1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2012 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_mount.h" 15 #include "xfs_da_format.h" 16 #include "xfs_defer.h" 17 #include "xfs_inode.h" 18 #include "xfs_btree.h" 19 #include "xfs_trans.h" 20 #include "xfs_extfree_item.h" 21 #include "xfs_alloc.h" 22 #include "xfs_bmap.h" 23 #include "xfs_bmap_util.h" 24 #include "xfs_bmap_btree.h" 25 #include "xfs_rtalloc.h" 26 #include "xfs_error.h" 27 #include "xfs_quota.h" 28 #include "xfs_trans_space.h" 29 #include "xfs_trace.h" 30 #include "xfs_icache.h" 31 #include "xfs_log.h" 32 #include "xfs_rmap_btree.h" 33 #include "xfs_iomap.h" 34 #include "xfs_reflink.h" 35 #include "xfs_refcount.h" 36 37 /* Kernel only BMAP related definitions and functions */ 38 39 /* 40 * Convert the given file system block to a disk block. We have to treat it 41 * differently based on whether the file is a real time file or not, because the 42 * bmap code does. 43 */ 44 xfs_daddr_t 45 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) 46 { 47 return (XFS_IS_REALTIME_INODE(ip) ? \ 48 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \ 49 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb))); 50 } 51 52 /* 53 * Routine to zero an extent on disk allocated to the specific inode. 54 * 55 * The VFS functions take a linearised filesystem block offset, so we have to 56 * convert the sparse xfs fsb to the right format first. 57 * VFS types are real funky, too. 58 */ 59 int 60 xfs_zero_extent( 61 struct xfs_inode *ip, 62 xfs_fsblock_t start_fsb, 63 xfs_off_t count_fsb) 64 { 65 struct xfs_mount *mp = ip->i_mount; 66 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb); 67 sector_t block = XFS_BB_TO_FSBT(mp, sector); 68 69 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)), 70 block << (mp->m_super->s_blocksize_bits - 9), 71 count_fsb << (mp->m_super->s_blocksize_bits - 9), 72 GFP_NOFS, 0); 73 } 74 75 #ifdef CONFIG_XFS_RT 76 int 77 xfs_bmap_rtalloc( 78 struct xfs_bmalloca *ap) /* bmap alloc argument struct */ 79 { 80 int error; /* error return value */ 81 xfs_mount_t *mp; /* mount point structure */ 82 xfs_extlen_t prod = 0; /* product factor for allocators */ 83 xfs_extlen_t mod = 0; /* product factor for allocators */ 84 xfs_extlen_t ralen = 0; /* realtime allocation length */ 85 xfs_extlen_t align; /* minimum allocation alignment */ 86 xfs_rtblock_t rtb; 87 88 mp = ap->ip->i_mount; 89 align = xfs_get_extsz_hint(ap->ip); 90 prod = align / mp->m_sb.sb_rextsize; 91 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, 92 align, 1, ap->eof, 0, 93 ap->conv, &ap->offset, &ap->length); 94 if (error) 95 return error; 96 ASSERT(ap->length); 97 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); 98 99 /* 100 * If the offset & length are not perfectly aligned 101 * then kill prod, it will just get us in trouble. 102 */ 103 div_u64_rem(ap->offset, align, &mod); 104 if (mod || ap->length % align) 105 prod = 1; 106 /* 107 * Set ralen to be the actual requested length in rtextents. 108 */ 109 ralen = ap->length / mp->m_sb.sb_rextsize; 110 /* 111 * If the old value was close enough to MAXEXTLEN that 112 * we rounded up to it, cut it back so it's valid again. 113 * Note that if it's a really large request (bigger than 114 * MAXEXTLEN), we don't hear about that number, and can't 115 * adjust the starting point to match it. 116 */ 117 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) 118 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; 119 120 /* 121 * Lock out modifications to both the RT bitmap and summary inodes 122 */ 123 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP); 124 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); 125 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM); 126 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL); 127 128 /* 129 * If it's an allocation to an empty file at offset 0, 130 * pick an extent that will space things out in the rt area. 131 */ 132 if (ap->eof && ap->offset == 0) { 133 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */ 134 135 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); 136 if (error) 137 return error; 138 ap->blkno = rtx * mp->m_sb.sb_rextsize; 139 } else { 140 ap->blkno = 0; 141 } 142 143 xfs_bmap_adjacent(ap); 144 145 /* 146 * Realtime allocation, done through xfs_rtallocate_extent. 147 */ 148 do_div(ap->blkno, mp->m_sb.sb_rextsize); 149 rtb = ap->blkno; 150 ap->length = ralen; 151 error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, 152 &ralen, ap->wasdel, prod, &rtb); 153 if (error) 154 return error; 155 156 ap->blkno = rtb; 157 if (ap->blkno != NULLFSBLOCK) { 158 ap->blkno *= mp->m_sb.sb_rextsize; 159 ralen *= mp->m_sb.sb_rextsize; 160 ap->length = ralen; 161 ap->ip->i_d.di_nblocks += ralen; 162 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); 163 if (ap->wasdel) 164 ap->ip->i_delayed_blks -= ralen; 165 /* 166 * Adjust the disk quota also. This was reserved 167 * earlier. 168 */ 169 xfs_trans_mod_dquot_byino(ap->tp, ap->ip, 170 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : 171 XFS_TRANS_DQ_RTBCOUNT, (long) ralen); 172 173 /* Zero the extent if we were asked to do so */ 174 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) { 175 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length); 176 if (error) 177 return error; 178 } 179 } else { 180 ap->length = 0; 181 } 182 return 0; 183 } 184 #endif /* CONFIG_XFS_RT */ 185 186 /* 187 * Check if the endoff is outside the last extent. If so the caller will grow 188 * the allocation to a stripe unit boundary. All offsets are considered outside 189 * the end of file for an empty fork, so 1 is returned in *eof in that case. 190 */ 191 int 192 xfs_bmap_eof( 193 struct xfs_inode *ip, 194 xfs_fileoff_t endoff, 195 int whichfork, 196 int *eof) 197 { 198 struct xfs_bmbt_irec rec; 199 int error; 200 201 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof); 202 if (error || *eof) 203 return error; 204 205 *eof = endoff >= rec.br_startoff + rec.br_blockcount; 206 return 0; 207 } 208 209 /* 210 * Extent tree block counting routines. 211 */ 212 213 /* 214 * Count leaf blocks given a range of extent records. Delayed allocation 215 * extents are not counted towards the totals. 216 */ 217 xfs_extnum_t 218 xfs_bmap_count_leaves( 219 struct xfs_ifork *ifp, 220 xfs_filblks_t *count) 221 { 222 struct xfs_iext_cursor icur; 223 struct xfs_bmbt_irec got; 224 xfs_extnum_t numrecs = 0; 225 226 for_each_xfs_iext(ifp, &icur, &got) { 227 if (!isnullstartblock(got.br_startblock)) { 228 *count += got.br_blockcount; 229 numrecs++; 230 } 231 } 232 233 return numrecs; 234 } 235 236 /* 237 * Count leaf blocks given a range of extent records originally 238 * in btree format. 