xref: /openbmc/linux/fs/xfs/xfs_buf.c (revision 0d456bad)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_sb.h"
38 #include "xfs_log.h"
39 #include "xfs_ag.h"
40 #include "xfs_mount.h"
41 #include "xfs_trace.h"
42 
43 static kmem_zone_t *xfs_buf_zone;
44 
45 static struct workqueue_struct *xfslogd_workqueue;
46 
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp)	do { } while (0)
53 # define XB_CLEAR_OWNER(bp)	do { } while (0)
54 # define XB_GET_OWNER(bp)	do { } while (0)
55 #endif
56 
57 #define xb_to_gfp(flags) \
58 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59 
60 
61 static inline int
62 xfs_buf_is_vmapped(
63 	struct xfs_buf	*bp)
64 {
65 	/*
66 	 * Return true if the buffer is vmapped.
67 	 *
68 	 * b_addr is null if the buffer is not mapped, but the code is clever
69 	 * enough to know it doesn't have to map a single page, so the check has
70 	 * to be both for b_addr and bp->b_page_count > 1.
71 	 */
72 	return bp->b_addr && bp->b_page_count > 1;
73 }
74 
75 static inline int
76 xfs_buf_vmap_len(
77 	struct xfs_buf	*bp)
78 {
79 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81 
82 /*
83  * xfs_buf_lru_add - add a buffer to the LRU.
84  *
85  * The LRU takes a new reference to the buffer so that it will only be freed
86  * once the shrinker takes the buffer off the LRU.
87  */
88 STATIC void
89 xfs_buf_lru_add(
90 	struct xfs_buf	*bp)
91 {
92 	struct xfs_buftarg *btp = bp->b_target;
93 
94 	spin_lock(&btp->bt_lru_lock);
95 	if (list_empty(&bp->b_lru)) {
96 		atomic_inc(&bp->b_hold);
97 		list_add_tail(&bp->b_lru, &btp->bt_lru);
98 		btp->bt_lru_nr++;
99 		bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
100 	}
101 	spin_unlock(&btp->bt_lru_lock);
102 }
103 
104 /*
105  * xfs_buf_lru_del - remove a buffer from the LRU
106  *
107  * The unlocked check is safe here because it only occurs when there are not
108  * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
109  * to optimise the shrinker removing the buffer from the LRU and calling
110  * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
111  * bt_lru_lock.
112  */
113 STATIC void
114 xfs_buf_lru_del(
115 	struct xfs_buf	*bp)
116 {
117 	struct xfs_buftarg *btp = bp->b_target;
118 
119 	if (list_empty(&bp->b_lru))
120 		return;
121 
122 	spin_lock(&btp->bt_lru_lock);
123 	if (!list_empty(&bp->b_lru)) {
124 		list_del_init(&bp->b_lru);
125 		btp->bt_lru_nr--;
126 	}
127 	spin_unlock(&btp->bt_lru_lock);
128 }
129 
130 /*
131  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132  * b_lru_ref count so that the buffer is freed immediately when the buffer
133  * reference count falls to zero. If the buffer is already on the LRU, we need
134  * to remove the reference that LRU holds on the buffer.
135  *
136  * This prevents build-up of stale buffers on the LRU.
137  */
138 void
139 xfs_buf_stale(
140 	struct xfs_buf	*bp)
141 {
142 	ASSERT(xfs_buf_islocked(bp));
143 
144 	bp->b_flags |= XBF_STALE;
145 
146 	/*
147 	 * Clear the delwri status so that a delwri queue walker will not
148 	 * flush this buffer to disk now that it is stale. The delwri queue has
149 	 * a reference to the buffer, so this is safe to do.
150 	 */
151 	bp->b_flags &= ~_XBF_DELWRI_Q;
152 
153 	atomic_set(&(bp)->b_lru_ref, 0);
154 	if (!list_empty(&bp->b_lru)) {
155 		struct xfs_buftarg *btp = bp->b_target;
156 
157 		spin_lock(&btp->bt_lru_lock);
158 		if (!list_empty(&bp->b_lru) &&
159 		    !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
160 			list_del_init(&bp->b_lru);
161 			btp->bt_lru_nr--;
162 			atomic_dec(&bp->b_hold);
163 		}
164 		spin_unlock(&btp->bt_lru_lock);
165 	}
166 	ASSERT(atomic_read(&bp->b_hold) >= 1);
167 }
168 
169 static int
170 xfs_buf_get_maps(
171 	struct xfs_buf		*bp,
172 	int			map_count)
173 {
174 	ASSERT(bp->b_maps == NULL);
175 	bp->b_map_count = map_count;
176 
177 	if (map_count == 1) {
178 		bp->b_maps = &bp->b_map;
179 		return 0;
180 	}
181 
182 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
183 				KM_NOFS);
184 	if (!bp->b_maps)
185 		return ENOMEM;
186 	return 0;
187 }
188 
189 /*
190  *	Frees b_pages if it was allocated.
191  */
192 static void
193 xfs_buf_free_maps(
194 	struct xfs_buf	*bp)
195 {
196 	if (bp->b_maps != &bp->b_map) {
197 		kmem_free(bp->b_maps);
198 		bp->b_maps = NULL;
199 	}
200 }
201 
202 struct xfs_buf *
203 _xfs_buf_alloc(
204 	struct xfs_buftarg	*target,
205 	struct xfs_buf_map	*map,
206 	int			nmaps,
207 	xfs_buf_flags_t		flags)
208 {
209 	struct xfs_buf		*bp;
210 	int			error;
211 	int			i;
212 
213 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
214 	if (unlikely(!bp))
215 		return NULL;
216 
217 	/*
218 	 * We don't want certain flags to appear in b_flags unless they are
219 	 * specifically set by later operations on the buffer.
220 	 */
221 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
222 
223 	atomic_set(&bp->b_hold, 1);
224 	atomic_set(&bp->b_lru_ref, 1);
225 	init_completion(&bp->b_iowait);
226 	INIT_LIST_HEAD(&bp->b_lru);
227 	INIT_LIST_HEAD(&bp->b_list);
228 	RB_CLEAR_NODE(&bp->b_rbnode);
229 	sema_init(&bp->b_sema, 0); /* held, no waiters */
230 	XB_SET_OWNER(bp);
231 	bp->b_target = target;
232 	bp->b_flags = flags;
233 
234 	/*
235 	 * Set length and io_length to the same value initially.
236 	 * I/O routines should use io_length, which will be the same in
237 	 * most cases but may be reset (e.g. XFS recovery).
238 	 */
239 	error = xfs_buf_get_maps(bp, nmaps);
240 	if (error)  {
241 		kmem_zone_free(xfs_buf_zone, bp);
242 		return NULL;
243 	}
244 
245 	bp->b_bn = map[0].bm_bn;
246 	bp->b_length = 0;
247 	for (i = 0; i < nmaps; i++) {
248 		bp->b_maps[i].bm_bn = map[i].bm_bn;
249 		bp->b_maps[i].bm_len = map[i].bm_len;
250 		bp->b_length += map[i].bm_len;
251 	}
252 	bp->b_io_length = bp->b_length;
253 
254 	atomic_set(&bp->b_pin_count, 0);
255 	init_waitqueue_head(&bp->b_waiters);
256 
257 	XFS_STATS_INC(xb_create);
258 	trace_xfs_buf_init(bp, _RET_IP_);
259 
260 	return bp;
261 }
262 
263 /*
264  *	Allocate a page array capable of holding a specified number
265  *	of pages, and point the page buf at it.
