1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * Copyright (c) 2012 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_shared.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_bit.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_defer.h" 29 #include "xfs_inode.h" 30 #include "xfs_btree.h" 31 #include "xfs_trans.h" 32 #include "xfs_extfree_item.h" 33 #include "xfs_alloc.h" 34 #include "xfs_bmap.h" 35 #include "xfs_bmap_util.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_rtalloc.h" 38 #include "xfs_error.h" 39 #include "xfs_quota.h" 40 #include "xfs_trans_space.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_log.h" 44 #include "xfs_rmap_btree.h" 45 #include "xfs_iomap.h" 46 #include "xfs_reflink.h" 47 #include "xfs_refcount.h" 48 49 /* Kernel only BMAP related definitions and functions */ 50 51 /* 52 * Convert the given file system block to a disk block. We have to treat it 53 * differently based on whether the file is a real time file or not, because the 54 * bmap code does. 55 */ 56 xfs_daddr_t 57 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) 58 { 59 return (XFS_IS_REALTIME_INODE(ip) ? \ 60 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \ 61 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb))); 62 } 63 64 /* 65 * Routine to zero an extent on disk allocated to the specific inode. 66 * 67 * The VFS functions take a linearised filesystem block offset, so we have to 68 * convert the sparse xfs fsb to the right format first. 69 * VFS types are real funky, too. 70 */ 71 int 72 xfs_zero_extent( 73 struct xfs_inode *ip, 74 xfs_fsblock_t start_fsb, 75 xfs_off_t count_fsb) 76 { 77 struct xfs_mount *mp = ip->i_mount; 78 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb); 79 sector_t block = XFS_BB_TO_FSBT(mp, sector); 80 81 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)), 82 block << (mp->m_super->s_blocksize_bits - 9), 83 count_fsb << (mp->m_super->s_blocksize_bits - 9), 84 GFP_NOFS, 0); 85 } 86 87 #ifdef CONFIG_XFS_RT 88 int 89 xfs_bmap_rtalloc( 90 struct xfs_bmalloca *ap) /* bmap alloc argument struct */ 91 { 92 int error; /* error return value */ 93 xfs_mount_t *mp; /* mount point structure */ 94 xfs_extlen_t prod = 0; /* product factor for allocators */ 95 xfs_extlen_t ralen = 0; /* realtime allocation length */ 96 xfs_extlen_t align; /* minimum allocation alignment */ 97 xfs_rtblock_t rtb; 98 99 mp = ap->ip->i_mount; 100 align = xfs_get_extsz_hint(ap->ip); 101 prod = align / mp->m_sb.sb_rextsize; 102 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, 103 align, 1, ap->eof, 0, 104 ap->conv, &ap->offset, &ap->length); 105 if (error) 106 return error; 107 ASSERT(ap->length); 108 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); 109 110 /* 111 * If the offset & length are not perfectly aligned 112 * then kill prod, it will just get us in trouble. 113 */ 114 if (do_mod(ap->offset, align) || ap->length % align) 115 prod = 1; 116 /* 117 * Set ralen to be the actual requested length in rtextents. 118 */ 119 ralen = ap->length / mp->m_sb.sb_rextsize; 120 /* 121 * If the old value was close enough to MAXEXTLEN that 122 * we rounded up to it, cut it back so it's valid again. 123 * Note that if it's a really large request (bigger than 124 * MAXEXTLEN), we don't hear about that number, and can't 125 * adjust the starting point to match it. 126 */ 127 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) 128 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; 129 130 /* 131 * Lock out modifications to both the RT bitmap and summary inodes 132 */ 133 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP); 134 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); 135 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM); 136 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL); 137 138 /* 139 * If it's an allocation to an empty file at offset 0, 140 * pick an extent that will space things out in the rt area. 141 */ 142 if (ap->eof && ap->offset == 0) { 143 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */ 144 145 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); 146 if (error) 147 return error; 148 ap->blkno = rtx * mp->m_sb.sb_rextsize; 149 } else { 150 ap->blkno = 0; 151 } 152 153 xfs_bmap_adjacent(ap); 154 155 /* 156 * Realtime allocation, done through xfs_rtallocate_extent. 157 */ 158 do_div(ap->blkno, mp->m_sb.sb_rextsize); 159 rtb = ap->blkno; 160 ap->length = ralen; 161 error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, 162 &ralen, ap->wasdel, prod, &rtb); 163 if (error) 164 return error; 165 166 ap->blkno = rtb; 167 if (ap->blkno != NULLFSBLOCK) { 168 ap->blkno *= mp->m_sb.sb_rextsize; 169 ralen *= mp->m_sb.sb_rextsize; 170 ap->length = ralen; 171 ap->ip->i_d.di_nblocks += ralen; 172 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); 173 if (ap->wasdel) 174 ap->ip->i_delayed_blks -= ralen; 175 /* 176 * Adjust the disk quota also. This was reserved 177 * earlier. 178 */ 179 xfs_trans_mod_dquot_byino(ap->tp, ap->ip, 180 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : 181 XFS_TRANS_DQ_RTBCOUNT, (long) ralen); 182 183 /* Zero the extent if we were asked to do so */ 184 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) { 185 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length); 186 if (error) 187 return error; 188 } 189 } else { 190 ap->length = 0; 191 } 192 return 0; 193 } 194 #endif /* CONFIG_XFS_RT */ 195 196 /* 197 * Check if the endoff is outside the last extent. If so the caller will grow 198 * the allocation to a stripe unit boundary. All offsets are considered outside 199 * the end of file for an empty fork, so 1 is returned in *eof in that case. 200 */ 201 int 202 xfs_bmap_eof( 203 struct xfs_inode *ip, 204 xfs_fileoff_t endoff, 205 int whichfork, 206 int *eof) 207 { 208 struct xfs_bmbt_irec rec; 209 int error; 210 211 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof); 212 if (error || *eof) 213 return error; 214 215 *eof = endoff >= rec.br_startoff + rec.br_blockcount; 216 return 0; 217 } 218 219 /* 220 * Extent tree block counting routines. 221 */ 222 223 /* 224 * Count leaf blocks given a range of extent records. Delayed allocation 225 * extents are not counted towards the totals. 226 */ 227 xfs_extnum_t 228 xfs_bmap_count_leaves( 229 struct xfs_ifork *ifp, 230 xfs_filblks_t *count) 231 { 232 struct xfs_iext_cursor icur; 233 struct xfs_bmbt_irec got; 234 xfs_extnum_t numrecs = 0; 235 236 for_each_xfs_iext(ifp, &icur, &got) { 237 if (!isnullstartblock(got.br_startblock)) { 238 *count += got.br_blockcount; 239 numrecs++; 240 } 241 } 242 243 return numrecs; 244 } 245 246 /* 247 * Count leaf blocks given a range of extent records originally 248 * in btree format. 