pages(bp); 786 787 bp->b_pages = NULL; 788 bp->b_addr = mem; 789 790 rval = _xfs_buf_get_pages(bp, page_count); 791 if (rval) 792 return rval; 793 794 bp->b_offset = offset; 795 796 for (i = 0; i < bp->b_page_count; i++) { 797 bp->b_pages[i] = mem_to_page((void *)pageaddr); 798 pageaddr += PAGE_SIZE; 799 } 800 801 bp->b_io_length = BTOBB(len); 802 bp->b_length = BTOBB(buflen); 803 804 return 0; 805 } 806 807 xfs_buf_t * 808 xfs_buf_get_uncached( 809 struct xfs_buftarg *target, 810 size_t numblks, 811 int flags) 812 { 813 unsigned long page_count; 814 int error, i; 815 struct xfs_buf *bp; 816 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 817 818 bp = _xfs_buf_alloc(target, &map, 1, 0); 819 if (unlikely(bp == NULL)) 820 goto fail; 821 822 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT; 823 error = _xfs_buf_get_pages(bp, page_count); 824 if (error) 825 goto fail_free_buf; 826 827 for (i = 0; i < page_count; i++) { 828 bp->b_pages[i] = alloc_page(xb_to_gfp(flags)); 829 if (!bp->b_pages[i]) 830 goto fail_free_mem; 831 } 832 bp->b_flags |= _XBF_PAGES; 833 834 error = _xfs_buf_map_pages(bp, 0); 835 if (unlikely(error)) { 836 xfs_warn(target->bt_mount, 837 "%s: failed to map pages", __func__); 838 goto fail_free_mem; 839 } 840 841 trace_xfs_buf_get_uncached(bp, _RET_IP_); 842 return bp; 843 844 fail_free_mem: 845 while (--i >= 0) 846 __free_page(bp->b_pages[i]); 847 _xfs_buf_free_pages(bp); 848 fail_free_buf: 849 xfs_buf_free_maps(bp); 850 kmem_zone_free(xfs_buf_zone, bp); 851 fail: 852 return NULL; 853 } 854 855 /* 856 * Increment reference count on buffer, to hold the buffer concurrently 857 * with another thread which may release (free) the buffer asynchronously. 858 * Must hold the buffer already to call this function. 859 */ 860 void 861 xfs_buf_hold( 862 xfs_buf_t *bp) 863 { 864 trace_xfs_buf_hold(bp, _RET_IP_); 865 atomic_inc(&bp->b_hold); 866 } 867 868 /* 869 * Releases a hold on the specified buffer. If the 870 * the hold count is 1, calls xfs_buf_free. 871 */ 872 void 873 xfs_buf_rele( 874 xfs_buf_t *bp) 875 { 876 struct xfs_perag *pag = bp->b_pag; 877 878 trace_xfs_buf_rele(bp, _RET_IP_); 879 880 if (!pag) { 881 ASSERT(list_empty(&bp->b_lru)); 882 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode)); 883 if (atomic_dec_and_test(&bp->b_hold)) 884 xfs_buf_free(bp); 885 return; 886 } 887 888 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode)); 889 890 ASSERT(atomic_read(&bp->b_hold) > 0); 891 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) { 892 spin_lock(&bp->b_lock); 893 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 894 /* 895 * If the buffer is added to the LRU take a new 896 * reference to the buffer for the LRU and clear the 897 * (now stale) dispose list state flag 898 */ 899 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) { 900 bp->b_state &= ~XFS_BSTATE_DISPOSE; 901 atomic_inc(&bp->b_hold); 902 } 903 spin_unlock(&bp->b_lock); 904 spin_unlock(&pag->pag_buf_lock); 905 } else { 906 /* 907 * most of the time buffers will already be removed from 908 * the LRU, so optimise that case by checking for the 909 * XFS_BSTATE_DISPOSE flag indicating the last list the 910 * buffer was on was the disposal list 911 */ 912 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 913 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru); 914 } else { 915 ASSERT(list_empty(&bp->b_lru)); 916 } 917 spin_unlock(&bp->b_lock); 918 919 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 920 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree); 921 spin_unlock(&pag->pag_buf_lock); 922 xfs_perag_put(pag); 923 xfs_buf_free(bp); 924 } 925 } 926 } 927 928 929 /* 930 * Lock a buffer object, if it is not already locked. 