266  */
267 STATIC int
268 _xfs_buf_get_pages(
269 	xfs_buf_t		*bp,
270 	int			page_count,
271 	xfs_buf_flags_t		flags)
272 {
273 	/* Make sure that we have a page list */
274 	if (bp->b_pages == NULL) {
275 		bp->b_page_count = page_count;
276 		if (page_count <= XB_PAGES) {
277 			bp->b_pages = bp->b_page_array;
278 		} else {
279 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
280 						 page_count, KM_NOFS);
281 			if (bp->b_pages == NULL)
282 				return -ENOMEM;
283 		}
284 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
285 	}
286 	return 0;
287 }
288 
289 /*
290  *	Frees b_pages if it was allocated.
291  */
292 STATIC void
293 _xfs_buf_free_pages(
294 	xfs_buf_t	*bp)
295 {
296 	if (bp->b_pages != bp->b_page_array) {
297 		kmem_free(bp->b_pages);
298 		bp->b_pages = NULL;
299 	}
300 }
301 
302 /*
303  *	Releases the specified buffer.
304  *
305  * 	The modification state of any associated pages is left unchanged.
306  * 	The buffer most not be on any hash - use xfs_buf_rele instead for
307  * 	hashed and refcounted buffers
308  */
309 void
310 xfs_buf_free(
311 	xfs_buf_t		*bp)
312 {
313 	trace_xfs_buf_free(bp, _RET_IP_);
314 
315 	ASSERT(list_empty(&bp->b_lru));
316 
317 	if (bp->b_flags & _XBF_PAGES) {
318 		uint		i;
319 
320 		if (xfs_buf_is_vmapped(bp))
321 			vm_unmap_ram(bp->b_addr - bp->b_offset,
322 					bp->b_page_count);
323 
324 		for (i = 0; i < bp->b_page_count; i++) {
325 			struct page	*page = bp->b_pages[i];
326 
327 			__free_page(page);
328 		}
329 	} else if (bp->b_flags & _XBF_KMEM)
330 		kmem_free(bp->b_addr);
331 	_xfs_buf_free_pages(bp);
332 	xfs_buf_free_maps(bp);
333 	kmem_zone_free(xfs_buf_zone, bp);
334 }
335 
336 /*
337  * Allocates all the pages for buffer in question and builds it's page list.
338  */
339 STATIC int
340 xfs_buf_allocate_memory(
341 	xfs_buf_t		*bp,
342 	uint			flags)
343 {
344 	size_t			size;
345 	size_t			nbytes, offset;
346 	gfp_t			gfp_mask = xb_to_gfp(flags);
347 	unsigned short		page_count, i;
348 	xfs_off_t		start, end;
349 	int			error;
350 
351 	/*
352 	 * for buffers that are contained within a single page, just allocate
353 	 * the memory from the heap - there's no need for the complexity of
354 	 * page arrays to keep allocation down to order 0.
355 	 */
356 	size = BBTOB(bp->b_length);
357 	if (size < PAGE_SIZE) {
358 		bp->b_addr = kmem_alloc(size, KM_NOFS);
359 		if (!bp->b_addr) {
360 			/* low memory - use alloc_page loop instead */
361 			goto use_alloc_page;
362 		}
363 
364 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
365 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
366 			/* b_addr spans two pages - use alloc_page instead */
367 			kmem_free(bp->b_addr);
368 			bp->b_addr = NULL;
369 			goto use_alloc_page;
370 		}
371 		bp->b_offset = offset_in_page(bp->b_addr);
372 		bp->b_pages = bp->b_page_array;
373 		bp->b_pages[0] = virt_to_page(bp->b_addr);
374 		bp->b_page_count = 1;
375 		bp->b_flags |= _XBF_KMEM;
376 		return 0;
377 	}
378 
379 use_alloc_page:
380 	start = BBTOB(bp->b_map.bm_bn) >> PAGE_SHIFT;
381 	end = (BBTOB(bp->b_map.bm_bn + bp->b_length) + PAGE_SIZE - 1)
382 								>> PAGE_SHIFT;
383 	page_count = end - start;
384 	error = _xfs_buf_get_pages(bp, page_count, flags);
385 	if (unlikely(error))
386 		return error;
387 
388 	offset = bp->b_offset;
389 	bp->b_flags |= _XBF_PAGES;
390 
391 	for (i = 0; i < bp->b_page_count; i++) {
392 		struct page	*page;
393 		uint		retries = 0;
394 retry:
395 		page = alloc_page(gfp_mask);
396 		if (unlikely(page == NULL)) {
397 			if (flags & XBF_READ_AHEAD) {
398 				bp->b_page_count = i;
399 				error = ENOMEM;
400 				goto out_free_pages;
401 			}
402 
403 			/*
404 			 * This could deadlock.
405 			 *
406 			 * But until all the XFS lowlevel code is revamped to
407 			 * handle buffer allocation failures we can't do much.
408 			 */
409 			if (!(++retries % 100))
410 				xfs_err(NULL,
411 		"possible memory allocation deadlock in %s (mode:0x%x)",
412 					__func__, gfp_mask);
413 
414 			XFS_STATS_INC(xb_page_retries);
415 			congestion_wait(BLK_RW_ASYNC, HZ/50);
416 			goto retry;
417 		}
418 
419 		XFS_STATS_INC(xb_page_found);
420 
421 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
422 		size -= nbytes;
423 		bp->b_pages[i] = page;
424 		offset = 0;
425 	}
426 	return 0;
427 
428 out_free_pages:
429 	for (i = 0; i < bp->b_page_count; i++)
430 		__free_page(bp->b_pages[i]);
431 	return error;
432 }
433 
434 /*
435  *	Map buffer into kernel address-space if necessary.
436  */
437 STATIC int
438 _xfs_buf_map_pages(
439 	xfs_buf_t		*bp,
440 	uint			flags)
441 {
442 	ASSERT(bp->b_flags & _XBF_PAGES);
443 	if (bp->b_page_count == 1) {
444 		/* A single page buffer is always mappable */
445 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
446 	} else if (flags & XBF_UNMAPPED) {
447 		bp->b_addr = NULL;
448 	} else {
449 		int retried = 0;
450 
451 		do {
452 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
453 						-1, PAGE_KERNEL);
454 			if (bp->b_addr)
455 				break;
456 			vm_unmap_aliases();
457 		} while (retried++ <= 1);
458 
459 		if (!bp->b_addr)
460 			return -ENOMEM;
461 		bp->b_addr += bp->b_offset;
462 	}
463 
464 	return 0;
465 }
466 
467 /*
468  *	Finding and Reading Buffers
469  */
470 
471 /*
472  *	Look up, and creates if absent, a lockable buffer for
473  *	a given range of an inode.  The buffer is returned
474  *	locked.	No I/O is implied by this call.