249 */ 250 STATIC void 251 xfs_bmap_disk_count_leaves( 252 struct xfs_mount *mp, 253 struct xfs_btree_block *block, 254 int numrecs, 255 xfs_filblks_t *count) 256 { 257 int b; 258 xfs_bmbt_rec_t *frp; 259 260 for (b = 1; b <= numrecs; b++) { 261 frp = XFS_BMBT_REC_ADDR(mp, block, b); 262 *count += xfs_bmbt_disk_get_blockcount(frp); 263 } 264 } 265 266 /* 267 * Recursively walks each level of a btree 268 * to count total fsblocks in use. 269 */ 270 STATIC int 271 xfs_bmap_count_tree( 272 struct xfs_mount *mp, 273 struct xfs_trans *tp, 274 struct xfs_ifork *ifp, 275 xfs_fsblock_t blockno, 276 int levelin, 277 xfs_extnum_t *nextents, 278 xfs_filblks_t *count) 279 { 280 int error; 281 struct xfs_buf *bp, *nbp; 282 int level = levelin; 283 __be64 *pp; 284 xfs_fsblock_t bno = blockno; 285 xfs_fsblock_t nextbno; 286 struct xfs_btree_block *block, *nextblock; 287 int numrecs; 288 289 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF, 290 &xfs_bmbt_buf_ops); 291 if (error) 292 return error; 293 *count += 1; 294 block = XFS_BUF_TO_BLOCK(bp); 295 296 if (--level) { 297 /* Not at node above leaves, count this level of nodes */ 298 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 299 while (nextbno != NULLFSBLOCK) { 300 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp, 301 XFS_BMAP_BTREE_REF, 302 &xfs_bmbt_buf_ops); 303 if (error) 304 return error; 305 *count += 1; 306 nextblock = XFS_BUF_TO_BLOCK(nbp); 307 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib); 308 xfs_trans_brelse(tp, nbp); 309 } 310 311 /* Dive to the next level */ 312 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]); 313 bno = be64_to_cpu(*pp); 314 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents, 315 count); 316 if (error) { 317 xfs_trans_brelse(tp, bp); 318 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)", 319 XFS_ERRLEVEL_LOW, mp); 320 return -EFSCORRUPTED; 321 } 322 xfs_trans_brelse(tp, bp); 323 } else { 324 /* count all level 1 nodes and their leaves */ 325 for (;;) { 326 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 327 numrecs = be16_to_cpu(block->bb_numrecs); 328 (*nextents) += numrecs; 329 xfs_bmap_disk_count_leaves(mp, block, numrecs, count); 330 xfs_trans_brelse(tp, bp); 331 if (nextbno == NULLFSBLOCK) 332 break; 333 bno = nextbno; 334 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, 335 XFS_BMAP_BTREE_REF, 336 &xfs_bmbt_buf_ops); 337 if (error) 338 return error; 339 *count += 1; 340 block = XFS_BUF_TO_BLOCK(bp); 341 } 342 } 343 return 0; 344 } 345 346 /* 347 * Count fsblocks of the given fork. Delayed allocation extents are 348 * not counted towards the totals. 349 */ 350 int 351 xfs_bmap_count_blocks( 352 struct xfs_trans *tp, 353 struct xfs_inode *ip, 354 int whichfork, 355 xfs_extnum_t *nextents, 356 xfs_filblks_t *count) 357 { 358 struct xfs_mount *mp; /* file system mount structure */ 359 __be64 *pp; /* pointer to block address */ 360 struct xfs_btree_block *block; /* current btree block */ 361 struct xfs_ifork *ifp; /* fork structure */ 362 xfs_fsblock_t bno; /* block # of "block" */ 363 int level; /* btree level, for checking */ 364 int error; 365 366 bno = NULLFSBLOCK; 367 mp = ip->i_mount; 368 *nextents = 0; 369 *count = 0; 370 ifp = XFS_IFORK_PTR(ip, whichfork); 371 if (!ifp) 372 return 0; 373 374 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 375 case XFS_DINODE_FMT_EXTENTS: 376 *nextents = xfs_bmap_count_leaves(ifp, count); 377 return 0; 378 case XFS_DINODE_FMT_BTREE: 379 if (!(ifp->if_flags & XFS_IFEXTENTS)) { 380 error = xfs_iread_extents(tp, ip, whichfork); 381 if (error) 382 return error; 383 } 384 385 /* 386 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out. 387 */ 388 block = ifp->if_broot; 389 level = be16_to_cpu(block->bb_level); 390 ASSERT(level > 0); 391 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes); 392 bno = be64_to_cpu(*pp); 393 ASSERT(bno != NULLFSBLOCK); 394 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount); 395 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks); 396 397 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, 398 nextents, count); 399 if (error) { 400 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", 401 XFS_ERRLEVEL_LOW, mp); 402 return -EFSCORRUPTED; 403 } 404 return 0; 405 } 406 407 return 0; 408 } 409 410 static int 411 xfs_getbmap_report_one( 412 struct xfs_inode *ip, 413 struct getbmapx *bmv, 414 struct kgetbmap *out, 415 int64_t bmv_end, 416 struct xfs_bmbt_irec *got) 417 { 418 struct kgetbmap *p = out + bmv->bmv_entries; 419 bool shared = false, trimmed = false; 420 int error; 421 422 error = xfs_reflink_trim_around_shared(ip, got, &shared, &trimmed); 423 if (error) 424 return error; 425 426 if (isnullstartblock(got->br_startblock) || 427 got->br_startblock == DELAYSTARTBLOCK) { 428 /* 429 * Delalloc extents that start beyond EOF can occur due to 430 * speculative EOF allocation when the delalloc extent is larger 431 * than the largest freespace extent at conversion time. These 432 * extents cannot be converted by data writeback, so can exist 433 * here even if we are not supposed to be finding delalloc 434 * extents. 435 */ 436 if (got->br_startoff < XFS_B_TO_FSB(ip->i_mount, XFS_ISIZE(ip))) 437 ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0); 438 439 p->bmv_oflags |= BMV_OF_DELALLOC; 440 p->bmv_block = -2; 441 } else { 442 p->bmv_block = xfs_fsb_to_db(ip, got->br_startblock); 443 } 444 445 if (got->br_state == XFS_EXT_UNWRITTEN && 446 (bmv->bmv_iflags & BMV_IF_PREALLOC)) 447 p->bmv_oflags |= BMV_OF_PREALLOC; 448 449 if (shared) 450 p->bmv_oflags |= BMV_OF_SHARED; 451 452 p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, got->br_startoff); 453 p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, got->br_blockcount); 454 455 bmv->bmv_offset = p->bmv_offset + p->bmv_length; 456 bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset); 457 bmv->bmv_entries++; 458 return 0; 459 } 460 461 static void 462 xfs_getbmap_report_hole( 463 struct xfs_inode *ip, 464 struct getbmapx *bmv, 465 struct kgetbmap *out, 466 int64_t bmv_end, 467 xfs_fileoff_t bno, 468 xfs_fileoff_t end) 469 { 470 struct kgetbmap *p = out + bmv->bmv_entries; 471 472 if (bmv->bmv_iflags & BMV_IF_NO_HOLES) 473 return; 474 475 p->bmv_block = -1; 476 p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, bno); 477 p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, end - bno); 478 479 bmv->bmv_offset = p->bmv_offset + p->bmv_length; 480 bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset); 481 bmv->bmv_entries++; 482 } 483 484 static inline bool 485 xfs_getbmap_full( 486 struct getbmapx *bmv) 487 { 488 return bmv->bmv_length == 0 || bmv->bmv_entries >= bmv->bmv_count - 1; 489 } 490 491 static bool 492 xfs_getbmap_next_rec( 493 struct xfs_bmbt_irec *rec, 494 xfs_fileoff_t total_end) 495 { 496 xfs_fileoff_t end = rec->br_startoff + rec->br_blockcount; 497 498 if (end == total_end) 499 return false; 500 501 rec->br_startoff += rec->br_blockcount; 502 if (!isnullstartblock(rec->br_startblock) && 503 rec->br_startblock != DELAYSTARTBLOCK) 504 rec->br_startblock += rec->br_blockcount; 505 rec->br_blockcount = total_end - end; 506 return true; 507 } 508 509 /* 510 * Get inode's extents as described in bmv, and format for output. 511 * Calls formatter to fill the user's buffer until all extents 512 * are mapped, until the passed-in bmv->bmv_count slots have 513 * been filled, or until the formatter short-circuits the loop, 514 * if it is tracking filled-in extents on its own. 515 */ 516 int /* error code */ 517 xfs_getbmap( 518 struct xfs_inode *ip, 519 struct getbmapx *bmv, /* user bmap structure */ 520 struct kgetbmap *out) 521 { 522 struct xfs_mount *mp = ip->i_mount; 523 int iflags = bmv->bmv_iflags; 524 int whichfork, lock, error = 0; 525 int64_t bmv_end, max_len; 526 xfs_fileoff_t bno, first_bno; 527 struct xfs_ifork *ifp; 528 struct xfs_bmbt_irec got, rec; 529 xfs_filblks_t len; 530 struct xfs_iext_cursor icur; 531 532 if (bmv->bmv_iflags & ~BMV_IF_VALID) 533 return -EINVAL; 534 #ifndef DEBUG 535 /* Only allow CoW fork queries if we're debugging. */ 536 if (iflags & BMV_IF_COWFORK) 537 return -EINVAL; 538 #endif 539 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK)) 540 return -EINVAL; 541 542 if (bmv->bmv_length < -1) 543 return -EINVAL; 544 bmv->bmv_entries = 0; 545 if (bmv->bmv_length == 0) 546 return 0; 547 548 if (iflags & BMV_IF_ATTRFORK) 549 whichfork = XFS_ATTR_FORK; 550 else if (iflags & BMV_IF_COWFORK) 551 whichfork = XFS_COW_FORK; 552 else 553 whichfork = XFS_DATA_FORK; 554 ifp = XFS_IFORK_PTR(ip, whichfork); 555 556 xfs_ilock(ip, XFS_IOLOCK_SHARED); 557 switch (whichfork) { 558 case XFS_ATTR_FORK: 559 if (!XFS_IFORK_Q(ip)) 560 goto out_unlock_iolock; 561 562 max_len = 1LL << 32; 563 lock = xfs_ilock_attr_map_shared(ip); 564 break; 565 case XFS_COW_FORK: 566 /* No CoW fork? Just return */ 567 if (!ifp) 568 goto out_unlock_iolock; 569 570 if (xfs_get_cowextsz_hint(ip)) 571 max_len = mp->m_super->s_maxbytes; 572 else 573 max_len = XFS_ISIZE(ip); 574 575 lock = XFS_ILOCK_SHARED; 576 xfs_ilock(ip, lock); 577 break; 578 case XFS_DATA_FORK: 579 if (!