239 */ 240 STATIC void 241 xfs_bmap_disk_count_leaves( 242 struct xfs_mount *mp, 243 struct xfs_btree_block *block, 244 int numrecs, 245 xfs_filblks_t *count) 246 { 247 int b; 248 xfs_bmbt_rec_t *frp; 249 250 for (b = 1; b <= numrecs; b++) { 251 frp = XFS_BMBT_REC_ADDR(mp, block, b); 252 *count += xfs_bmbt_disk_get_blockcount(frp); 253 } 254 } 255 256 /* 257 * Recursively walks each level of a btree 258 * to count total fsblocks in use. 259 */ 260 STATIC int 261 xfs_bmap_count_tree( 262 struct xfs_mount *mp, 263 struct xfs_trans *tp, 264 struct xfs_ifork *ifp, 265 xfs_fsblock_t blockno, 266 int levelin, 267 xfs_extnum_t *nextents, 268 xfs_filblks_t *count) 269 { 270 int error; 271 struct xfs_buf *bp, *nbp; 272 int level = levelin; 273 __be64 *pp; 274 xfs_fsblock_t bno = blockno; 275 xfs_fsblock_t nextbno; 276 struct xfs_btree_block *block, *nextblock; 277 int numrecs; 278 279 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF, 280 &xfs_bmbt_buf_ops); 281 if (error) 282 return error; 283 *count += 1; 284 block = XFS_BUF_TO_BLOCK(bp); 285 286 if (--level) { 287 /* Not at node above leaves, count this level of nodes */ 288 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 289 while (nextbno != NULLFSBLOCK) { 290 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp, 291 XFS_BMAP_BTREE_REF, 292 &xfs_bmbt_buf_ops); 293 if (error) 294 return error; 295 *count += 1; 296 nextblock = XFS_BUF_TO_BLOCK(nbp); 297 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib); 298 xfs_trans_brelse(tp, nbp); 299 } 300 301 /* Dive to the next level */ 302 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]); 303 bno = be64_to_cpu(*pp); 304 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents, 305 count); 306 if (error) { 307 xfs_trans_brelse(tp, bp); 308 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)", 309 XFS_ERRLEVEL_LOW, mp); 310 return -EFSCORRUPTED; 311 } 312 xfs_trans_brelse(tp, bp); 313 } else { 314 /* count all level 1 nodes and their leaves */ 315 for (;;) { 316 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 317 numrecs = be16_to_cpu(block->bb_numrecs); 318 (*nextents) += numrecs; 319 xfs_bmap_disk_count_leaves(mp, block, numrecs, count); 320 xfs_trans_brelse(tp, bp); 321 if (nextbno == NULLFSBLOCK) 322 break; 323 bno = nextbno; 324 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, 325 XFS_BMAP_BTREE_REF, 326 &xfs_bmbt_buf_ops); 327 if (error) 328 return error; 329 *count += 1; 330 block = XFS_BUF_TO_BLOCK(bp); 331 } 332 } 333 return 0; 334 } 335 336 /* 337 * Count fsblocks of the given fork. Delayed allocation extents are 338 * not counted towards the totals. 339 */ 340 int 341 xfs_bmap_count_blocks( 342 struct xfs_trans *tp, 343 struct xfs_inode *ip, 344 int whichfork, 345 xfs_extnum_t *nextents, 346 xfs_filblks_t *count) 347 { 348 struct xfs_mount *mp; /* file system mount structure */ 349 __be64 *pp; /* pointer to block address */ 350 struct xfs_btree_block *block; /* current btree block */ 351 struct xfs_ifork *ifp; /* fork structure */ 352 xfs_fsblock_t bno; /* block # of "block" */ 353 int level; /* btree level, for checking */ 354 int error; 355 356 bno = NULLFSBLOCK; 357 mp = ip->i_mount; 358 *nextents = 0; 359 *count = 0; 360 ifp = XFS_IFORK_PTR(ip, whichfork); 361 if (!ifp) 362 return 0; 363 364 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 365 case XFS_DINODE_FMT_EXTENTS: 366 *nextents = xfs_bmap_count_leaves(ifp, count); 367 return 0; 368 case XFS_DINODE_FMT_BTREE: 369 if (!(ifp->if_flags & XFS_IFEXTENTS)) { 370 error = xfs_iread_extents(tp, ip, whichfork); 371 if (error) 372 return error; 373 } 374 375 /* 376 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out. 377 */ 378 block = ifp->if_broot; 379 level = be16_to_cpu(block->bb_level); 380 ASSERT(level > 0); 381 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes); 382 bno = be64_to_cpu(*pp); 383 ASSERT(bno != NULLFSBLOCK); 384 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount); 385 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks); 386 387 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, 388 nextents, count); 389 if (error) { 390 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", 391 XFS_ERRLEVEL_LOW, mp); 392 return -EFSCORRUPTED; 393 } 394 return 0; 395 } 396 397 return 0; 398 } 399 400 static int 401 xfs_getbmap_report_one( 402 struct xfs_inode *ip, 403 struct getbmapx *bmv, 404 struct kgetbmap *out, 405 int64_t bmv_end, 406 struct xfs_bmbt_irec *got) 407 { 408 struct kgetbmap *p = out + bmv->bmv_entries; 409 bool shared = false; 410 int error; 411 412 error = xfs_reflink_trim_around_shared(ip, got, &shared); 413 if (error) 414 return error; 415 416 if (isnullstartblock(got->br_startblock) || 417 got->br_startblock == DELAYSTARTBLOCK) { 418 /* 419 * Delalloc extents that start beyond EOF can occur due to 420 * speculative EOF allocation when the delalloc extent is larger 421 * than the largest freespace extent at conversion time. These 422 * extents cannot be converted by data writeback, so can exist 423 * here even if we are not supposed to be finding delalloc 424 * extents. 425 */ 426 if (got->br_startoff < XFS_B_TO_FSB(ip->i_mount, XFS_ISIZE(ip))) 427 ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0); 428 429 p->bmv_oflags |= BMV_OF_DELALLOC; 430 p->bmv_block = -2; 431 } else { 432 p->bmv_block = xfs_fsb_to_db(ip, got->br_startblock); 433 } 434 435 if (got->br_state == XFS_EXT_UNWRITTEN && 436 (bmv->bmv_iflags & BMV_IF_PREALLOC)) 437 p->bmv_oflags |= BMV_OF_PREALLOC; 438 439 if (shared) 440 p->bmv_oflags |= BMV_OF_SHARED; 441 442 p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, got->br_startoff); 443 p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, got->br_blockcount); 444 445 bmv->bmv_offset = p->bmv_offset + p->bmv_length; 446 bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset); 447 bmv->bmv_entries++; 448 return 0; 449 } 450 451 static void 452 xfs_getbmap_report_hole( 453 struct xfs_inode *ip, 454 struct getbmapx *bmv, 455 struct kgetbmap *out, 456 int64_t bmv_end, 457 xfs_fileoff_t bno, 458 xfs_fileoff_t end) 459 { 460 struct kgetbmap *p = out + bmv->bmv_entries; 461 462 if (bmv->bmv_iflags & BMV_IF_NO_HOLES) 463 return; 464 465 p->bmv_block = -1; 466 p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, bno); 467 p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, end - bno); 468 469 bmv->bmv_offset = p->bmv_offset + p->bmv_length; 470 bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset); 471 bmv->bmv_entries++; 472 } 473 474 static inline bool 475 xfs_getbmap_full( 476 struct getbmapx *bmv) 477 { 478 return bmv->bmv_length == 0 || bmv->bmv_entries >= bmv->bmv_count - 1; 479 } 480 481 static bool 482 xfs_getbmap_next_rec( 483 struct xfs_bmbt_irec *rec, 484 xfs_fileoff_t total_end) 485 { 486 xfs_fileoff_t end = rec->br_startoff + rec->br_blockcount; 487 488 if (end == total_end) 489 return false; 490 491 rec->br_startoff += rec->br_blockcount; 492 if (!isnullstartblock(rec->br_startblock) && 493 rec->br_startblock != DELAYSTARTBLOCK) 494 rec->br_startblock += rec->br_blockcount; 495 rec->br_blockcount = total_end - end; 496 return true; 497 } 498 499 /* 500 * Get inode's extents as described in bmv, and format for output. 