xref: /openbmc/linux/fs/xfs/xfs_bmap_util.c (revision f2a89d3b)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * Copyright (c) 2012 Red Hat, Inc.
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_btree.h"
31 #include "xfs_trans.h"
32 #include "xfs_extfree_item.h"
33 #include "xfs_alloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_bmap_util.h"
36 #include "xfs_bmap_btree.h"
37 #include "xfs_rtalloc.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_trans_space.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_log.h"
44 #include "xfs_rmap_btree.h"
45 
46 /* Kernel only BMAP related definitions and functions */
47 
48 /*
49  * Convert the given file system block to a disk block.  We have to treat it
50  * differently based on whether the file is a real time file or not, because the
51  * bmap code does.
52  */
53 xfs_daddr_t
54 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
55 {
56 	return (XFS_IS_REALTIME_INODE(ip) ? \
57 		 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
58 		 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
59 }
60 
61 /*
62  * Routine to zero an extent on disk allocated to the specific inode.
63  *
64  * The VFS functions take a linearised filesystem block offset, so we have to
65  * convert the sparse xfs fsb to the right format first.
66  * VFS types are real funky, too.
67  */
68 int
69 xfs_zero_extent(
70 	struct xfs_inode *ip,
71 	xfs_fsblock_t	start_fsb,
72 	xfs_off_t	count_fsb)
73 {
74 	struct xfs_mount *mp = ip->i_mount;
75 	xfs_daddr_t	sector = xfs_fsb_to_db(ip, start_fsb);
76 	sector_t	block = XFS_BB_TO_FSBT(mp, sector);
77 
78 	return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)),
79 		block << (mp->m_super->s_blocksize_bits - 9),
80 		count_fsb << (mp->m_super->s_blocksize_bits - 9),
81 		GFP_NOFS, true);
82 }
83 
84 int
85 xfs_bmap_rtalloc(
86 	struct xfs_bmalloca	*ap)	/* bmap alloc argument struct */
87 {
88 	xfs_alloctype_t	atype = 0;	/* type for allocation routines */
89 	int		error;		/* error return value */
90 	xfs_mount_t	*mp;		/* mount point structure */
91 	xfs_extlen_t	prod = 0;	/* product factor for allocators */
92 	xfs_extlen_t	ralen = 0;	/* realtime allocation length */
93 	xfs_extlen_t	align;		/* minimum allocation alignment */
94 	xfs_rtblock_t	rtb;
95 
96 	mp = ap->ip->i_mount;
97 	align = xfs_get_extsz_hint(ap->ip);
98 	prod = align / mp->m_sb.sb_rextsize;
99 	error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
100 					align, 1, ap->eof, 0,
101 					ap->conv, &ap->offset, &ap->length);
102 	if (error)
103 		return error;
104 	ASSERT(ap->length);
105 	ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
106 
107 	/*
108 	 * If the offset & length are not perfectly aligned
109 	 * then kill prod, it will just get us in trouble.
110 	 */
111 	if (do_mod(ap->offset, align) || ap->length % align)
112 		prod = 1;
113 	/*
114 	 * Set ralen to be the actual requested length in rtextents.
115 	 */
116 	ralen = ap->length / mp->m_sb.sb_rextsize;
117 	/*
118 	 * If the old value was close enough to MAXEXTLEN that
119 	 * we rounded up to it, cut it back so it's valid again.
120 	 * Note that if it's a really large request (bigger than
121 	 * MAXEXTLEN), we don't hear about that number, and can't
122 	 * adjust the starting point to match it.
123 	 */
124 	if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
125 		ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
126 
127 	/*
128 	 * Lock out modifications to both the RT bitmap and summary inodes
129 	 */
130 	xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP);
131 	xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
132 	xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM);
133 	xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
134 
135 	/*
136 	 * If it's an allocation to an empty file at offset 0,
137 	 * pick an extent that will space things out in the rt area.
138 	 */
139 	if (ap->eof && ap->offset == 0) {
140 		xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
141 
142 		error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
143 		if (error)
144 			return error;
145 		ap->blkno = rtx * mp->m_sb.sb_rextsize;
146 	} else {
147 		ap->blkno = 0;
148 	}
149 
150 	xfs_bmap_adjacent(ap);
151 
152 	/*
153 	 * Realtime allocation, done through xfs_rtallocate_extent.
154 	 */
155 	atype = ap->blkno == 0 ?  XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO;
156 	do_div(ap->blkno, mp->m_sb.sb_rextsize);
157 	rtb = ap->blkno;
158 	ap->length = ralen;
159 	if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
160 				&ralen, atype, ap->wasdel, prod, &rtb)))
161 		return error;
162 	if (rtb == NULLFSBLOCK && prod > 1 &&
163 	    (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1,
164 					   ap->length, &ralen, atype,
165 					   ap->wasdel, 1, &rtb)))
166 		return error;
167 	ap->blkno = rtb;
168 	if (ap->blkno != NULLFSBLOCK) {
169 		ap->blkno *= mp->m_sb.sb_rextsize;
170 		ralen *= mp->m_sb.sb_rextsize;
171 		ap->length = ralen;
172 		ap->ip->i_d.di_nblocks += ralen;
173 		xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
174 		if (ap->wasdel)
175 			ap->ip->i_delayed_blks -= ralen;
176 		/*
177 		 * Adjust the disk quota also. This was reserved
178 		 * earlier.
179 		 */
180 		xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
181 			ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
182 					XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
183 
184 		/* Zero the extent if we were asked to do so */
185 		if (ap->userdata & XFS_ALLOC_USERDATA_ZERO) {
186 			error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
187 			if (error)
188 				return error;
189 		}
190 	} else {
191 		ap->length = 0;
192 	}
193 	return 0;
194 }
195 
196 /*
197  * Check if the endoff is outside the last extent. If so the caller will grow
198  * the allocation to a stripe unit boundary.  All offsets are considered outside
199  * the end of file for an empty fork, so 1 is returned in *eof in that case.
200  */
201 int
202 xfs_bmap_eof(
203 	struct xfs_inode	*ip,
204 	xfs_fileoff_t		endoff,
205 	int			whichfork,
206 	int			*eof)
207 {
208 	struct xfs_bmbt_irec	rec;
209 	int			error;
210 
211 	error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
212 	if (error || *eof)
213 		return error;
214 
215 	*eof = endoff >= rec.br_startoff + rec.br_blockcount;
216 	return 0;
217 }
218 
219 /*
220  * Extent tree block counting routines.
221  */
222 
223 /*
224  * Count leaf blocks given a range of extent records.
225  */
226 STATIC void
227 xfs_bmap_count_leaves(
228 	xfs_ifork_t		*ifp,
229 	xfs_extnum_t		idx,
230 	int			numrecs,
231 	int			*count)
232 {
233 	int		b;
234 
235 	for (b = 0; b < numrecs; b++) {
236 		xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b);
237 		*count += xfs_bmbt_get_blockcount(frp);
238 	}
239 }
240 
241 /*
242  * Count leaf blocks given a range of extent records originally
243  * in btree format.
244  */
245 STATIC void
246 xfs_bmap_disk_count_leaves(
247 	struct xfs_mount	*mp,
248 	struct xfs_btree_block	*block,
249 	int			numrecs,
250 	int			*count)
251 {
252 	int		b;
253 	xfs_bmbt_rec_t	*frp;
254 
255 	for (b = 1; b <= numrecs; b++) {
256 		frp = XFS_BMBT_REC_ADDR(mp, block, b);
257 		*count += xfs_bmbt_disk_get_blockcount(frp);
258 	}
259 }
260 
261 /*
262  * Recursively walks each level of a btree
263  * to count total fsblocks in use.