931 * 932 * If we come across a stale, pinned, locked buffer, we know that we are 933 * being asked to lock a buffer that has been reallocated. Because it is 934 * pinned, we know that the log has not been pushed to disk and hence it 935 * will still be locked. Rather than continuing to have trylock attempts 936 * fail until someone else pushes the log, push it ourselves before 937 * returning. This means that the xfsaild will not get stuck trying 938 * to push on stale inode buffers. 939 */ 940 int 941 xfs_buf_trylock( 942 struct xfs_buf *bp) 943 { 944 int locked; 945 946 locked = down_trylock(&bp->b_sema) == 0; 947 if (locked) 948 XB_SET_OWNER(bp); 949 950 trace_xfs_buf_trylock(bp, _RET_IP_); 951 return locked; 952 } 953 954 /* 955 * Lock a buffer object. 956 * 957 * If we come across a stale, pinned, locked buffer, we know that we 958 * are being asked to lock a buffer that has been reallocated. Because 959 * it is pinned, we know that the log has not been pushed to disk and 960 * hence it will still be locked. Rather than sleeping until someone 961 * else pushes the log, push it ourselves before trying to get the lock. 962 */ 963 void 964 xfs_buf_lock( 965 struct xfs_buf *bp) 966 { 967 trace_xfs_buf_lock(bp, _RET_IP_); 968 969 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 970 xfs_log_force(bp->b_target->bt_mount, 0); 971 down(&bp->b_sema); 972 XB_SET_OWNER(bp); 973 974 trace_xfs_buf_lock_done(bp, _RET_IP_); 975 } 976 977 void 978 xfs_buf_unlock( 979 struct xfs_buf *bp) 980 { 981 XB_CLEAR_OWNER(bp); 982 up(&bp->b_sema); 983 984 trace_xfs_buf_unlock(bp, _RET_IP_); 985 } 986 987 STATIC void 988 xfs_buf_wait_unpin( 989 xfs_buf_t *bp) 990 { 991 DECLARE_WAITQUEUE (wait, current); 992 993 if (atomic_read(&bp->b_pin_count) == 0) 994 return; 995 996 add_wait_queue(&bp->b_waiters, &wait); 997 for (;;) { 998 set_current_state(TASK_UNINTERRUPTIBLE); 999 if (atomic_read(&bp->b_pin_count) == 0) 1000 break; 1001 io_schedule(); 1002 } 1003 remove_wait_queue(&bp->b_waiters, &wait); 1004 set_current_state(TASK_RUNNING); 1005 } 1006 1007 /* 1008 * Buffer Utility Routines 1009 */ 1010 1011 void 1012 xfs_buf_ioend( 1013 struct xfs_buf *bp) 1014 { 1015 bool read = bp->b_flags & XBF_READ; 1016 1017 trace_xfs_buf_iodone(bp, _RET_IP_); 1018 1019 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD); 1020 1021 /* 1022 * Pull in IO completion errors now. We are guaranteed to be running 1023 * single threaded, so we don't need the lock to read b_io_error. 1024 */ 1025 if (!bp->b_error && bp->b_io_error) 1026 xfs_buf_ioerror(bp, bp->b_io_error); 1027 1028 /* Only validate buffers that were read without errors */ 1029 if (read && !bp->b_error && bp->b_ops) { 1030 ASSERT(!bp->b_iodone); 1031 bp->b_ops->verify_read(bp); 1032 } 1033 1034 if (!bp->b_error) 1035 bp->b_flags |= XBF_DONE; 1036 1037 if (bp->b_iodone) 1038 (*(bp->b_iodone))(bp); 1039 else if (bp->b_flags & XBF_ASYNC) 1040 xfs_buf_relse(bp); 1041 else 1042 complete(&bp->b_iowait); 1043 } 1044 1045 static void 1046 xfs_buf_ioend_work( 1047 struct work_struct *work) 1048 { 1049 struct xfs_buf *bp = 1050 container_of(work, xfs_buf_t, b_ioend_work); 1051 1052 xfs_buf_ioend(bp); 1053 } 1054 1055 static void 1056 xfs_buf_ioend_async( 1057 struct xfs_buf *bp) 1058 { 1059 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1060 queue_work(bp->b_ioend_wq, &bp->b_ioend_work); 1061 } 1062 1063 void 1064 xfs_buf_ioerror( 1065 xfs_buf_t *bp, 1066 int error) 1067 { 1068 ASSERT(error <= 0 && error >= -1000); 1069 bp->b_error = error; 1070 trace_xfs_buf_ioerror(bp, error, _RET_IP_); 1071 } 1072 1073 void 1074 xfs_buf_ioerror_alert( 1075 struct xfs_buf *bp, 1076 const char *func) 1077 { 1078 xfs_alert(bp->b_target->bt_mount, 1079 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d", 1080 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length); 1081 } 1082 1083 int 1084 xfs_bwrite( 1085 struct xfs_buf *bp) 