501 * Calls formatter to fill the user's buffer until all extents 502 * are mapped, until the passed-in bmv->bmv_count slots have 503 * been filled, or until the formatter short-circuits the loop, 504 * if it is tracking filled-in extents on its own. 505 */ 506 int /* error code */ 507 xfs_getbmap( 508 struct xfs_inode *ip, 509 struct getbmapx *bmv, /* user bmap structure */ 510 struct kgetbmap *out) 511 { 512 struct xfs_mount *mp = ip->i_mount; 513 int iflags = bmv->bmv_iflags; 514 int whichfork, lock, error = 0; 515 int64_t bmv_end, max_len; 516 xfs_fileoff_t bno, first_bno; 517 struct xfs_ifork *ifp; 518 struct xfs_bmbt_irec got, rec; 519 xfs_filblks_t len; 520 struct xfs_iext_cursor icur; 521 522 if (bmv->bmv_iflags & ~BMV_IF_VALID) 523 return -EINVAL; 524 #ifndef DEBUG 525 /* Only allow CoW fork queries if we're debugging. */ 526 if (iflags & BMV_IF_COWFORK) 527 return -EINVAL; 528 #endif 529 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK)) 530 return -EINVAL; 531 532 if (bmv->bmv_length < -1) 533 return -EINVAL; 534 bmv->bmv_entries = 0; 535 if (bmv->bmv_length == 0) 536 return 0; 537 538 if (iflags & BMV_IF_ATTRFORK) 539 whichfork = XFS_ATTR_FORK; 540 else if (iflags & BMV_IF_COWFORK) 541 whichfork = XFS_COW_FORK; 542 else 543 whichfork = XFS_DATA_FORK; 544 ifp = XFS_IFORK_PTR(ip, whichfork); 545 546 xfs_ilock(ip, XFS_IOLOCK_SHARED); 547 switch (whichfork) { 548 case XFS_ATTR_FORK: 549 if (!XFS_IFORK_Q(ip)) 550 goto out_unlock_iolock; 551 552 max_len = 1LL << 32; 553 lock = xfs_ilock_attr_map_shared(ip); 554 break; 555 case XFS_COW_FORK: 556 /* No CoW fork? Just return */ 557 if (!ifp) 558 goto out_unlock_iolock; 559 560 if (xfs_get_cowextsz_hint(ip)) 561 max_len = mp->m_super->s_maxbytes; 562 else 563 max_len = XFS_ISIZE(ip); 564 565 lock = XFS_ILOCK_SHARED; 566 xfs_ilock(ip, lock); 567 break; 568 case XFS_DATA_FORK: 569 if (!(iflags & BMV_IF_DELALLOC) && 570 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) { 571 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 572 if (error) 573 goto out_unlock_iolock; 574 575 /* 576 * Even after flushing the inode, there can still be 577 * delalloc blocks on the inode beyond EOF due to 578 * speculative preallocation. These are not removed 579 * until the release function is called or the inode 580 * is inactivated. Hence we cannot assert here that 581 * ip->i_delayed_blks == 0. 582 */ 583 } 584 585 if (xfs_get_extsz_hint(ip) || 586 (ip->i_d.di_flags & 587 (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))) 588 max_len = mp->m_super->s_maxbytes; 589 else 590 max_len = XFS_ISIZE(ip); 591 592 lock = xfs_ilock_data_map_shared(ip); 593 break; 594 } 595 596 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 597 case XFS_DINODE_FMT_EXTENTS: 598 case XFS_DINODE_FMT_BTREE: 599 break; 600 case XFS_DINODE_FMT_LOCAL: 601 /* Local format inode forks report no extents. */ 602 goto out_unlock_ilock; 603 default: 604 error = -EINVAL; 605 goto out_unlock_ilock; 606 } 607 608 if (bmv->bmv_length == -1) { 609 max_len = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, max_len)); 610 bmv->bmv_length = max(0LL, max_len - bmv->bmv_offset); 611 } 612 613 bmv_end = bmv->bmv_offset + bmv->bmv_length; 614 615 first_bno = bno = XFS_BB_TO_FSBT(mp, bmv->bmv_offset); 616 len = XFS_BB_TO_FSB(mp, bmv->bmv_length); 617 618 if (!(ifp->if_flags & XFS_IFEXTENTS)) { 619 error = xfs_iread_extents(NULL, ip, whichfork); 620 if (error) 621 goto out_unlock_ilock; 622 } 623 624 if (!xfs_iext_lookup_extent(ip, ifp, bno, &icur, &got)) { 625 /* 626 * Report a whole-file hole if the delalloc flag is set to 627 * stay compatible with the old implementation. 628 */ 629 if (iflags & BMV_IF_DELALLOC) 630 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno, 631 XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); 632 goto out_unlock_ilock; 633 } 634 635 while (!xfs_getbmap_full(bmv)) { 636 xfs_trim_extent(&got, first_bno, len); 637 638 /* 639 * Report an entry for a hole if this extent doesn't directly 640 * follow the previous one. 641 */ 642 if (got.br_startoff > bno) { 643 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno, 644 got.br_startoff); 645 if (xfs_getbmap_full(bmv)) 646 break; 647 } 648 649 /* 650 * In order to report shared extents accurately, we report each 651 * distinct shared / unshared part of a single bmbt record with 652 * an individual getbmapx record. 653 */ 654 bno = got.br_startoff + got.br_blockcount; 655 rec = got; 656 do { 657 error = xfs_getbmap_report_one(ip, bmv, out, bmv_end, 658 &rec); 659 if (error || xfs_getbmap_full(bmv)) 660 goto out_unlock_ilock; 661 } while (xfs_getbmap_next_rec(&rec, bno)); 662 663 if (!xfs_iext_next_extent(ifp, &icur, &got)) { 664 xfs_fileoff_t end = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); 665 666 out[bmv->bmv_entries - 1].bmv_oflags |= BMV_OF_LAST; 667 668 if (whichfork != XFS_ATTR_FORK && bno < end && 669 !xfs_getbmap_full(bmv)) { 670 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, 671 bno, end); 672 } 673 break; 674 } 675 676 if (bno >= first_bno + len) 677 break; 678 } 679 680 out_unlock_ilock: 681 xfs_iunlock(ip, lock); 682 out_unlock_iolock: 683 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 684 return error; 685 } 686 687 /* 688 * Dead simple method of punching delalyed allocation blocks from a range in 689 * the inode. This will always punch out both the start and end blocks, even 690 * if the ranges only partially overlap them, so it is up to the caller to 691 * ensure that partial blocks are not passed in. 692 */ 693 int 694 xfs_bmap_punch_delalloc_range( 695 struct xfs_inode *ip, 696 xfs_fileoff_t start_fsb, 697 xfs_fileoff_t length) 698 { 699 struct xfs_ifork *ifp = &ip->i_df; 700 xfs_fileoff_t end_fsb = start_fsb + length; 701 struct xfs_bmbt_irec got, del; 702 struct xfs_iext_cursor icur; 703 int error = 0; 704 705 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 706 707 xfs_ilock(ip, XFS_ILOCK_EXCL); 708 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 709 goto out_unlock; 710 711 while (got.br_startoff + got.br_blockcount > start_fsb) { 712 del = got; 713 xfs_trim_extent(&del, start_fsb, length); 714 715 /* 716 * A delete can push the cursor forward. Step back to the 717 * previous extent on non-delalloc or extents outside the 718 * target range. 719 */ 720 if (!del.br_blockcount || 721 !isnullstartblock(del.br_startblock)) { 722 if (!xfs_iext_prev_extent(ifp, &icur, &got)) 723 break; 724 continue; 725 } 726 727 error = xfs_bmap_del_extent_delay(ip, XFS_DATA_FORK, &icur, 728 &got, &del); 729 if (error || !xfs_iext_get_extent(ifp, &icur, &got)) 730 break; 731 } 732 733 out_unlock: 734 xfs_iunlock(ip, XFS_ILOCK_EXCL); 735 return error; 736 } 737 738 /* 739 * Test whether it is appropriate to check an inode for and free post EOF 740 * blocks. The 'force' parameter determines whether we should also consider 741 * regular files that are marked preallocated or append-only. 742 */ 743 bool 744 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 745 { 746 /* prealloc/delalloc exists only on regular files */ 747 if (!S_ISREG(VFS_I(ip)->i_mode)) 748 return false; 749 750 /* 751 * Zero sized files with no cached pages and delalloc blocks will not 752 * have speculative prealloc/delalloc blocks to remove. 