475  */
476 xfs_buf_t *
477 _xfs_buf_find(
478 	struct xfs_buftarg	*btp,
479 	struct xfs_buf_map	*map,
480 	int			nmaps,
481 	xfs_buf_flags_t		flags,
482 	xfs_buf_t		*new_bp)
483 {
484 	size_t			numbytes;
485 	struct xfs_perag	*pag;
486 	struct rb_node		**rbp;
487 	struct rb_node		*parent;
488 	xfs_buf_t		*bp;
489 	xfs_daddr_t		blkno = map[0].bm_bn;
490 	int			numblks = 0;
491 	int			i;
492 
493 	for (i = 0; i < nmaps; i++)
494 		numblks += map[i].bm_len;
495 	numbytes = BBTOB(numblks);
496 
497 	/* Check for IOs smaller than the sector size / not sector aligned */
498 	ASSERT(!(numbytes < (1 << btp->bt_sshift)));
499 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
500 
501 	/* get tree root */
502 	pag = xfs_perag_get(btp->bt_mount,
503 				xfs_daddr_to_agno(btp->bt_mount, blkno));
504 
505 	/* walk tree */
506 	spin_lock(&pag->pag_buf_lock);
507 	rbp = &pag->pag_buf_tree.rb_node;
508 	parent = NULL;
509 	bp = NULL;
510 	while (*rbp) {
511 		parent = *rbp;
512 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
513 
514 		if (blkno < bp->b_bn)
515 			rbp = &(*rbp)->rb_left;
516 		else if (blkno > bp->b_bn)
517 			rbp = &(*rbp)->rb_right;
518 		else {
519 			/*
520 			 * found a block number match. If the range doesn't
521 			 * match, the only way this is allowed is if the buffer
522 			 * in the cache is stale and the transaction that made
523 			 * it stale has not yet committed. i.e. we are
524 			 * reallocating a busy extent. Skip this buffer and
525 			 * continue searching to the right for an exact match.
526 			 */
527 			if (bp->b_length != numblks) {
528 				ASSERT(bp->b_flags & XBF_STALE);
529 				rbp = &(*rbp)->rb_right;
530 				continue;
531 			}
532 			atomic_inc(&bp->b_hold);
533 			goto found;
534 		}
535 	}
536 
537 	/* No match found */
538 	if (new_bp) {
539 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
540 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
541 		/* the buffer keeps the perag reference until it is freed */
542 		new_bp->b_pag = pag;
543 		spin_unlock(&pag->pag_buf_lock);
544 	} else {
545 		XFS_STATS_INC(xb_miss_locked);
546 		spin_unlock(&pag->pag_buf_lock);
547 		xfs_perag_put(pag);
548 	}
549 	return new_bp;
550 
551 found:
552 	spin_unlock(&pag->pag_buf_lock);
553 	xfs_perag_put(pag);
554 
555 	if (!xfs_buf_trylock(bp)) {
556 		if (flags & XBF_TRYLOCK) {
557 			xfs_buf_rele(bp);
558 			XFS_STATS_INC(xb_busy_locked);
559 			return NULL;
560 		}
561 		xfs_buf_lock(bp);
562 		XFS_STATS_INC(xb_get_locked_waited);
563 	}
564 
565 	/*
566 	 * if the buffer is stale, clear all the external state associated with
567 	 * it. We need to keep flags such as how we allocated the buffer memory
568 	 * intact here.
569 	 */
570 	if (bp->b_flags & XBF_STALE) {
571 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
572 		ASSERT(bp->b_iodone == NULL);
573 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
574 		bp->b_ops = NULL;
575 	}
576 
577 	trace_xfs_buf_find(bp, flags, _RET_IP_);
578 	XFS_STATS_INC(xb_get_locked);
579 	return bp;
580 }
581 
582 /*
583  * Assembles a buffer covering the specified range. The code is optimised for
584  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
585  * more hits than misses.
586  */
587 struct xfs_buf *
588 xfs_buf_get_map(
589 	struct xfs_buftarg	*target,
590 	struct xfs_buf_map	*map,
591 	int			nmaps,
592 	xfs_buf_flags_t		flags)
593 {
594 	struct xfs_buf		*bp;
595 	struct xfs_buf		*new_bp;
596 	int			error = 0;
597 
598 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
599 	if (likely(bp))
600 		goto found;
601 
602 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
603 	if (unlikely(!new_bp))
604 		return NULL;
605 
606 	error = xfs_buf_allocate_memory(new_bp, flags);
607 	if (error) {
608 		xfs_buf_free(new_bp);
609 		return NULL;
610 	}
611 
612 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
613 	if (!bp) {
614 		xfs_buf_free(new_bp);
615 		return NULL;
616 	}
617 
618 	if (bp != new_bp)
619 		xfs_buf_free(new_bp);
620 
621 found:
622 	if (!bp->b_addr) {
623 		error = _xfs_buf_map_pages(bp, flags);
624 		if (unlikely(error)) {
625 			xfs_warn(target->bt_mount,
626 				"%s: failed to map pages\n", __func__);
627 			xfs_buf_relse(bp);
628 			return NULL;
629 		}
630 	}
631 
632 	XFS_STATS_INC(xb_get);
633 	trace_xfs_buf_get(bp, flags, _RET_IP_);
634 	return bp;
635 }
636 
637 STATIC int
638 _xfs_buf_read(
639 	xfs_buf_t		*bp,
640 	xfs_buf_flags_t		flags)
641 {
642 	ASSERT(!(flags & XBF_WRITE));
643 	ASSERT(bp->b_map.bm_bn != XFS_BUF_DADDR_NULL);
644 
645 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
646 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
647 
648 	xfs_buf_iorequest(bp);
649 	if (flags & XBF_ASYNC)
650 		return 0;
651 	return xfs_buf_iowait(bp);
652 }
653 
654 xfs_buf_t *
655 xfs_buf_read_map(
656 	struct xfs_buftarg	*target,
657 	struct xfs_buf_map	*map,
658 	int			nmaps,
659 	xfs_buf_flags_t		flags,
660 	const struct xfs_buf_ops *ops)
661 {
662 	struct xfs_buf		*bp;
663 
664 	flags |= XBF_READ;
665 
666 	bp = xfs_buf_get_map(target, map, nmaps, flags);
667 	if (bp) {
668 		trace_xfs_buf_read(bp, flags, _RET_IP_);
669 
670 		if (!XFS_BUF_ISDONE(bp)) {
671 			XFS_STATS_INC(xb_get_read);
672 			bp->b_ops = ops;
673 			_xfs_buf_read(bp, flags);
674 		} else if (flags & XBF_ASYNC) {
675 			/*
676 			 * Read ahead call which is already satisfied,
677 			 * drop the buffer
678 			 */
679 			xfs_buf_relse(bp);
680 			return NULL;
681 		} else {
682 			/* We do not want read in the flags */
683 			bp->b_flags &= ~XBF_READ;
684 		}
685 	}
686 
687 	return bp;
688 }
689 
690 /*
691  *	If we are not low on memory then do the readahead in a deadlock
692  *	safe manner.
693  */
694 void
695 xfs_buf_readahead_map(
696 	struct xfs_buftarg	*target,
697 	struct xfs_buf_map	*map,
698 	int			nmaps,
699 	const struct xfs_buf_ops *ops)
700 {
701 	if (bdi_read_congested(target->bt_bdi))
702 		return;
703 
704 	xfs_buf_read_map(target, map, nmaps,
705 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
706 }
707 
708 /*
709  * Read an uncached buffer from disk. Allocates and returns a locked
710  * buffer containing the disk contents or nothing.
