1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * Copyright (c) 2012 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_shared.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_bit.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_defer.h" 29 #include "xfs_inode.h" 30 #include "xfs_btree.h" 31 #include "xfs_trans.h" 32 #include "xfs_extfree_item.h" 33 #include "xfs_alloc.h" 34 #include "xfs_bmap.h" 35 #include "xfs_bmap_util.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_rtalloc.h" 38 #include "xfs_error.h" 39 #include "xfs_quota.h" 40 #include "xfs_trans_space.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_log.h" 44 #include "xfs_rmap_btree.h" 45 #include "xfs_iomap.h" 46 #include "xfs_reflink.h" 47 #include "xfs_refcount.h" 48 49 /* Kernel only BMAP related definitions and functions */ 50 51 /* 52 * Convert the given file system block to a disk block. We have to treat it 53 * differently based on whether the file is a real time file or not, because the 54 * bmap code does. 55 */ 56 xfs_daddr_t 57 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) 58 { 59 return (XFS_IS_REALTIME_INODE(ip) ? \ 60 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \ 61 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb))); 62 } 63 64 /* 65 * Routine to zero an extent on disk allocated to the specific inode. 66 * 67 * The VFS functions take a linearised filesystem block offset, so we have to 68 * convert the sparse xfs fsb to the right format first. 69 * VFS types are real funky, too. 70 */ 71 int 72 xfs_zero_extent( 73 struct xfs_inode *ip, 74 xfs_fsblock_t start_fsb, 75 xfs_off_t count_fsb) 76 { 77 struct xfs_mount *mp = ip->i_mount; 78 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb); 79 sector_t block = XFS_BB_TO_FSBT(mp, sector); 80 81 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)), 82 block << (mp->m_super->s_blocksize_bits - 9), 83 count_fsb << (mp->m_super->s_blocksize_bits - 9), 84 GFP_NOFS, 0); 85 } 86 87 int 88 xfs_bmap_rtalloc( 89 struct xfs_bmalloca *ap) /* bmap alloc argument struct */ 90 { 91 int error; /* error return value */ 92 xfs_mount_t *mp; /* mount point structure */ 93 xfs_extlen_t prod = 0; /* product factor for allocators */ 94 xfs_extlen_t ralen = 0; /* realtime allocation length */ 95 xfs_extlen_t align; /* minimum allocation alignment */ 96 xfs_rtblock_t rtb; 97 98 mp = ap->ip->i_mount; 99 align = xfs_get_extsz_hint(ap->ip); 100 prod = align / mp->m_sb.sb_rextsize; 101 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, 102 align, 1, ap->eof, 0, 103 ap->conv, &ap->offset, &ap->length); 104 if (error) 105 return error; 106 ASSERT(ap->length); 107 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); 108 109 /* 110 * If the offset & length are not perfectly aligned 111 * then kill prod, it will just get us in trouble. 112 */ 113 if (do_mod(ap->offset, align) || ap->length % align) 114 prod = 1; 115 /* 116 * Set ralen to be the actual requested length in rtextents. 117 */ 118 ralen = ap->length / mp->m_sb.sb_rextsize; 119 /* 120 * If the old value was close enough to MAXEXTLEN that 121 * we rounded up to it, cut it back so it's valid again. 122 * Note that if it's a really large request (bigger than 123 * MAXEXTLEN), we don't hear about that number, and can't 124 * adjust the starting point to match it. 125 */ 126 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) 127 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; 128 129 /* 130 * Lock out modifications to both the RT bitmap and summary inodes 131 */ 132 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP); 133 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); 134 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM); 135 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL); 136 137 /* 138 * If it's an allocation to an empty file at offset 0, 139 * pick an extent that will space things out in the rt area. 140 */ 141 if (ap->eof && ap->offset == 0) { 142 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */ 143 144 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); 145 if (error) 146 return error; 147 ap->blkno = rtx * mp->m_sb.sb_rextsize; 148 } else { 149 ap->blkno = 0; 150 } 151 152 xfs_bmap_adjacent(ap); 153 154 /* 155 * Realtime allocation, done through xfs_rtallocate_extent. 156 */ 157 do_div(ap->blkno, mp->m_sb.sb_rextsize); 158 rtb = ap->blkno; 159 ap->length = ralen; 160 error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, 161 &ralen, ap->wasdel, prod, &rtb); 162 if (error) 163 return error; 164 165 ap->blkno = rtb; 166 if (ap->blkno != NULLFSBLOCK) { 167 ap->blkno *= mp->m_sb.sb_rextsize; 168 ralen *= mp->m_sb.sb_rextsize; 169 ap->length = ralen; 170 ap->ip->i_d.di_nblocks += ralen; 171 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); 172 if (ap->wasdel) 173 ap->ip->i_delayed_blks -= ralen; 174 /* 175 * Adjust the disk quota also. This was reserved 176 * earlier. 177 */ 178 xfs_trans_mod_dquot_byino(ap->tp, ap->ip, 179 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : 180 XFS_TRANS_DQ_RTBCOUNT, (long) ralen); 181 182 /* Zero the extent if we were asked to do so */ 183 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) { 184 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length); 185 if (error) 186 return error; 187 } 188 } else { 189 ap->length = 0; 190 } 191 return 0; 192 } 193 194 /* 195 * Check if the endoff is outside the last extent. If so the caller will grow 196 * the allocation to a stripe unit boundary. All offsets are considered outside 197 * the end of file for an empty fork, so 1 is returned in *eof in that case. 198 */ 199 int 200 xfs_bmap_eof( 201 struct xfs_inode *ip, 202 xfs_fileoff_t endoff, 203 int whichfork, 204 int *eof) 205 { 206 struct xfs_bmbt_irec rec; 207 int error; 208 209 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof); 210 if (error || *eof) 211 return error; 212 213 *eof = endoff >= rec.br_startoff + rec.br_blockcount; 214 return 0; 215 } 216 217 /* 218 * Extent tree block counting routines. 219 */ 220 221 /* 222 * Count leaf blocks given a range of extent records. 223 */ 224 STATIC void 225 xfs_bmap_count_leaves( 226 xfs_ifork_t *ifp, 227 xfs_extnum_t idx, 228 int numrecs, 229 int *count) 230 { 231 int b; 232 233 for (b = 0; b < numrecs; b++) { 234 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b); 235 *count += xfs_bmbt_get_blockcount(frp); 236 } 237 } 238 239 /* 240 * Count leaf blocks given a range of extent records originally 241 * in btree format. 242 */ 243 STATIC void 244 xfs_bmap_disk_count_leaves( 245 struct xfs_mount *mp, 246 struct xfs_btree_block *block, 247 int numrecs, 248 int *count) 249 { 250 int b; 251 xfs_bmbt_rec_t *frp; 252 253 for (b = 1; b <= numrecs; b++) { 254 frp = XFS_BMBT_REC_ADDR(mp, block, b); 255 *count += xfs_bmbt_disk_get_blockcount(frp); 256 } 257 } 258 259 /* 260 * Recursively walks each level of a btree 261 * to count total fsblocks in use. 262 */ 263 STATIC int /* error */ 264 xfs_bmap_count_tree( 265 xfs_mount_t *mp, /* file system mount point */ 266 xfs_trans_t *tp, /* transaction pointer */ 267 xfs_ifork_t *ifp, /* inode fork pointer */ 268 xfs_fsblock_t blockno, /* file system block number */ 269 int levelin, /* level in btree */ 270 int *count) /* Count of blocks */ 271 { 272 int error; 273 xfs_buf_t *bp, *nbp; 274 int level = levelin; 275 __be64 *pp; 276 xfs_fsblock_t bno = blockno; 277 xfs_fsblock_t nextbno; 278 struct xfs_btree_block *block, *nextblock; 279 int numrecs; 280 281 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF, 282 &xfs_bmbt_buf_ops); 283 if (error) 284 return error; 285 *count += 1; 286 block = XFS_BUF_TO_BLOCK(bp); 287 288 if (--level) { 289 /* Not at node above