264  */
265 STATIC int                                     /* error */
266 xfs_bmap_count_tree(
267 	xfs_mount_t     *mp,            /* file system mount point */
268 	xfs_trans_t     *tp,            /* transaction pointer */
269 	xfs_ifork_t	*ifp,		/* inode fork pointer */
270 	xfs_fsblock_t   blockno,	/* file system block number */
271 	int             levelin,	/* level in btree */
272 	int		*count)		/* Count of blocks */
273 {
274 	int			error;
275 	xfs_buf_t		*bp, *nbp;
276 	int			level = levelin;
277 	__be64			*pp;
278 	xfs_fsblock_t           bno = blockno;
279 	xfs_fsblock_t		nextbno;
280 	struct xfs_btree_block	*block, *nextblock;
281 	int			numrecs;
282 
283 	error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
284 						&xfs_bmbt_buf_ops);
285 	if (error)
286 		return error;
287 	*count += 1;
288 	block = XFS_BUF_TO_BLOCK(bp);
289 
290 	if (--level) {
291 		/* Not at node above leaves, count this level of nodes */
292 		nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
293 		while (nextbno != NULLFSBLOCK) {
294 			error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
295 						XFS_BMAP_BTREE_REF,
296 						&xfs_bmbt_buf_ops);
297 			if (error)
298 				return error;
299 			*count += 1;
300 			nextblock = XFS_BUF_TO_BLOCK(nbp);
301 			nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
302 			xfs_trans_brelse(tp, nbp);
303 		}
304 
305 		/* Dive to the next level */
306 		pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
307 		bno = be64_to_cpu(*pp);
308 		if (unlikely((error =
309 		     xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) {
310 			xfs_trans_brelse(tp, bp);
311 			XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
312 					 XFS_ERRLEVEL_LOW, mp);
313 			return -EFSCORRUPTED;
314 		}
315 		xfs_trans_brelse(tp, bp);
316 	} else {
317 		/* count all level 1 nodes and their leaves */
318 		for (;;) {
319 			nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
320 			numrecs = be16_to_cpu(block->bb_numrecs);
321 			xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
322 			xfs_trans_brelse(tp, bp);
323 			if (nextbno == NULLFSBLOCK)
324 				break;
325 			bno = nextbno;
326 			error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
327 						XFS_BMAP_BTREE_REF,
328 						&xfs_bmbt_buf_ops);
329 			if (error)
330 				return error;
331 			*count += 1;
332 			block = XFS_BUF_TO_BLOCK(bp);
333 		}
334 	}
335 	return 0;
336 }
337 
338 /*
339  * Count fsblocks of the given fork.
340  */
341 static int					/* error */
342 xfs_bmap_count_blocks(
343 	xfs_trans_t		*tp,		/* transaction pointer */
344 	xfs_inode_t		*ip,		/* incore inode */
345 	int			whichfork,	/* data or attr fork */
346 	int			*count)		/* out: count of blocks */
347 {
348 	struct xfs_btree_block	*block;	/* current btree block */
349 	xfs_fsblock_t		bno;	/* block # of "block" */
350 	xfs_ifork_t		*ifp;	/* fork structure */
351 	int			level;	/* btree level, for checking */
352 	xfs_mount_t		*mp;	/* file system mount structure */
353 	__be64			*pp;	/* pointer to block address */
354 
355 	bno = NULLFSBLOCK;
356 	mp = ip->i_mount;
357 	ifp = XFS_IFORK_PTR(ip, whichfork);
358 	if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) {
359 		xfs_bmap_count_leaves(ifp, 0,
360 			ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t),
361 			count);
362 		return 0;
363 	}
364 
365 	/*
366 	 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
367 	 */
368 	block = ifp->if_broot;
369 	level = be16_to_cpu(block->bb_level);
370 	ASSERT(level > 0);
371 	pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
372 	bno = be64_to_cpu(*pp);
373 	ASSERT(bno != NULLFSBLOCK);
374 	ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
375 	ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
376 
377 	if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) {
378 		XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW,
379 				 mp);
380 		return -EFSCORRUPTED;
381 	}
382 
383 	return 0;
384 }
385 
386 /*
387  * returns 1 for success, 0 if we failed to map the extent.
388  */
389 STATIC int
390 xfs_getbmapx_fix_eof_hole(
391 	xfs_inode_t		*ip,		/* xfs incore inode pointer */
392 	struct getbmapx		*out,		/* output structure */
393 	int			prealloced,	/* this is a file with
394 						 * preallocated data space */
395 	__int64_t		end,		/* last block requested */
396 	xfs_fsblock_t		startblock)
397 {
398 	__int64_t		fixlen;
399 	xfs_mount_t		*mp;		/* file system mount point */
400 	xfs_ifork_t		*ifp;		/* inode fork pointer */
401 	xfs_extnum_t		lastx;		/* last extent pointer */
402 	xfs_fileoff_t		fileblock;
403 
404 	if (startblock == HOLESTARTBLOCK) {
405 		mp = ip->i_mount;
406 		out->bmv_block = -1;
407 		fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
408 		fixlen -= out->bmv_offset;
409 		if (prealloced && out->bmv_offset + out->bmv_length == end) {
410 			/* Came to hole at EOF. Trim it. */
411 			if (fixlen <= 0)
412 				return 0;
413 			out->bmv_length = fixlen;
414 		}
415 	} else {
416 		if (startblock == DELAYSTARTBLOCK)
417 			out->bmv_block = -2;
418 		else
419 			out->bmv_block = xfs_fsb_to_db(ip, startblock);
420 		fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset);
421 		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
422 		if (xfs_iext_bno_to_ext(ifp, fileblock, &lastx) &&
423 		   (lastx == (ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t))-1))
424 			out->bmv_oflags |= BMV_OF_LAST;
425 	}
426 
427 	return 1;
428 }
429 
430 /*
431  * Get inode's extents as described in bmv, and format for output.
432  * Calls formatter to fill the user's buffer until all extents
433  * are mapped, until the passed-in bmv->bmv_count slots have
434  * been filled, or until the formatter short-circuits the loop,
435  * if it is tracking filled-in extents on its own.