711  */
712 struct xfs_buf *
713 xfs_buf_read_uncached(
714 	struct xfs_buftarg	*target,
715 	xfs_daddr_t		daddr,
716 	size_t			numblks,
717 	int			flags,
718 	const struct xfs_buf_ops *ops)
719 {
720 	struct xfs_buf		*bp;
721 
722 	bp = xfs_buf_get_uncached(target, numblks, flags);
723 	if (!bp)
724 		return NULL;
725 
726 	/* set up the buffer for a read IO */
727 	ASSERT(bp->b_map_count == 1);
728 	bp->b_bn = daddr;
729 	bp->b_maps[0].bm_bn = daddr;
730 	bp->b_flags |= XBF_READ;
731 	bp->b_ops = ops;
732 
733 	xfsbdstrat(target->bt_mount, bp);
734 	xfs_buf_iowait(bp);
735 	return bp;
736 }
737 
738 /*
739  * Return a buffer allocated as an empty buffer and associated to external
740  * memory via xfs_buf_associate_memory() back to it's empty state.
741  */
742 void
743 xfs_buf_set_empty(
744 	struct xfs_buf		*bp,
745 	size_t			numblks)
746 {
747 	if (bp->b_pages)
748 		_xfs_buf_free_pages(bp);
749 
750 	bp->b_pages = NULL;
751 	bp->b_page_count = 0;
752 	bp->b_addr = NULL;
753 	bp->b_length = numblks;
754 	bp->b_io_length = numblks;
755 
756 	ASSERT(bp->b_map_count == 1);
757 	bp->b_bn = XFS_BUF_DADDR_NULL;
758 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
759 	bp->b_maps[0].bm_len = bp->b_length;
760 }
761 
762 static inline struct page *
763 mem_to_page(
764 	void			*addr)
765 {
766 	if ((!is_vmalloc_addr(addr))) {
767 		return virt_to_page(addr);
768 	} else {
769 		return vmalloc_to_page(addr);
770 	}
771 }
772 
773 int
774 xfs_buf_associate_memory(
775 	xfs_buf_t		*bp,
776 	void			*mem,
777 	size_t			len)
778 {
779 	int			rval;
780 	int			i = 0;
781 	unsigned long		pageaddr;
782 	unsigned long		offset;
783 	size_t			buflen;
784 	int			page_count;
785 
786 	pageaddr = (unsigned long)mem & PAGE_MASK;
787 	offset = (unsigned long)mem - pageaddr;
788 	buflen = PAGE_ALIGN(len + offset);
789 	page_count = buflen >> PAGE_SHIFT;
790 
791 	/* Free any previous set of page pointers */
792 	if (bp->b_pages)
793 		_xfs_buf_free_pages(bp);
794 
795 	bp->b_pages = NULL;
796 	bp->b_addr = mem;
797 
798 	rval = _xfs_buf_get_pages(bp, page_count, 0);
799 	if (rval)
800 		return rval;
801 
802 	bp->b_offset = offset;
803 
804 	for (i = 0; i < bp->b_page_count; i++) {
805 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
806 		pageaddr += PAGE_SIZE;
807 	}
808 
809 	bp->b_io_length = BTOBB(len);
810 	bp->b_length = BTOBB(buflen);
811 
812 	return 0;
813 }
814 
815 xfs_buf_t *
816 xfs_buf_get_uncached(
817 	struct xfs_buftarg	*target,
818 	size_t			numblks,
819 	int			flags)
820 {
821 	unsigned long		page_count;
822 	int			error, i;
823 	struct xfs_buf		*bp;
824 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
825 
826 	bp = _xfs_buf_alloc(target, &map, 1, 0);
827 	if (unlikely(bp == NULL))
828 		goto fail;
829 
830 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
831 	error = _xfs_buf_get_pages(bp, page_count, 0);
832 	if (error)
833 		goto fail_free_buf;
834 
835 	for (i = 0; i < page_count; i++) {
836 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
837 		if (!bp->b_pages[i])
838 			goto fail_free_mem;
839 	}
840 	bp->b_flags |= _XBF_PAGES;
841 
842 	error = _xfs_buf_map_pages(bp, 0);
843 	if (unlikely(error)) {
844 		xfs_warn(target->bt_mount,
845 			"%s: failed to map pages\n", __func__);
846 		goto fail_free_mem;
847 	}
848 
849 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
850 	return bp;
851 
852  fail_free_mem:
853 	while (--i >= 0)
854 		__free_page(bp->b_pages[i]);
855 	_xfs_buf_free_pages(bp);
856  fail_free_buf:
857 	xfs_buf_free_maps(bp);
858 	kmem_zone_free(xfs_buf_zone, bp);
859  fail:
860 	return NULL;
861 }
862 
863 /*
864  *	Increment reference count on buffer, to hold the buffer concurrently
865  *	with another thread which may release (free) the buffer asynchronously.
866  *	Must hold the buffer already to call this function.
867  */
868 void
869 xfs_buf_hold(
870 	xfs_buf_t		*bp)
871 {
872 	trace_xfs_buf_hold(bp, _RET_IP_);
873 	atomic_inc(&bp->b_hold);
874 }
875 
876 /*
877  *	Releases a hold on the specified buffer.  If the
878  *	the hold count is 1, calls xfs_buf_free.
879  */
880 void
881 xfs_buf_rele(
882 	xfs_buf_t		*bp)
883 {
884 	struct xfs_perag	*pag = bp->b_pag;
885 
886 	trace_xfs_buf_rele(bp, _RET_IP_);
887 
888 	if (!pag) {
889 		ASSERT(list_empty(&bp->b_lru));
890 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
891 		if (atomic_dec_and_test(&bp->b_hold))
892 			xfs_buf_free(bp);
893 		return;
894 	}
895 
896 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
897 
898 	ASSERT(atomic_read(&bp->b_hold) > 0);
899 	if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
900 		if (!(bp->b_flags & XBF_STALE) &&
901 			   atomic_read(&bp->b_lru_ref)) {
902 			xfs_buf_lru_add(bp);
903 			spin_unlock(&pag->pag_buf_lock);
904 		} else {
905 			xfs_buf_lru_del(bp);
906 			ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
907 			rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
908 			spin_unlock(&pag->pag_buf_lock);
909 			xfs_perag_put(pag);
910 			xfs_buf_free(bp);
911 		}
912 	}
913 }
914 
915 
916 /*
917  *	Lock a buffer object, if it is not already locked.
918  *
919  *	If we come across a stale, pinned, locked buffer, we know that we are
920  *	being asked to lock a buffer that has been reallocated. Because it is
921  *	pinned, we know that the log has not been pushed to disk and hence it
922  *	will still be locked.  Rather than continuing to have trylock attempts
923  *	fail until someone else pushes the log, push it ourselves before
924  *	returning.  This means that the xfsaild will not get stuck trying
925  *	to push on stale inode buffers.
926  */
927 int
928 xfs_buf_trylock(
929 	struct xfs_buf		*bp)
930 {
931 	int			locked;
932 
933 	locked = down_trylock(&bp->b_sema) == 0;
934 	if (locked)
935 		XB_SET_OWNER(bp);
936 	else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
937 		xfs_log_force(bp->b_target->bt_mount, 0);
938 
939 	trace_xfs_buf_trylock(bp, _RET_IP_);
940 	return locked;
941 }
942 
943 /*
944  *	Lock a buffer object.