leaves, count this level of nodes */ 290 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 291 while (nextbno != NULLFSBLOCK) { 292 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp, 293 XFS_BMAP_BTREE_REF, 294 &xfs_bmbt_buf_ops); 295 if (error) 296 return error; 297 *count += 1; 298 nextblock = XFS_BUF_TO_BLOCK(nbp); 299 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib); 300 xfs_trans_brelse(tp, nbp); 301 } 302 303 /* Dive to the next level */ 304 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]); 305 bno = be64_to_cpu(*pp); 306 if (unlikely((error = 307 xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) { 308 xfs_trans_brelse(tp, bp); 309 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)", 310 XFS_ERRLEVEL_LOW, mp); 311 return -EFSCORRUPTED; 312 } 313 xfs_trans_brelse(tp, bp); 314 } else { 315 /* count all level 1 nodes and their leaves */ 316 for (;;) { 317 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 318 numrecs = be16_to_cpu(block->bb_numrecs); 319 xfs_bmap_disk_count_leaves(mp, block, numrecs, count); 320 xfs_trans_brelse(tp, bp); 321 if (nextbno == NULLFSBLOCK) 322 break; 323 bno = nextbno; 324 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, 325 XFS_BMAP_BTREE_REF, 326 &xfs_bmbt_buf_ops); 327 if (error) 328 return error; 329 *count += 1; 330 block = XFS_BUF_TO_BLOCK(bp); 331 } 332 } 333 return 0; 334 } 335 336 /* 337 * Count fsblocks of the given fork. 338 */ 339 static int /* error */ 340 xfs_bmap_count_blocks( 341 xfs_trans_t *tp, /* transaction pointer */ 342 xfs_inode_t *ip, /* incore inode */ 343 int whichfork, /* data or attr fork */ 344 int *count) /* out: count of blocks */ 345 { 346 struct xfs_btree_block *block; /* current btree block */ 347 xfs_fsblock_t bno; /* block # of "block" */ 348 xfs_ifork_t *ifp; /* fork structure */ 349 int level; /* btree level, for checking */ 350 xfs_mount_t *mp; /* file system mount structure */ 351 __be64 *pp; /* pointer to block address */ 352 353 bno = NULLFSBLOCK; 354 mp = ip->i_mount; 355 ifp = XFS_IFORK_PTR(ip, whichfork); 356 if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) { 357 xfs_bmap_count_leaves(ifp, 0, xfs_iext_count(ifp), count); 358 return 0; 359 } 360 361 /* 362 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out. 363 */ 364 block = ifp->if_broot; 365 level = be16_to_cpu(block->bb_level); 366 ASSERT(level > 0); 367 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes); 368 bno = be64_to_cpu(*pp); 369 ASSERT(bno != NULLFSBLOCK); 370 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount); 371 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks); 372 373 if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) { 374 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW, 375 mp); 376 return -EFSCORRUPTED; 377 } 378 379 return 0; 380 } 381 382 /* 383 * returns 1 for success, 0 if we failed to map the extent. 384 */ 385 STATIC int 386 xfs_getbmapx_fix_eof_hole( 387 xfs_inode_t *ip, /* xfs incore inode pointer */ 388 int whichfork, 389 struct getbmapx *out, /* output structure */ 390 int prealloced, /* this is a file with 391 * preallocated data space */ 392 __int64_t end, /* last block requested */ 393 xfs_fsblock_t startblock, 394 bool moretocome) 395 { 396 __int64_t fixlen; 397 xfs_mount_t *mp; /* file system mount point */ 398 xfs_ifork_t *ifp; /* inode fork pointer */ 399 xfs_extnum_t lastx; /* last extent pointer */ 400 xfs_fileoff_t fileblock; 401 402 if (startblock == HOLESTARTBLOCK) { 403 mp = ip->i_mount; 404 out->bmv_block = -1; 405 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); 406 fixlen -= out->bmv_offset; 407 if (prealloced && out->bmv_offset + out->bmv_length == end) { 408 /* Came to hole at EOF. Trim it. */ 409 if (fixlen <= 0) 410 return 0; 411 out->bmv_length = fixlen; 412 } 413 } else { 414 if (startblock == DELAYSTARTBLOCK) 415 out->bmv_block = -2; 416 else 417 out->bmv_block = xfs_fsb_to_db(ip, startblock); 418 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset); 419 ifp = XFS_IFORK_PTR(ip, whichfork); 420 if (!moretocome && 421 xfs_iext_bno_to_ext(ifp, fileblock, &lastx) && 422 (lastx == xfs_iext_count(ifp) - 1)) 423 out->bmv_oflags |= BMV_OF_LAST; 424 } 425 426 return 1; 427 } 428 429 /* Adjust the reported bmap around shared/unshared extent transitions. */ 430 STATIC int 431 xfs_getbmap_adjust_shared( 432 struct xfs_inode *ip, 433 int whichfork, 434 struct xfs_bmbt_irec *map, 435 struct getbmapx *out, 436 struct xfs_bmbt_irec *next_map) 437 { 438 struct xfs_mount *mp = ip->i_mount; 439 xfs_agnumber_t agno; 440 xfs_agblock_t agbno; 441 xfs_agblock_t ebno; 442 xfs_extlen_t elen; 443 xfs_extlen_t nlen; 444 int error; 445 446 next_map->br_startblock = NULLFSBLOCK; 447 next_map->br_startoff = NULLFILEOFF; 448 next_map->br_blockcount = 0; 449 450 /* Only written data blocks can be shared. */ 451 if (!xfs_is_reflink_inode(ip) || 452 whichfork != XFS_DATA_FORK || 453 !xfs_bmap_is_real_extent(map)) 454 return 0; 455 456 agno = XFS_FSB_TO_AGNO(mp, map->br_startblock); 457 agbno = XFS_FSB_TO_AGBNO(mp, map->br_startblock); 458 error = xfs_reflink_find_shared(mp, agno, agbno, map->br_blockcount, 459 &ebno, &elen, true); 460 if (error) 461 return error; 462 463 if (ebno == NULLAGBLOCK) { 464 /* No shared blocks at all. */ 465 return 0; 466 } else if (agbno == ebno) { 467 /* 468 * Shared extent at (agbno, elen). Shrink the reported 469 * extent length and prepare to move the start of map[i] 470 * to agbno+elen, with the aim of (re)formatting the new 471 * map[i] the next time through the inner loop. 472 */ 473 out->bmv_length = XFS_FSB_TO_BB(mp, elen); 474 out->bmv_oflags |= BMV_OF_SHARED; 475 if (elen != map->br_blockcount) { 476 *next_map = *map; 477 next_map->br_startblock += elen; 478 next_map->br_startoff += elen; 479 next_map->br_blockcount -= elen; 480 } 481 map->br_blockcount -= elen; 482 } else { 483 /* 484 * There's an unshared extent (agbno, ebno - agbno) 485 * followed by shared extent at (ebno, elen). Shrink 486 * the reported extent length to cover only the unshared 487 * extent and prepare to move up the start of map[i] to 488 * ebno, with the aim of (re)formatting the new map[i] 489 * the next time through the inner loop. 490 */ 491 *next_map = *map; 492 nlen = ebno - agbno; 493 out->bmv_length = XFS_FSB_TO_BB(mp, nlen); 494 next_map->br_startblock += nlen; 495 next_map->br_startoff += nlen; 496 next_map->br_blockcount -= nlen; 497 map->br_blockcount -= nlen; 498 } 499 500 return 0; 501 } 502 503 /* 504 * Get inode's extents as described in bmv, and format for output. 