436  */
437 int						/* error code */
438 xfs_getbmap(
439 	xfs_inode_t		*ip,
440 	struct getbmapx		*bmv,		/* user bmap structure */
441 	xfs_bmap_format_t	formatter,	/* format to user */
442 	void			*arg)		/* formatter arg */
443 {
444 	__int64_t		bmvend;		/* last block requested */
445 	int			error = 0;	/* return value */
446 	__int64_t		fixlen;		/* length for -1 case */
447 	int			i;		/* extent number */
448 	int			lock;		/* lock state */
449 	xfs_bmbt_irec_t		*map;		/* buffer for user's data */
450 	xfs_mount_t		*mp;		/* file system mount point */
451 	int			nex;		/* # of user extents can do */
452 	int			nexleft;	/* # of user extents left */
453 	int			subnex;		/* # of bmapi's can do */
454 	int			nmap;		/* number of map entries */
455 	struct getbmapx		*out;		/* output structure */
456 	int			whichfork;	/* data or attr fork */
457 	int			prealloced;	/* this is a file with
458 						 * preallocated data space */
459 	int			iflags;		/* interface flags */
460 	int			bmapi_flags;	/* flags for xfs_bmapi */
461 	int			cur_ext = 0;
462 
463 	mp = ip->i_mount;
464 	iflags = bmv->bmv_iflags;
465 	whichfork = iflags & BMV_IF_ATTRFORK ? XFS_ATTR_FORK : XFS_DATA_FORK;
466 
467 	if (whichfork == XFS_ATTR_FORK) {
468 		if (XFS_IFORK_Q(ip)) {
469 			if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
470 			    ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
471 			    ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
472 				return -EINVAL;
473 		} else if (unlikely(
474 			   ip->i_d.di_aformat != 0 &&
475 			   ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
476 			XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
477 					 ip->i_mount);
478 			return -EFSCORRUPTED;
479 		}
480 
481 		prealloced = 0;
482 		fixlen = 1LL << 32;
483 	} else {
484 		if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
485 		    ip->i_d.di_format != XFS_DINODE_FMT_BTREE &&
486 		    ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
487 			return -EINVAL;
488 
489 		if (xfs_get_extsz_hint(ip) ||
490 		    ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
491 			prealloced = 1;
492 			fixlen = mp->m_super->s_maxbytes;
493 		} else {
494 			prealloced = 0;
495 			fixlen = XFS_ISIZE(ip);
496 		}
497 	}
498 
499 	if (bmv->bmv_length == -1) {
500 		fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
501 		bmv->bmv_length =
502 			max_t(__int64_t, fixlen - bmv->bmv_offset, 0);
503 	} else if (bmv->bmv_length == 0) {
504 		bmv->bmv_entries = 0;
505 		return 0;
506 	} else if (bmv->bmv_length < 0) {
507 		return -EINVAL;
508 	}
509 
510 	nex = bmv->bmv_count - 1;
511 	if (nex <= 0)
512 		return -EINVAL;
513 	bmvend = bmv->bmv_offset + bmv->bmv_length;
514 
515 
516 	if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
517 		return -ENOMEM;
518 	out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
519 	if (!out)
520 		return -ENOMEM;
521 
522 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
523 	if (whichfork == XFS_DATA_FORK) {
524 		if (!(iflags & BMV_IF_DELALLOC) &&
525 		    (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
526 			error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
527 			if (error)
528 				goto out_unlock_iolock;
529 
530 			/*
531 			 * Even after flushing the inode, there can still be
532 			 * delalloc blocks on the inode beyond EOF due to
533 			 * speculative preallocation.  These are not removed
534 			 * until the release function is called or the inode
535 			 * is inactivated.  Hence we cannot assert here that
536 			 * ip->i_delayed_blks == 0.
537 			 */
538 		}
539 
540 		lock = xfs_ilock_data_map_shared(ip);
541 	} else {
542 		lock = xfs_ilock_attr_map_shared(ip);
543 	}
544 
545 	/*
546 	 * Don't let nex be bigger than the number of extents
547 	 * we can have assuming alternating holes and real extents.
548 	 */
549 	if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
550 		nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;
551 
552 	bmapi_flags = xfs_bmapi_aflag(whichfork);
553 	if (!(iflags & BMV_IF_PREALLOC))
554 		bmapi_flags |= XFS_BMAPI_IGSTATE;
555 
556 	/*
557 	 * Allocate enough space to handle "subnex" maps at a time.
558 	 */
559 	error = -ENOMEM;
560 	subnex = 16;
561 	map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
562 	if (!map)
563 		goto out_unlock_ilock;
564 
565 	bmv->bmv_entries = 0;
566 
567 	if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
568 	    (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
569 		error = 0;
570 		goto out_free_map;
571 	}
572 
573 	nexleft = nex;
574 
575 	do {
576 		nmap = (nexleft > subnex) ? subnex : nexleft;
577 		error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
578 				       XFS_BB_TO_FSB(mp, bmv->bmv_length),
579 				       map, &nmap, bmapi_flags);
580 		if (error)
581 			goto out_free_map;
582 		ASSERT(nmap <= subnex);
583 
584 		for (i = 0; i < nmap && nexleft && bmv->bmv_length; i++) {
585 			out[cur_ext].bmv_oflags = 0;
586 			if (map[i].br_state == XFS_EXT_UNWRITTEN)
587 				out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
588 			else if (map[i].br_startblock == DELAYSTARTBLOCK)
589 				out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
590 			out[cur_ext].bmv_offset =
591 				XFS_FSB_TO_BB(mp, map[i].br_startoff);
592 			out[cur_ext].bmv_length =
593 				XFS_FSB_TO_BB(mp, map[i].br_blockcount);
594 			out[cur_ext].bmv_unused1 = 0;
595 			out[cur_ext].bmv_unused2 = 0;
596 
597 			/*
598 			 * delayed allocation extents that start beyond EOF can
599 			 * occur due to speculative EOF allocation when the
600 			 * delalloc extent is larger than the largest freespace
601 			 * extent at conversion time. These extents cannot be
602 			 * converted by data writeback, so can exist here even
603 			 * if we are not supposed to be finding delalloc
604 			 * extents.
605 			 */
606 			if (map[i].br_startblock == DELAYSTARTBLOCK &&
607 			    map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
608 				ASSERT((iflags & BMV_IF_DELALLOC) != 0);
609 
610                         if (map[i].br_startblock == HOLESTARTBLOCK &&
611 			    whichfork == XFS_ATTR_FORK) {
612 				/* came to the end of attribute fork */
613 				out[cur_ext].bmv_oflags |= BMV_OF_LAST;
614 				goto out_free_map;
615 			}
616 
617 			if (!xfs_getbmapx_fix_eof_hole(ip, &out[cur_ext],
618 					prealloced, bmvend,
619 					map[i].br_startblock))
620 				goto out_free_map;
621 
622 			bmv->bmv_offset =
623 				out[cur_ext].bmv_offset +
624 				out[cur_ext].bmv_length;
625 			bmv->bmv_length =
626 				max_t(__int64_t, 0, bmvend - bmv->bmv_offset);
627 
628 			/*
629 			 * In case we don't want to return the hole,
630 			 * don't increase cur_ext so that we can reuse
631 			 * it in the next loop.
632 			 */
633 			if ((iflags & BMV_IF_NO_HOLES) &&
634 			    map[i].br_startblock == HOLESTARTBLOCK) {
635 				memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
636 				continue;
637 			}
638 
639 			nexleft--;
640 			bmv->bmv_entries++;
641 			cur_ext++;
642 		}
643 	} while (nmap && nexleft && bmv->bmv_length);
644 
645  out_free_map:
646 	kmem_free(map);
647  out_unlock_ilock:
648 	xfs_iunlock(ip, lock);
649  out_unlock_iolock:
650 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
651 
652 	for (i = 0; i < cur_ext; i++) {
653 		int full = 0;	/* user array is full */
654 
655 		/* format results & advance arg */
656 		error = formatter(&arg, &out[i], &full);
657 		if (error || full)
658 			break;
659 	}
660 
661 	kmem_free(out);
662 	return error;
663 }
664 
665 /*
666  * dead simple method of punching delalyed allocation blocks from a range in
667  * the inode. Walks a block at a time so will be slow, but is only executed in
668  * rare error cases so the overhead is not critical. This will always punch out
669  * both the start and end blocks, even if the ranges only partially overlap
670  * them, so it is up to the caller to ensure that partial blocks are not
671  * passed in.