945  *
946  *	If we come across a stale, pinned, locked buffer, we know that we
947  *	are being asked to lock a buffer that has been reallocated. Because
948  *	it is pinned, we know that the log has not been pushed to disk and
949  *	hence it will still be locked. Rather than sleeping until someone
950  *	else pushes the log, push it ourselves before trying to get the lock.
951  */
952 void
953 xfs_buf_lock(
954 	struct xfs_buf		*bp)
955 {
956 	trace_xfs_buf_lock(bp, _RET_IP_);
957 
958 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
959 		xfs_log_force(bp->b_target->bt_mount, 0);
960 	down(&bp->b_sema);
961 	XB_SET_OWNER(bp);
962 
963 	trace_xfs_buf_lock_done(bp, _RET_IP_);
964 }
965 
966 void
967 xfs_buf_unlock(
968 	struct xfs_buf		*bp)
969 {
970 	XB_CLEAR_OWNER(bp);
971 	up(&bp->b_sema);
972 
973 	trace_xfs_buf_unlock(bp, _RET_IP_);
974 }
975 
976 STATIC void
977 xfs_buf_wait_unpin(
978 	xfs_buf_t		*bp)
979 {
980 	DECLARE_WAITQUEUE	(wait, current);
981 
982 	if (atomic_read(&bp->b_pin_count) == 0)
983 		return;
984 
985 	add_wait_queue(&bp->b_waiters, &wait);
986 	for (;;) {
987 		set_current_state(TASK_UNINTERRUPTIBLE);
988 		if (atomic_read(&bp->b_pin_count) == 0)
989 			break;
990 		io_schedule();
991 	}
992 	remove_wait_queue(&bp->b_waiters, &wait);
993 	set_current_state(TASK_RUNNING);
994 }
995 
996 /*
997  *	Buffer Utility Routines
998  */
999 
1000 STATIC void
1001 xfs_buf_iodone_work(
1002 	struct work_struct	*work)
1003 {
1004 	struct xfs_buf		*bp =
1005 		container_of(work, xfs_buf_t, b_iodone_work);
1006 	bool			read = !!(bp->b_flags & XBF_READ);
1007 
1008 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1009 	if (read && bp->b_ops)
1010 		bp->b_ops->verify_read(bp);
1011 
1012 	if (bp->b_iodone)
1013 		(*(bp->b_iodone))(bp);
1014 	else if (bp->b_flags & XBF_ASYNC)
1015 		xfs_buf_relse(bp);
1016 	else {
1017 		ASSERT(read && bp->b_ops);
1018 		complete(&bp->b_iowait);
1019 	}
1020 }
1021 
1022 void
1023 xfs_buf_ioend(
1024 	struct xfs_buf	*bp,
1025 	int		schedule)
1026 {
1027 	bool		read = !!(bp->b_flags & XBF_READ);
1028 
1029 	trace_xfs_buf_iodone(bp, _RET_IP_);
1030 
1031 	if (bp->b_error == 0)
1032 		bp->b_flags |= XBF_DONE;
1033 
1034 	if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1035 		if (schedule) {
1036 			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1037 			queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1038 		} else {
1039 			xfs_buf_iodone_work(&bp->b_iodone_work);
1040 		}
1041 	} else {
1042 		bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1043 		complete(&bp->b_iowait);
1044 	}
1045 }
1046 
1047 void
1048 xfs_buf_ioerror(
1049 	xfs_buf_t		*bp,
1050 	int			error)
1051 {
1052 	ASSERT(error >= 0 && error <= 0xffff);
1053 	bp->b_error = (unsigned short)error;
1054 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1055 }
1056 
1057 void
1058 xfs_buf_ioerror_alert(
1059 	struct xfs_buf		*bp,
1060 	const char		*func)
1061 {
1062 	xfs_alert(bp->b_target->bt_mount,
1063 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1064 		(__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
1065 }
1066 
1067 /*
1068  * Called when we want to stop a buffer from getting written or read.
1069  * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
1070  * so that the proper iodone callbacks get called.
1071  */
1072 STATIC int
1073 xfs_bioerror(
1074 	xfs_buf_t *bp)
1075 {
1076 #ifdef XFSERRORDEBUG
1077 	ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1078 #endif
1079 
1080 	/*
1081 	 * No need to wait until the buffer is unpinned, we aren't flushing it.
1082 	 */
1083 	xfs_buf_ioerror(bp, EIO);
1084 
1085 	/*
1086 	 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
1087 	 */
1088 	XFS_BUF_UNREAD(bp);
1089 	XFS_BUF_UNDONE(bp);
1090 	xfs_buf_stale(bp);
1091 
1092 	xfs_buf_ioend(bp, 0);
1093 
1094 	return EIO;
1095 }
1096 
1097 /*
1098  * Same as xfs_bioerror, except that we are releasing the buffer
1099  * here ourselves, and avoiding the xfs_buf_ioend call.
1100  * This is meant for userdata errors; metadata bufs come with
1101  * iodone functions attached, so that we can track down errors.
1102  */
1103 STATIC int
1104 xfs_bioerror_relse(
1105 	struct xfs_buf	*bp)
1106 {
1107 	int64_t		fl = bp->b_flags;
1108 	/*
1109 	 * No need to wait until the buffer is unpinned.
1110 	 * We aren't flushing it.
1111 	 *
1112 	 * chunkhold expects B_DONE to be set, whether
1113 	 * we actually finish the I/O or not. We don't want to
1114 	 * change that interface.
1115 	 */
1116 	XFS_BUF_UNREAD(bp);
1117 	XFS_BUF_DONE(bp);
1118 	xfs_buf_stale(bp);
1119 	bp->b_iodone = NULL;
1120 	if (!(fl & XBF_ASYNC)) {
1121 		/*
1122 		 * Mark b_error and B_ERROR _both_.
1123 		 * Lot's of chunkcache code assumes that.
1124 		 * There's no reason to mark error for
1125 		 * ASYNC buffers.
1126 		 */
1127 		xfs_buf_ioerror(bp, EIO);
1128 		complete(&bp->b_iowait);
1129 	} else {
1130 		xfs_buf_relse(bp);
1131 	}
1132 
1133 	return EIO;
1134 }
1135 
1136 STATIC int
1137 xfs_bdstrat_cb(
1138 	struct xfs_buf	*bp)
1139 {
1140 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1141 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1142 		/*
1143 		 * Metadata write that didn't get logged but
1144 		 * written delayed anyway. These aren't associated
1145 		 * with a transaction, and can be ignored.
1146 		 */
1147 		if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1148 			return xfs_bioerror_relse(bp);
1149 		else
1150 			return xfs_bioerror(bp);
1151 	}
1152 
1153 	xfs_buf_iorequest(bp);
1154 	return 0;
1155 }
1156 
1157 int
1158 xfs_bwrite(
1159 	struct xfs_buf		*bp)
1160 {
1161 	int			error;
1162 
1163 	ASSERT(xfs_buf_islocked(bp));
1164 
1165 	bp->b_flags |= XBF_WRITE;
1166 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1167 
1168 	xfs_bdstrat_cb(bp);
1169 
1170 	error = xfs_buf_iowait(bp);
1171 	if (error) {
1172 		xfs_force_shutdown(bp->b_target->bt_mount,
1173 				   SHUTDOWN_META_IO_ERROR);
1174 	}
1175 	return error;
1176 }
1177 
1178 /*
1179  * Wrapper around bdstrat so that we can stop data from going to disk in case
1180  * we are shutting down the filesystem.  Typically user data goes thru this
1181  * path; one of the exceptions is the superblock.