1086 { 1087 int error; 1088 1089 ASSERT(xfs_buf_islocked(bp)); 1090 1091 bp->b_flags |= XBF_WRITE; 1092 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1093 XBF_WRITE_FAIL | XBF_DONE); 1094 1095 error = xfs_buf_submit_wait(bp); 1096 if (error) { 1097 xfs_force_shutdown(bp->b_target->bt_mount, 1098 SHUTDOWN_META_IO_ERROR); 1099 } 1100 return error; 1101 } 1102 1103 static void 1104 xfs_buf_bio_end_io( 1105 struct bio *bio) 1106 { 1107 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1108 1109 /* 1110 * don't overwrite existing errors - otherwise we can lose errors on 1111 * buffers that require multiple bios to complete. 1112 */ 1113 if (bio->bi_error) 1114 cmpxchg(&bp->b_io_error, 0, bio->bi_error); 1115 1116 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1117 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1118 1119 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1120 xfs_buf_ioend_async(bp); 1121 bio_put(bio); 1122 } 1123 1124 static void 1125 xfs_buf_ioapply_map( 1126 struct xfs_buf *bp, 1127 int map, 1128 int *buf_offset, 1129 int *count, 1130 int rw) 1131 { 1132 int page_index; 1133 int total_nr_pages = bp->b_page_count; 1134 int nr_pages; 1135 struct bio *bio; 1136 sector_t sector = bp->b_maps[map].bm_bn; 1137 int size; 1138 int offset; 1139 1140 total_nr_pages = bp->b_page_count; 1141 1142 /* skip the pages in the buffer before the start offset */ 1143 page_index = 0; 1144 offset = *buf_offset; 1145 while (offset >= PAGE_SIZE) { 1146 page_index++; 1147 offset -= PAGE_SIZE; 1148 } 1149 1150 /* 1151 * Limit the IO size to the length of the current vector, and update the 1152 * remaining IO count for the next time around. 1153 */ 1154 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1155 *count -= size; 1156 *buf_offset += size; 1157 1158 next_chunk: 1159 atomic_inc(&bp->b_io_remaining); 1160 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); 1161 if (nr_pages > total_nr_pages) 1162 nr_pages = total_nr_pages; 1163 1164 bio = bio_alloc(GFP_NOIO, nr_pages); 1165 bio->bi_bdev = bp->b_target->bt_bdev; 1166 bio->bi_iter.bi_sector = sector; 1167 bio->bi_end_io = xfs_buf_bio_end_io; 1168 bio->bi_private = bp; 1169 1170 1171 for (; size && nr_pages; nr_pages--, page_index++) { 1172 int rbytes, nbytes = PAGE_SIZE - offset; 1173 1174 if (nbytes > size) 1175 nbytes = size; 1176 1177 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1178 offset); 1179 if (rbytes < nbytes) 1180 break; 1181 1182 offset = 0; 1183 sector += BTOBB(nbytes); 1184 size -= nbytes; 1185 total_nr_pages--; 1186 } 1187 1188 if (likely(bio->bi_iter.bi_size)) { 1189 if (xfs_buf_is_vmapped(bp)) { 1190 flush_kernel_vmap_range(bp->b_addr, 1191 xfs_buf_vmap_len(bp)); 1192 } 1193 submit_bio(rw, bio); 1194 if (size) 1195 goto next_chunk; 1196 } else { 1197 /* 1198 * This is guaranteed not to be the last io reference count 1199 * because the caller (xfs_buf_submit) holds a count itself. 1200 */ 1201 atomic_dec(&bp->b_io_remaining); 1202 xfs_buf_ioerror(bp, -EIO); 1203 bio_put(bio); 1204 } 1205 1206 } 1207 1208 STATIC void 1209 _xfs_buf_ioapply( 1210 struct xfs_buf *bp) 1211 { 1212 struct blk_plug plug; 1213 int rw; 1214 int offset; 1215 int size; 1216 int i; 1217 1218 /* 1219 * Make sure we capture only current IO errors rather than stale errors 1220 * left over from previous use of the buffer (e.g. failed readahead). 1221 */ 1222 bp->b_error = 0; 1223 1224 /* 1225 * Initialize the I/O completion workqueue if we haven't yet or the 1226 * submitter has not opted to specify a custom one. 1227 */ 1228 if (!bp->b_ioend_wq) 1229 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue; 1230 1231 if (bp->b_flags & XBF_WRITE) { 1232 if (bp->b_flags & XBF_SYNCIO) 1233 rw = WRITE_SYNC; 1234 else 1235 rw = WRITE; 1236 if (bp->b_flags & XBF_FUA) 1237 rw |= REQ_FUA; 1238 if (bp->b_flags & XBF_FLUSH) 1239 rw |= REQ_FLUSH; 1240 1241 /* 1242 * Run the write verifier callback function if it exists. If 1243 * this function fails it will mark the buffer with an error and 1244 * the IO should not be dispatched. 