(iflags & BMV_IF_DELALLOC) && 580 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) { 581 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 582 if (error) 583 goto out_unlock_iolock; 584 585 /* 586 * Even after flushing the inode, there can still be 587 * delalloc blocks on the inode beyond EOF due to 588 * speculative preallocation. These are not removed 589 * until the release function is called or the inode 590 * is inactivated. Hence we cannot assert here that 591 * ip->i_delayed_blks == 0. 592 */ 593 } 594 595 if (xfs_get_extsz_hint(ip) || 596 (ip->i_d.di_flags & 597 (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))) 598 max_len = mp->m_super->s_maxbytes; 599 else 600 max_len = XFS_ISIZE(ip); 601 602 lock = xfs_ilock_data_map_shared(ip); 603 break; 604 } 605 606 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 607 case XFS_DINODE_FMT_EXTENTS: 608 case XFS_DINODE_FMT_BTREE: 609 break; 610 case XFS_DINODE_FMT_LOCAL: 611 /* Local format inode forks report no extents. */ 612 goto out_unlock_ilock; 613 default: 614 error = -EINVAL; 615 goto out_unlock_ilock; 616 } 617 618 if (bmv->bmv_length == -1) { 619 max_len = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, max_len)); 620 bmv->bmv_length = max(0LL, max_len - bmv->bmv_offset); 621 } 622 623 bmv_end = bmv->bmv_offset + bmv->bmv_length; 624 625 first_bno = bno = XFS_BB_TO_FSBT(mp, bmv->bmv_offset); 626 len = XFS_BB_TO_FSB(mp, bmv->bmv_length); 627 628 if (!(ifp->if_flags & XFS_IFEXTENTS)) { 629 error = xfs_iread_extents(NULL, ip, whichfork); 630 if (error) 631 goto out_unlock_ilock; 632 } 633 634 if (!xfs_iext_lookup_extent(ip, ifp, bno, &icur, &got)) { 635 /* 636 * Report a whole-file hole if the delalloc flag is set to 637 * stay compatible with the old implementation. 638 */ 639 if (iflags & BMV_IF_DELALLOC) 640 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno, 641 XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); 642 goto out_unlock_ilock; 643 } 644 645 while (!xfs_getbmap_full(bmv)) { 646 xfs_trim_extent(&got, first_bno, len); 647 648 /* 649 * Report an entry for a hole if this extent doesn't directly 650 * follow the previous one. 651 */ 652 if (got.br_startoff > bno) { 653 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno, 654 got.br_startoff); 655 if (xfs_getbmap_full(bmv)) 656 break; 657 } 658 659 /* 660 * In order to report shared extents accurately, we report each 661 * distinct shared / unshared part of a single bmbt record with 662 * an individual getbmapx record. 663 */ 664 bno = got.br_startoff + got.br_blockcount; 665 rec = got; 666 do { 667 error = xfs_getbmap_report_one(ip, bmv, out, bmv_end, 668 &rec); 669 if (error || xfs_getbmap_full(bmv)) 670 goto out_unlock_ilock; 671 } while (xfs_getbmap_next_rec(&rec, bno)); 672 673 if (!xfs_iext_next_extent(ifp, &icur, &got)) { 674 xfs_fileoff_t end = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); 675 676 out[bmv->bmv_entries - 1].bmv_oflags |= BMV_OF_LAST; 677 678 if (whichfork != XFS_ATTR_FORK && bno < end && 679 !xfs_getbmap_full(bmv)) { 680 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, 681 bno, end); 682 } 683 break; 684 } 685 686 if (bno >= first_bno + len) 687 break; 688 } 689 690 out_unlock_ilock: 691 xfs_iunlock(ip, lock); 692 out_unlock_iolock: 693 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 694 return error; 695 } 696 697 /* 698 * dead simple method of punching delalyed allocation blocks from a range in 699 * the inode. Walks a block at a time so will be slow, but is only executed in 700 * rare error cases so the overhead is not critical. This will always punch out 701 * both the start and end blocks, even if the ranges only partially overlap 702 * them, so it is up to the caller to ensure that partial blocks are not 703 * passed in. 704 */ 705 int 706 xfs_bmap_punch_delalloc_range( 707 struct xfs_inode *ip, 708 xfs_fileoff_t start_fsb, 709 xfs_fileoff_t length) 710 { 711 xfs_fileoff_t remaining = length; 712 int error = 0; 713 714 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 715 716 do { 717 int done; 718 xfs_bmbt_irec_t imap; 719 int nimaps = 1; 720 xfs_fsblock_t firstblock; 721 struct xfs_defer_ops dfops; 722 723 /* 724 * Map the range first and check that it is a delalloc extent 725 * before trying to unmap the range. Otherwise we will be 726 * trying to remove a real extent (which requires a 727 * transaction) or a hole, which is probably a bad idea... 728 */ 729 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps, 730 XFS_BMAPI_ENTIRE); 731 732 if (error) { 733 /* something screwed, just bail */ 734 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 735 xfs_alert(ip->i_mount, 736 "Failed delalloc mapping lookup ino %lld fsb %lld.", 737 ip->i_ino, start_fsb); 738 } 739 break; 740 } 741 if (!nimaps) { 742 /* nothing there */ 743 goto next_block; 744 } 745 if (imap.br_startblock != DELAYSTARTBLOCK) { 746 /* been converted, ignore */ 747 goto next_block; 748 } 749 WARN_ON(imap.br_blockcount == 0); 750 751 /* 752 * Note: while we initialise the firstblock/dfops pair, they 753 * should never be used because blocks should never be 754 * allocated or freed for a delalloc extent and hence we need 755 * don't cancel or finish them after the xfs_bunmapi() call. 756 */ 757 xfs_defer_init(&dfops, &firstblock); 758 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock, 759 &dfops, &done); 760 if (error) 761 break; 762 763 ASSERT(!xfs_defer_has_unfinished_work(&dfops)); 764 next_block: 765 start_fsb++; 766 remaining--; 767 } while(remaining > 0); 768 769 return error; 770 } 771 772 /* 773 * Test whether it is appropriate to check an inode for and free post EOF 774 * blocks. The 'force' parameter determines whether we should also consider 775 * regular files that are marked preallocated or append-only. 776 */ 777 bool 778 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 779 { 780 /* prealloc/delalloc exists only on regular files */ 781 if (!S_ISREG(VFS_I(ip)->i_mode)) 782 return false; 783 784 /* 785 * Zero sized files with no cached pages and delalloc blocks will not 786 * have speculative prealloc/delalloc blocks to remove. 787 */ 788 if (VFS_I(ip)->i_size == 0 && 789 VFS_I(ip)->i_mapping->nrpages == 0 && 790 ip->i_delayed_blks == 0) 791 return false; 792 793 /* If we haven't read in the extent list, then don't do it now. */ 794 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 795 return false; 796 797 /* 798 * Do not free real preallocated or append-only files unless the file 799 * has delalloc blocks and we are forced to remove them. 800 */ 801 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 802 if (!force || ip->i_delayed_blks == 0) 803 return false; 804 805 return true; 806 } 807 808 /* 809 * This is called to free any blocks beyond eof. The caller must hold 810 * IOLOCK_EXCL unless we are in the inode reclaim path and have the only 811 * reference to the inode. 