672  */
673 int
674 xfs_bmap_punch_delalloc_range(
675 	struct xfs_inode	*ip,
676 	xfs_fileoff_t		start_fsb,
677 	xfs_fileoff_t		length)
678 {
679 	xfs_fileoff_t		remaining = length;
680 	int			error = 0;
681 
682 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
683 
684 	do {
685 		int		done;
686 		xfs_bmbt_irec_t	imap;
687 		int		nimaps = 1;
688 		xfs_fsblock_t	firstblock;
689 		struct xfs_defer_ops dfops;
690 
691 		/*
692 		 * Map the range first and check that it is a delalloc extent
693 		 * before trying to unmap the range. Otherwise we will be
694 		 * trying to remove a real extent (which requires a
695 		 * transaction) or a hole, which is probably a bad idea...
696 		 */
697 		error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps,
698 				       XFS_BMAPI_ENTIRE);
699 
700 		if (error) {
701 			/* something screwed, just bail */
702 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
703 				xfs_alert(ip->i_mount,
704 			"Failed delalloc mapping lookup ino %lld fsb %lld.",
705 						ip->i_ino, start_fsb);
706 			}
707 			break;
708 		}
709 		if (!nimaps) {
710 			/* nothing there */
711 			goto next_block;
712 		}
713 		if (imap.br_startblock != DELAYSTARTBLOCK) {
714 			/* been converted, ignore */
715 			goto next_block;
716 		}
717 		WARN_ON(imap.br_blockcount == 0);
718 
719 		/*
720 		 * Note: while we initialise the firstblock/dfops pair, they
721 		 * should never be used because blocks should never be
722 		 * allocated or freed for a delalloc extent and hence we need
723 		 * don't cancel or finish them after the xfs_bunmapi() call.
724 		 */
725 		xfs_defer_init(&dfops, &firstblock);
726 		error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock,
727 					&dfops, &done);
728 		if (error)
729 			break;
730 
731 		ASSERT(!xfs_defer_has_unfinished_work(&dfops));
732 next_block:
733 		start_fsb++;
734 		remaining--;
735 	} while(remaining > 0);
736 
737 	return error;
738 }
739 
740 /*
741  * Test whether it is appropriate to check an inode for and free post EOF
742  * blocks. The 'force' parameter determines whether we should also consider
743  * regular files that are marked preallocated or append-only.
744  */
745 bool
746 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
747 {
748 	/* prealloc/delalloc exists only on regular files */
749 	if (!S_ISREG(VFS_I(ip)->i_mode))
750 		return false;
751 
752 	/*
753 	 * Zero sized files with no cached pages and delalloc blocks will not
754 	 * have speculative prealloc/delalloc blocks to remove.
755 	 */
756 	if (VFS_I(ip)->i_size == 0 &&
757 	    VFS_I(ip)->i_mapping->nrpages == 0 &&
758 	    ip->i_delayed_blks == 0)
759 		return false;
760 
761 	/* If we haven't read in the extent list, then don't do it now. */
762 	if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
763 		return false;
764 
765 	/*
766 	 * Do not free real preallocated or append-only files unless the file
767 	 * has delalloc blocks and we are forced to remove them.
768 	 */
769 	if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
770 		if (!force || ip->i_delayed_blks == 0)
771 			return false;
772 
773 	return true;
774 }
775 
776 /*
777  * This is called by xfs_inactive to free any blocks beyond eof
778  * when the link count isn't zero and by xfs_dm_punch_hole() when
779  * punching a hole to EOF.
780  */
781 int
782 xfs_free_eofblocks(
783 	xfs_mount_t	*mp,
784 	xfs_inode_t	*ip,
785 	bool		need_iolock)
786 {
787 	xfs_trans_t	*tp;
788 	int		error;
789 	xfs_fileoff_t	end_fsb;
790 	xfs_fileoff_t	last_fsb;
791 	xfs_filblks_t	map_len;
792 	int		nimaps;
793 	xfs_bmbt_irec_t	imap;
794 
795 	/*
796 	 * Figure out if there are any blocks beyond the end
797 	 * of the file.  If not, then there is nothing to do.
798 	 */
799 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
800 	last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
801 	if (last_fsb <= end_fsb)
802 		return 0;
803 	map_len = last_fsb - end_fsb;
804 
805 	nimaps = 1;
806 	xfs_ilock(ip, XFS_ILOCK_SHARED);
807 	error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
808 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
809 
810 	if (!error && (nimaps != 0) &&
811 	    (imap.br_startblock != HOLESTARTBLOCK ||
812 	     ip->i_delayed_blks)) {
813 		/*
814 		 * Attach the dquots to the inode up front.
815 		 */
816 		error = xfs_qm_dqattach(ip, 0);
817 		if (error)
818 			return error;
819 
820 		/*
821 		 * There are blocks after the end of file.
822 		 * Free them up now by truncating the file to
823 		 * its current size.
824 		 */
825 		if (need_iolock) {
826 			if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
827 				return -EAGAIN;
828 		}
829 
830 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0,
831 				&tp);
832 		if (error) {
833 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
834 			if (need_iolock)
835 				xfs_iunlock(ip, XFS_IOLOCK_EXCL);
836 			return error;
837 		}
838 
839 		xfs_ilock(ip, XFS_ILOCK_EXCL);
840 		xfs_trans_ijoin(tp, ip, 0);
841 
842 		/*
843 		 * Do not update the on-disk file size.  If we update the
844 		 * on-disk file size and then the system crashes before the
845 		 * contents of the file are flushed to disk then the files
846 		 * may be full of holes (ie NULL files bug).
847 		 */
848 		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK,
849 					      XFS_ISIZE(ip));
850 		if (error) {
851 			/*
852 			 * If we get an error at this point we simply don't
853 			 * bother truncating the file.
854 			 */
855 			xfs_trans_cancel(tp);
856 		} else {
857 			error = xfs_trans_commit(tp);
858 			if (!error)
859 				xfs_inode_clear_eofblocks_tag(ip);
860 		}
861 
862 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
863 		if (need_iolock)
864 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
865 	}
866 	return error;
867 }
868 
869 int
870 xfs_alloc_file_space(
871 	struct xfs_inode	*ip,
872 	xfs_off_t		offset,
873 	xfs_off_t		len,
874 	int			alloc_type)
875 {
876 	xfs_mount_t		*mp = ip->i_mount;
877 	xfs_off_t		count;
878 	xfs_filblks_t		allocated_fsb;
879 	xfs_filblks_t		allocatesize_fsb;
880 	xfs_extlen_t		extsz, temp;
881 	xfs_fileoff_t		startoffset_fsb;
882 	xfs_fsblock_t		firstfsb;
883 	int			nimaps;
884 	int			quota_flag;
885 	int			rt;
886 	xfs_trans_t		*tp;
887 	xfs_bmbt_irec_t		imaps[1], *imapp;
888 	struct xfs_defer_ops	dfops;
889 	uint			qblocks, resblks, resrtextents;
890 	int			error;
891 
892 	trace_xfs_alloc_file_space(ip);
893 
894 	if (XFS_FORCED_SHUTDOWN(mp))
895 		return -EIO;
896 
897 	error = xfs_qm_dqattach(ip, 0);
898 	if (error)
899 		return error;
900 
901 	if (len <= 0)
902 		return -EINVAL;
903 
904 	rt = XFS_IS_REALTIME_INODE(ip);
905 	extsz = xfs_get_extsz_hint(ip);
906 
907 	count = len;
908 	imapp = &imaps[0];
909 	nimaps = 1;
910 	startoffset_fsb	= XFS_B_TO_FSBT(mp, offset);
911 	allocatesize_fsb = XFS_B_TO_FSB(mp, count);
912 
913 	/*
914 	 * Allocate file space until done or until there is an error
915 	 */
916 	while (allocatesize_fsb && !error) {
917 		xfs_fileoff_t	s, e;
918 
919 		/*
920 		 * Determine space reservations for data/realtime.