505 * Calls formatter to fill the user's buffer until all extents 506 * are mapped, until the passed-in bmv->bmv_count slots have 507 * been filled, or until the formatter short-circuits the loop, 508 * if it is tracking filled-in extents on its own. 509 */ 510 int /* error code */ 511 xfs_getbmap( 512 xfs_inode_t *ip, 513 struct getbmapx *bmv, /* user bmap structure */ 514 xfs_bmap_format_t formatter, /* format to user */ 515 void *arg) /* formatter arg */ 516 { 517 __int64_t bmvend; /* last block requested */ 518 int error = 0; /* return value */ 519 __int64_t fixlen; /* length for -1 case */ 520 int i; /* extent number */ 521 int lock; /* lock state */ 522 xfs_bmbt_irec_t *map; /* buffer for user's data */ 523 xfs_mount_t *mp; /* file system mount point */ 524 int nex; /* # of user extents can do */ 525 int subnex; /* # of bmapi's can do */ 526 int nmap; /* number of map entries */ 527 struct getbmapx *out; /* output structure */ 528 int whichfork; /* data or attr fork */ 529 int prealloced; /* this is a file with 530 * preallocated data space */ 531 int iflags; /* interface flags */ 532 int bmapi_flags; /* flags for xfs_bmapi */ 533 int cur_ext = 0; 534 struct xfs_bmbt_irec inject_map; 535 536 mp = ip->i_mount; 537 iflags = bmv->bmv_iflags; 538 539 #ifndef DEBUG 540 /* Only allow CoW fork queries if we're debugging. */ 541 if (iflags & BMV_IF_COWFORK) 542 return -EINVAL; 543 #endif 544 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK)) 545 return -EINVAL; 546 547 if (iflags & BMV_IF_ATTRFORK) 548 whichfork = XFS_ATTR_FORK; 549 else if (iflags & BMV_IF_COWFORK) 550 whichfork = XFS_COW_FORK; 551 else 552 whichfork = XFS_DATA_FORK; 553 554 switch (whichfork) { 555 case XFS_ATTR_FORK: 556 if (XFS_IFORK_Q(ip)) { 557 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS && 558 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE && 559 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) 560 return -EINVAL; 561 } else if (unlikely( 562 ip->i_d.di_aformat != 0 && 563 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) { 564 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW, 565 ip->i_mount); 566 return -EFSCORRUPTED; 567 } 568 569 prealloced = 0; 570 fixlen = 1LL << 32; 571 break; 572 case XFS_COW_FORK: 573 if (ip->i_cformat != XFS_DINODE_FMT_EXTENTS) 574 return -EINVAL; 575 576 if (xfs_get_cowextsz_hint(ip)) { 577 prealloced = 1; 578 fixlen = mp->m_super->s_maxbytes; 579 } else { 580 prealloced = 0; 581 fixlen = XFS_ISIZE(ip); 582 } 583 break; 584 default: 585 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS && 586 ip->i_d.di_format != XFS_DINODE_FMT_BTREE && 587 ip->i_d.di_format != XFS_DINODE_FMT_LOCAL) 588 return -EINVAL; 589 590 if (xfs_get_extsz_hint(ip) || 591 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){ 592 prealloced = 1; 593 fixlen = mp->m_super->s_maxbytes; 594 } else { 595 prealloced = 0; 596 fixlen = XFS_ISIZE(ip); 597 } 598 break; 599 } 600 601 if (bmv->bmv_length == -1) { 602 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen)); 603 bmv->bmv_length = 604 max_t(__int64_t, fixlen - bmv->bmv_offset, 0); 605 } else if (bmv->bmv_length == 0) { 606 bmv->bmv_entries = 0; 607 return 0; 608 } else if (bmv->bmv_length < 0) { 609 return -EINVAL; 610 } 611 612 nex = bmv->bmv_count - 1; 613 if (nex <= 0) 614 return -EINVAL; 615 bmvend = bmv->bmv_offset + bmv->bmv_length; 616 617 618 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx)) 619 return -ENOMEM; 620 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0); 621 if (!out) 622 return -ENOMEM; 623 624 xfs_ilock(ip, XFS_IOLOCK_SHARED); 625 switch (whichfork) { 626 case XFS_DATA_FORK: 627 if (!(iflags & BMV_IF_DELALLOC) && 628 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) { 629 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 630 if (error) 631 goto out_unlock_iolock; 632 633 /* 634 * Even after flushing the inode, there can still be 635 * delalloc blocks on the inode beyond EOF due to 636 * speculative preallocation. These are not removed 637 * until the release function is called or the inode 638 * is inactivated. Hence we cannot assert here that 639 * ip->i_delayed_blks == 0. 640 */ 641 } 642 643 lock = xfs_ilock_data_map_shared(ip); 644 break; 645 case XFS_COW_FORK: 646 lock = XFS_ILOCK_SHARED; 647 xfs_ilock(ip, lock); 648 break; 649 case XFS_ATTR_FORK: 650 lock = xfs_ilock_attr_map_shared(ip); 651 break; 652 } 653 654 /* 655 * Don't let nex be bigger than the number of extents 656 * we can have assuming alternating holes and real extents. 657 */ 658 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1) 659 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1; 660 661 bmapi_flags = xfs_bmapi_aflag(whichfork); 662 if (!(iflags & BMV_IF_PREALLOC)) 663 bmapi_flags |= XFS_BMAPI_IGSTATE; 664 665 /* 666 * Allocate enough space to handle "subnex" maps at a time. 667 */ 668 error = -ENOMEM; 669 subnex = 16; 670 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS); 671 if (!map) 672 goto out_unlock_ilock; 673 674 bmv->bmv_entries = 0; 675 676 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 && 677 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) { 678 error = 0; 679 goto out_free_map; 680 } 681 682 do { 683 nmap = (nex> subnex) ? subnex : nex; 684 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset), 685 XFS_BB_TO_FSB(mp, bmv->bmv_length), 686 map, &nmap, bmapi_flags); 687 if (error) 688 goto out_free_map; 689 ASSERT(nmap <= subnex); 690 691 for (i = 0; i < nmap && bmv->bmv_length && 692 cur_ext < bmv->bmv_count - 1; i++) { 693 out[cur_ext].bmv_oflags = 0; 694 if (map[i].br_state == XFS_EXT_UNWRITTEN) 695 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC; 696 else if (map[i].br_startblock == DELAYSTARTBLOCK) 697 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC; 698 out[cur_ext].bmv_offset = 699 XFS_FSB_TO_BB(mp, map[i].br_startoff); 700 out[cur_ext].bmv_length = 701 XFS_FSB_TO_BB(mp, map[i].br_blockcount); 702 out[cur_ext].bmv_unused1 = 0; 703 out[cur_ext].bmv_unused2 = 0; 704 705 /* 706 * delayed allocation extents that start beyond EOF can 707 * occur due to speculative EOF allocation when the 708 * delalloc extent is larger than the largest freespace 709 * extent at conversion time. These extents cannot be 710 * converted by data writeback, so can exist here even 711 * if we are not supposed to be finding delalloc 712 * extents. 713 */ 714 if (map[i].br_startblock == DELAYSTARTBLOCK && 715 map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip))) 716 ASSERT((iflags & BMV_IF_DELALLOC) != 0); 717 718 if (map[i].br_startblock == HOLESTARTBLOCK && 719 whichfork == XFS_ATTR_FORK) { 720 /* came to the end of attribute fork */ 721 out[cur_ext].bmv_oflags |= BMV_OF_LAST; 722 goto out_free_map; 723 } 724 725 /* Is this a shared block? */ 726 error = xfs_getbmap_adjust_shared(ip, whichfork, 727 &map[i], &out[cur_ext], &inject_map); 728 if (error) 729 goto out_free_map; 730 731 if (!xfs_getbmapx_fix_eof_hole(ip, whichfork, 732 &out[cur_ext], prealloced, bmvend, 733 map[i].br_startblock, 734 inject_map.br_startblock != NULLFSBLOCK)) 735 goto out_free_map; 736 737 bmv->bmv_offset = 738 out[cur_ext].bmv_offset + 739 out[cur_ext].bmv_length; 740 bmv->bmv_length = 741 max_t(__int64_t, 0, bmvend - bmv->bmv_offset); 742 743 /* 744 * In case we don't want to return the hole, 745 * don't increase cur_ext so that we can reuse 746 * it in the next loop. 747 */ 748 if ((iflags & BMV_IF_NO_HOLES) && 749 map[i].br_startblock == HOLESTARTBLOCK) { 750 memset(&out[cur_ext], 0, sizeof(out[cur_ext])); 751 continue; 752 } 753 754 /* 755 * In order to report shared extents accurately, 756 * we report each distinct shared/unshared part 757 * of a single bmbt record using multiple bmap 758 * extents. To make that happen, we iterate the 759 * same map array item multiple times, each 760 * time trimming out the subextent that we just 761 * reported. 762 * 763 * Because of this, we must check the out array 764 * index (cur_ext) directly against bmv_count-1 765 * to avoid overflows. 