812 */ 813 int 814 xfs_free_eofblocks( 815 struct xfs_inode *ip) 816 { 817 struct xfs_trans *tp; 818 int error; 819 xfs_fileoff_t end_fsb; 820 xfs_fileoff_t last_fsb; 821 xfs_filblks_t map_len; 822 int nimaps; 823 struct xfs_bmbt_irec imap; 824 struct xfs_mount *mp = ip->i_mount; 825 826 /* 827 * Figure out if there are any blocks beyond the end 828 * of the file. If not, then there is nothing to do. 829 */ 830 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); 831 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 832 if (last_fsb <= end_fsb) 833 return 0; 834 map_len = last_fsb - end_fsb; 835 836 nimaps = 1; 837 xfs_ilock(ip, XFS_ILOCK_SHARED); 838 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0); 839 xfs_iunlock(ip, XFS_ILOCK_SHARED); 840 841 /* 842 * If there are blocks after the end of file, truncate the file to its 843 * current size to free them up. 844 */ 845 if (!error && (nimaps != 0) && 846 (imap.br_startblock != HOLESTARTBLOCK || 847 ip->i_delayed_blks)) { 848 /* 849 * Attach the dquots to the inode up front. 850 */ 851 error = xfs_qm_dqattach(ip, 0); 852 if (error) 853 return error; 854 855 /* wait on dio to ensure i_size has settled */ 856 inode_dio_wait(VFS_I(ip)); 857 858 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, 859 &tp); 860 if (error) { 861 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 862 return error; 863 } 864 865 xfs_ilock(ip, XFS_ILOCK_EXCL); 866 xfs_trans_ijoin(tp, ip, 0); 867 868 /* 869 * Do not update the on-disk file size. If we update the 870 * on-disk file size and then the system crashes before the 871 * contents of the file are flushed to disk then the files 872 * may be full of holes (ie NULL files bug). 873 */ 874 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 875 XFS_ISIZE(ip)); 876 if (error) { 877 /* 878 * If we get an error at this point we simply don't 879 * bother truncating the file. 880 */ 881 xfs_trans_cancel(tp); 882 } else { 883 error = xfs_trans_commit(tp); 884 if (!error) 885 xfs_inode_clear_eofblocks_tag(ip); 886 } 887 888 xfs_iunlock(ip, XFS_ILOCK_EXCL); 889 } 890 return error; 891 } 892 893 int 894 xfs_alloc_file_space( 895 struct xfs_inode *ip, 896 xfs_off_t offset, 897 xfs_off_t len, 898 int alloc_type) 899 { 900 xfs_mount_t *mp = ip->i_mount; 901 xfs_off_t count; 902 xfs_filblks_t allocated_fsb; 903 xfs_filblks_t allocatesize_fsb; 904 xfs_extlen_t extsz, temp; 905 xfs_fileoff_t startoffset_fsb; 906 xfs_fsblock_t firstfsb; 907 int nimaps; 908 int quota_flag; 909 int rt; 910 xfs_trans_t *tp; 911 xfs_bmbt_irec_t imaps[1], *imapp; 912 struct xfs_defer_ops dfops; 913 uint qblocks, resblks, resrtextents; 914 int error; 915 916 trace_xfs_alloc_file_space(ip); 917 918 if (XFS_FORCED_SHUTDOWN(mp)) 919 return -EIO; 920 921 error = xfs_qm_dqattach(ip, 0); 922 if (error) 923 return error; 924 925 if (len <= 0) 926 return -EINVAL; 927 928 rt = XFS_IS_REALTIME_INODE(ip); 929 extsz = xfs_get_extsz_hint(ip); 930 931 count = len; 932 imapp = &imaps[0]; 933 nimaps = 1; 934 startoffset_fsb = XFS_B_TO_FSBT(mp, offset); 935 allocatesize_fsb = XFS_B_TO_FSB(mp, count); 936 937 /* 938 * Allocate file space until done or until there is an error 939 */ 940 while (allocatesize_fsb && !error) { 941 xfs_fileoff_t s, e; 942 943 /* 944 * Determine space reservations for data/realtime. 945 */ 946 if (unlikely(extsz)) { 947 s = startoffset_fsb; 948 do_div(s, extsz); 949 s *= extsz; 950 e = startoffset_fsb + allocatesize_fsb; 951 if ((temp = do_mod(startoffset_fsb, extsz))) 952 e += temp; 953 if ((temp = do_mod(e, extsz))) 954 e += extsz - temp; 955 } else { 956 s = 0; 957 e = allocatesize_fsb; 958 } 959 960 /* 961 * The transaction reservation is limited to a 32-bit block 962 * count, hence we need to limit the number of blocks we are 963 * trying to reserve to avoid an overflow. We can't allocate 964 * more than @nimaps extents, and an extent is limited on disk 965 * to MAXEXTLEN (21 bits), so use that to enforce the limit. 966 */ 967 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); 968 if (unlikely(rt)) { 969 resrtextents = qblocks = resblks; 970 resrtextents /= mp->m_sb.sb_rextsize; 971 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 972 quota_flag = XFS_QMOPT_RES_RTBLKS; 973 } else { 974 resrtextents = 0; 975 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); 976 quota_flag = XFS_QMOPT_RES_REGBLKS; 977 } 978 979 /* 980 * Allocate and setup the transaction. 981 */ 982 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 983 resrtextents, 0, &tp); 984 985 /* 986 * Check for running out of space 987 */ 988 if (error) { 989 /* 990 * Free the transaction structure. 991 */ 992 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 993 break; 994 } 995 xfs_ilock(ip, XFS_ILOCK_EXCL); 996 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 997 0, quota_flag); 998 if (error) 999 goto error1; 1000 1001 xfs_trans_ijoin(tp, ip, 0); 1002 1003 xfs_defer_init(&dfops, &firstfsb); 1004 error = xfs_bmapi_write(tp, ip, startoffset_fsb, 1005 allocatesize_fsb, alloc_type, &firstfsb, 1006 resblks, imapp, &nimaps, &dfops); 1007 if (error) 1008 goto error0; 1009 1010 /* 1011 * Complete the transaction 1012 */ 1013 error = xfs_defer_finish(&tp, &dfops); 1014 if (error) 1015 goto error0; 1016 1017 error = xfs_trans_commit(tp); 1018 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1019 if (error) 1020 break; 1021 1022 allocated_fsb = imapp->br_blockcount; 1023 1024 if (nimaps == 0) { 1025 error = -ENOSPC; 1026 break; 1027 } 1028 1029 startoffset_fsb += allocated_fsb; 1030 allocatesize_fsb -= allocated_fsb; 1031 } 1032 1033 return error; 1034 1035 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */ 1036 xfs_defer_cancel(&dfops); 1037 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 1038 1039 error1: /* Just cancel transaction */ 1040 xfs_trans_cancel(tp); 1041 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1042 return error; 1043 } 1044 1045 static int 1046 xfs_unmap_extent( 1047 struct xfs_inode *ip, 1048 xfs_fileoff_t startoffset_fsb, 1049 xfs_filblks_t len_fsb, 1050 int *done) 1051 { 1052 struct xfs_mount *mp = ip->i_mount; 1053 struct xfs_trans *tp; 1054 struct xfs_defer_ops dfops; 1055 xfs_fsblock_t firstfsb; 1056 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1057 int error; 1058 1059 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1060 if (error) { 1061 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1062 return error; 1063 } 1064 1065 xfs_ilock(ip, XFS_ILOCK_EXCL); 1066 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, 1067 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS); 1068 if (error) 1069 goto out_trans_cancel; 1070 1071 xfs_trans_ijoin(tp, ip, 0); 1072 1073 xfs_defer_init(&dfops, &firstfsb); 1074 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb, 1075 &dfops, done); 1076 if (error) 1077 goto out_bmap_cancel; 1078 1079 xfs_defer_ijoin(&dfops, ip); 1080 error = xfs_defer_finish(&tp, &dfops); 1081 if (error) 1082 goto out_bmap_cancel; 1083 1084 error = xfs_trans_commit(tp); 1085 out_unlock: 1086 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1087 return error; 1088 1089 out_bmap_cancel: 1090 