1245 */ 1246 if (bp->b_ops) { 1247 bp->b_ops->verify_write(bp); 1248 if (bp->b_error) { 1249 xfs_force_shutdown(bp->b_target->bt_mount, 1250 SHUTDOWN_CORRUPT_INCORE); 1251 return; 1252 } 1253 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) { 1254 struct xfs_mount *mp = bp->b_target->bt_mount; 1255 1256 /* 1257 * non-crc filesystems don't attach verifiers during 1258 * log recovery, so don't warn for such filesystems. 1259 */ 1260 if (xfs_sb_version_hascrc(&mp->m_sb)) { 1261 xfs_warn(mp, 1262 "%s: no ops on block 0x%llx/0x%x", 1263 __func__, bp->b_bn, bp->b_length); 1264 xfs_hex_dump(bp->b_addr, 64); 1265 dump_stack(); 1266 } 1267 } 1268 } else if (bp->b_flags & XBF_READ_AHEAD) { 1269 rw = READA; 1270 } else { 1271 rw = READ; 1272 } 1273 1274 /* we only use the buffer cache for meta-data */ 1275 rw |= REQ_META; 1276 1277 /* 1278 * Walk all the vectors issuing IO on them. Set up the initial offset 1279 * into the buffer and the desired IO size before we start - 1280 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1281 * subsequent call. 1282 */ 1283 offset = bp->b_offset; 1284 size = BBTOB(bp->b_io_length); 1285 blk_start_plug(&plug); 1286 for (i = 0; i < bp->b_map_count; i++) { 1287 xfs_buf_ioapply_map(bp, i, &offset, &size, rw); 1288 if (bp->b_error) 1289 break; 1290 if (size <= 0) 1291 break; /* all done */ 1292 } 1293 blk_finish_plug(&plug); 1294 } 1295 1296 /* 1297 * Asynchronous IO submission path. This transfers the buffer lock ownership and 1298 * the current reference to the IO. It is not safe to reference the buffer after 1299 * a call to this function unless the caller holds an additional reference 1300 * itself. 1301 */ 1302 void 1303 xfs_buf_submit( 1304 struct xfs_buf *bp) 1305 { 1306 trace_xfs_buf_submit(bp, _RET_IP_); 1307 1308 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1309 ASSERT(bp->b_flags & XBF_ASYNC); 1310 1311 /* on shutdown we stale and complete the buffer immediately */ 1312 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1313 xfs_buf_ioerror(bp, -EIO); 1314 bp->b_flags &= ~XBF_DONE; 1315 xfs_buf_stale(bp); 1316 xfs_buf_ioend(bp); 1317 return; 1318 } 1319 1320 if (bp->b_flags & XBF_WRITE) 1321 xfs_buf_wait_unpin(bp); 1322 1323 /* clear the internal error state to avoid spurious errors */ 1324 bp->b_io_error = 0; 1325 1326 /* 1327 * The caller's reference is released during I/O completion. 1328 * This occurs some time after the last b_io_remaining reference is 1329 * released, so after we drop our Io reference we have to have some 1330 * other reference to ensure the buffer doesn't go away from underneath 1331 * us. Take a direct reference to ensure we have safe access to the 1332 * buffer until we are finished with it. 1333 */ 1334 xfs_buf_hold(bp); 1335 1336 /* 1337 * Set the count to 1 initially, this will stop an I/O completion 1338 * callout which happens before we have started all the I/O from calling 1339 * xfs_buf_ioend too early. 1340 */ 1341 atomic_set(&bp->b_io_remaining, 1); 1342 _xfs_buf_ioapply(bp); 1343 1344 /* 1345 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1346 * reference we took above. If we drop it to zero, run completion so 1347 * that we don't return to the caller with completion still pending. 1348 */ 1349 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1350 if (bp->b_error) 1351 xfs_buf_ioend(bp); 1352 else 1353 xfs_buf_ioend_async(bp); 1354 } 1355 1356 xfs_buf_rele(bp); 1357 /* Note: it is not safe to reference bp now we've dropped our ref */ 1358 } 1359 1360 /* 1361 * Synchronous buffer IO submission path, read or write. 