766 */ 767 if (inject_map.br_startblock != NULLFSBLOCK) { 768 map[i] = inject_map; 769 i--; 770 } 771 bmv->bmv_entries++; 772 cur_ext++; 773 } 774 } while (nmap && bmv->bmv_length && cur_ext < bmv->bmv_count - 1); 775 776 out_free_map: 777 kmem_free(map); 778 out_unlock_ilock: 779 xfs_iunlock(ip, lock); 780 out_unlock_iolock: 781 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 782 783 for (i = 0; i < cur_ext; i++) { 784 /* format results & advance arg */ 785 error = formatter(&arg, &out[i]); 786 if (error) 787 break; 788 } 789 790 kmem_free(out); 791 return error; 792 } 793 794 /* 795 * dead simple method of punching delalyed allocation blocks from a range in 796 * the inode. Walks a block at a time so will be slow, but is only executed in 797 * rare error cases so the overhead is not critical. This will always punch out 798 * both the start and end blocks, even if the ranges only partially overlap 799 * them, so it is up to the caller to ensure that partial blocks are not 800 * passed in. 801 */ 802 int 803 xfs_bmap_punch_delalloc_range( 804 struct xfs_inode *ip, 805 xfs_fileoff_t start_fsb, 806 xfs_fileoff_t length) 807 { 808 xfs_fileoff_t remaining = length; 809 int error = 0; 810 811 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 812 813 do { 814 int done; 815 xfs_bmbt_irec_t imap; 816 int nimaps = 1; 817 xfs_fsblock_t firstblock; 818 struct xfs_defer_ops dfops; 819 820 /* 821 * Map the range first and check that it is a delalloc extent 822 * before trying to unmap the range. Otherwise we will be 823 * trying to remove a real extent (which requires a 824 * transaction) or a hole, which is probably a bad idea... 825 */ 826 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps, 827 XFS_BMAPI_ENTIRE); 828 829 if (error) { 830 /* something screwed, just bail */ 831 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 832 xfs_alert(ip->i_mount, 833 "Failed delalloc mapping lookup ino %lld fsb %lld.", 834 ip->i_ino, start_fsb); 835 } 836 break; 837 } 838 if (!nimaps) { 839 /* nothing there */ 840 goto next_block; 841 } 842 if (imap.br_startblock != DELAYSTARTBLOCK) { 843 /* been converted, ignore */ 844 goto next_block; 845 } 846 WARN_ON(imap.br_blockcount == 0); 847 848 /* 849 * Note: while we initialise the firstblock/dfops pair, they 850 * should never be used because blocks should never be 851 * allocated or freed for a delalloc extent and hence we need 852 * don't cancel or finish them after the xfs_bunmapi() call. 853 */ 854 xfs_defer_init(&dfops, &firstblock); 855 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock, 856 &dfops, &done); 857 if (error) 858 break; 859 860 ASSERT(!xfs_defer_has_unfinished_work(&dfops)); 861 next_block: 862 start_fsb++; 863 remaining--; 864 } while(remaining > 0); 865 866 return error; 867 } 868 869 /* 870 * Test whether it is appropriate to check an inode for and free post EOF 871 * blocks. The 'force' parameter determines whether we should also consider 872 * regular files that are marked preallocated or append-only. 873 */ 874 bool 875 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 876 { 877 /* prealloc/delalloc exists only on regular files */ 878 if (!S_ISREG(VFS_I(ip)->i_mode)) 879 return false; 880 881 /* 882 * Zero sized files with no cached pages and delalloc blocks will not 883 * have speculative prealloc/delalloc blocks to remove. 884 */ 885 if (VFS_I(ip)->i_size == 0 && 886 VFS_I(ip)->i_mapping->nrpages == 0 && 887 ip->i_delayed_blks == 0) 888 return false; 889 890 /* If we haven't read in the extent list, then don't do it now. */ 891 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 892 return false; 893 894 /* 895 * Do not free real preallocated or append-only files unless the file 896 * has delalloc blocks and we are forced to remove them. 897 */ 898 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 899 if (!force || ip->i_delayed_blks == 0) 900 return false; 901 902 return true; 903 } 904 905 /* 906 * This is called to free any blocks beyond eof. The caller must hold 907 * IOLOCK_EXCL unless we are in the inode reclaim path and have the only 908 * reference to the inode. 909 */ 910 int 911 xfs_free_eofblocks( 912 struct xfs_inode *ip) 913 { 914 struct xfs_trans *tp; 915 int error; 916 xfs_fileoff_t end_fsb; 917 xfs_fileoff_t last_fsb; 918 xfs_filblks_t map_len; 919 int nimaps; 920 struct xfs_bmbt_irec imap; 921 struct xfs_mount *mp = ip->i_mount; 922 923 /* 924 * Figure out if there are any blocks beyond the end 925 * of the file. If not, then there is nothing to do. 926 */ 927 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); 928 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 929 if (last_fsb <= end_fsb) 930 return 0; 931 map_len = last_fsb - end_fsb; 932 933 nimaps = 1; 934 xfs_ilock(ip, XFS_ILOCK_SHARED); 935 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0); 936 xfs_iunlock(ip, XFS_ILOCK_SHARED); 937 938 /* 939 * If there are blocks after the end of file, truncate the file to its 940 * current size to free them up. 941 */ 942 if (!error && (nimaps != 0) && 943 (imap.br_startblock != HOLESTARTBLOCK || 944 ip->i_delayed_blks)) { 945 /* 946 * Attach the dquots to the inode up front. 947 */ 948 error = xfs_qm_dqattach(ip, 0); 949 if (error) 950 return error; 951 952 /* wait on dio to ensure i_size has settled */ 953 inode_dio_wait(VFS_I(ip)); 954 955 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, 956 &tp); 957 if (error) { 958 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 959 return error; 960 } 961 962 xfs_ilock(ip, XFS_ILOCK_EXCL); 963 xfs_trans_ijoin(tp, ip, 0); 964 965 /* 966 * Do not update the on-disk file size. If we update the 967 * on-disk file size and then the system crashes before the 968 * contents of the file are flushed to disk then the files 969 * may be full of holes (ie NULL files bug). 970 */ 971 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 972 XFS_ISIZE(ip)); 973 if (error) { 974 /* 975 * If we get an error at this point we simply don't 976 * bother truncating the file. 977 */ 978 xfs_trans_cancel(tp); 979 } else { 980 error = xfs_trans_commit(tp); 981 if (!error) 982 xfs_inode_clear_eofblocks_tag(ip); 983 } 984 985 xfs_iunlock(ip, XFS_ILOCK_EXCL); 986 } 987 return error; 988 } 989 990 int 991 xfs_alloc_file_space( 992 struct xfs_inode *ip, 993 xfs_off_t offset, 994 xfs_off_t len, 995 int alloc_type) 996 { 997 xfs_mount_t *mp = ip->i_mount; 998 xfs_off_t count; 999 xfs_filblks_t allocated_fsb; 1000 xfs_filblks_t allocatesize_fsb; 1001 xfs_extlen_t extsz, temp; 1002 xfs_fileoff_t startoffset_fsb; 1003 xfs_fsblock_t firstfsb; 1004 int nimaps; 1005 int quota_flag; 1006 int rt; 1007 xfs_trans_t *tp; 1008 xfs_bmbt_irec_t imaps[1], *imapp; 1009 struct xfs_defer_ops dfops; 1010 uint qblocks, resblks, resrtextents; 1011 int error; 1012 1013 trace_xfs_alloc_file_space(ip); 1014 1015 if (XFS_FORCED_SHUTDOWN(mp)) 1016 return -EIO; 1017 1018 error = xfs_qm_dqattach(ip, 0); 1019 if (error) 1020 return error; 1021 1022 if (len <= 0) 1023 return -EINVAL; 1024 1025 rt = XFS_IS_REALTIME_INODE(ip); 1026 extsz = xfs_get_extsz_hint(ip); 1027 1028 count = len; 1029 imapp = &imaps[0]; 1030 nimaps = 1; 1031 startoffset_fsb = XFS_B_TO_FSBT(mp, offset); 1032 allocatesize_fsb = XFS_B_TO_FSB(mp, count); 1033 1034 /* 1035 * Allocate file space until done or until there is an error 1036 */ 1037 while (allocatesize_fsb && !error) { 1038 xfs_fileoff_t s, e; 1039 1040 /* 1041 * Determine space reservations for data/realtime. 1042 */ 1043 if (unlikely(extsz)) { 1044 s = startoffset_fsb; 1045 do_div(s, extsz); 1046 s *= extsz; 1047 e = startoffset_fsb + allocatesize_fsb; 1048 if ((temp = do_mod(startoffset_fsb, extsz))) 1049 e += temp; 1050 if ((temp = do_mod(e, extsz))) 1051 e += extsz - temp; 1052 } else { 1053 s = 0; 1054 e = allocatesize_fsb; 1055 } 1056 1057 /* 1058 * The transaction reservation is limited to a 32-bit block 1059 * count, hence we need to limit the number of blocks we are 1060 * trying to reserve to avoid an overflow. We can't allocate 1061 * more than @nimaps extents, and an extent is limited on disk 1062 * to MAXEXTLEN (21 bits), so use that to enforce the limit. 1063 */ 1064 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); 1065 if (unlikely(rt)) { 1066 resrtextents = qblocks = resblks; 1067 resrtextents /= mp->m_sb.sb_rextsize; 1068 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1069 quota_flag = XFS_QMOPT_RES_RTBLKS; 1070 } else { 1071 resrtextents = 0; 1072 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); 1073 quota_flag = XFS_QMOPT_RES_REGBLKS; 1074 } 1075 1076 /* 1077 * Allocate and setup the transaction. 