921 		 */
922 		if (unlikely(extsz)) {
923 			s = startoffset_fsb;
924 			do_div(s, extsz);
925 			s *= extsz;
926 			e = startoffset_fsb + allocatesize_fsb;
927 			if ((temp = do_mod(startoffset_fsb, extsz)))
928 				e += temp;
929 			if ((temp = do_mod(e, extsz)))
930 				e += extsz - temp;
931 		} else {
932 			s = 0;
933 			e = allocatesize_fsb;
934 		}
935 
936 		/*
937 		 * The transaction reservation is limited to a 32-bit block
938 		 * count, hence we need to limit the number of blocks we are
939 		 * trying to reserve to avoid an overflow. We can't allocate
940 		 * more than @nimaps extents, and an extent is limited on disk
941 		 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
942 		 */
943 		resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
944 		if (unlikely(rt)) {
945 			resrtextents = qblocks = resblks;
946 			resrtextents /= mp->m_sb.sb_rextsize;
947 			resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
948 			quota_flag = XFS_QMOPT_RES_RTBLKS;
949 		} else {
950 			resrtextents = 0;
951 			resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
952 			quota_flag = XFS_QMOPT_RES_REGBLKS;
953 		}
954 
955 		/*
956 		 * Allocate and setup the transaction.
957 		 */
958 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
959 				resrtextents, 0, &tp);
960 
961 		/*
962 		 * Check for running out of space
963 		 */
964 		if (error) {
965 			/*
966 			 * Free the transaction structure.
967 			 */
968 			ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
969 			break;
970 		}
971 		xfs_ilock(ip, XFS_ILOCK_EXCL);
972 		error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
973 						      0, quota_flag);
974 		if (error)
975 			goto error1;
976 
977 		xfs_trans_ijoin(tp, ip, 0);
978 
979 		xfs_defer_init(&dfops, &firstfsb);
980 		error = xfs_bmapi_write(tp, ip, startoffset_fsb,
981 					allocatesize_fsb, alloc_type, &firstfsb,
982 					resblks, imapp, &nimaps, &dfops);
983 		if (error)
984 			goto error0;
985 
986 		/*
987 		 * Complete the transaction
988 		 */
989 		error = xfs_defer_finish(&tp, &dfops, NULL);
990 		if (error)
991 			goto error0;
992 
993 		error = xfs_trans_commit(tp);
994 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
995 		if (error)
996 			break;
997 
998 		allocated_fsb = imapp->br_blockcount;
999 
1000 		if (nimaps == 0) {
1001 			error = -ENOSPC;
1002 			break;
1003 		}
1004 
1005 		startoffset_fsb += allocated_fsb;
1006 		allocatesize_fsb -= allocated_fsb;
1007 	}
1008 
1009 	return error;
1010 
1011 error0:	/* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1012 	xfs_defer_cancel(&dfops);
1013 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
1014 
1015 error1:	/* Just cancel transaction */
1016 	xfs_trans_cancel(tp);
1017 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1018 	return error;
1019 }
1020 
1021 static int
1022 xfs_unmap_extent(
1023 	struct xfs_inode	*ip,
1024 	xfs_fileoff_t		startoffset_fsb,
1025 	xfs_filblks_t		len_fsb,
1026 	int			*done)
1027 {
1028 	struct xfs_mount	*mp = ip->i_mount;
1029 	struct xfs_trans	*tp;
1030 	struct xfs_defer_ops	dfops;
1031 	xfs_fsblock_t		firstfsb;
1032 	uint			resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1033 	int			error;
1034 
1035 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1036 	if (error) {
1037 		ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1038 		return error;
1039 	}
1040 
1041 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1042 	error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot,
1043 			ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS);
1044 	if (error)
1045 		goto out_trans_cancel;
1046 
1047 	xfs_trans_ijoin(tp, ip, 0);
1048 
1049 	xfs_defer_init(&dfops, &firstfsb);
1050 	error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb,
1051 			&dfops, done);
1052 	if (error)
1053 		goto out_bmap_cancel;
1054 
1055 	error = xfs_defer_finish(&tp, &dfops, ip);
1056 	if (error)
1057 		goto out_bmap_cancel;
1058 
1059 	error = xfs_trans_commit(tp);
1060 out_unlock:
1061 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1062 	return error;
1063 
1064 out_bmap_cancel:
1065 	xfs_defer_cancel(&dfops);
1066 out_trans_cancel:
1067 	xfs_trans_cancel(tp);
1068 	goto out_unlock;
1069 }
1070 
1071 static int
1072 xfs_adjust_extent_unmap_boundaries(
1073 	struct xfs_inode	*ip,
1074 	xfs_fileoff_t		*startoffset_fsb,
1075 	xfs_fileoff_t		*endoffset_fsb)
1076 {
1077 	struct xfs_mount	*mp = ip->i_mount;
1078 	struct xfs_bmbt_irec	imap;
1079 	int			nimap, error;
1080 	xfs_extlen_t		mod = 0;
1081 
1082 	nimap = 1;
1083 	error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0);
1084 	if (error)
1085 		return error;
1086 
1087 	if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1088 		xfs_daddr_t	block;
1089 
1090 		ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1091 		block = imap.br_startblock;
1092 		mod = do_div(block, mp->m_sb.sb_rextsize);
1093 		if (mod)
1094 			*startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1095 	}
1096 
1097 	nimap = 1;
1098 	error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0);
1099 	if (error)
1100 		return error;
1101 
1102 	if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1103 		ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1104 		mod++;
1105 		if (mod && mod != mp->m_sb.sb_rextsize)
1106 			*endoffset_fsb -= mod;
1107 	}
1108 
1109 	return 0;
1110 }
1111 
1112 static int
1113 xfs_flush_unmap_range(
1114 	struct xfs_inode	*ip,
1115 	xfs_off_t		offset,
1116 	xfs_off_t		len)
1117 {
1118 	struct xfs_mount	*mp = ip->i_mount;
1119 	struct inode		*inode = VFS_I(ip);
1120 	xfs_off_t		rounding, start, end;
1121 	int			error;
1122 
1123 	/* wait for the completion of any pending DIOs */
1124 	inode_dio_wait(inode);
1125 
1126 	rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
1127 	start = round_down(offset, rounding);
1128 	end = round_up(offset + len, rounding) - 1;
1129 
1130 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
1131 	if (error)
1132 		return error;
1133 	truncate_pagecache_range(inode, start, end);
1134 	return 0;
1135 }
1136 
1137 int
1138 xfs_free_file_space(
1139 	struct xfs_inode	*ip,
1140 	xfs_off_t		offset,
1141 	xfs_off_t		len)
1142 {
1143 	struct xfs_mount	*mp = ip->i_mount;
1144 	xfs_fileoff_t		startoffset_fsb;
1145 	xfs_fileoff_t		endoffset_fsb;
1146 	int			done = 0, error;
1147 
1148 	trace_xfs_free_file_space(ip);
1149 
1150 	error = xfs_qm_dqattach(ip, 0);
1151 	if (error)
1152 		return error;
1153 
1154 	if (len <= 0)	/* if nothing being freed */
1155 		return 0;
1156 
1157 	error = xfs_flush_unmap_range(ip, offset, len);
1158 	if (error)
1159 		return error;
1160 
1161 	startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1162 	endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1163 
1164 	/*
1165 	 * Need to zero the stuff we're not freeing, on disk.  If it's a RT file
1166 	 * and we can't use unwritten extents then we actually need to ensure
1167 	 * to zero the whole extent, otherwise we just need to take of block
1168 	 * boundaries, and xfs_bunmapi will handle the rest.