1182  */
1183 void
1184 xfsbdstrat(
1185 	struct xfs_mount	*mp,
1186 	struct xfs_buf		*bp)
1187 {
1188 	if (XFS_FORCED_SHUTDOWN(mp)) {
1189 		trace_xfs_bdstrat_shut(bp, _RET_IP_);
1190 		xfs_bioerror_relse(bp);
1191 		return;
1192 	}
1193 
1194 	xfs_buf_iorequest(bp);
1195 }
1196 
1197 STATIC void
1198 _xfs_buf_ioend(
1199 	xfs_buf_t		*bp,
1200 	int			schedule)
1201 {
1202 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1203 		xfs_buf_ioend(bp, schedule);
1204 }
1205 
1206 STATIC void
1207 xfs_buf_bio_end_io(
1208 	struct bio		*bio,
1209 	int			error)
1210 {
1211 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
1212 
1213 	/*
1214 	 * don't overwrite existing errors - otherwise we can lose errors on
1215 	 * buffers that require multiple bios to complete.
1216 	 */
1217 	if (!bp->b_error)
1218 		xfs_buf_ioerror(bp, -error);
1219 
1220 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1221 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1222 
1223 	_xfs_buf_ioend(bp, 1);
1224 	bio_put(bio);
1225 }
1226 
1227 static void
1228 xfs_buf_ioapply_map(
1229 	struct xfs_buf	*bp,
1230 	int		map,
1231 	int		*buf_offset,
1232 	int		*count,
1233 	int		rw)
1234 {
1235 	int		page_index;
1236 	int		total_nr_pages = bp->b_page_count;
1237 	int		nr_pages;
1238 	struct bio	*bio;
1239 	sector_t	sector =  bp->b_maps[map].bm_bn;
1240 	int		size;
1241 	int		offset;
1242 
1243 	total_nr_pages = bp->b_page_count;
1244 
1245 	/* skip the pages in the buffer before the start offset */
1246 	page_index = 0;
1247 	offset = *buf_offset;
1248 	while (offset >= PAGE_SIZE) {
1249 		page_index++;
1250 		offset -= PAGE_SIZE;
1251 	}
1252 
1253 	/*
1254 	 * Limit the IO size to the length of the current vector, and update the
1255 	 * remaining IO count for the next time around.
1256 	 */
1257 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1258 	*count -= size;
1259 	*buf_offset += size;
1260 
1261 next_chunk:
1262 	atomic_inc(&bp->b_io_remaining);
1263 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1264 	if (nr_pages > total_nr_pages)
1265 		nr_pages = total_nr_pages;
1266 
1267 	bio = bio_alloc(GFP_NOIO, nr_pages);
1268 	bio->bi_bdev = bp->b_target->bt_bdev;
1269 	bio->bi_sector = sector;
1270 	bio->bi_end_io = xfs_buf_bio_end_io;
1271 	bio->bi_private = bp;
1272 
1273 
1274 	for (; size && nr_pages; nr_pages--, page_index++) {
1275 		int	rbytes, nbytes = PAGE_SIZE - offset;
1276 
1277 		if (nbytes > size)
1278 			nbytes = size;
1279 
1280 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1281 				      offset);
1282 		if (rbytes < nbytes)
1283 			break;
1284 
1285 		offset = 0;
1286 		sector += BTOBB(nbytes);
1287 		size -= nbytes;
1288 		total_nr_pages--;
1289 	}
1290 
1291 	if (likely(bio->bi_size)) {
1292 		if (xfs_buf_is_vmapped(bp)) {
1293 			flush_kernel_vmap_range(bp->b_addr,
1294 						xfs_buf_vmap_len(bp));
1295 		}
1296 		submit_bio(rw, bio);
1297 		if (size)
1298 			goto next_chunk;
1299 	} else {
1300 		/*
1301 		 * This is guaranteed not to be the last io reference count
1302 		 * because the caller (xfs_buf_iorequest) holds a count itself.
1303 		 */
1304 		atomic_dec(&bp->b_io_remaining);
1305 		xfs_buf_ioerror(bp, EIO);
1306 		bio_put(bio);
1307 	}
1308 
1309 }
1310 
1311 STATIC void
1312 _xfs_buf_ioapply(
1313 	struct xfs_buf	*bp)
1314 {
1315 	struct blk_plug	plug;
1316 	int		rw;
1317 	int		offset;
1318 	int		size;
1319 	int		i;
1320 
1321 	if (bp->b_flags & XBF_WRITE) {
1322 		if (bp->b_flags & XBF_SYNCIO)
1323 			rw = WRITE_SYNC;
1324 		else
1325 			rw = WRITE;
1326 		if (bp->b_flags & XBF_FUA)
1327 			rw |= REQ_FUA;
1328 		if (bp->b_flags & XBF_FLUSH)
1329 			rw |= REQ_FLUSH;
1330 
1331 		/*
1332 		 * Run the write verifier callback function if it exists. If
1333 		 * this function fails it will mark the buffer with an error and
1334 		 * the IO should not be dispatched.
1335 		 */
1336 		if (bp->b_ops) {
1337 			bp->b_ops->verify_write(bp);
1338 			if (bp->b_error) {
1339 				xfs_force_shutdown(bp->b_target->bt_mount,
1340 						   SHUTDOWN_CORRUPT_INCORE);
1341 				return;
1342 			}
1343 		}
1344 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1345 		rw = READA;
1346 	} else {
1347 		rw = READ;
1348 	}
1349 
1350 	/* we only use the buffer cache for meta-data */
1351 	rw |= REQ_META;
1352 
1353 	/*
1354 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1355 	 * into the buffer and the desired IO size before we start -
1356 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1357 	 * subsequent call.
1358 	 */
1359 	offset = bp->b_offset;
1360 	size = BBTOB(bp->b_io_length);
1361 	blk_start_plug(&plug);
1362 	for (i = 0; i < bp->b_map_count; i++) {
1363 		xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1364 		if (bp->b_error)
1365 			break;
1366 		if (size <= 0)
1367 			break;	/* all done */
1368 	}
1369 	blk_finish_plug(&plug);
1370 }
1371 
1372 void
1373 xfs_buf_iorequest(
1374 	xfs_buf_t		*bp)
1375 {
1376 	trace_xfs_buf_iorequest(bp, _RET_IP_);
1377 
1378 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1379 
1380 	if (bp->b_flags & XBF_WRITE)
1381 		xfs_buf_wait_unpin(bp);
1382 	xfs_buf_hold(bp);
1383 
1384 	/* Set the count to 1 initially, this will stop an I/O
1385 	 * completion callout which happens before we have started
1386 	 * all the I/O from calling xfs_buf_ioend too early.
1387 	 */
1388 	atomic_set(&bp->b_io_remaining, 1);
1389 	_xfs_buf_ioapply(bp);
1390 	_xfs_buf_ioend(bp, 1);
1391 
1392 	xfs_buf_rele(bp);
1393 }
1394 
1395 /*
1396  * Waits for I/O to complete on the buffer supplied.  It returns immediately if
1397  * no I/O is pending or there is already a pending error on the buffer.  It
1398  * returns the I/O error code, if any, or 0 if there was no error.