753 */ 754 if (VFS_I(ip)->i_size == 0 && 755 VFS_I(ip)->i_mapping->nrpages == 0 && 756 ip->i_delayed_blks == 0) 757 return false; 758 759 /* If we haven't read in the extent list, then don't do it now. */ 760 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 761 return false; 762 763 /* 764 * Do not free real preallocated or append-only files unless the file 765 * has delalloc blocks and we are forced to remove them. 766 */ 767 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 768 if (!force || ip->i_delayed_blks == 0) 769 return false; 770 771 return true; 772 } 773 774 /* 775 * This is called to free any blocks beyond eof. The caller must hold 776 * IOLOCK_EXCL unless we are in the inode reclaim path and have the only 777 * reference to the inode. 778 */ 779 int 780 xfs_free_eofblocks( 781 struct xfs_inode *ip) 782 { 783 struct xfs_trans *tp; 784 int error; 785 xfs_fileoff_t end_fsb; 786 xfs_fileoff_t last_fsb; 787 xfs_filblks_t map_len; 788 int nimaps; 789 struct xfs_bmbt_irec imap; 790 struct xfs_mount *mp = ip->i_mount; 791 792 /* 793 * Figure out if there are any blocks beyond the end 794 * of the file. If not, then there is nothing to do. 795 */ 796 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); 797 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 798 if (last_fsb <= end_fsb) 799 return 0; 800 map_len = last_fsb - end_fsb; 801 802 nimaps = 1; 803 xfs_ilock(ip, XFS_ILOCK_SHARED); 804 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0); 805 xfs_iunlock(ip, XFS_ILOCK_SHARED); 806 807 /* 808 * If there are blocks after the end of file, truncate the file to its 809 * current size to free them up. 810 */ 811 if (!error && (nimaps != 0) && 812 (imap.br_startblock != HOLESTARTBLOCK || 813 ip->i_delayed_blks)) { 814 /* 815 * Attach the dquots to the inode up front. 816 */ 817 error = xfs_qm_dqattach(ip); 818 if (error) 819 return error; 820 821 /* wait on dio to ensure i_size has settled */ 822 inode_dio_wait(VFS_I(ip)); 823 824 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, 825 &tp); 826 if (error) { 827 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 828 return error; 829 } 830 831 xfs_ilock(ip, XFS_ILOCK_EXCL); 832 xfs_trans_ijoin(tp, ip, 0); 833 834 /* 835 * Do not update the on-disk file size. If we update the 836 * on-disk file size and then the system crashes before the 837 * contents of the file are flushed to disk then the files 838 * may be full of holes (ie NULL files bug). 839 */ 840 error = xfs_itruncate_extents_flags(&tp, ip, XFS_DATA_FORK, 841 XFS_ISIZE(ip), XFS_BMAPI_NODISCARD); 842 if (error) { 843 /* 844 * If we get an error at this point we simply don't 845 * bother truncating the file. 846 */ 847 xfs_trans_cancel(tp); 848 } else { 849 error = xfs_trans_commit(tp); 850 if (!error) 851 xfs_inode_clear_eofblocks_tag(ip); 852 } 853 854 xfs_iunlock(ip, XFS_ILOCK_EXCL); 855 } 856 return error; 857 } 858 859 int 860 xfs_alloc_file_space( 861 struct xfs_inode *ip, 862 xfs_off_t offset, 863 xfs_off_t len, 864 int alloc_type) 865 { 866 xfs_mount_t *mp = ip->i_mount; 867 xfs_off_t count; 868 xfs_filblks_t allocated_fsb; 869 xfs_filblks_t allocatesize_fsb; 870 xfs_extlen_t extsz, temp; 871 xfs_fileoff_t startoffset_fsb; 872 int nimaps; 873 int quota_flag; 874 int rt; 875 xfs_trans_t *tp; 876 xfs_bmbt_irec_t imaps[1], *imapp; 877 uint qblocks, resblks, resrtextents; 878 int error; 879 880 trace_xfs_alloc_file_space(ip); 881 882 if (XFS_FORCED_SHUTDOWN(mp)) 883 return -EIO; 884 885 error = xfs_qm_dqattach(ip); 886 if (error) 887 return error; 888 889 if (len <= 0) 890 return -EINVAL; 891 892 rt = XFS_IS_REALTIME_INODE(ip); 893 extsz = xfs_get_extsz_hint(ip); 894 895 count = len; 896 imapp = &imaps[0]; 897 nimaps = 1; 898 startoffset_fsb = XFS_B_TO_FSBT(mp, offset); 899 allocatesize_fsb = XFS_B_TO_FSB(mp, count); 900 901 /* 902 * Allocate file space until done or until there is an error 903 */ 904 while (allocatesize_fsb && !error) { 905 xfs_fileoff_t s, e; 906 907 /* 908 * Determine space reservations for data/realtime. 909 */ 910 if (unlikely(extsz)) { 911 s = startoffset_fsb; 912 do_div(s, extsz); 913 s *= extsz; 914 e = startoffset_fsb + allocatesize_fsb; 915 div_u64_rem(startoffset_fsb, extsz, &temp); 916 if (temp) 917 e += temp; 918 div_u64_rem(e, extsz, &temp); 919 if (temp) 920 e += extsz - temp; 921 } else { 922 s = 0; 923 e = allocatesize_fsb; 924 } 925 926 /* 927 * The transaction reservation is limited to a 32-bit block 928 * count, hence we need to limit the number of blocks we are 929 * trying to reserve to avoid an overflow. We can't allocate 930 * more than @nimaps extents, and an extent is limited on disk 931 * to MAXEXTLEN (21 bits), so use that to enforce the limit. 932 */ 933 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); 934 if (unlikely(rt)) { 935 resrtextents = qblocks = resblks; 936 resrtextents /= mp->m_sb.sb_rextsize; 937 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 938 quota_flag = XFS_QMOPT_RES_RTBLKS; 939 } else { 940 resrtextents = 0; 941 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); 942 quota_flag = XFS_QMOPT_RES_REGBLKS; 943 } 944 945 /* 946 * Allocate and setup the transaction. 947 */ 948 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 949 resrtextents, 0, &tp); 950 951 /* 952 * Check for running out of space 953 */ 954 if (error) { 955 /* 956 * Free the transaction structure. 957 */ 958 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 959 break; 960 } 961 xfs_ilock(ip, XFS_ILOCK_EXCL); 962 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 963 0, quota_flag); 964 if (error) 965 goto error1; 966 967 xfs_trans_ijoin(tp, ip, 0); 968 969 error = xfs_bmapi_write(tp, ip, startoffset_fsb, 970 allocatesize_fsb, alloc_type, resblks, 971 imapp, &nimaps); 972 if (error) 973 goto error0; 974 975 /* 976 * Complete the transaction 977 */ 978 error = xfs_trans_commit(tp); 979 xfs_iunlock(ip, XFS_ILOCK_EXCL); 980 if (error) 981 break; 982 983 allocated_fsb = imapp->br_blockcount; 984 985 if (nimaps == 0) { 986 error = -ENOSPC; 987 break; 988 } 989 990 startoffset_fsb += allocated_fsb; 991 allocatesize_fsb -= allocated_fsb; 992 } 993 994 return error; 995 996 error0: /* unlock inode, unreserve quota blocks, cancel trans */ 997 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 998 999 error1: /* Just cancel transaction */ 1000 xfs_trans_cancel(tp); 1001 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1002 return error; 1003 } 1004 1005 static int 1006 xfs_unmap_extent( 1007 struct xfs_inode *ip, 1008 xfs_fileoff_t startoffset_fsb, 1009 xfs_filblks_t len_fsb, 1010 int *done) 1011 { 1012 struct xfs_mount *mp = ip->i_mount; 1013 struct xfs_trans *tp; 1014 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1015 int error; 1016 1017 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1018 if (error) { 1019 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1020 return error; 1021 } 1022 1023 xfs_ilock(ip, XFS_ILOCK_EXCL); 1024 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, 1025 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS); 1026 if (error) 1027 goto out_trans_cancel; 1028 1029 xfs_trans_ijoin(tp, ip, 0); 1030 1031 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, done); 