xfs_defer_cancel(&dfops); 1091 out_trans_cancel: 1092 xfs_trans_cancel(tp); 1093 goto out_unlock; 1094 } 1095 1096 static int 1097 xfs_adjust_extent_unmap_boundaries( 1098 struct xfs_inode *ip, 1099 xfs_fileoff_t *startoffset_fsb, 1100 xfs_fileoff_t *endoffset_fsb) 1101 { 1102 struct xfs_mount *mp = ip->i_mount; 1103 struct xfs_bmbt_irec imap; 1104 int nimap, error; 1105 xfs_extlen_t mod = 0; 1106 1107 nimap = 1; 1108 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0); 1109 if (error) 1110 return error; 1111 1112 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1113 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1114 mod = do_mod(imap.br_startblock, mp->m_sb.sb_rextsize); 1115 if (mod) 1116 *startoffset_fsb += mp->m_sb.sb_rextsize - mod; 1117 } 1118 1119 nimap = 1; 1120 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0); 1121 if (error) 1122 return error; 1123 1124 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1125 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1126 mod++; 1127 if (mod && mod != mp->m_sb.sb_rextsize) 1128 *endoffset_fsb -= mod; 1129 } 1130 1131 return 0; 1132 } 1133 1134 static int 1135 xfs_flush_unmap_range( 1136 struct xfs_inode *ip, 1137 xfs_off_t offset, 1138 xfs_off_t len) 1139 { 1140 struct xfs_mount *mp = ip->i_mount; 1141 struct inode *inode = VFS_I(ip); 1142 xfs_off_t rounding, start, end; 1143 int error; 1144 1145 /* wait for the completion of any pending DIOs */ 1146 inode_dio_wait(inode); 1147 1148 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE); 1149 start = round_down(offset, rounding); 1150 end = round_up(offset + len, rounding) - 1; 1151 1152 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 1153 if (error) 1154 return error; 1155 truncate_pagecache_range(inode, start, end); 1156 return 0; 1157 } 1158 1159 int 1160 xfs_free_file_space( 1161 struct xfs_inode *ip, 1162 xfs_off_t offset, 1163 xfs_off_t len) 1164 { 1165 struct xfs_mount *mp = ip->i_mount; 1166 xfs_fileoff_t startoffset_fsb; 1167 xfs_fileoff_t endoffset_fsb; 1168 int done = 0, error; 1169 1170 trace_xfs_free_file_space(ip); 1171 1172 error = xfs_qm_dqattach(ip, 0); 1173 if (error) 1174 return error; 1175 1176 if (len <= 0) /* if nothing being freed */ 1177 return 0; 1178 1179 error = xfs_flush_unmap_range(ip, offset, len); 1180 if (error) 1181 return error; 1182 1183 startoffset_fsb = XFS_B_TO_FSB(mp, offset); 1184 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); 1185 1186 /* 1187 * Need to zero the stuff we're not freeing, on disk. If it's a RT file 1188 * and we can't use unwritten extents then we actually need to ensure 1189 * to zero the whole extent, otherwise we just need to take of block 1190 * boundaries, and xfs_bunmapi will handle the rest. 1191 */ 1192 if (XFS_IS_REALTIME_INODE(ip) && 1193 !xfs_sb_version_hasextflgbit(&mp->m_sb)) { 1194 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb, 1195 &endoffset_fsb); 1196 if (error) 1197 return error; 1198 } 1199 1200 if (endoffset_fsb > startoffset_fsb) { 1201 while (!done) { 1202 error = xfs_unmap_extent(ip, startoffset_fsb, 1203 endoffset_fsb - startoffset_fsb, &done); 1204 if (error) 1205 return error; 1206 } 1207 } 1208 1209 /* 1210 * Now that we've unmap all full blocks we'll have to zero out any 1211 * partial block at the beginning and/or end. xfs_zero_range is 1212 * smart enough to skip any holes, including those we just created, 1213 * but we must take care not to zero beyond EOF and enlarge i_size. 1214 */ 1215 1216 if (offset >= XFS_ISIZE(ip)) 1217 return 0; 1218 1219 if (offset + len > XFS_ISIZE(ip)) 1220 len = XFS_ISIZE(ip) - offset; 1221 1222 return xfs_zero_range(ip, offset, len, NULL); 1223 } 1224 1225 /* 1226 * Preallocate and zero a range of a file. This mechanism has the allocation 1227 * semantics of fallocate and in addition converts data in the range to zeroes. 1228 */ 1229 int 1230 xfs_zero_file_space( 1231 struct xfs_inode *ip, 1232 xfs_off_t offset, 1233 xfs_off_t len) 1234 { 1235 struct xfs_mount *mp = ip->i_mount; 1236 uint blksize; 1237 int error; 1238 1239 trace_xfs_zero_file_space(ip); 1240 1241 blksize = 1 << mp->m_sb.sb_blocklog; 1242 1243 /* 1244 * Punch a hole and prealloc the range. We use hole punch rather than 1245 * unwritten extent conversion for two reasons: 1246 * 1247 * 1.) Hole punch handles partial block zeroing for us. 1248 * 1249 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued 1250 * by virtue of the hole punch. 1251 */ 1252 error = xfs_free_file_space(ip, offset, len); 1253 if (error) 1254 goto out; 1255 1256 error = xfs_alloc_file_space(ip, round_down(offset, blksize), 1257 round_up(offset + len, blksize) - 1258 round_down(offset, blksize), 1259 XFS_BMAPI_PREALLOC); 1260 out: 1261 return error; 1262 1263 } 1264 1265 static int 1266 xfs_prepare_shift( 1267 struct xfs_inode *ip, 1268 loff_t offset) 1269 { 1270 int error; 1271 1272 /* 1273 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation 1274 * into the accessible region of the file. 1275 */ 1276 if (xfs_can_free_eofblocks(ip, true)) { 1277 error = xfs_free_eofblocks(ip); 1278 if (error) 1279 return error; 1280 } 1281 1282 /* 1283 * Writeback and invalidate cache for the remainder of the file as we're 1284 * about to shift down every extent from offset to EOF. 1285 */ 1286 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, offset, -1); 1287 if (error) 1288 return error; 1289 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 1290 offset >> PAGE_SHIFT, -1); 1291 if (error) 1292 return error; 1293 1294 /* 1295 * Clean out anything hanging around in the cow fork now that 1296 * we've flushed all the dirty data out to disk to avoid having 1297 * CoW extents at the wrong offsets. 1298 */ 1299 if (xfs_is_reflink_inode(ip)) { 1300 error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF, 1301 true); 1302 if (error) 1303 return error; 1304 } 1305 1306 return 0; 1307 } 1308 1309 /* 1310 * xfs_collapse_file_space() 1311 * This routine frees disk space and shift extent for the given file. 1312 * The first thing we do is to free data blocks in the specified range 1313 * by calling xfs_free_file_space(). It would also sync dirty data 1314 * and invalidate page cache over the region on which collapse range 1315 * is working. And Shift extent records to the left to cover a hole. 1316 * RETURNS: 1317 * 0 on success 1318 * errno on error 1319 * 1320 */ 1321 int 1322 xfs_collapse_file_space( 1323 struct xfs_inode *ip, 1324 xfs_off_t offset, 1325 xfs_off_t len) 1326 { 1327 struct xfs_mount *mp = ip->i_mount; 1328 struct xfs_trans *tp; 1329 int error; 1330 struct xfs_defer_ops dfops; 1331 xfs_fsblock_t first_block; 1332 xfs_fileoff_t stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size); 1333 xfs_fileoff_t next_fsb = XFS_B_TO_FSB(mp, offset + len); 1334 xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len); 1335 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1336 bool done = false; 1337 1338 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1339 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); 1340 1341 trace_xfs_collapse_file_space(ip); 1342 1343 error = xfs_free_file_space(ip, offset, len); 1344 if (error) 1345 return error; 1346 1347 error = xfs_prepare_shift(ip, offset); 1348 if (error) 1349 return error; 1350 1351 while (!error && !done) { 1352 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, 1353 &tp); 1354 if (error) 1355 break; 1356 1357 xfs_ilock(ip, XFS_ILOCK_EXCL); 1358 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, 1359 ip->i_gdquot, ip->i_pdquot, resblks, 0, 1360 XFS_QMOPT_RES_REGBLKS); 1361 if (error) 1362 goto out_trans_cancel; 1363 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1364 1365 xfs_defer_init(&dfops, &first_block); 1366 error = xfs_bmap_collapse_extents(tp, ip, &next_fsb, shift_fsb, 1367 &done, stop_fsb, &first_block, &dfops); 1368 if (error) 1369 goto out_bmap_cancel; 1370 1371 error = xfs_defer_finish(&tp, &dfops); 1372 if (error) 1373 goto out_bmap_cancel; 1374 error = xfs_trans_commit(tp); 1375 } 1376 1377 return error; 1378 1379 out_bmap_cancel: 1380 xfs_defer_cancel(&dfops); 1381 out_trans_cancel: 1382 xfs_trans_cancel(tp); 1383 return error; 1384 } 1385 1386 /* 1387 * xfs_insert_file_space() 1388 * This routine create hole space by shifting extents for the given file. 1389 * The first thing we do is to sync dirty data and invalidate page cache 1390 * over the region on which insert range is working. And split an extent 1391 * to two extents at given offset by calling xfs_bmap_split_extent. 