1362 */ 1363 int 1364 xfs_buf_submit_wait( 1365 struct xfs_buf *bp) 1366 { 1367 int error; 1368 1369 trace_xfs_buf_submit_wait(bp, _RET_IP_); 1370 1371 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC))); 1372 1373 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) { 1374 xfs_buf_ioerror(bp, -EIO); 1375 xfs_buf_stale(bp); 1376 bp->b_flags &= ~XBF_DONE; 1377 return -EIO; 1378 } 1379 1380 if (bp->b_flags & XBF_WRITE) 1381 xfs_buf_wait_unpin(bp); 1382 1383 /* clear the internal error state to avoid spurious errors */ 1384 bp->b_io_error = 0; 1385 1386 /* 1387 * For synchronous IO, the IO does not inherit the submitters reference 1388 * count, nor the buffer lock. Hence we cannot release the reference we 1389 * are about to take until we've waited for all IO completion to occur, 1390 * including any xfs_buf_ioend_async() work that may be pending. 1391 */ 1392 xfs_buf_hold(bp); 1393 1394 /* 1395 * Set the count to 1 initially, this will stop an I/O completion 1396 * callout which happens before we have started all the I/O from calling 1397 * xfs_buf_ioend too early. 1398 */ 1399 atomic_set(&bp->b_io_remaining, 1); 1400 _xfs_buf_ioapply(bp); 1401 1402 /* 1403 * make sure we run completion synchronously if it raced with us and is 1404 * already complete. 1405 */ 1406 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1407 xfs_buf_ioend(bp); 1408 1409 /* wait for completion before gathering the error from the buffer */ 1410 trace_xfs_buf_iowait(bp, _RET_IP_); 1411 wait_for_completion(&bp->b_iowait); 1412 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1413 error = bp->b_error; 1414 1415 /* 1416 * all done now, we can release the hold that keeps the buffer 1417 * referenced for the entire IO. 1418 */ 1419 xfs_buf_rele(bp); 1420 return error; 1421 } 1422 1423 void * 1424 xfs_buf_offset( 1425 struct xfs_buf *bp, 1426 size_t offset) 1427 { 1428 struct page *page; 1429 1430 if (bp->b_addr) 1431 return bp->b_addr + offset; 1432 1433 offset += bp->b_offset; 1434 page = bp->b_pages[offset >> PAGE_SHIFT]; 1435 return page_address(page) + (offset & (PAGE_SIZE-1)); 1436 } 1437 1438 /* 1439 * Move data into or out of a buffer. 1440 */ 1441 void 1442 xfs_buf_iomove( 1443 xfs_buf_t *bp, /* buffer to process */ 1444 size_t boff, /* starting buffer offset */ 1445 size_t bsize, /* length to copy */ 1446 void *data, /* data address */ 1447 xfs_buf_rw_t mode) /* read/write/zero flag */ 1448 { 1449 size_t bend; 1450 1451 bend = boff + bsize; 1452 while (boff < bend) { 1453 struct page *page; 1454 int page_index, page_offset, csize; 1455 1456 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1457 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1458 page = bp->b_pages[page_index]; 1459 csize = min_t(size_t, PAGE_SIZE - page_offset, 1460 BBTOB(bp->b_io_length) - boff); 1461 1462 ASSERT((csize + page_offset) <= PAGE_SIZE); 1463 1464 switch (mode) { 1465 case XBRW_ZERO: 1466 memset(page_address(page) + page_offset, 0, csize); 1467 break; 1468 case XBRW_READ: 1469 memcpy(data, page_address(page) + page_offset, csize); 1470 break; 1471 case XBRW_WRITE: 1472 memcpy(page_address(page) + page_offset, data, csize); 1473 } 1474 1475 boff += csize; 1476 data += csize; 1477 } 1478 } 1479 1480 /* 1481 * Handling of buffer targets (buftargs). 1482 */ 1483 1484 /* 1485 * Wait for any bufs with callbacks that have been submitted but have not yet 1486 * returned. These buffers will have an elevated hold count, so wait on those 1487 * while freeing all the buffers only held by the LRU. 1488 */ 1489 static enum lru_status 1490 xfs_buftarg_wait_rele( 1491 struct list_head *item, 1492 struct list_lru_one *lru, 1493 spinlock_t *lru_lock, 1494 void *arg) 1495 1496 { 1497 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1498 struct list_head *dispose = arg; 1499 1500 if (atomic_read(&bp->b_hold) > 1) { 1501 /* need to wait, so skip it this pass */ 1502 trace_xfs_buf_wait_buftarg(bp, _RET_IP_); 1503 return LRU_SKIP; 1504 } 1505 if (!spin_trylock(&bp->b_lock)) 1506 return LRU_SKIP; 1507 1508 /* 1509 * clear the LRU reference count so the buffer doesn't get 1510 * ignored in xfs_buf_rele(). 