1032 if (error) 1033 goto out_trans_cancel; 1034 1035 error = xfs_trans_commit(tp); 1036 out_unlock: 1037 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1038 return error; 1039 1040 out_trans_cancel: 1041 xfs_trans_cancel(tp); 1042 goto out_unlock; 1043 } 1044 1045 int 1046 xfs_flush_unmap_range( 1047 struct xfs_inode *ip, 1048 xfs_off_t offset, 1049 xfs_off_t len) 1050 { 1051 struct xfs_mount *mp = ip->i_mount; 1052 struct inode *inode = VFS_I(ip); 1053 xfs_off_t rounding, start, end; 1054 int error; 1055 1056 /* wait for the completion of any pending DIOs */ 1057 inode_dio_wait(inode); 1058 1059 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE); 1060 start = round_down(offset, rounding); 1061 end = round_up(offset + len, rounding) - 1; 1062 1063 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 1064 if (error) 1065 return error; 1066 truncate_pagecache_range(inode, start, end); 1067 return 0; 1068 } 1069 1070 int 1071 xfs_free_file_space( 1072 struct xfs_inode *ip, 1073 xfs_off_t offset, 1074 xfs_off_t len) 1075 { 1076 struct xfs_mount *mp = ip->i_mount; 1077 xfs_fileoff_t startoffset_fsb; 1078 xfs_fileoff_t endoffset_fsb; 1079 int done = 0, error; 1080 1081 trace_xfs_free_file_space(ip); 1082 1083 error = xfs_qm_dqattach(ip); 1084 if (error) 1085 return error; 1086 1087 if (len <= 0) /* if nothing being freed */ 1088 return 0; 1089 1090 error = xfs_flush_unmap_range(ip, offset, len); 1091 if (error) 1092 return error; 1093 1094 startoffset_fsb = XFS_B_TO_FSB(mp, offset); 1095 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); 1096 1097 /* 1098 * Need to zero the stuff we're not freeing, on disk. 1099 */ 1100 if (endoffset_fsb > startoffset_fsb) { 1101 while (!done) { 1102 error = xfs_unmap_extent(ip, startoffset_fsb, 1103 endoffset_fsb - startoffset_fsb, &done); 1104 if (error) 1105 return error; 1106 } 1107 } 1108 1109 /* 1110 * Now that we've unmap all full blocks we'll have to zero out any 1111 * partial block at the beginning and/or end. iomap_zero_range is smart 1112 * enough to skip any holes, including those we just created, but we 1113 * must take care not to zero beyond EOF and enlarge i_size. 1114 */ 1115 if (offset >= XFS_ISIZE(ip)) 1116 return 0; 1117 if (offset + len > XFS_ISIZE(ip)) 1118 len = XFS_ISIZE(ip) - offset; 1119 error = iomap_zero_range(VFS_I(ip), offset, len, NULL, &xfs_iomap_ops); 1120 if (error) 1121 return error; 1122 1123 /* 1124 * If we zeroed right up to EOF and EOF straddles a page boundary we 1125 * must make sure that the post-EOF area is also zeroed because the 1126 * page could be mmap'd and iomap_zero_range doesn't do that for us. 1127 * Writeback of the eof page will do this, albeit clumsily. 1128 */ 1129 if (offset + len >= XFS_ISIZE(ip) && offset_in_page(offset + len) > 0) { 1130 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 1131 round_down(offset + len, PAGE_SIZE), LLONG_MAX); 1132 } 1133 1134 return error; 1135 } 1136 1137 /* 1138 * Preallocate and zero a range of a file. This mechanism has the allocation 1139 * semantics of fallocate and in addition converts data in the range to zeroes. 1140 */ 1141 int 1142 xfs_zero_file_space( 1143 struct xfs_inode *ip, 1144 xfs_off_t offset, 1145 xfs_off_t len) 1146 { 1147 struct xfs_mount *mp = ip->i_mount; 1148 uint blksize; 1149 int error; 1150 1151 trace_xfs_zero_file_space(ip); 1152 1153 blksize = 1 << mp->m_sb.sb_blocklog; 1154 1155 /* 1156 * Punch a hole and prealloc the range. We use hole punch rather than 1157 * unwritten extent conversion for two reasons: 1158 * 1159 * 1.) Hole punch handles partial block zeroing for us. 1160 * 1161 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued 1162 * by virtue of the hole punch. 1163 */ 1164 error = xfs_free_file_space(ip, offset, len); 1165 if (error || xfs_is_always_cow_inode(ip)) 1166 return error; 1167 1168 return xfs_alloc_file_space(ip, round_down(offset, blksize), 1169 round_up(offset + len, blksize) - 1170 round_down(offset, blksize), 1171 XFS_BMAPI_PREALLOC); 1172 } 1173 1174 static int 1175 xfs_prepare_shift( 1176 struct xfs_inode *ip, 1177 loff_t offset) 1178 { 1179 int error; 1180 1181 /* 1182 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation 1183 * into the accessible region of the file. 1184 */ 1185 if (xfs_can_free_eofblocks(ip, true)) { 1186 error = xfs_free_eofblocks(ip); 1187 if (error) 1188 return error; 1189 } 1190 1191 /* 1192 * Writeback and invalidate cache for the remainder of the file as we're 1193 * about to shift down every extent from offset to EOF. 1194 */ 1195 error = xfs_flush_unmap_range(ip, offset, XFS_ISIZE(ip)); 1196 if (error) 1197 return error; 1198 1199 /* 1200 * Clean out anything hanging around in the cow fork now that 1201 * we've flushed all the dirty data out to disk to avoid having 1202 * CoW extents at the wrong offsets. 1203 */ 1204 if (xfs_inode_has_cow_data(ip)) { 1205 error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF, 1206 true); 1207 if (error) 1208 return error; 1209 } 1210 1211 return 0; 1212 } 1213 1214 /* 1215 * xfs_collapse_file_space() 1216 * This routine frees disk space and shift extent for the given file. 1217 * The first thing we do is to free data blocks in the specified range 1218 * by calling xfs_free_file_space(). It would also sync dirty data 1219 * and invalidate page cache over the region on which collapse range 1220 * is working. And Shift extent records to the left to cover a hole. 1221 * RETURNS: 1222 * 0 on success 1223 * errno on error 1224 * 1225 */ 1226 int 1227 xfs_collapse_file_space( 1228 struct xfs_inode *ip, 1229 xfs_off_t offset, 1230 xfs_off_t len) 1231 { 1232 struct xfs_mount *mp = ip->i_mount; 1233 struct xfs_trans *tp; 1234 int error; 1235 xfs_fileoff_t next_fsb = XFS_B_TO_FSB(mp, offset + len); 1236 xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len); 1237 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1238 bool done = false; 1239 1240 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1241 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); 1242 1243 trace_xfs_collapse_file_space(ip); 1244 1245 error = xfs_free_file_space(ip, offset, len); 1246 if (error) 1247 return error; 1248 1249 error = xfs_prepare_shift(ip, offset); 1250 if (error) 1251 return error; 1252 1253 while (!error && !done) { 1254 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, 1255 &tp); 1256 if (error) 1257 break; 1258 1259 xfs_ilock(ip, XFS_ILOCK_EXCL); 1260 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, 1261 ip->i_gdquot, ip->i_pdquot, resblks, 0, 1262 XFS_QMOPT_RES_REGBLKS); 1263 if (error) 1264 goto out_trans_cancel; 1265 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1266 1267 error = xfs_bmap_collapse_extents(tp, ip, &next_fsb, shift_fsb, 1268 &done); 1269 if (error) 1270 goto out_trans_cancel; 1271 1272 error = xfs_trans_commit(tp); 1273 } 1274 1275 return error; 1276 1277 out_trans_cancel: 1278 xfs_trans_cancel(tp); 1279 return error; 1280 } 1281 1282 /* 1283 * xfs_insert_file_space() 1284 * This routine create hole space by shifting extents for the given file. 1285 * The first thing we do is to sync dirty data and invalidate page cache 1286 * over the region on which insert range is working. And split an extent 1287 * to two extents at given offset by calling xfs_bmap_split_extent. 