1399  */
1400 int
1401 xfs_buf_iowait(
1402 	xfs_buf_t		*bp)
1403 {
1404 	trace_xfs_buf_iowait(bp, _RET_IP_);
1405 
1406 	if (!bp->b_error)
1407 		wait_for_completion(&bp->b_iowait);
1408 
1409 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1410 	return bp->b_error;
1411 }
1412 
1413 xfs_caddr_t
1414 xfs_buf_offset(
1415 	xfs_buf_t		*bp,
1416 	size_t			offset)
1417 {
1418 	struct page		*page;
1419 
1420 	if (bp->b_addr)
1421 		return bp->b_addr + offset;
1422 
1423 	offset += bp->b_offset;
1424 	page = bp->b_pages[offset >> PAGE_SHIFT];
1425 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1426 }
1427 
1428 /*
1429  *	Move data into or out of a buffer.
1430  */
1431 void
1432 xfs_buf_iomove(
1433 	xfs_buf_t		*bp,	/* buffer to process		*/
1434 	size_t			boff,	/* starting buffer offset	*/
1435 	size_t			bsize,	/* length to copy		*/
1436 	void			*data,	/* data address			*/
1437 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1438 {
1439 	size_t			bend;
1440 
1441 	bend = boff + bsize;
1442 	while (boff < bend) {
1443 		struct page	*page;
1444 		int		page_index, page_offset, csize;
1445 
1446 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1447 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1448 		page = bp->b_pages[page_index];
1449 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1450 				      BBTOB(bp->b_io_length) - boff);
1451 
1452 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1453 
1454 		switch (mode) {
1455 		case XBRW_ZERO:
1456 			memset(page_address(page) + page_offset, 0, csize);
1457 			break;
1458 		case XBRW_READ:
1459 			memcpy(data, page_address(page) + page_offset, csize);
1460 			break;
1461 		case XBRW_WRITE:
1462 			memcpy(page_address(page) + page_offset, data, csize);
1463 		}
1464 
1465 		boff += csize;
1466 		data += csize;
1467 	}
1468 }
1469 
1470 /*
1471  *	Handling of buffer targets (buftargs).
1472  */
1473 
1474 /*
1475  * Wait for any bufs with callbacks that have been submitted but have not yet
1476  * returned. These buffers will have an elevated hold count, so wait on those
1477  * while freeing all the buffers only held by the LRU.
1478  */
1479 void
1480 xfs_wait_buftarg(
1481 	struct xfs_buftarg	*btp)
1482 {
1483 	struct xfs_buf		*bp;
1484 
1485 restart:
1486 	spin_lock(&btp->bt_lru_lock);
1487 	while (!list_empty(&btp->bt_lru)) {
1488 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1489 		if (atomic_read(&bp->b_hold) > 1) {
1490 			spin_unlock(&btp->bt_lru_lock);
1491 			delay(100);
1492 			goto restart;
1493 		}
1494 		/*
1495 		 * clear the LRU reference count so the buffer doesn't get
1496 		 * ignored in xfs_buf_rele().
1497 		 */
1498 		atomic_set(&bp->b_lru_ref, 0);
1499 		spin_unlock(&btp->bt_lru_lock);
1500 		xfs_buf_rele(bp);
1501 		spin_lock(&btp->bt_lru_lock);
1502 	}
1503 	spin_unlock(&btp->bt_lru_lock);
1504 }
1505 
1506 int
1507 xfs_buftarg_shrink(
1508 	struct shrinker		*shrink,
1509 	struct shrink_control	*sc)
1510 {
1511 	struct xfs_buftarg	*btp = container_of(shrink,
1512 					struct xfs_buftarg, bt_shrinker);
1513 	struct xfs_buf		*bp;
1514 	int nr_to_scan = sc->nr_to_scan;
1515 	LIST_HEAD(dispose);
1516 
1517 	if (!nr_to_scan)
1518 		return btp->bt_lru_nr;
1519 
1520 	spin_lock(&btp->bt_lru_lock);
1521 	while (!list_empty(&btp->bt_lru)) {
1522 		if (nr_to_scan-- <= 0)
1523 			break;
1524 
1525 		bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1526 
1527 		/*
1528 		 * Decrement the b_lru_ref count unless the value is already
1529 		 * zero. If the value is already zero, we need to reclaim the
1530 		 * buffer, otherwise it gets another trip through the LRU.
1531 		 */
1532 		if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1533 			list_move_tail(&bp->b_lru, &btp->bt_lru);
1534 			continue;
1535 		}
1536 
1537 		/*
1538 		 * remove the buffer from the LRU now to avoid needing another
1539 		 * lock round trip inside xfs_buf_rele().
1540 		 */
1541 		list_move(&bp->b_lru, &dispose);
1542 		btp->bt_lru_nr--;
1543 		bp->b_lru_flags |= _XBF_LRU_DISPOSE;
1544 	}
1545 	spin_unlock(&btp->bt_lru_lock);
1546 
1547 	while (!list_empty(&dispose)) {
1548 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1549 		list_del_init(&bp->b_lru);
1550 		xfs_buf_rele(bp);
1551 	}
1552 
1553 	return btp->bt_lru_nr;
1554 }
1555 
1556 void
1557 xfs_free_buftarg(
1558 	struct xfs_mount	*mp,
1559 	struct xfs_buftarg	*btp)
1560 {
1561 	unregister_shrinker(&btp->bt_shrinker);
1562 
1563 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1564 		xfs_blkdev_issue_flush(btp);
1565 
1566 	kmem_free(btp);
1567 }
1568 
1569 STATIC int
1570 xfs_setsize_buftarg_flags(
1571 	xfs_buftarg_t		*btp,
1572 	unsigned int		blocksize,
1573 	unsigned int		sectorsize,
1574 	int			verbose)
1575 {
1576 	btp->bt_bsize = blocksize;
1577 	btp->bt_sshift = ffs(sectorsize) - 1;
1578 	btp->bt_smask = sectorsize - 1;
1579 
1580 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1581 		char name[BDEVNAME_SIZE];
1582 
1583 		bdevname(btp->bt_bdev, name);
1584 
1585 		xfs_warn(btp->bt_mount,
1586 			"Cannot set_blocksize to %u on device %s\n",
1587 			sectorsize, name);
1588 		return EINVAL;
1589 	}
1590 
1591 	return 0;
1592 }
1593 
1594 /*
1595  *	When allocating the initial buffer target we have not yet
1596  *	read in the superblock, so don't know what sized sectors
1597  *	are being used is at this early stage.  Play safe.