1078 */ 1079 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 1080 resrtextents, 0, &tp); 1081 1082 /* 1083 * Check for running out of space 1084 */ 1085 if (error) { 1086 /* 1087 * Free the transaction structure. 1088 */ 1089 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1090 break; 1091 } 1092 xfs_ilock(ip, XFS_ILOCK_EXCL); 1093 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 1094 0, quota_flag); 1095 if (error) 1096 goto error1; 1097 1098 xfs_trans_ijoin(tp, ip, 0); 1099 1100 xfs_defer_init(&dfops, &firstfsb); 1101 error = xfs_bmapi_write(tp, ip, startoffset_fsb, 1102 allocatesize_fsb, alloc_type, &firstfsb, 1103 resblks, imapp, &nimaps, &dfops); 1104 if (error) 1105 goto error0; 1106 1107 /* 1108 * Complete the transaction 1109 */ 1110 error = xfs_defer_finish(&tp, &dfops, NULL); 1111 if (error) 1112 goto error0; 1113 1114 error = xfs_trans_commit(tp); 1115 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1116 if (error) 1117 break; 1118 1119 allocated_fsb = imapp->br_blockcount; 1120 1121 if (nimaps == 0) { 1122 error = -ENOSPC; 1123 break; 1124 } 1125 1126 startoffset_fsb += allocated_fsb; 1127 allocatesize_fsb -= allocated_fsb; 1128 } 1129 1130 return error; 1131 1132 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */ 1133 xfs_defer_cancel(&dfops); 1134 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 1135 1136 error1: /* Just cancel transaction */ 1137 xfs_trans_cancel(tp); 1138 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1139 return error; 1140 } 1141 1142 static int 1143 xfs_unmap_extent( 1144 struct xfs_inode *ip, 1145 xfs_fileoff_t startoffset_fsb, 1146 xfs_filblks_t len_fsb, 1147 int *done) 1148 { 1149 struct xfs_mount *mp = ip->i_mount; 1150 struct xfs_trans *tp; 1151 struct xfs_defer_ops dfops; 1152 xfs_fsblock_t firstfsb; 1153 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1154 int error; 1155 1156 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1157 if (error) { 1158 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1159 return error; 1160 } 1161 1162 xfs_ilock(ip, XFS_ILOCK_EXCL); 1163 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, 1164 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS); 1165 if (error) 1166 goto out_trans_cancel; 1167 1168 xfs_trans_ijoin(tp, ip, 0); 1169 1170 xfs_defer_init(&dfops, &firstfsb); 1171 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb, 1172 &dfops, done); 1173 if (error) 1174 goto out_bmap_cancel; 1175 1176 error = xfs_defer_finish(&tp, &dfops, ip); 1177 if (error) 1178 goto out_bmap_cancel; 1179 1180 error = xfs_trans_commit(tp); 1181 out_unlock: 1182 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1183 return error; 1184 1185 out_bmap_cancel: 1186 xfs_defer_cancel(&dfops); 1187 out_trans_cancel: 1188 xfs_trans_cancel(tp); 1189 goto out_unlock; 1190 } 1191 1192 static int 1193 xfs_adjust_extent_unmap_boundaries( 1194 struct xfs_inode *ip, 1195 xfs_fileoff_t *startoffset_fsb, 1196 xfs_fileoff_t *endoffset_fsb) 1197 { 1198 struct xfs_mount *mp = ip->i_mount; 1199 struct xfs_bmbt_irec imap; 1200 int nimap, error; 1201 xfs_extlen_t mod = 0; 1202 1203 nimap = 1; 1204 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0); 1205 if (error) 1206 return error; 1207 1208 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1209 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1210 mod = do_mod(imap.br_startblock, mp->m_sb.sb_rextsize); 1211 if (mod) 1212 *startoffset_fsb += mp->m_sb.sb_rextsize - mod; 1213 } 1214 1215 nimap = 1; 1216 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0); 1217 if (error) 1218 return error; 1219 1220 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1221 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1222 mod++; 1223 if (mod && mod != mp->m_sb.sb_rextsize) 1224 *endoffset_fsb -= mod; 1225 } 1226 1227 return 0; 1228 } 1229 1230 static int 1231 xfs_flush_unmap_range( 1232 struct xfs_inode *ip, 1233 xfs_off_t offset, 1234 xfs_off_t len) 1235 { 1236 struct xfs_mount *mp = ip->i_mount; 1237 struct inode *inode = VFS_I(ip); 1238 xfs_off_t rounding, start, end; 1239 int error; 1240 1241 /* wait for the completion of any pending DIOs */ 1242 inode_dio_wait(inode); 1243 1244 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE); 1245 start = round_down(offset, rounding); 1246 end = round_up(offset + len, rounding) - 1; 1247 1248 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 1249 if (error) 1250 return error; 1251 truncate_pagecache_range(inode, start, end); 1252 return 0; 1253 } 1254 1255 int 1256 xfs_free_file_space( 1257 struct xfs_inode *ip, 1258 xfs_off_t offset, 1259 xfs_off_t len) 1260 { 1261 struct xfs_mount *mp = ip->i_mount; 1262 xfs_fileoff_t startoffset_fsb; 1263 xfs_fileoff_t endoffset_fsb; 1264 int done = 0, error; 1265 1266 trace_xfs_free_file_space(ip); 1267 1268 error = xfs_qm_dqattach(ip, 0); 1269 if (error) 1270 return error; 1271 1272 if (len <= 0) /* if nothing being freed */ 1273 return 0; 1274 1275 error = xfs_flush_unmap_range(ip, offset, len); 1276 if (error) 1277 return error; 1278 1279 startoffset_fsb = XFS_B_TO_FSB(mp, offset); 1280 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); 1281 1282 /* 1283 * Need to zero the stuff we're not freeing, on disk. If it's a RT file 1284 * and we can't use unwritten extents then we actually need to ensure 1285 * to zero the whole extent, otherwise we just need to take of block 1286 * boundaries, and xfs_bunmapi will handle the rest. 1287 */ 1288 if (XFS_IS_REALTIME_INODE(ip) && 1289 !xfs_sb_version_hasextflgbit(&mp->m_sb)) { 1290 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb, 1291 &endoffset_fsb); 1292 if (error) 1293 return error; 1294 } 1295 1296 if (endoffset_fsb > startoffset_fsb) { 1297 while (!done) { 1298 error = xfs_unmap_extent(ip, startoffset_fsb, 1299 endoffset_fsb - startoffset_fsb, &done); 1300 if (error) 1301 return error; 1302 } 1303 } 1304 1305 /* 1306 * Now that we've unmap all full blocks we'll have to zero out any 1307 * partial block at the beginning and/or end. xfs_zero_range is 1308 * smart enough to skip any holes, including those we just created, 1309 * but we must take care not to zero beyond EOF and enlarge i_size. 1310 */ 1311 1312 if (offset >= XFS_ISIZE(ip)) 1313 return 0; 1314 1315 if (offset + len > XFS_ISIZE(ip)) 1316 len = XFS_ISIZE(ip) - offset; 1317 1318 return xfs_zero_range(ip, offset, len, NULL); 1319 } 1320 1321 /* 1322 * Preallocate and zero a range of a file. This mechanism has the allocation 1323 * semantics of fallocate and in addition converts data in the range to zeroes. 1324 */ 1325 int 1326 xfs_zero_file_space( 1327 struct xfs_inode *ip, 1328 xfs_off_t offset, 1329 xfs_off_t len) 1330 { 1331 struct xfs_mount *mp = ip->i_mount; 1332 uint blksize; 1333 int error; 1334 1335 trace_xfs_zero_file_space(ip); 1336 1337 blksize = 1 << mp->m_sb.sb_blocklog; 1338 1339 /* 1340 * Punch a hole and prealloc the range. We use hole punch rather than 1341 * unwritten extent conversion for two reasons: 1342 * 1343 * 1.) Hole punch handles partial block zeroing for us. 1344 * 1345 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued 1346 * by virtue of the hole punch. 1347 */ 1348 error = xfs_free_file_space(ip, offset, len); 1349 if (error) 1350 goto out; 1351 1352 error = xfs_alloc_file_space(ip, round_down(offset, blksize), 1353 round_up(offset + len, blksize) - 1354 round_down(offset, blksize), 1355 XFS_BMAPI_PREALLOC); 1356 out: 1357 return error; 1358 1359 } 1360 1361 /* 1362 * @next_fsb will keep track of the extent currently undergoing shift. 