1288 * And shift all extent records which are laying between [offset, 1289 * last allocated extent] to the right to reserve hole range. 1290 * RETURNS: 1291 * 0 on success 1292 * errno on error 1293 */ 1294 int 1295 xfs_insert_file_space( 1296 struct xfs_inode *ip, 1297 loff_t offset, 1298 loff_t len) 1299 { 1300 struct xfs_mount *mp = ip->i_mount; 1301 struct xfs_trans *tp; 1302 int error; 1303 xfs_fileoff_t stop_fsb = XFS_B_TO_FSB(mp, offset); 1304 xfs_fileoff_t next_fsb = NULLFSBLOCK; 1305 xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len); 1306 bool done = false; 1307 1308 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1309 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); 1310 1311 trace_xfs_insert_file_space(ip); 1312 1313 error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb); 1314 if (error) 1315 return error; 1316 1317 error = xfs_prepare_shift(ip, offset); 1318 if (error) 1319 return error; 1320 1321 /* 1322 * The extent shifting code works on extent granularity. So, if stop_fsb 1323 * is not the starting block of extent, we need to split the extent at 1324 * stop_fsb. 1325 */ 1326 error = xfs_bmap_split_extent(ip, stop_fsb); 1327 if (error) 1328 return error; 1329 1330 while (!error && !done) { 1331 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, 1332 &tp); 1333 if (error) 1334 break; 1335 1336 xfs_ilock(ip, XFS_ILOCK_EXCL); 1337 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1338 error = xfs_bmap_insert_extents(tp, ip, &next_fsb, shift_fsb, 1339 &done, stop_fsb); 1340 if (error) 1341 goto out_trans_cancel; 1342 1343 error = xfs_trans_commit(tp); 1344 } 1345 1346 return error; 1347 1348 out_trans_cancel: 1349 xfs_trans_cancel(tp); 1350 return error; 1351 } 1352 1353 /* 1354 * We need to check that the format of the data fork in the temporary inode is 1355 * valid for the target inode before doing the swap. This is not a problem with 1356 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized 1357 * data fork depending on the space the attribute fork is taking so we can get 1358 * invalid formats on the target inode. 1359 * 1360 * E.g. target has space for 7 extents in extent format, temp inode only has 1361 * space for 6. If we defragment down to 7 extents, then the tmp format is a 1362 * btree, but when swapped it needs to be in extent format. Hence we can't just 1363 * blindly swap data forks on attr2 filesystems. 1364 * 1365 * Note that we check the swap in both directions so that we don't end up with 1366 * a corrupt temporary inode, either. 1367 * 1368 * Note that fixing the way xfs_fsr sets up the attribute fork in the source 1369 * inode will prevent this situation from occurring, so all we do here is 1370 * reject and log the attempt. basically we are putting the responsibility on 1371 * userspace to get this right. 1372 */ 1373 static int 1374 xfs_swap_extents_check_format( 1375 struct xfs_inode *ip, /* target inode */ 1376 struct xfs_inode *tip) /* tmp inode */ 1377 { 1378 1379 /* Should never get a local format */ 1380 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL || 1381 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL) 1382 return -EINVAL; 1383 1384 /* 1385 * if the target inode has less extents that then temporary inode then 1386 * why did userspace call us? 1387 */ 1388 if (ip->i_d.di_nextents < tip->i_d.di_nextents) 1389 return -EINVAL; 1390 1391 /* 1392 * If we have to use the (expensive) rmap swap method, we can 1393 * handle any number of extents and any format. 1394 */ 1395 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb)) 1396 return 0; 1397 1398 /* 1399 * if the target inode is in extent form and the temp inode is in btree 1400 * form then we will end up with the target inode in the wrong format 1401 * as we already know there are less extents in the temp inode. 1402 */ 1403 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1404 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1405 return -EINVAL; 1406 1407 /* Check temp in extent form to max in target */ 1408 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1409 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) > 1410 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1411 return -EINVAL; 1412 1413 /* Check target in extent form to max in temp */ 1414 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1415 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) > 1416 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1417 return -EINVAL; 1418 1419 /* 1420 * If we are in a btree format, check that the temp root block will fit 1421 * in the target and that it has enough extents to be in btree format 1422 * in the target. 1423 * 1424 * Note that we have to be careful to allow btree->extent conversions 1425 * (a common defrag case) which will occur when the temp inode is in 1426 * extent format... 1427 */ 1428 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1429 if (XFS_IFORK_Q(ip) && 1430 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip)) 1431 return -EINVAL; 1432 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <= 1433 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1434 return -EINVAL; 1435 } 1436 1437 /* Reciprocal target->temp btree format checks */ 1438 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1439 if (XFS_IFORK_Q(tip) && 1440 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) 1441 return -EINVAL; 1442 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <= 1443 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1444 return -EINVAL; 1445 } 1446 1447 return 0; 1448 } 1449 1450 static int 1451 xfs_swap_extent_flush( 1452 struct xfs_inode *ip) 1453 { 1454 int error; 1455 1456 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 1457 if (error) 1458 return error; 1459 truncate_pagecache_range(VFS_I(ip), 0, -1); 1460 1461 /* Verify O_DIRECT for ftmp */ 1462 if (VFS_I(ip)->i_mapping->nrpages) 1463 return -EINVAL; 1464 return 0; 1465 } 1466 1467 /* 1468 * Move extents from one file to another, when rmap is enabled. 1469 */ 1470 STATIC int 1471 xfs_swap_extent_rmap( 1472 struct xfs_trans **tpp, 1473 struct xfs_inode *ip, 1474 struct xfs_inode *tip) 1475 { 1476 struct xfs_trans *tp = *tpp; 1477 struct xfs_bmbt_irec irec; 1478 struct xfs_bmbt_irec uirec; 1479 struct xfs_bmbt_irec tirec; 1480 xfs_fileoff_t offset_fsb; 1481 xfs_fileoff_t end_fsb; 1482 xfs_filblks_t count_fsb; 1483 int error; 1484 xfs_filblks_t ilen; 1485 xfs_filblks_t rlen; 1486 int nimaps; 1487 uint64_t tip_flags2; 1488 1489 /* 1490 * If the source file has shared blocks, we must flag the donor 1491 * file as having shared blocks so that we get the shared-block 1492 * rmap functions when we go to fix up the rmaps. The flags 1493 * will be switch for reals later. 