1511 */ 1512 atomic_set(&bp->b_lru_ref, 0); 1513 bp->b_state |= XFS_BSTATE_DISPOSE; 1514 list_lru_isolate_move(lru, item, dispose); 1515 spin_unlock(&bp->b_lock); 1516 return LRU_REMOVED; 1517 } 1518 1519 void 1520 xfs_wait_buftarg( 1521 struct xfs_buftarg *btp) 1522 { 1523 LIST_HEAD(dispose); 1524 int loop = 0; 1525 1526 /* 1527 * We need to flush the buffer workqueue to ensure that all IO 1528 * completion processing is 100% done. Just waiting on buffer locks is 1529 * not sufficient for async IO as the reference count held over IO is 1530 * not released until after the buffer lock is dropped. Hence we need to 1531 * ensure here that all reference counts have been dropped before we 1532 * start walking the LRU list. 1533 */ 1534 drain_workqueue(btp->bt_mount->m_buf_workqueue); 1535 1536 /* loop until there is nothing left on the lru list. */ 1537 while (list_lru_count(&btp->bt_lru)) { 1538 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele, 1539 &dispose, LONG_MAX); 1540 1541 while (!list_empty(&dispose)) { 1542 struct xfs_buf *bp; 1543 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1544 list_del_init(&bp->b_lru); 1545 if (bp->b_flags & XBF_WRITE_FAIL) { 1546 xfs_alert(btp->bt_mount, 1547 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!", 1548 (long long)bp->b_bn); 1549 xfs_alert(btp->bt_mount, 1550 "Please run xfs_repair to determine the extent of the problem."); 1551 } 1552 xfs_buf_rele(bp); 1553 } 1554 if (loop++ != 0) 1555 delay(100); 1556 } 1557 } 1558 1559 static enum lru_status 1560 xfs_buftarg_isolate( 1561 struct list_head *item, 1562 struct list_lru_one *lru, 1563 spinlock_t *lru_lock, 1564 void *arg) 1565 { 1566 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1567 struct list_head *dispose = arg; 1568 1569 /* 1570 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1571 * If we fail to get the lock, just skip it. 1572 */ 1573 if (!spin_trylock(&bp->b_lock)) 1574 return LRU_SKIP; 1575 /* 1576 * Decrement the b_lru_ref count unless the value is already 1577 * zero. If the value is already zero, we need to reclaim the 1578 * buffer, otherwise it gets another trip through the LRU. 1579 */ 1580 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1581 spin_unlock(&bp->b_lock); 1582 return LRU_ROTATE; 1583 } 1584 1585 bp->b_state |= XFS_BSTATE_DISPOSE; 1586 list_lru_isolate_move(lru, item, dispose); 1587 spin_unlock(&bp->b_lock); 1588 return LRU_REMOVED; 1589 } 1590 1591 static unsigned long 1592 xfs_buftarg_shrink_scan( 1593 struct shrinker *shrink, 1594 struct shrink_control *sc) 1595 { 1596 struct xfs_buftarg *btp = container_of(shrink, 1597 struct xfs_buftarg, bt_shrinker); 1598 LIST_HEAD(dispose); 1599 unsigned long freed; 1600 1601 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1602 xfs_buftarg_isolate, &dispose); 1603 1604 while (!list_empty(&dispose)) { 1605 struct xfs_buf *bp; 1606 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1607 list_del_init(&bp->b_lru); 1608 xfs_buf_rele(bp); 1609 } 1610 1611 return freed; 1612 } 1613 1614 static unsigned long 1615 xfs_buftarg_shrink_count( 1616 struct shrinker *shrink, 1617 struct shrink_control *sc) 1618 { 1619 struct xfs_buftarg *btp = container_of(shrink, 1620 struct xfs_buftarg, bt_shrinker); 1621 return list_lru_shrink_count(&btp->bt_lru, sc); 1622 } 1623 1624 void 1625 xfs_free_buftarg( 1626 struct xfs_mount *mp, 1627 struct xfs_buftarg *btp) 1628 { 1629 unregister_shrinker(&btp->bt_shrinker); 1630 list_lru_destroy(&btp->bt_lru); 1631 1632 