1363 * @stop_fsb will keep track of the extent at which we have to stop. 1364 * If we are shifting left, we will start with block (offset + len) and 1365 * shift each extent till last extent. 1366 * If we are shifting right, we will start with last extent inside file space 1367 * and continue until we reach the block corresponding to offset. 1368 */ 1369 static int 1370 xfs_shift_file_space( 1371 struct xfs_inode *ip, 1372 xfs_off_t offset, 1373 xfs_off_t len, 1374 enum shift_direction direction) 1375 { 1376 int done = 0; 1377 struct xfs_mount *mp = ip->i_mount; 1378 struct xfs_trans *tp; 1379 int error; 1380 struct xfs_defer_ops dfops; 1381 xfs_fsblock_t first_block; 1382 xfs_fileoff_t stop_fsb; 1383 xfs_fileoff_t next_fsb; 1384 xfs_fileoff_t shift_fsb; 1385 uint resblks; 1386 1387 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT); 1388 1389 if (direction == SHIFT_LEFT) { 1390 /* 1391 * Reserve blocks to cover potential extent merges after left 1392 * shift operations. 1393 */ 1394 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1395 next_fsb = XFS_B_TO_FSB(mp, offset + len); 1396 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size); 1397 } else { 1398 /* 1399 * If right shift, delegate the work of initialization of 1400 * next_fsb to xfs_bmap_shift_extent as it has ilock held. 1401 */ 1402 resblks = 0; 1403 next_fsb = NULLFSBLOCK; 1404 stop_fsb = XFS_B_TO_FSB(mp, offset); 1405 } 1406 1407 shift_fsb = XFS_B_TO_FSB(mp, len); 1408 1409 /* 1410 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation 1411 * into the accessible region of the file. 1412 */ 1413 if (xfs_can_free_eofblocks(ip, true)) { 1414 error = xfs_free_eofblocks(ip); 1415 if (error) 1416 return error; 1417 } 1418 1419 /* 1420 * Writeback and invalidate cache for the remainder of the file as we're 1421 * about to shift down every extent from offset to EOF. 1422 */ 1423 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 1424 offset, -1); 1425 if (error) 1426 return error; 1427 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 1428 offset >> PAGE_SHIFT, -1); 1429 if (error) 1430 return error; 1431 1432 /* 1433 * The extent shiting code works on extent granularity. So, if 1434 * stop_fsb is not the starting block of extent, we need to split 1435 * the extent at stop_fsb. 1436 */ 1437 if (direction == SHIFT_RIGHT) { 1438 error = xfs_bmap_split_extent(ip, stop_fsb); 1439 if (error) 1440 return error; 1441 } 1442 1443 while (!error && !done) { 1444 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, 1445 &tp); 1446 if (error) 1447 break; 1448 1449 xfs_ilock(ip, XFS_ILOCK_EXCL); 1450 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, 1451 ip->i_gdquot, ip->i_pdquot, resblks, 0, 1452 XFS_QMOPT_RES_REGBLKS); 1453 if (error) 1454 goto out_trans_cancel; 1455 1456 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1457 1458 xfs_defer_init(&dfops, &first_block); 1459 1460 /* 1461 * We are using the write transaction in which max 2 bmbt 1462 * updates are allowed 1463 */ 1464 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb, 1465 &done, stop_fsb, &first_block, &dfops, 1466 direction, XFS_BMAP_MAX_SHIFT_EXTENTS); 1467 if (error) 1468 goto out_bmap_cancel; 1469 1470 error = xfs_defer_finish(&tp, &dfops, NULL); 1471 if (error) 1472 goto out_bmap_cancel; 1473 1474 error = xfs_trans_commit(tp); 1475 } 1476 1477 return error; 1478 1479 out_bmap_cancel: 1480 xfs_defer_cancel(&dfops); 1481 out_trans_cancel: 1482 xfs_trans_cancel(tp); 1483 return error; 1484 } 1485 1486 /* 1487 * xfs_collapse_file_space() 1488 * This routine frees disk space and shift extent for the given file. 1489 * The first thing we do is to free data blocks in the specified range 1490 * by calling xfs_free_file_space(). It would also sync dirty data 1491 * and invalidate page cache over the region on which collapse range 1492 * is working. And Shift extent records to the left to cover a hole. 1493 * RETURNS: 1494 * 0 on success 1495 * errno on error 1496 * 1497 */ 1498 int 1499 xfs_collapse_file_space( 1500 struct xfs_inode *ip, 1501 xfs_off_t offset, 1502 xfs_off_t len) 1503 { 1504 int error; 1505 1506 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1507 trace_xfs_collapse_file_space(ip); 1508 1509 error = xfs_free_file_space(ip, offset, len); 1510 if (error) 1511 return error; 1512 1513 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT); 1514 } 1515 1516 /* 1517 * xfs_insert_file_space() 1518 * This routine create hole space by shifting extents for the given file. 1519 * The first thing we do is to sync dirty data and invalidate page cache 1520 * over the region on which insert range is working. And split an extent 1521 * to two extents at given offset by calling xfs_bmap_split_extent. 1522 * And shift all extent records which are laying between [offset, 1523 * last allocated extent] to the right to reserve hole range. 1524 * RETURNS: 1525 * 0 on success 1526 * errno on error 1527 */ 1528 int 1529 xfs_insert_file_space( 1530 struct xfs_inode *ip, 1531 loff_t offset, 1532 loff_t len) 1533 { 1534 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1535 trace_xfs_insert_file_space(ip); 1536 1537 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT); 1538 } 1539 1540 /* 1541 * We need to check that the format of the data fork in the temporary inode is 1542 * valid for the target inode before doing the swap. This is not a problem with 1543 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized 1544 * data fork depending on the space the attribute fork is taking so we can get 1545 * invalid formats on the target inode. 1546 * 1547 * E.g. target has space for 7 extents in extent format, temp inode only has 1548 * space for 6. If we defragment down to 7 extents, then the tmp format is a 1549 * btree, but when swapped it needs to be in extent format. Hence we can't just 1550 * blindly swap data forks on attr2 filesystems. 1551 * 1552 * Note that we check the swap in both directions so that we don't end up with 1553 * a corrupt temporary inode, either. 1554 * 1555 * Note that fixing the way xfs_fsr sets up the attribute fork in the source 1556 * inode will prevent this situation from occurring, so all we do here is 1557 * reject and log the attempt. basically we are putting the responsibility on 1558 * userspace to get this right. 1559 */ 1560 static int 1561 xfs_swap_extents_check_format( 1562 struct xfs_inode *ip, /* target inode */ 1563 struct xfs_inode *tip) /* tmp inode */ 1564 { 1565 1566 /* Should never get a local format */ 1567 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL || 1568 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL) 1569 return -EINVAL; 1570 1571 /* 1572 * if the target inode has less extents that then temporary inode then 1573 * why did userspace call us? 1574 */ 1575 if (ip->i_d.di_nextents < tip->i_d.di_nextents) 1576 return -EINVAL; 1577 1578 /* 1579 * If we have to use the (expensive) rmap swap method, we can 1580 * handle any number of extents and any format. 1581 */ 1582 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb)) 1583 return 0; 1584 1585 /* 1586 * if the target inode is in extent form and the temp inode is in btree 1587 * form then we will end up with the target inode in the wrong format 1588 * as we already know there are less extents in the temp inode. 1589 */ 1590 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1591 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1592 return -EINVAL; 1593 1594 /* Check temp in extent form to max in target */ 1595 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1596 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) > 1597 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1598 return -EINVAL; 1599 1600 /* Check target in extent form to max in temp */ 1601 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1602 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) > 1603 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1604 return -EINVAL; 1605 1606 /* 1607 * If we are in a btree format, check that the temp root block will fit 1608 * in the target and that it has enough extents to be in btree format 1609 * in the target. 