1494 */ 1495 tip_flags2 = tip->i_d.di_flags2; 1496 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) 1497 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; 1498 1499 offset_fsb = 0; 1500 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip))); 1501 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); 1502 1503 while (count_fsb) { 1504 /* Read extent from the donor file */ 1505 nimaps = 1; 1506 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec, 1507 &nimaps, 0); 1508 if (error) 1509 goto out; 1510 ASSERT(nimaps == 1); 1511 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK); 1512 1513 trace_xfs_swap_extent_rmap_remap(tip, &tirec); 1514 ilen = tirec.br_blockcount; 1515 1516 /* Unmap the old blocks in the source file. */ 1517 while (tirec.br_blockcount) { 1518 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1519 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec); 1520 1521 /* Read extent from the source file */ 1522 nimaps = 1; 1523 error = xfs_bmapi_read(ip, tirec.br_startoff, 1524 tirec.br_blockcount, &irec, 1525 &nimaps, 0); 1526 if (error) 1527 goto out; 1528 ASSERT(nimaps == 1); 1529 ASSERT(tirec.br_startoff == irec.br_startoff); 1530 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec); 1531 1532 /* Trim the extent. */ 1533 uirec = tirec; 1534 uirec.br_blockcount = rlen = min_t(xfs_filblks_t, 1535 tirec.br_blockcount, 1536 irec.br_blockcount); 1537 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec); 1538 1539 /* Remove the mapping from the donor file. */ 1540 error = xfs_bmap_unmap_extent(tp, tip, &uirec); 1541 if (error) 1542 goto out; 1543 1544 /* Remove the mapping from the source file. */ 1545 error = xfs_bmap_unmap_extent(tp, ip, &irec); 1546 if (error) 1547 goto out; 1548 1549 /* Map the donor file's blocks into the source file. */ 1550 error = xfs_bmap_map_extent(tp, ip, &uirec); 1551 if (error) 1552 goto out; 1553 1554 /* Map the source file's blocks into the donor file. */ 1555 error = xfs_bmap_map_extent(tp, tip, &irec); 1556 if (error) 1557 goto out; 1558 1559 error = xfs_defer_finish(tpp); 1560 tp = *tpp; 1561 if (error) 1562 goto out; 1563 1564 tirec.br_startoff += rlen; 1565 if (tirec.br_startblock != HOLESTARTBLOCK && 1566 tirec.br_startblock != DELAYSTARTBLOCK) 1567 tirec.br_startblock += rlen; 1568 tirec.br_blockcount -= rlen; 1569 } 1570 1571 /* Roll on... */ 1572 count_fsb -= ilen; 1573 offset_fsb += ilen; 1574 } 1575 1576 tip->i_d.di_flags2 = tip_flags2; 1577 return 0; 1578 1579 out: 1580 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_); 1581 tip->i_d.di_flags2 = tip_flags2; 1582 return error; 1583 } 1584 1585 /* Swap the extents of two files by swapping data forks. */ 1586 STATIC int 1587 xfs_swap_extent_forks( 1588 struct xfs_trans *tp, 1589 struct xfs_inode *ip, 1590 struct xfs_inode *tip, 1591 int *src_log_flags, 1592 int *target_log_flags) 1593 { 1594 xfs_filblks_t aforkblks = 0; 1595 xfs_filblks_t taforkblks = 0; 1596 xfs_extnum_t junk; 1597 uint64_t tmp; 1598 int error; 1599 1600 /* 1601 * Count the number of extended attribute blocks 1602 */ 1603 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) && 1604 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1605 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk, 1606 &aforkblks); 1607 if (error) 1608 return error; 1609 } 1610 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) && 1611 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1612 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk, 1613 &taforkblks); 1614 if (error) 1615 return error; 1616 } 1617 1618 /* 1619 * Btree format (v3) inodes have the inode number stamped in the bmbt 1620 * block headers. We can't start changing the bmbt blocks until the 1621 * inode owner change is logged so recovery does the right thing in the 1622 * event of a crash. Set the owner change log flags now and leave the 1623 * bmbt scan as the last step. 1624 */ 1625 if (ip->i_d.di_version == 3 && 1626 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1627 (*target_log_flags) |= XFS_ILOG_DOWNER; 1628 if (tip->i_d.di_version == 3 && 1629 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1630 (*src_log_flags) |= XFS_ILOG_DOWNER; 1631 1632 /* 1633 * Swap the data forks of the inodes 1634 */ 1635 swap(ip->i_df, tip->i_df); 1636 1637 /* 1638 * Fix the on-disk inode values 1639 */ 1640 tmp = (uint64_t)ip->i_d.di_nblocks; 1641 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks; 1642 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks; 1643 1644 swap(ip->i_d.di_nextents, tip->i_d.di_nextents); 1645 swap(ip->i_d.di_format, tip->i_d.di_format); 1646 1647 /* 1648 * The extents in the source inode could still contain speculative 1649 * preallocation beyond EOF (e.g. the file is open but not modified 1650 * while defrag is in progress). In that case, we need to copy over the 1651 * number of delalloc blocks the data fork in the source inode is 1652 * tracking beyond EOF so that when the fork is truncated away when the 1653 * temporary inode is unlinked we don't underrun the i_delayed_blks 1654 * counter on that inode. 1655 */ 1656 ASSERT(tip->i_delayed_blks == 0); 1657 tip->i_delayed_blks = ip->i_delayed_blks; 1658 ip->i_delayed_blks = 0; 1659 1660 switch (ip->i_d.di_format) { 1661 case XFS_DINODE_FMT_EXTENTS: 1662 (*src_log_flags) |= XFS_ILOG_DEXT; 1663 break; 1664 case XFS_DINODE_FMT_BTREE: 1665 ASSERT(ip->i_d.di_version < 3 || 1666 (*src_log_flags & XFS_ILOG_DOWNER)); 1667 (*src_log_flags) |= XFS_ILOG_DBROOT; 1668 break; 1669 } 1670 1671 switch (tip->i_d.di_format) { 1672 case XFS_DINODE_FMT_EXTENTS: 1673 (*target_log_flags) |= XFS_ILOG_DEXT; 1674 break; 1675 case XFS_DINODE_FMT_BTREE: 1676 (*target_log_flags) |= XFS_ILOG_DBROOT; 1677 ASSERT(tip->i_d.di_version < 3 || 1678 (*target_log_flags & XFS_ILOG_DOWNER)); 1679 break; 1680 } 1681 1682 return 0; 1683 } 1684 1685 /* 1686 * Fix up the owners of the bmbt blocks to refer to the current inode. The 1687 * change owner scan attempts to order all modified buffers in the current 1688 * transaction. In the event of ordered buffer failure, the offending buffer is 1689 * physically logged as a fallback and the scan returns -EAGAIN. We must roll 1690 * the transaction in this case to replenish the fallback log reservation and 1691 * restart the scan. This process repeats until the scan completes. 1692 */ 1693 static int 1694 xfs_swap_change_owner( 1695 struct xfs_trans **tpp, 1696 struct xfs_inode *ip, 1697 struct xfs_inode *tmpip) 1698 { 1699 int error; 1700 struct xfs_trans *tp = *tpp; 1701 1702 do { 1703 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino, 1704 NULL); 1705 /* success or fatal error */ 1706 if (error != -EAGAIN) 1707 break; 1708 1709 error = xfs_trans_roll(tpp); 1710 if (error) 1711 break; 1712 tp = *tpp; 1713 1714 /* 1715 * Redirty both inodes so they can relog and keep the log tail 1716 * moving forward. 