1392 * And shift all extent records which are laying between [offset, 1393 * last allocated extent] to the right to reserve hole range. 1394 * RETURNS: 1395 * 0 on success 1396 * errno on error 1397 */ 1398 int 1399 xfs_insert_file_space( 1400 struct xfs_inode *ip, 1401 loff_t offset, 1402 loff_t len) 1403 { 1404 struct xfs_mount *mp = ip->i_mount; 1405 struct xfs_trans *tp; 1406 int error; 1407 struct xfs_defer_ops dfops; 1408 xfs_fsblock_t first_block; 1409 xfs_fileoff_t stop_fsb = XFS_B_TO_FSB(mp, offset); 1410 xfs_fileoff_t next_fsb = NULLFSBLOCK; 1411 xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len); 1412 bool done = false; 1413 1414 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1415 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); 1416 1417 trace_xfs_insert_file_space(ip); 1418 1419 error = xfs_prepare_shift(ip, offset); 1420 if (error) 1421 return error; 1422 1423 /* 1424 * The extent shifting code works on extent granularity. So, if stop_fsb 1425 * is not the starting block of extent, we need to split the extent at 1426 * stop_fsb. 1427 */ 1428 error = xfs_bmap_split_extent(ip, stop_fsb); 1429 if (error) 1430 return error; 1431 1432 while (!error && !done) { 1433 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, 1434 &tp); 1435 if (error) 1436 break; 1437 1438 xfs_ilock(ip, XFS_ILOCK_EXCL); 1439 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1440 xfs_defer_init(&dfops, &first_block); 1441 error = xfs_bmap_insert_extents(tp, ip, &next_fsb, shift_fsb, 1442 &done, stop_fsb, &first_block, &dfops); 1443 if (error) 1444 goto out_bmap_cancel; 1445 1446 error = xfs_defer_finish(&tp, &dfops); 1447 if (error) 1448 goto out_bmap_cancel; 1449 error = xfs_trans_commit(tp); 1450 } 1451 1452 return error; 1453 1454 out_bmap_cancel: 1455 xfs_defer_cancel(&dfops); 1456 xfs_trans_cancel(tp); 1457 return error; 1458 } 1459 1460 /* 1461 * We need to check that the format of the data fork in the temporary inode is 1462 * valid for the target inode before doing the swap. This is not a problem with 1463 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized 1464 * data fork depending on the space the attribute fork is taking so we can get 1465 * invalid formats on the target inode. 1466 * 1467 * E.g. target has space for 7 extents in extent format, temp inode only has 1468 * space for 6. If we defragment down to 7 extents, then the tmp format is a 1469 * btree, but when swapped it needs to be in extent format. Hence we can't just 1470 * blindly swap data forks on attr2 filesystems. 1471 * 1472 * Note that we check the swap in both directions so that we don't end up with 1473 * a corrupt temporary inode, either. 1474 * 1475 * Note that fixing the way xfs_fsr sets up the attribute fork in the source 1476 * inode will prevent this situation from occurring, so all we do here is 1477 * reject and log the attempt. basically we are putting the responsibility on 1478 * userspace to get this right. 1479 */ 1480 static int 1481 xfs_swap_extents_check_format( 1482 struct xfs_inode *ip, /* target inode */ 1483 struct xfs_inode *tip) /* tmp inode */ 1484 { 1485 1486 /* Should never get a local format */ 1487 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL || 1488 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL) 1489 return -EINVAL; 1490 1491 /* 1492 * if the target inode has less extents that then temporary inode then 1493 * why did userspace call us? 1494 */ 1495 if (ip->i_d.di_nextents < tip->i_d.di_nextents) 1496 return -EINVAL; 1497 1498 /* 1499 * If we have to use the (expensive) rmap swap method, we can 1500 * handle any number of extents and any format. 1501 */ 1502 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb)) 1503 return 0; 1504 1505 /* 1506 * if the target inode is in extent form and the temp inode is in btree 1507 * form then we will end up with the target inode in the wrong format 1508 * as we already know there are less extents in the temp inode. 1509 */ 1510 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1511 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1512 return -EINVAL; 1513 1514 /* Check temp in extent form to max in target */ 1515 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1516 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) > 1517 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1518 return -EINVAL; 1519 1520 /* Check target in extent form to max in temp */ 1521 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1522 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) > 1523 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1524 return -EINVAL; 1525 1526 /* 1527 * If we are in a btree format, check that the temp root block will fit 1528 * in the target and that it has enough extents to be in btree format 1529 * in the target. 1530 * 1531 * Note that we have to be careful to allow btree->extent conversions 1532 * (a common defrag case) which will occur when the temp inode is in 1533 * extent format... 1534 */ 1535 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1536 if (XFS_IFORK_Q(ip) && 1537 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip)) 1538 return -EINVAL; 1539 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <= 1540 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1541 return -EINVAL; 1542 } 1543 1544 /* Reciprocal target->temp btree format checks */ 1545 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1546 if (XFS_IFORK_Q(tip) && 1547 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) 1548 return -EINVAL; 1549 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <= 1550 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1551 return -EINVAL; 1552 } 1553 1554 return 0; 1555 } 1556 1557 static int 1558 xfs_swap_extent_flush( 1559 struct xfs_inode *ip) 1560 { 1561 int error; 1562 1563 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 1564 if (error) 1565 return error; 1566 truncate_pagecache_range(VFS_I(ip), 0, -1); 1567 1568 /* Verify O_DIRECT for ftmp */ 1569 if (VFS_I(ip)->i_mapping->nrpages) 1570 return -EINVAL; 1571 return 0; 1572 } 1573 1574 /* 1575 * Move extents from one file to another, when rmap is enabled. 