1610 * 1611 * Note that we have to be careful to allow btree->extent conversions 1612 * (a common defrag case) which will occur when the temp inode is in 1613 * extent format... 1614 */ 1615 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1616 if (XFS_IFORK_BOFF(ip) && 1617 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip)) 1618 return -EINVAL; 1619 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <= 1620 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1621 return -EINVAL; 1622 } 1623 1624 /* Reciprocal target->temp btree format checks */ 1625 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1626 if (XFS_IFORK_BOFF(tip) && 1627 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) 1628 return -EINVAL; 1629 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <= 1630 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1631 return -EINVAL; 1632 } 1633 1634 return 0; 1635 } 1636 1637 static int 1638 xfs_swap_extent_flush( 1639 struct xfs_inode *ip) 1640 { 1641 int error; 1642 1643 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 1644 if (error) 1645 return error; 1646 truncate_pagecache_range(VFS_I(ip), 0, -1); 1647 1648 /* Verify O_DIRECT for ftmp */ 1649 if (VFS_I(ip)->i_mapping->nrpages) 1650 return -EINVAL; 1651 return 0; 1652 } 1653 1654 /* 1655 * Move extents from one file to another, when rmap is enabled. 1656 */ 1657 STATIC int 1658 xfs_swap_extent_rmap( 1659 struct xfs_trans **tpp, 1660 struct xfs_inode *ip, 1661 struct xfs_inode *tip) 1662 { 1663 struct xfs_bmbt_irec irec; 1664 struct xfs_bmbt_irec uirec; 1665 struct xfs_bmbt_irec tirec; 1666 xfs_fileoff_t offset_fsb; 1667 xfs_fileoff_t end_fsb; 1668 xfs_filblks_t count_fsb; 1669 xfs_fsblock_t firstfsb; 1670 struct xfs_defer_ops dfops; 1671 int error; 1672 xfs_filblks_t ilen; 1673 xfs_filblks_t rlen; 1674 int nimaps; 1675 __uint64_t tip_flags2; 1676 1677 /* 1678 * If the source file has shared blocks, we must flag the donor 1679 * file as having shared blocks so that we get the shared-block 1680 * rmap functions when we go to fix up the rmaps. The flags 1681 * will be switch for reals later. 1682 */ 1683 tip_flags2 = tip->i_d.di_flags2; 1684 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) 1685 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; 1686 1687 offset_fsb = 0; 1688 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip))); 1689 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); 1690 1691 while (count_fsb) { 1692 /* Read extent from the donor file */ 1693 nimaps = 1; 1694 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec, 1695 &nimaps, 0); 1696 if (error) 1697 goto out; 1698 ASSERT(nimaps == 1); 1699 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK); 1700 1701 trace_xfs_swap_extent_rmap_remap(tip, &tirec); 1702 ilen = tirec.br_blockcount; 1703 1704 /* Unmap the old blocks in the source file. */ 1705 while (tirec.br_blockcount) { 1706 xfs_defer_init(&dfops, &firstfsb); 1707 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec); 1708 1709 /* Read extent from the source file */ 1710 nimaps = 1; 1711 error = xfs_bmapi_read(ip, tirec.br_startoff, 1712 tirec.br_blockcount, &irec, 1713 &nimaps, 0); 1714 if (error) 1715 goto out_defer; 1716 ASSERT(nimaps == 1); 1717 ASSERT(tirec.br_startoff == irec.br_startoff); 1718 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec); 1719 1720 /* Trim the extent. */ 1721 uirec = tirec; 1722 uirec.br_blockcount = rlen = min_t(xfs_filblks_t, 1723 tirec.br_blockcount, 1724 irec.br_blockcount); 1725 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec); 1726 1727 /* Remove the mapping from the donor file. */ 1728 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops, 1729 tip, &uirec); 1730 if (error) 1731 goto out_defer; 1732 1733 /* Remove the mapping from the source file. */ 1734 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops, 1735 ip, &irec); 1736 if (error) 1737 goto out_defer; 1738 1739 /* Map the donor file's blocks into the source file. */ 1740 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops, 1741 ip, &uirec); 1742 if (error) 1743 goto out_defer; 1744 1745 /* Map the source file's blocks into the donor file. */ 1746 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops, 1747 tip, &irec); 1748 if (error) 1749 goto out_defer; 1750 1751 error = xfs_defer_finish(tpp, &dfops, ip); 1752 if (error) 1753 goto out_defer; 1754 1755 tirec.br_startoff += rlen; 1756 if (tirec.br_startblock != HOLESTARTBLOCK && 1757 tirec.br_startblock != DELAYSTARTBLOCK) 1758 tirec.br_startblock += rlen; 1759 tirec.br_blockcount -= rlen; 1760 } 1761 1762 /* Roll on... */ 1763 count_fsb -= ilen; 1764 offset_fsb += ilen; 1765 } 1766 1767 tip->i_d.di_flags2 = tip_flags2; 1768 return 0; 1769 1770 out_defer: 1771 xfs_defer_cancel(&dfops); 1772 out: 1773 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_); 1774 tip->i_d.di_flags2 = tip_flags2; 1775 return error; 1776 } 1777 1778 /* Swap the extents of two files by swapping data forks. */ 1779 STATIC int 1780 xfs_swap_extent_forks( 1781 struct xfs_trans *tp, 1782 struct xfs_inode *ip, 1783 struct xfs_inode *tip, 1784 int *src_log_flags, 1785 int *target_log_flags) 1786 { 1787 struct xfs_ifork tempifp, *ifp, *tifp; 1788 int aforkblks = 0; 1789 int taforkblks = 0; 1790 xfs_extnum_t nextents; 1791 __uint64_t tmp; 1792 int error; 1793 1794 /* 1795 * Count the number of extended attribute blocks 1796 */ 1797 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) && 1798 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1799 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, 1800 &aforkblks); 1801 if (error) 1802 return error; 1803 } 1804 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) && 1805 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1806 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, 1807 &taforkblks); 1808 if (error) 1809 return error; 1810 } 1811 1812 /* 1813 * Before we've swapped the forks, lets set the owners of the forks 1814 * appropriately. We have to do this as we are demand paging the btree 1815 * buffers, and so the validation done on read will expect the owner 1816 * field to be correctly set. Once we change the owners, we can swap the 1817 * inode forks. 1818 */ 1819 if (ip->i_d.di_version == 3 && 1820 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1821 (*target_log_flags) |= XFS_ILOG_DOWNER; 1822 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, 1823 tip->i_ino, NULL); 1824 if (error) 1825 return error; 1826 } 1827 1828 if (tip->i_d.di_version == 3 && 1829 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1830 (*src_log_flags) |= XFS_ILOG_DOWNER; 1831 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK, 1832 ip->i_ino, NULL); 1833 if (error) 1834 return error; 1835 } 1836 1837 /* 1838 * Swap the data forks of the inodes 1839 */ 1840 ifp = &ip->i_df; 1841 tifp = &tip->i_df; 1842 tempifp = *ifp; /* struct copy */ 1843 *ifp = *tifp; /* struct copy */ 1844 *tifp = tempifp; /* struct copy */ 1845 1846 /* 1847 * Fix the on-disk inode values 1848 */ 1849 tmp = (__uint64_t)ip->i_d.di_nblocks; 1850 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks; 1851 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks; 1852 1853 tmp = (__uint64_t) ip->i_d.di_nextents; 1854 ip->i_d.di_nextents = tip->i_d.di_nextents; 1855 tip->i_d.di_nextents = tmp; 1856 1857 tmp = (__uint64_t) ip->i_d.di_format; 1858 ip->i_d.di_format = tip->i_d.di_format; 1859 tip->i_d.di_format = tmp; 1860 1861 /* 1862 * The extents in the source inode could still contain speculative 1863 * preallocation beyond EOF (e.g. the file is open but not modified 1864 * while defrag is in progress). In that case, we need to copy over the 1865 * number of delalloc blocks the data fork in the source inode is 1866 * tracking beyond EOF so that when the fork is truncated away when the 1867 * temporary inode is unlinked we don't underrun the i_delayed_blks 1868 * counter on that inode. 