1717 */ 1718 xfs_trans_ijoin(tp, ip, 0); 1719 xfs_trans_ijoin(tp, tmpip, 0); 1720 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1721 xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE); 1722 } while (true); 1723 1724 return error; 1725 } 1726 1727 int 1728 xfs_swap_extents( 1729 struct xfs_inode *ip, /* target inode */ 1730 struct xfs_inode *tip, /* tmp inode */ 1731 struct xfs_swapext *sxp) 1732 { 1733 struct xfs_mount *mp = ip->i_mount; 1734 struct xfs_trans *tp; 1735 struct xfs_bstat *sbp = &sxp->sx_stat; 1736 int src_log_flags, target_log_flags; 1737 int error = 0; 1738 int lock_flags; 1739 uint64_t f; 1740 int resblks = 0; 1741 1742 /* 1743 * Lock the inodes against other IO, page faults and truncate to 1744 * begin with. Then we can ensure the inodes are flushed and have no 1745 * page cache safely. Once we have done this we can take the ilocks and 1746 * do the rest of the checks. 1747 */ 1748 lock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 1749 lock_flags = XFS_MMAPLOCK_EXCL; 1750 xfs_lock_two_inodes(ip, XFS_MMAPLOCK_EXCL, tip, XFS_MMAPLOCK_EXCL); 1751 1752 /* Verify that both files have the same format */ 1753 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) { 1754 error = -EINVAL; 1755 goto out_unlock; 1756 } 1757 1758 /* Verify both files are either real-time or non-realtime */ 1759 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { 1760 error = -EINVAL; 1761 goto out_unlock; 1762 } 1763 1764 error = xfs_swap_extent_flush(ip); 1765 if (error) 1766 goto out_unlock; 1767 error = xfs_swap_extent_flush(tip); 1768 if (error) 1769 goto out_unlock; 1770 1771 if (xfs_inode_has_cow_data(tip)) { 1772 error = xfs_reflink_cancel_cow_range(tip, 0, NULLFILEOFF, true); 1773 if (error) 1774 return error; 1775 } 1776 1777 /* 1778 * Extent "swapping" with rmap requires a permanent reservation and 1779 * a block reservation because it's really just a remap operation 1780 * performed with log redo items! 1781 */ 1782 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 1783 int w = XFS_DATA_FORK; 1784 uint32_t ipnext = XFS_IFORK_NEXTENTS(ip, w); 1785 uint32_t tipnext = XFS_IFORK_NEXTENTS(tip, w); 1786 1787 /* 1788 * Conceptually this shouldn't affect the shape of either bmbt, 1789 * but since we atomically move extents one by one, we reserve 1790 * enough space to rebuild both trees. 1791 */ 1792 resblks = XFS_SWAP_RMAP_SPACE_RES(mp, ipnext, w); 1793 resblks += XFS_SWAP_RMAP_SPACE_RES(mp, tipnext, w); 1794 1795 /* 1796 * Handle the corner case where either inode might straddle the 1797 * btree format boundary. If so, the inode could bounce between 1798 * btree <-> extent format on unmap -> remap cycles, freeing and 1799 * allocating a bmapbt block each time. 1800 */ 1801 if (ipnext == (XFS_IFORK_MAXEXT(ip, w) + 1)) 1802 resblks += XFS_IFORK_MAXEXT(ip, w); 1803 if (tipnext == (XFS_IFORK_MAXEXT(tip, w) + 1)) 1804 resblks += XFS_IFORK_MAXEXT(tip, w); 1805 } 1806 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1807 if (error) 1808 goto out_unlock; 1809 1810 /* 1811 * Lock and join the inodes to the tansaction so that transaction commit 1812 * or cancel will unlock the inodes from this point onwards. 1813 */ 1814 xfs_lock_two_inodes(ip, XFS_ILOCK_EXCL, tip, XFS_ILOCK_EXCL); 1815 lock_flags |= XFS_ILOCK_EXCL; 1816 xfs_trans_ijoin(tp, ip, 0); 1817 xfs_trans_ijoin(tp, tip, 0); 1818 1819 1820 /* Verify all data are being swapped */ 1821 if (sxp->sx_offset != 0 || 1822 sxp->sx_length != ip->i_d.di_size || 1823 sxp->sx_length != tip->i_d.di_size) { 1824 error = -EFAULT; 1825 goto out_trans_cancel; 1826 } 1827 1828 trace_xfs_swap_extent_before(ip, 0); 1829 trace_xfs_swap_extent_before(tip, 1); 1830 1831 /* check inode formats now that data is flushed */ 1832 error = xfs_swap_extents_check_format(ip, tip); 1833 if (error) { 1834 xfs_notice(mp, 1835 "%s: inode 0x%llx format is incompatible for exchanging.", 1836 __func__, ip->i_ino); 1837 goto out_trans_cancel; 1838 } 1839 1840 /* 1841 * Compare the current change & modify times with that 1842 * passed in. If they differ, we abort this swap. 1843 * This is the mechanism used to ensure the calling 1844 * process that the file was not changed out from 1845 * under it. 1846 */ 1847 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || 1848 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || 1849 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || 1850 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { 1851 error = -EBUSY; 1852 goto out_trans_cancel; 1853 } 1854 1855 /* 1856 * Note the trickiness in setting the log flags - we set the owner log 1857 * flag on the opposite inode (i.e. the inode we are setting the new 1858 * owner to be) because once we swap the forks and log that, log 1859 * recovery is going to see the fork as owned by the swapped inode, 1860 * not the pre-swapped inodes. 1861 */ 1862 src_log_flags = XFS_ILOG_CORE; 1863 target_log_flags = XFS_ILOG_CORE; 1864 1865 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) 1866 error = xfs_swap_extent_rmap(&tp, ip, tip); 1867 else 1868 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags, 1869 &target_log_flags); 1870 if (error) 1871 goto out_trans_cancel; 1872 1873 /* Do we have to swap reflink flags? */ 1874 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^ 1875 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) { 1876 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 1877 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1878 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 1879 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1880 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK; 1881 } 1882 1883 /* Swap the cow forks. */ 1884 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1885 ASSERT(ip->i_cformat == XFS_DINODE_FMT_EXTENTS); 1886 ASSERT(tip->i_cformat == XFS_DINODE_FMT_EXTENTS); 1887 1888 swap(ip->i_cnextents, tip->i_cnextents); 1889 swap(ip->i_cowfp, tip->i_cowfp); 1890 1891 if (ip->i_cowfp && ip->i_cowfp->if_bytes) 1892 xfs_inode_set_cowblocks_tag(ip); 1893 else 1894 xfs_inode_clear_cowblocks_tag(ip); 1895 if (tip->i_cowfp && tip->i_cowfp->if_bytes) 1896 xfs_inode_set_cowblocks_tag(tip); 1897 else 1898 xfs_inode_clear_cowblocks_tag(tip); 1899 } 1900 1901 xfs_trans_log_inode(tp, ip, src_log_flags); 1902 xfs_trans_log_inode(tp, tip, target_log_flags); 1903 1904 /* 1905 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems 1906 * have inode number owner values in the bmbt blocks that still refer to 1907 * the old inode. Scan each bmbt to fix up the owner values with the 1908 * inode number of the current inode. 1909 */ 1910 if (src_log_flags & XFS_ILOG_DOWNER) { 1911 error = xfs_swap_change_owner(&tp, ip, tip); 1912 if (error) 1913 goto out_trans_cancel; 1914 } 1915 if (target_log_flags & XFS_ILOG_DOWNER) { 1916 error = xfs_swap_change_owner(&tp, tip, ip); 1917 if (error) 1918 goto out_trans_cancel; 1919 } 1920 1921 /* 1922 * If this is a synchronous mount, make sure that the 1923 * transaction goes to disk before returning to the user. 1924 */ 1925 if (mp->m_flags & XFS_MOUNT_WSYNC) 1926 xfs_trans_set_sync(tp); 1927 1928 error = xfs_trans_commit(tp); 1929 1930 trace_xfs_swap_extent_after(ip, 0); 1931 trace_xfs_swap_extent_after(tip, 1); 1932 1933 out_unlock: 1934 xfs_iunlock(ip, lock_flags); 1935 xfs_iunlock(tip, lock_flags); 1936 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 1937 return error; 1938 1939 out_trans_cancel: 1940 xfs_trans_cancel(tp); 1941 goto out_unlock; 1942 } 1943