if (mp->m_flags & XFS_MOUNT_BARRIER) 1633 xfs_blkdev_issue_flush(btp); 1634 1635 kmem_free(btp); 1636 } 1637 1638 int 1639 xfs_setsize_buftarg( 1640 xfs_buftarg_t *btp, 1641 unsigned int sectorsize) 1642 { 1643 /* Set up metadata sector size info */ 1644 btp->bt_meta_sectorsize = sectorsize; 1645 btp->bt_meta_sectormask = sectorsize - 1; 1646 1647 if (set_blocksize(btp->bt_bdev, sectorsize)) { 1648 xfs_warn(btp->bt_mount, 1649 "Cannot set_blocksize to %u on device %pg", 1650 sectorsize, btp->bt_bdev); 1651 return -EINVAL; 1652 } 1653 1654 /* Set up device logical sector size mask */ 1655 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev); 1656 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1; 1657 1658 return 0; 1659 } 1660 1661 /* 1662 * When allocating the initial buffer target we have not yet 1663 * read in the superblock, so don't know what sized sectors 1664 * are being used at this early stage. Play safe. 1665 */ 1666 STATIC int 1667 xfs_setsize_buftarg_early( 1668 xfs_buftarg_t *btp, 1669 struct block_device *bdev) 1670 { 1671 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev)); 1672 } 1673 1674 xfs_buftarg_t * 1675 xfs_alloc_buftarg( 1676 struct xfs_mount *mp, 1677 struct block_device *bdev) 1678 { 1679 xfs_buftarg_t *btp; 1680 1681 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS); 1682 1683 btp->bt_mount = mp; 1684 btp->bt_dev = bdev->bd_dev; 1685 btp->bt_bdev = bdev; 1686 btp->bt_bdi = blk_get_backing_dev_info(bdev); 1687 1688 if (xfs_setsize_buftarg_early(btp, bdev)) 1689 goto error; 1690 1691 if (list_lru_init(&btp->bt_lru)) 1692 goto error; 1693 1694 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count; 1695 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan; 1696 btp->bt_shrinker.seeks = DEFAULT_SEEKS; 1697 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE; 1698 register_shrinker(&btp->bt_shrinker); 1699 return btp; 1700 1701 error: 1702 kmem_free(btp); 1703 return NULL; 1704 } 1705 1706 /* 1707 * Add a buffer to the delayed write list. 1708 * 1709 * This queues a buffer for writeout if it hasn't already been. Note that 1710 * neither this routine nor the buffer list submission functions perform 1711 * any internal synchronization. It is expected that the lists are thread-local 1712 * to the callers. 1713 * 1714 * Returns true if we queued up the buffer, or false if it already had 1715 * been on the buffer list. 1716 */ 1717 bool 1718 xfs_buf_delwri_queue( 1719 struct xfs_buf *bp, 1720 struct list_head *list) 1721 { 1722 ASSERT(xfs_buf_islocked(bp)); 1723 ASSERT(!(bp->b_flags & XBF_READ)); 1724 1725 /* 1726 * If the buffer is already marked delwri it already is queued up 1727 * by someone else for imediate writeout. Just ignore it in that 1728 * case. 1729 */ 1730 if (bp->b_flags & _XBF_DELWRI_Q) { 1731 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 1732 return false; 1733 } 1734 1735 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 1736 1737 /* 1738 * If a buffer gets written out synchronously or marked stale while it 1739 * is on a delwri list we lazily remove it. To do this, the other party 1740 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 1741 * It remains referenced and on the list. In a rare corner case it 1742 * might get readded to a delwri list after the synchronous writeout, in 1743 * which case we need just need to re-add the flag here. 1744 */ 1745 bp->b_flags |= _XBF_DELWRI_Q; 1746 if (list_empty(&bp->b_list)) { 1747 atomic_inc(&bp->b_hold); 1748 list_add_tail(&bp->b_list, list); 1749 } 1750 1751 return true; 1752 } 1753 1754 /* 1755 * Compare function is more complex than it needs to be because 1756 * the return value is only 32 bits and we are doing comparisons 1757 * on 64 bit values 1758 */ 1759 static int 1760 xfs_buf_cmp( 1761 void *priv, 1762 struct