1169 	 */
1170 	if (XFS_IS_REALTIME_INODE(ip) &&
1171 	    !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1172 		error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb,
1173 				&endoffset_fsb);
1174 		if (error)
1175 			return error;
1176 	}
1177 
1178 	if (endoffset_fsb > startoffset_fsb) {
1179 		while (!done) {
1180 			error = xfs_unmap_extent(ip, startoffset_fsb,
1181 					endoffset_fsb - startoffset_fsb, &done);
1182 			if (error)
1183 				return error;
1184 		}
1185 	}
1186 
1187 	/*
1188 	 * Now that we've unmap all full blocks we'll have to zero out any
1189 	 * partial block at the beginning and/or end.  xfs_zero_range is
1190 	 * smart enough to skip any holes, including those we just created.
1191 	 */
1192 	return xfs_zero_range(ip, offset, len, NULL);
1193 }
1194 
1195 /*
1196  * Preallocate and zero a range of a file. This mechanism has the allocation
1197  * semantics of fallocate and in addition converts data in the range to zeroes.
1198  */
1199 int
1200 xfs_zero_file_space(
1201 	struct xfs_inode	*ip,
1202 	xfs_off_t		offset,
1203 	xfs_off_t		len)
1204 {
1205 	struct xfs_mount	*mp = ip->i_mount;
1206 	uint			blksize;
1207 	int			error;
1208 
1209 	trace_xfs_zero_file_space(ip);
1210 
1211 	blksize = 1 << mp->m_sb.sb_blocklog;
1212 
1213 	/*
1214 	 * Punch a hole and prealloc the range. We use hole punch rather than
1215 	 * unwritten extent conversion for two reasons:
1216 	 *
1217 	 * 1.) Hole punch handles partial block zeroing for us.
1218 	 *
1219 	 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1220 	 * by virtue of the hole punch.
1221 	 */
1222 	error = xfs_free_file_space(ip, offset, len);
1223 	if (error)
1224 		goto out;
1225 
1226 	error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1227 				     round_up(offset + len, blksize) -
1228 				     round_down(offset, blksize),
1229 				     XFS_BMAPI_PREALLOC);
1230 out:
1231 	return error;
1232 
1233 }
1234 
1235 /*
1236  * @next_fsb will keep track of the extent currently undergoing shift.
1237  * @stop_fsb will keep track of the extent at which we have to stop.
1238  * If we are shifting left, we will start with block (offset + len) and
1239  * shift each extent till last extent.
1240  * If we are shifting right, we will start with last extent inside file space
1241  * and continue until we reach the block corresponding to offset.
1242  */
1243 static int
1244 xfs_shift_file_space(
1245 	struct xfs_inode        *ip,
1246 	xfs_off_t               offset,
1247 	xfs_off_t               len,
1248 	enum shift_direction	direction)
1249 {
1250 	int			done = 0;
1251 	struct xfs_mount	*mp = ip->i_mount;
1252 	struct xfs_trans	*tp;
1253 	int			error;
1254 	struct xfs_defer_ops	dfops;
1255 	xfs_fsblock_t		first_block;
1256 	xfs_fileoff_t		stop_fsb;
1257 	xfs_fileoff_t		next_fsb;
1258 	xfs_fileoff_t		shift_fsb;
1259 
1260 	ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT);
1261 
1262 	if (direction == SHIFT_LEFT) {
1263 		next_fsb = XFS_B_TO_FSB(mp, offset + len);
1264 		stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size);
1265 	} else {
1266 		/*
1267 		 * If right shift, delegate the work of initialization of
1268 		 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1269 		 */
1270 		next_fsb = NULLFSBLOCK;
1271 		stop_fsb = XFS_B_TO_FSB(mp, offset);
1272 	}
1273 
1274 	shift_fsb = XFS_B_TO_FSB(mp, len);
1275 
1276 	/*
1277 	 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1278 	 * into the accessible region of the file.
1279 	 */
1280 	if (xfs_can_free_eofblocks(ip, true)) {
1281 		error = xfs_free_eofblocks(mp, ip, false);
1282 		if (error)
1283 			return error;
1284 	}
1285 
1286 	/*
1287 	 * Writeback and invalidate cache for the remainder of the file as we're
1288 	 * about to shift down every extent from offset to EOF.
1289 	 */
1290 	error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1291 					     offset, -1);
1292 	if (error)
1293 		return error;
1294 	error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1295 					offset >> PAGE_SHIFT, -1);
1296 	if (error)
1297 		return error;
1298 
1299 	/*
1300 	 * The extent shiting code works on extent granularity. So, if
1301 	 * stop_fsb is not the starting block of extent, we need to split
1302 	 * the extent at stop_fsb.
1303 	 */
1304 	if (direction == SHIFT_RIGHT) {
1305 		error = xfs_bmap_split_extent(ip, stop_fsb);
1306 		if (error)
1307 			return error;
1308 	}
1309 
1310 	while (!error && !done) {
1311 		/*
1312 		 * We would need to reserve permanent block for transaction.
1313 		 * This will come into picture when after shifting extent into
1314 		 * hole we found that adjacent extents can be merged which
1315 		 * may lead to freeing of a block during record update.
1316 		 */
1317 		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write,
1318 				XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 0, &tp);
1319 		if (error)
1320 			break;
1321 
1322 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1323 		error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1324 				ip->i_gdquot, ip->i_pdquot,
1325 				XFS_DIOSTRAT_SPACE_RES(mp, 0), 0,
1326 				XFS_QMOPT_RES_REGBLKS);
1327 		if (error)
1328 			goto out_trans_cancel;
1329 
1330 		xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1331 
1332 		xfs_defer_init(&dfops, &first_block);
1333 
1334 		/*
1335 		 * We are using the write transaction in which max 2 bmbt
1336 		 * updates are allowed
1337 		 */
1338 		error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb,
1339 				&done, stop_fsb, &first_block, &dfops,
1340 				direction, XFS_BMAP_MAX_SHIFT_EXTENTS);
1341 		if (error)
1342 			goto out_bmap_cancel;
1343 
1344 		error = xfs_defer_finish(&tp, &dfops, NULL);
1345 		if (error)
1346 			goto out_bmap_cancel;
1347 
1348 		error = xfs_trans_commit(tp);
1349 	}
1350 
1351 	return error;
1352 
1353 out_bmap_cancel:
1354 	xfs_defer_cancel(&dfops);
1355 out_trans_cancel:
1356 	xfs_trans_cancel(tp);
1357 	return error;
1358 }
1359 
1360 /*
1361  * xfs_collapse_file_space()
1362  *	This routine frees disk space and shift extent for the given file.