1869 */ 1870 ASSERT(tip->i_delayed_blks == 0); 1871 tip->i_delayed_blks = ip->i_delayed_blks; 1872 ip->i_delayed_blks = 0; 1873 1874 switch (ip->i_d.di_format) { 1875 case XFS_DINODE_FMT_EXTENTS: 1876 /* 1877 * If the extents fit in the inode, fix the pointer. Otherwise 1878 * it's already NULL or pointing to the extent. 1879 */ 1880 nextents = xfs_iext_count(&ip->i_df); 1881 if (nextents <= XFS_INLINE_EXTS) 1882 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 1883 (*src_log_flags) |= XFS_ILOG_DEXT; 1884 break; 1885 case XFS_DINODE_FMT_BTREE: 1886 ASSERT(ip->i_d.di_version < 3 || 1887 (*src_log_flags & XFS_ILOG_DOWNER)); 1888 (*src_log_flags) |= XFS_ILOG_DBROOT; 1889 break; 1890 } 1891 1892 switch (tip->i_d.di_format) { 1893 case XFS_DINODE_FMT_EXTENTS: 1894 /* 1895 * If the extents fit in the inode, fix the pointer. Otherwise 1896 * it's already NULL or pointing to the extent. 1897 */ 1898 nextents = xfs_iext_count(&tip->i_df); 1899 if (nextents <= XFS_INLINE_EXTS) 1900 tifp->if_u1.if_extents = tifp->if_u2.if_inline_ext; 1901 (*target_log_flags) |= XFS_ILOG_DEXT; 1902 break; 1903 case XFS_DINODE_FMT_BTREE: 1904 (*target_log_flags) |= XFS_ILOG_DBROOT; 1905 ASSERT(tip->i_d.di_version < 3 || 1906 (*target_log_flags & XFS_ILOG_DOWNER)); 1907 break; 1908 } 1909 1910 return 0; 1911 } 1912 1913 int 1914 xfs_swap_extents( 1915 struct xfs_inode *ip, /* target inode */ 1916 struct xfs_inode *tip, /* tmp inode */ 1917 struct xfs_swapext *sxp) 1918 { 1919 struct xfs_mount *mp = ip->i_mount; 1920 struct xfs_trans *tp; 1921 struct xfs_bstat *sbp = &sxp->sx_stat; 1922 int src_log_flags, target_log_flags; 1923 int error = 0; 1924 int lock_flags; 1925 struct xfs_ifork *cowfp; 1926 __uint64_t f; 1927 int resblks; 1928 1929 /* 1930 * Lock the inodes against other IO, page faults and truncate to 1931 * begin with. Then we can ensure the inodes are flushed and have no 1932 * page cache safely. Once we have done this we can take the ilocks and 1933 * do the rest of the checks. 1934 */ 1935 lock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 1936 lock_flags = XFS_MMAPLOCK_EXCL; 1937 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL); 1938 1939 /* Verify that both files have the same format */ 1940 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) { 1941 error = -EINVAL; 1942 goto out_unlock; 1943 } 1944 1945 /* Verify both files are either real-time or non-realtime */ 1946 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { 1947 error = -EINVAL; 1948 goto out_unlock; 1949 } 1950 1951 error = xfs_swap_extent_flush(ip); 1952 if (error) 1953 goto out_unlock; 1954 error = xfs_swap_extent_flush(tip); 1955 if (error) 1956 goto out_unlock; 1957 1958 /* 1959 * Extent "swapping" with rmap requires a permanent reservation and 1960 * a block reservation because it's really just a remap operation 1961 * performed with log redo items! 1962 */ 1963 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 1964 /* 1965 * Conceptually this shouldn't affect the shape of either 1966 * bmbt, but since we atomically move extents one by one, 1967 * we reserve enough space to rebuild both trees. 1968 */ 1969 resblks = XFS_SWAP_RMAP_SPACE_RES(mp, 1970 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK), 1971 XFS_DATA_FORK) + 1972 XFS_SWAP_RMAP_SPACE_RES(mp, 1973 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK), 1974 XFS_DATA_FORK); 1975 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 1976 0, 0, &tp); 1977 } else 1978 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 1979 0, 0, &tp); 1980 if (error) 1981 goto out_unlock; 1982 1983 /* 1984 * Lock and join the inodes to the tansaction so that transaction commit 1985 * or cancel will unlock the inodes from this point onwards. 1986 */ 1987 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL); 1988 lock_flags |= XFS_ILOCK_EXCL; 1989 xfs_trans_ijoin(tp, ip, 0); 1990 xfs_trans_ijoin(tp, tip, 0); 1991 1992 1993 /* Verify all data are being swapped */ 1994 if (sxp->sx_offset != 0 || 1995 sxp->sx_length != ip->i_d.di_size || 1996 sxp->sx_length != tip->i_d.di_size) { 1997 error = -EFAULT; 1998 goto out_trans_cancel; 1999 } 2000 2001 trace_xfs_swap_extent_before(ip, 0); 2002 trace_xfs_swap_extent_before(tip, 1); 2003 2004 /* check inode formats now that data is flushed */ 2005 error = xfs_swap_extents_check_format(ip, tip); 2006 if (error) { 2007 xfs_notice(mp, 2008 "%s: inode 0x%llx format is incompatible for exchanging.", 2009 __func__, ip->i_ino); 2010 goto out_trans_cancel; 2011 } 2012 2013 /* 2014 * Compare the current change & modify times with that 2015 * passed in. If they differ, we abort this swap. 2016 * This is the mechanism used to ensure the calling 2017 * process that the file was not changed out from 2018 * under it. 2019 */ 2020 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || 2021 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || 2022 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || 2023 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { 2024 error = -EBUSY; 2025 goto out_trans_cancel; 2026 } 2027 2028 /* 2029 * Note the trickiness in setting the log flags - we set the owner log 2030 * flag on the opposite inode (i.e. the inode we are setting the new 2031 * owner to be) because once we swap the forks and log that, log 2032 * recovery is going to see the fork as owned by the swapped inode, 2033 * not the pre-swapped inodes. 2034 */ 2035 src_log_flags = XFS_ILOG_CORE; 2036 target_log_flags = XFS_ILOG_CORE; 2037 2038 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) 2039 error = xfs_swap_extent_rmap(&tp, ip, tip); 2040 else 2041 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags, 2042 &target_log_flags); 2043 if (error) 2044 goto out_trans_cancel; 2045 2046 /* Do we have to swap reflink flags? */ 2047 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^ 2048 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) { 2049 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 2050 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 2051 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 2052 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 2053 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK; 2054 cowfp = ip->i_cowfp; 2055 ip->i_cowfp = tip->i_cowfp; 2056 tip->i_cowfp = cowfp; 2057 xfs_inode_set_cowblocks_tag(ip); 2058 xfs_inode_set_cowblocks_tag(tip); 2059 } 2060 2061 xfs_trans_log_inode(tp, ip, src_log_flags); 2062 xfs_trans_log_inode(tp, tip, target_log_flags); 2063 2064 /* 2065 * If this is a synchronous mount, make sure that the 2066 * transaction goes to disk before returning to the user. 2067 */ 2068 if (mp->m_flags & XFS_MOUNT_WSYNC) 2069 xfs_trans_set_sync(tp); 2070 2071 error = xfs_trans_commit(tp); 2072 2073 trace_xfs_swap_extent_after(ip, 0); 2074 trace_xfs_swap_extent_after(tip, 1); 2075 2076 out_unlock: 2077 xfs_iunlock(ip, lock_flags); 2078 xfs_iunlock(tip, lock_flags); 2079 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 2080 return error; 2081 2082 out_trans_cancel: 2083 xfs_trans_cancel(tp); 2084 goto out_unlock; 2085 } 2086