1576 */ 1577 STATIC int 1578 xfs_swap_extent_rmap( 1579 struct xfs_trans **tpp, 1580 struct xfs_inode *ip, 1581 struct xfs_inode *tip) 1582 { 1583 struct xfs_bmbt_irec irec; 1584 struct xfs_bmbt_irec uirec; 1585 struct xfs_bmbt_irec tirec; 1586 xfs_fileoff_t offset_fsb; 1587 xfs_fileoff_t end_fsb; 1588 xfs_filblks_t count_fsb; 1589 xfs_fsblock_t firstfsb; 1590 struct xfs_defer_ops dfops; 1591 int error; 1592 xfs_filblks_t ilen; 1593 xfs_filblks_t rlen; 1594 int nimaps; 1595 uint64_t tip_flags2; 1596 1597 /* 1598 * If the source file has shared blocks, we must flag the donor 1599 * file as having shared blocks so that we get the shared-block 1600 * rmap functions when we go to fix up the rmaps. The flags 1601 * will be switch for reals later. 1602 */ 1603 tip_flags2 = tip->i_d.di_flags2; 1604 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) 1605 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; 1606 1607 offset_fsb = 0; 1608 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip))); 1609 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); 1610 1611 while (count_fsb) { 1612 /* Read extent from the donor file */ 1613 nimaps = 1; 1614 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec, 1615 &nimaps, 0); 1616 if (error) 1617 goto out; 1618 ASSERT(nimaps == 1); 1619 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK); 1620 1621 trace_xfs_swap_extent_rmap_remap(tip, &tirec); 1622 ilen = tirec.br_blockcount; 1623 1624 /* Unmap the old blocks in the source file. */ 1625 while (tirec.br_blockcount) { 1626 xfs_defer_init(&dfops, &firstfsb); 1627 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec); 1628 1629 /* Read extent from the source file */ 1630 nimaps = 1; 1631 error = xfs_bmapi_read(ip, tirec.br_startoff, 1632 tirec.br_blockcount, &irec, 1633 &nimaps, 0); 1634 if (error) 1635 goto out_defer; 1636 ASSERT(nimaps == 1); 1637 ASSERT(tirec.br_startoff == irec.br_startoff); 1638 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec); 1639 1640 /* Trim the extent. */ 1641 uirec = tirec; 1642 uirec.br_blockcount = rlen = min_t(xfs_filblks_t, 1643 tirec.br_blockcount, 1644 irec.br_blockcount); 1645 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec); 1646 1647 /* Remove the mapping from the donor file. */ 1648 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops, 1649 tip, &uirec); 1650 if (error) 1651 goto out_defer; 1652 1653 /* Remove the mapping from the source file. */ 1654 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops, 1655 ip, &irec); 1656 if (error) 1657 goto out_defer; 1658 1659 /* Map the donor file's blocks into the source file. */ 1660 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops, 1661 ip, &uirec); 1662 if (error) 1663 goto out_defer; 1664 1665 /* Map the source file's blocks into the donor file. */ 1666 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops, 1667 tip, &irec); 1668 if (error) 1669 goto out_defer; 1670 1671 xfs_defer_ijoin(&dfops, ip); 1672 error = xfs_defer_finish(tpp, &dfops); 1673 if (error) 1674 goto out_defer; 1675 1676 tirec.br_startoff += rlen; 1677 if (tirec.br_startblock != HOLESTARTBLOCK && 1678 tirec.br_startblock != DELAYSTARTBLOCK) 1679 tirec.br_startblock += rlen; 1680 tirec.br_blockcount -= rlen; 1681 } 1682 1683 /* Roll on... */ 1684 count_fsb -= ilen; 1685 offset_fsb += ilen; 1686 } 1687 1688 tip->i_d.di_flags2 = tip_flags2; 1689 return 0; 1690 1691 out_defer: 1692 xfs_defer_cancel(&dfops); 1693 out: 1694 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_); 1695 tip->i_d.di_flags2 = tip_flags2; 1696 return error; 1697 } 1698 1699 /* Swap the extents of two files by swapping data forks. */ 1700 STATIC int 1701 xfs_swap_extent_forks( 1702 struct xfs_trans *tp, 1703 struct xfs_inode *ip, 1704 struct xfs_inode *tip, 1705 int *src_log_flags, 1706 int *target_log_flags) 1707 { 1708 struct xfs_ifork tempifp, *ifp, *tifp; 1709 xfs_filblks_t aforkblks = 0; 1710 xfs_filblks_t taforkblks = 0; 1711 xfs_extnum_t junk; 1712 uint64_t tmp; 1713 int error; 1714 1715 /* 1716 * Count the number of extended attribute blocks 1717 */ 1718 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) && 1719 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1720 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk, 1721 &aforkblks); 1722 if (error) 1723 return error; 1724 } 1725 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) && 1726 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1727 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk, 1728 &taforkblks); 1729 if (error) 1730 return error; 1731 } 1732 1733 /* 1734 * Btree format (v3) inodes have the inode number stamped in the bmbt 1735 * block headers. We can't start changing the bmbt blocks until the 1736 * inode owner change is logged so recovery does the right thing in the 1737 * event of a crash. Set the owner change log flags now and leave the 1738 * bmbt scan as the last step. 1739 */ 1740 if (ip->i_d.di_version == 3 && 1741 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1742 (*target_log_flags) |= XFS_ILOG_DOWNER; 1743 if (tip->i_d.di_version == 3 && 1744 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1745 (*src_log_flags) |= XFS_ILOG_DOWNER; 1746 1747 /* 1748 * Swap the data forks of the inodes 1749 */ 1750 ifp = &ip->i_df; 1751 tifp = &tip->i_df; 1752 tempifp = *ifp; /* struct copy */ 1753 *ifp = *tifp; /* struct copy */ 1754 *tifp = tempifp; /* struct copy */ 1755 1756 /* 1757 * Fix the on-disk inode values 1758 */ 1759 tmp = (uint64_t)ip->i_d.di_nblocks; 1760 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks; 1761 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks; 1762 1763 tmp = (uint64_t) ip->i_d.di_nextents; 1764 ip->i_d.di_nextents = tip->i_d.di_nextents; 1765 tip->i_d.di_nextents = tmp; 1766 1767 tmp = (uint64_t) ip->i_d.di_format; 1768 ip->i_d.di_format = tip->i_d.di_format; 1769 tip->i_d.di_format = tmp; 1770 1771 /* 1772 * The extents in the source inode could still contain speculative 1773 * preallocation beyond EOF (e.g. the file is open but not modified 1774 * while defrag is in progress). In that case, we need to copy over the 1775 * number of delalloc blocks the data fork in the source inode is 1776 * tracking beyond EOF so that when the fork is truncated away when the 1777 * temporary inode is unlinked we don't underrun the i_delayed_blks 1778 * counter on that inode. 1779 */ 1780 ASSERT(tip->i_delayed_blks == 0); 1781 tip->i_delayed_blks = ip->i_delayed_blks; 1782 ip->i_delayed_blks = 0; 1783 1784 switch (ip->i_d.di_format) { 1785 case XFS_DINODE_FMT_EXTENTS: 1786 (*src_log_flags) |= XFS_ILOG_DEXT; 1787 break; 1788 case XFS_DINODE_FMT_BTREE: 1789 ASSERT(ip->i_d.di_version < 3 || 1790 (*src_log_flags & XFS_ILOG_DOWNER)); 1791 (*src_log_flags) |= XFS_ILOG_DBROOT; 1792 break; 1793 } 1794 1795 switch (tip->i_d.di_format) { 1796 case XFS_DINODE_FMT_EXTENTS: 1797 (*target_log_flags) |= XFS_ILOG_DEXT; 1798 break; 1799 case XFS_DINODE_FMT_BTREE: 1800 (*target_log_flags) |= XFS_ILOG_DBROOT; 1801 ASSERT(tip->i_d.di_version < 3 || 1802 (*target_log_flags & XFS_ILOG_DOWNER)); 1803 break; 1804 } 1805 1806 return 0; 1807 } 1808 1809 /* 1810 * Fix up the owners of the bmbt blocks to refer to the current inode. The 1811 * change owner scan attempts to order all modified buffers in the current 1812 * transaction. In the event of ordered buffer failure, the offending buffer is 1813 * physically logged as a fallback and the scan returns -EAGAIN. We must roll 1814 * the transaction in this case to replenish the fallback log reservation and 1815 * restart the scan. This process repeats until the scan completes. 