1363  *	The first thing we do is to free data blocks in the specified range
1364  *	by calling xfs_free_file_space(). It would also sync dirty data
1365  *	and invalidate page cache over the region on which collapse range
1366  *	is working. And Shift extent records to the left to cover a hole.
1367  * RETURNS:
1368  *	0 on success
1369  *	errno on error
1370  *
1371  */
1372 int
1373 xfs_collapse_file_space(
1374 	struct xfs_inode	*ip,
1375 	xfs_off_t		offset,
1376 	xfs_off_t		len)
1377 {
1378 	int error;
1379 
1380 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1381 	trace_xfs_collapse_file_space(ip);
1382 
1383 	error = xfs_free_file_space(ip, offset, len);
1384 	if (error)
1385 		return error;
1386 
1387 	return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT);
1388 }
1389 
1390 /*
1391  * xfs_insert_file_space()
1392  *	This routine create hole space by shifting extents for the given file.
1393  *	The first thing we do is to sync dirty data and invalidate page cache
1394  *	over the region on which insert range is working. And split an extent
1395  *	to two extents at given offset by calling xfs_bmap_split_extent.
1396  *	And shift all extent records which are laying between [offset,
1397  *	last allocated extent] to the right to reserve hole range.
1398  * RETURNS:
1399  *	0 on success
1400  *	errno on error
1401  */
1402 int
1403 xfs_insert_file_space(
1404 	struct xfs_inode	*ip,
1405 	loff_t			offset,
1406 	loff_t			len)
1407 {
1408 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1409 	trace_xfs_insert_file_space(ip);
1410 
1411 	return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT);
1412 }
1413 
1414 /*
1415  * We need to check that the format of the data fork in the temporary inode is
1416  * valid for the target inode before doing the swap. This is not a problem with
1417  * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1418  * data fork depending on the space the attribute fork is taking so we can get
1419  * invalid formats on the target inode.
1420  *
1421  * E.g. target has space for 7 extents in extent format, temp inode only has
1422  * space for 6.  If we defragment down to 7 extents, then the tmp format is a
1423  * btree, but when swapped it needs to be in extent format. Hence we can't just
1424  * blindly swap data forks on attr2 filesystems.
1425  *
1426  * Note that we check the swap in both directions so that we don't end up with
1427  * a corrupt temporary inode, either.
1428  *
1429  * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1430  * inode will prevent this situation from occurring, so all we do here is
1431  * reject and log the attempt. basically we are putting the responsibility on
1432  * userspace to get this right.
1433  */
1434 static int
1435 xfs_swap_extents_check_format(
1436 	xfs_inode_t	*ip,	/* target inode */
1437 	xfs_inode_t	*tip)	/* tmp inode */
1438 {
1439 
1440 	/* Should never get a local format */
1441 	if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1442 	    tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1443 		return -EINVAL;
1444 
1445 	/*
1446 	 * if the target inode has less extents that then temporary inode then
1447 	 * why did userspace call us?
1448 	 */
1449 	if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1450 		return -EINVAL;
1451 
1452 	/*
1453 	 * if the target inode is in extent form and the temp inode is in btree
1454 	 * form then we will end up with the target inode in the wrong format
1455 	 * as we already know there are less extents in the temp inode.
1456 	 */
1457 	if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1458 	    tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1459 		return -EINVAL;
1460 
1461 	/* Check temp in extent form to max in target */
1462 	if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1463 	    XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1464 			XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1465 		return -EINVAL;
1466 
1467 	/* Check target in extent form to max in temp */
1468 	if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1469 	    XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1470 			XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1471 		return -EINVAL;
1472 
1473 	/*
1474 	 * If we are in a btree format, check that the temp root block will fit
1475 	 * in the target and that it has enough extents to be in btree format
1476 	 * in the target.
1477 	 *
1478 	 * Note that we have to be careful to allow btree->extent conversions
1479 	 * (a common defrag case) which will occur when the temp inode is in
1480 	 * extent format...
1481 	 */
1482 	if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1483 		if (XFS_IFORK_BOFF(ip) &&
1484 		    XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1485 			return -EINVAL;
1486 		if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1487 		    XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1488 			return -EINVAL;
1489 	}
1490 
1491 	/* Reciprocal target->temp btree format checks */
1492 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1493 		if (XFS_IFORK_BOFF(tip) &&
1494 		    XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1495 			return -EINVAL;
1496 		if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1497 		    XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1498 			return -EINVAL;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 static int
1505 xfs_swap_extent_flush(
1506 	struct xfs_inode	*ip)
1507 {
1508 	int	error;
1509 
1510 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1511 	if (error)
1512 		return error;
1513 	truncate_pagecache_range(VFS_I(ip), 0, -1);
1514 
1515 	/* Verify O_DIRECT for ftmp */
1516 	if (VFS_I(ip)->i_mapping->nrpages)
1517 		return -EINVAL;
1518 	return 0;
1519 }
1520 
1521 int
1522 xfs_swap_extents(
1523 	xfs_inode_t	*ip,	/* target inode */
1524 	xfs_inode_t	*tip,	/* tmp inode */
1525 	xfs_swapext_t	*sxp)
1526 {
1527 	xfs_mount_t	*mp = ip->i_mount;
1528 	xfs_trans_t	*tp;
1529 	xfs_bstat_t	*sbp = &sxp->sx_stat;
1530 	xfs_ifork_t	*tempifp, *ifp, *tifp;
1531 	int		src_log_flags, target_log_flags;
1532 	int		error = 0;
1533 	int		aforkblks = 0;
1534 	int		taforkblks = 0;
1535 	__uint64_t	tmp;
1536 	int		lock_flags;
1537 
1538 	/* XXX: we can't do this with rmap, will fix later */
1539 	if (xfs_sb_version_hasrmapbt(&mp->m_sb))
1540 		return -EOPNOTSUPP;
1541 
1542 	tempifp = kmem_alloc(sizeof(xfs_ifork_t), KM_MAYFAIL);
1543 	if (!tempifp) {
1544 		error = -ENOMEM;
1545 		goto out;
1546 	}
1547 
1548 	/*
1549 	 * Lock the inodes against other IO, page faults and truncate to
1550 	 * begin with.  Then we can ensure the inodes are flushed and have no
1551 	 * page cache safely. Once we have done this we can take the ilocks and
1552 	 * do the rest of the checks.
1553 	 */
1554 	lock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1555 	xfs_lock_two_inodes(ip, tip, XFS_IOLOCK_EXCL);
1556 	xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL);
1557 
1558 	/* Verify that both files have the same format */
1559 	if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
1560 		error = -EINVAL;
1561 		goto out_unlock;
1562 	}
1563 
1564 	/* Verify both files are either real-time or non-realtime */
1565 	if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1566 		error = -EINVAL;
1567 		goto out_unlock;
1568 	}
1569 
1570 	error = xfs_swap_extent_flush(ip);
1571 	if (error)
1572 		goto out_unlock;
1573 	error = xfs_swap_extent_flush(tip);
1574 	if (error)
1575 		goto out_unlock;
1576 
1577 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1578 	if (error)
1579 		goto out_unlock;
1580 
1581 	/*
1582 	 * Lock and join the inodes to the tansaction so that transaction commit
1583 	 * or cancel will unlock the inodes from this point onwards.