1598  */
1599 STATIC int
1600 xfs_setsize_buftarg_early(
1601 	xfs_buftarg_t		*btp,
1602 	struct block_device	*bdev)
1603 {
1604 	return xfs_setsize_buftarg_flags(btp,
1605 			PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1606 }
1607 
1608 int
1609 xfs_setsize_buftarg(
1610 	xfs_buftarg_t		*btp,
1611 	unsigned int		blocksize,
1612 	unsigned int		sectorsize)
1613 {
1614 	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1615 }
1616 
1617 xfs_buftarg_t *
1618 xfs_alloc_buftarg(
1619 	struct xfs_mount	*mp,
1620 	struct block_device	*bdev,
1621 	int			external,
1622 	const char		*fsname)
1623 {
1624 	xfs_buftarg_t		*btp;
1625 
1626 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1627 
1628 	btp->bt_mount = mp;
1629 	btp->bt_dev =  bdev->bd_dev;
1630 	btp->bt_bdev = bdev;
1631 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1632 	if (!btp->bt_bdi)
1633 		goto error;
1634 
1635 	INIT_LIST_HEAD(&btp->bt_lru);
1636 	spin_lock_init(&btp->bt_lru_lock);
1637 	if (xfs_setsize_buftarg_early(btp, bdev))
1638 		goto error;
1639 	btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1640 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1641 	register_shrinker(&btp->bt_shrinker);
1642 	return btp;
1643 
1644 error:
1645 	kmem_free(btp);
1646 	return NULL;
1647 }
1648 
1649 /*
1650  * Add a buffer to the delayed write list.
1651  *
1652  * This queues a buffer for writeout if it hasn't already been.  Note that
1653  * neither this routine nor the buffer list submission functions perform
1654  * any internal synchronization.  It is expected that the lists are thread-local
1655  * to the callers.
1656  *
1657  * Returns true if we queued up the buffer, or false if it already had
1658  * been on the buffer list.
1659  */
1660 bool
1661 xfs_buf_delwri_queue(
1662 	struct xfs_buf		*bp,
1663 	struct list_head	*list)
1664 {
1665 	ASSERT(xfs_buf_islocked(bp));
1666 	ASSERT(!(bp->b_flags & XBF_READ));
1667 
1668 	/*
1669 	 * If the buffer is already marked delwri it already is queued up
1670 	 * by someone else for imediate writeout.  Just ignore it in that
1671 	 * case.
1672 	 */
1673 	if (bp->b_flags & _XBF_DELWRI_Q) {
1674 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1675 		return false;
1676 	}
1677 
1678 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1679 
1680 	/*
1681 	 * If a buffer gets written out synchronously or marked stale while it
1682 	 * is on a delwri list we lazily remove it. To do this, the other party
1683 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1684 	 * It remains referenced and on the list.  In a rare corner case it
1685 	 * might get readded to a delwri list after the synchronous writeout, in
1686 	 * which case we need just need to re-add the flag here.
1687 	 */
1688 	bp->b_flags |= _XBF_DELWRI_Q;
1689 	if (list_empty(&bp->b_list)) {
1690 		atomic_inc(&bp->b_hold);
1691 		list_add_tail(&bp->b_list, list);
1692 	}
1693 
1694 	return true;
1695 }
1696 
1697 /*
1698  * Compare function is more complex than it needs to be because
1699  * the return value is only 32 bits and we are doing comparisons
1700  * on 64 bit values
1701  */
1702 static int
1703 xfs_buf_cmp(
1704 	void		*priv,
1705 	struct list_head *a,
1706 	struct list_head *b)
1707 {
1708 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1709 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1710 	xfs_daddr_t		diff;
1711 
1712 	diff = ap->b_map.bm_bn - bp->b_map.bm_bn;
1713 	if (diff < 0)
1714 		return -1;
1715 	if (diff > 0)
1716 		return 1;
1717 	return 0;
1718 }
1719 
1720 static int
1721 __xfs_buf_delwri_submit(
1722 	struct list_head	*buffer_list,
1723 	struct list_head	*io_list,
1724 	bool			wait)
1725 {
1726 	struct blk_plug		plug;
1727 	struct xfs_buf		*bp, *n;
1728 	int			pinned = 0;
1729 
1730 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1731 		if (!wait) {
1732 			if (xfs_buf_ispinned(bp)) {
1733 				pinned++;
1734 				continue;
1735 			}
1736 			if (!xfs_buf_trylock(bp))
1737 				continue;
1738 		} else {
1739 			xfs_buf_lock(bp);
1740 		}
1741 
1742 		/*
1743 		 * Someone else might have written the buffer synchronously or
1744 		 * marked it stale in the meantime.  In that case only the
1745 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1746 		 * reference and remove it from the list here.
1747 		 */
1748 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1749 			list_del_init(&bp->b_list);
1750 			xfs_buf_relse(bp);
1751 			continue;
1752 		}
1753 
1754 		list_move_tail(&bp->b_list, io_list);
1755 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1756 	}
1757 
1758 	list_sort(NULL, io_list, xfs_buf_cmp);
1759 
1760 	blk_start_plug(&plug);
1761 	list_for_each_entry_safe(bp, n, io_list, b_list) {
1762 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1763 		bp->b_flags |= XBF_WRITE;
1764 
1765 		if (!wait) {
1766 			bp->b_flags |= XBF_ASYNC;
1767 			list_del_init(&bp->b_list);
1768 		}
1769 		xfs_bdstrat_cb(bp);
1770 	}
1771 	blk_finish_plug(&plug);
1772 
1773 	return pinned;
1774 }
1775 
1776 /*
1777  * Write out a buffer list asynchronously.
1778  *
1779  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1780  * out and not wait for I/O completion on any of the buffers.  This interface
1781  * is only safely useable for callers that can track I/O completion by higher
1782  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1783  * function.
1784  */
1785 int
1786 xfs_buf_delwri_submit_nowait(
1787 	struct list_head	*buffer_list)
1788 {
1789 	LIST_HEAD		(io_list);
1790 	return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1791 }
1792 
1793 /*
1794  * Write out a buffer list synchronously.
1795  *
1796  * This will take the @buffer_list, write all buffers out and wait for I/O
1797  * completion on all of the buffers. @buffer_list is consumed by the function,
1798  * so callers must have some other way of tracking buffers if they require such
1799  * functionality.
1800  */
1801 int
1802 xfs_buf_delwri_submit(
1803 	struct list_head	*buffer_list)
1804 {
1805 	LIST_HEAD		(io_list);
1806 	int			error = 0, error2;
1807 	struct xfs_buf		*bp;
1808 
1809 	__xfs_buf_delwri_submit(buffer_list, &io_list, true);
1810 
1811 	/* Wait for IO to complete. */
1812 	while (!list_empty(&io_list)) {
1813 		bp = list_first_entry(&io_list, struct xfs_buf, b_list);
1814 
1815 		list_del_init(&bp->b_list);
1816 		error2 = xfs_buf_iowait(bp);
1817 		xfs_buf_relse(bp);
1818 		if (!error)
1819 			error = error2;
1820 	}
1821 
1822 	return error;
1823 }
1824 
1825 int __init
1826 xfs_buf_init(void)
1827 {
1828 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1829 						KM_ZONE_HWALIGN, NULL);
1830 	if (!xfs_buf_zone)
1831 		goto out;
1832 
1833 	xfslogd_workqueue = alloc_workqueue("xfslogd",
1834 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
1835 	if (!xfslogd_workqueue)
1836 		goto out_free_buf_zone;
1837 
1838 	return 0;
1839 
1840  out_free_buf_zone:
1841 	kmem_zone_destroy(xfs_buf_zone);
1842  out:
1843 	return -ENOMEM;
1844 }
1845 
1846 void
1847 xfs_buf_terminate(void)
1848 {
1849 	destroy_workqueue(xfslogd_workqueue);
1850 	kmem_zone_destroy(xfs_buf_zone);
1851 }
1852