1816 */ 1817 static int 1818 xfs_swap_change_owner( 1819 struct xfs_trans **tpp, 1820 struct xfs_inode *ip, 1821 struct xfs_inode *tmpip) 1822 { 1823 int error; 1824 struct xfs_trans *tp = *tpp; 1825 1826 do { 1827 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino, 1828 NULL); 1829 /* success or fatal error */ 1830 if (error != -EAGAIN) 1831 break; 1832 1833 error = xfs_trans_roll(tpp); 1834 if (error) 1835 break; 1836 tp = *tpp; 1837 1838 /* 1839 * Redirty both inodes so they can relog and keep the log tail 1840 * moving forward. 1841 */ 1842 xfs_trans_ijoin(tp, ip, 0); 1843 xfs_trans_ijoin(tp, tmpip, 0); 1844 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1845 xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE); 1846 } while (true); 1847 1848 return error; 1849 } 1850 1851 int 1852 xfs_swap_extents( 1853 struct xfs_inode *ip, /* target inode */ 1854 struct xfs_inode *tip, /* tmp inode */ 1855 struct xfs_swapext *sxp) 1856 { 1857 struct xfs_mount *mp = ip->i_mount; 1858 struct xfs_trans *tp; 1859 struct xfs_bstat *sbp = &sxp->sx_stat; 1860 int src_log_flags, target_log_flags; 1861 int error = 0; 1862 int lock_flags; 1863 struct xfs_ifork *cowfp; 1864 uint64_t f; 1865 int resblks = 0; 1866 1867 /* 1868 * Lock the inodes against other IO, page faults and truncate to 1869 * begin with. Then we can ensure the inodes are flushed and have no 1870 * page cache safely. Once we have done this we can take the ilocks and 1871 * do the rest of the checks. 1872 */ 1873 lock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 1874 lock_flags = XFS_MMAPLOCK_EXCL; 1875 xfs_lock_two_inodes(ip, XFS_MMAPLOCK_EXCL, tip, XFS_MMAPLOCK_EXCL); 1876 1877 /* Verify that both files have the same format */ 1878 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) { 1879 error = -EINVAL; 1880 goto out_unlock; 1881 } 1882 1883 /* Verify both files are either real-time or non-realtime */ 1884 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { 1885 error = -EINVAL; 1886 goto out_unlock; 1887 } 1888 1889 error = xfs_swap_extent_flush(ip); 1890 if (error) 1891 goto out_unlock; 1892 error = xfs_swap_extent_flush(tip); 1893 if (error) 1894 goto out_unlock; 1895 1896 /* 1897 * Extent "swapping" with rmap requires a permanent reservation and 1898 * a block reservation because it's really just a remap operation 1899 * performed with log redo items! 1900 */ 1901 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 1902 /* 1903 * Conceptually this shouldn't affect the shape of either 1904 * bmbt, but since we atomically move extents one by one, 1905 * we reserve enough space to rebuild both trees. 1906 */ 1907 resblks = XFS_SWAP_RMAP_SPACE_RES(mp, 1908 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK), 1909 XFS_DATA_FORK) + 1910 XFS_SWAP_RMAP_SPACE_RES(mp, 1911 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK), 1912 XFS_DATA_FORK); 1913 } 1914 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1915 if (error) 1916 goto out_unlock; 1917 1918 /* 1919 * Lock and join the inodes to the tansaction so that transaction commit 1920 * or cancel will unlock the inodes from this point onwards. 1921 */ 1922 xfs_lock_two_inodes(ip, XFS_ILOCK_EXCL, tip, XFS_ILOCK_EXCL); 1923 lock_flags |= XFS_ILOCK_EXCL; 1924 xfs_trans_ijoin(tp, ip, 0); 1925 xfs_trans_ijoin(tp, tip, 0); 1926 1927 1928 /* Verify all data are being swapped */ 1929 if (sxp->sx_offset != 0 || 1930 sxp->sx_length != ip->i_d.di_size || 1931 sxp->sx_length != tip->i_d.di_size) { 1932 error = -EFAULT; 1933 goto out_trans_cancel; 1934 } 1935 1936 trace_xfs_swap_extent_before(ip, 0); 1937 trace_xfs_swap_extent_before(tip, 1); 1938 1939 /* check inode formats now that data is flushed */ 1940 error = xfs_swap_extents_check_format(ip, tip); 1941 if (error) { 1942 xfs_notice(mp, 1943 "%s: inode 0x%llx format is incompatible for exchanging.", 1944 __func__, ip->i_ino); 1945 goto out_trans_cancel; 1946 } 1947 1948 /* 1949 * Compare the current change & modify times with that 1950 * passed in. If they differ, we abort this swap. 1951 * This is the mechanism used to ensure the calling 1952 * process that the file was not changed out from 1953 * under it. 1954 */ 1955 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || 1956 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || 1957 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || 1958 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { 1959 error = -EBUSY; 1960 goto out_trans_cancel; 1961 } 1962 1963 /* 1964 * Note the trickiness in setting the log flags - we set the owner log 1965 * flag on the opposite inode (i.e. the inode we are setting the new 1966 * owner to be) because once we swap the forks and log that, log 1967 * recovery is going to see the fork as owned by the swapped inode, 1968 * not the pre-swapped inodes. 1969 */ 1970 src_log_flags = XFS_ILOG_CORE; 1971 target_log_flags = XFS_ILOG_CORE; 1972 1973 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) 1974 error = xfs_swap_extent_rmap(&tp, ip, tip); 1975 else 1976 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags, 1977 &target_log_flags); 1978 if (error) 1979 goto out_trans_cancel; 1980 1981 /* Do we have to swap reflink flags? */ 1982 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^ 1983 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) { 1984 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 1985 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1986 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 1987 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1988 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK; 1989 } 1990 1991 /* Swap the cow forks. */ 1992 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1993 xfs_extnum_t extnum; 1994 1995 ASSERT(ip->i_cformat == XFS_DINODE_FMT_EXTENTS); 1996 ASSERT(tip->i_cformat == XFS_DINODE_FMT_EXTENTS); 1997 1998 extnum = ip->i_cnextents; 1999 ip->i_cnextents = tip->i_cnextents; 2000 tip->i_cnextents = extnum; 2001 2002 cowfp = ip->i_cowfp; 2003 ip->i_cowfp = tip->i_cowfp; 2004 tip->i_cowfp = cowfp; 2005 2006 if (ip->i_cowfp && ip->i_cnextents) 2007 xfs_inode_set_cowblocks_tag(ip); 2008 else 2009 xfs_inode_clear_cowblocks_tag(ip); 2010 if (tip->i_cowfp && tip->i_cnextents) 2011 xfs_inode_set_cowblocks_tag(tip); 2012 else 2013 xfs_inode_clear_cowblocks_tag(tip); 2014 } 2015 2016 xfs_trans_log_inode(tp, ip, src_log_flags); 2017 xfs_trans_log_inode(tp, tip, target_log_flags); 2018 2019 /* 2020 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems 2021 * have inode number owner values in the bmbt blocks that still refer to 2022 * the old inode. Scan each bmbt to fix up the owner values with the 2023 * inode number of the current inode. 2024 */ 2025 if (src_log_flags & XFS_ILOG_DOWNER) { 2026 error = xfs_swap_change_owner(&tp, ip, tip); 2027 if (error) 2028 goto out_trans_cancel; 2029 } 2030 if (target_log_flags & XFS_ILOG_DOWNER) { 2031 error = xfs_swap_change_owner(&tp, tip, ip); 2032 if (error) 2033 goto out_trans_cancel; 2034 } 2035 2036 /* 2037 * If this is a synchronous mount, make sure that the 2038 * transaction goes to disk before returning to the user. 2039 */ 2040 if (mp->m_flags & XFS_MOUNT_WSYNC) 2041 xfs_trans_set_sync(tp); 2042 2043 error = xfs_trans_commit(tp); 2044 2045 trace_xfs_swap_extent_after(ip, 0); 2046 trace_xfs_swap_extent_after(tip, 1); 2047 2048 out_unlock: 2049 xfs_iunlock(ip, lock_flags); 2050 xfs_iunlock(tip, lock_flags); 2051 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 2052 return error; 2053 2054 out_trans_cancel: 2055 xfs_trans_cancel(tp); 2056 goto out_unlock; 2057 } 2058