1584 	 */
1585 	xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL);
1586 	lock_flags |= XFS_ILOCK_EXCL;
1587 	xfs_trans_ijoin(tp, ip, lock_flags);
1588 	xfs_trans_ijoin(tp, tip, lock_flags);
1589 
1590 
1591 	/* Verify all data are being swapped */
1592 	if (sxp->sx_offset != 0 ||
1593 	    sxp->sx_length != ip->i_d.di_size ||
1594 	    sxp->sx_length != tip->i_d.di_size) {
1595 		error = -EFAULT;
1596 		goto out_trans_cancel;
1597 	}
1598 
1599 	trace_xfs_swap_extent_before(ip, 0);
1600 	trace_xfs_swap_extent_before(tip, 1);
1601 
1602 	/* check inode formats now that data is flushed */
1603 	error = xfs_swap_extents_check_format(ip, tip);
1604 	if (error) {
1605 		xfs_notice(mp,
1606 		    "%s: inode 0x%llx format is incompatible for exchanging.",
1607 				__func__, ip->i_ino);
1608 		goto out_trans_cancel;
1609 	}
1610 
1611 	/*
1612 	 * Compare the current change & modify times with that
1613 	 * passed in.  If they differ, we abort this swap.
1614 	 * This is the mechanism used to ensure the calling
1615 	 * process that the file was not changed out from
1616 	 * under it.
1617 	 */
1618 	if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
1619 	    (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
1620 	    (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
1621 	    (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
1622 		error = -EBUSY;
1623 		goto out_trans_cancel;
1624 	}
1625 	/*
1626 	 * Count the number of extended attribute blocks
1627 	 */
1628 	if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1629 	     (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1630 		error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &aforkblks);
1631 		if (error)
1632 			goto out_trans_cancel;
1633 	}
1634 	if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1635 	     (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1636 		error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK,
1637 			&taforkblks);
1638 		if (error)
1639 			goto out_trans_cancel;
1640 	}
1641 
1642 	/*
1643 	 * Before we've swapped the forks, lets set the owners of the forks
1644 	 * appropriately. We have to do this as we are demand paging the btree
1645 	 * buffers, and so the validation done on read will expect the owner
1646 	 * field to be correctly set. Once we change the owners, we can swap the
1647 	 * inode forks.
1648 	 *
1649 	 * Note the trickiness in setting the log flags - we set the owner log
1650 	 * flag on the opposite inode (i.e. the inode we are setting the new
1651 	 * owner to be) because once we swap the forks and log that, log
1652 	 * recovery is going to see the fork as owned by the swapped inode,
1653 	 * not the pre-swapped inodes.
1654 	 */
1655 	src_log_flags = XFS_ILOG_CORE;
1656 	target_log_flags = XFS_ILOG_CORE;
1657 	if (ip->i_d.di_version == 3 &&
1658 	    ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1659 		target_log_flags |= XFS_ILOG_DOWNER;
1660 		error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK,
1661 					      tip->i_ino, NULL);
1662 		if (error)
1663 			goto out_trans_cancel;
1664 	}
1665 
1666 	if (tip->i_d.di_version == 3 &&
1667 	    tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1668 		src_log_flags |= XFS_ILOG_DOWNER;
1669 		error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK,
1670 					      ip->i_ino, NULL);
1671 		if (error)
1672 			goto out_trans_cancel;
1673 	}
1674 
1675 	/*
1676 	 * Swap the data forks of the inodes
1677 	 */
1678 	ifp = &ip->i_df;
1679 	tifp = &tip->i_df;
1680 	*tempifp = *ifp;	/* struct copy */
1681 	*ifp = *tifp;		/* struct copy */
1682 	*tifp = *tempifp;	/* struct copy */
1683 
1684 	/*
1685 	 * Fix the on-disk inode values
1686 	 */
1687 	tmp = (__uint64_t)ip->i_d.di_nblocks;
1688 	ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1689 	tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1690 
1691 	tmp = (__uint64_t) ip->i_d.di_nextents;
1692 	ip->i_d.di_nextents = tip->i_d.di_nextents;
1693 	tip->i_d.di_nextents = tmp;
1694 
1695 	tmp = (__uint64_t) ip->i_d.di_format;
1696 	ip->i_d.di_format = tip->i_d.di_format;
1697 	tip->i_d.di_format = tmp;
1698 
1699 	/*
1700 	 * The extents in the source inode could still contain speculative
1701 	 * preallocation beyond EOF (e.g. the file is open but not modified
1702 	 * while defrag is in progress). In that case, we need to copy over the
1703 	 * number of delalloc blocks the data fork in the source inode is
1704 	 * tracking beyond EOF so that when the fork is truncated away when the
1705 	 * temporary inode is unlinked we don't underrun the i_delayed_blks
1706 	 * counter on that inode.
1707 	 */
1708 	ASSERT(tip->i_delayed_blks == 0);
1709 	tip->i_delayed_blks = ip->i_delayed_blks;
1710 	ip->i_delayed_blks = 0;
1711 
1712 	switch (ip->i_d.di_format) {
1713 	case XFS_DINODE_FMT_EXTENTS:
1714 		/* If the extents fit in the inode, fix the
1715 		 * pointer.  Otherwise it's already NULL or
1716 		 * pointing to the extent.
1717 		 */
1718 		if (ip->i_d.di_nextents <= XFS_INLINE_EXTS) {
1719 			ifp->if_u1.if_extents =
1720 				ifp->if_u2.if_inline_ext;
1721 		}
1722 		src_log_flags |= XFS_ILOG_DEXT;
1723 		break;
1724 	case XFS_DINODE_FMT_BTREE:
1725 		ASSERT(ip->i_d.di_version < 3 ||
1726 		       (src_log_flags & XFS_ILOG_DOWNER));
1727 		src_log_flags |= XFS_ILOG_DBROOT;
1728 		break;
1729 	}
1730 
1731 	switch (tip->i_d.di_format) {
1732 	case XFS_DINODE_FMT_EXTENTS:
1733 		/* If the extents fit in the inode, fix the
1734 		 * pointer.  Otherwise it's already NULL or
1735 		 * pointing to the extent.
1736 		 */
1737 		if (tip->i_d.di_nextents <= XFS_INLINE_EXTS) {
1738 			tifp->if_u1.if_extents =
1739 				tifp->if_u2.if_inline_ext;
1740 		}
1741 		target_log_flags |= XFS_ILOG_DEXT;
1742 		break;
1743 	case XFS_DINODE_FMT_BTREE:
1744 		target_log_flags |= XFS_ILOG_DBROOT;
1745 		ASSERT(tip->i_d.di_version < 3 ||
1746 		       (target_log_flags & XFS_ILOG_DOWNER));
1747 		break;
1748 	}
1749 
1750 	xfs_trans_log_inode(tp, ip,  src_log_flags);
1751 	xfs_trans_log_inode(tp, tip, target_log_flags);
1752 
1753 	/*
1754 	 * If this is a synchronous mount, make sure that the
1755 	 * transaction goes to disk before returning to the user.
1756 	 */
1757 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1758 		xfs_trans_set_sync(tp);
1759 
1760 	error = xfs_trans_commit(tp);
1761 
1762 	trace_xfs_swap_extent_after(ip, 0);
1763 	trace_xfs_swap_extent_after(tip, 1);
1764 out:
1765 	kmem_free(tempifp);
1766 	return error;
1767 
1768 out_unlock:
1769 	xfs_iunlock(ip, lock_flags);
1770 	xfs_iunlock(tip, lock_flags);
1771 	goto out;
1772 
1773 out_trans_cancel:
1774 	xfs_trans_cancel(tp);
1775 	goto out;
1776 }
1777