list_head *a, 1763 struct list_head *b) 1764 { 1765 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 1766 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 1767 xfs_daddr_t diff; 1768 1769 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 1770 if (diff < 0) 1771 return -1; 1772 if (diff > 0) 1773 return 1; 1774 return 0; 1775 } 1776 1777 static int 1778 __xfs_buf_delwri_submit( 1779 struct list_head *buffer_list, 1780 struct list_head *io_list, 1781 bool wait) 1782 { 1783 struct blk_plug plug; 1784 struct xfs_buf *bp, *n; 1785 int pinned = 0; 1786 1787 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 1788 if (!wait) { 1789 if (xfs_buf_ispinned(bp)) { 1790 pinned++; 1791 continue; 1792 } 1793 if (!xfs_buf_trylock(bp)) 1794 continue; 1795 } else { 1796 xfs_buf_lock(bp); 1797 } 1798 1799 /* 1800 * Someone else might have written the buffer synchronously or 1801 * marked it stale in the meantime. In that case only the 1802 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 1803 * reference and remove it from the list here. 1804 */ 1805 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 1806 list_del_init(&bp->b_list); 1807 xfs_buf_relse(bp); 1808 continue; 1809 } 1810 1811 list_move_tail(&bp->b_list, io_list); 1812 trace_xfs_buf_delwri_split(bp, _RET_IP_); 1813 } 1814 1815 list_sort(NULL, io_list, xfs_buf_cmp); 1816 1817 blk_start_plug(&plug); 1818 list_for_each_entry_safe(bp, n, io_list, b_list) { 1819 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL); 1820 bp->b_flags |= XBF_WRITE | XBF_ASYNC; 1821 1822 /* 1823 * we do all Io submission async. This means if we need to wait 1824 * for IO completion we need to take an extra reference so the 1825 * buffer is still valid on the other side. 1826 */ 1827 if (wait) 1828 xfs_buf_hold(bp); 1829 else 1830 list_del_init(&bp->b_list); 1831 1832 xfs_buf_submit(bp); 1833 } 1834 blk_finish_plug(&plug); 1835 1836 return pinned; 1837 } 1838 1839 /* 1840 * Write out a buffer list asynchronously. 1841 * 1842 * This will take the @buffer_list, write all non-locked and non-pinned buffers 1843 * out and not wait for I/O completion on any of the buffers. This interface 1844 * is only safely useable for callers that can track I/O completion by higher 1845 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 1846 * function. 1847 */ 1848 int 1849 xfs_buf_delwri_submit_nowait( 1850 struct list_head *buffer_list) 1851 { 1852 LIST_HEAD (io_list); 1853 return __xfs_buf_delwri_submit(buffer_list, &io_list, false); 1854 } 1855 1856 /* 1857 * Write out a buffer list synchronously. 1858 * 1859 * This will take the @buffer_list, write all buffers out and wait for I/O 1860 * completion on all of the buffers. @buffer_list is consumed by the function, 1861 * so callers must have some other way of tracking buffers if they require such 1862 * functionality. 1863 */ 1864 int 1865 xfs_buf_delwri_submit( 1866 struct list_head *buffer_list) 1867 { 1868 LIST_HEAD (io_list); 1869 int error = 0, error2; 1870 struct xfs_buf *bp; 1871 1872 __xfs_buf_delwri_submit(buffer_list, &io_list, true); 1873 1874 /* Wait for IO to complete. */ 1875 while (!list_empty(&io_list)) { 1876 bp = list_first_entry(&io_list, struct xfs_buf, b_list); 1877 1878 list_del_init(&bp->b_list); 1879 1880 /* locking the buffer will wait for async IO completion. */ 1881 xfs_buf_lock(bp); 1882 error2 = bp->b_error; 1883 xfs_buf_relse(bp); 1884 if (!error) 1885 error = error2; 1886 } 1887 1888 return error; 1889 } 1890 1891 int __init 1892 xfs_buf_init(void) 1893 { 1894 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", 1895 KM_ZONE_HWALIGN, NULL); 1896 if (!xfs_buf_zone) 1897 goto out; 1898 1899 return 0; 1900 1901 out: 1902 return -ENOMEM; 1903 } 1904 1905 void 1906 xfs_buf_terminate(void) 1907 { 1908 kmem_zone_destroy(xfs_buf_zone); 1909 } 1910