xref: /openbmc/linux/fs/xfs/xfs_bmap_util.c (revision 9b9c2cd4)
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * Copyright (c) 2012 Red Hat, Inc.
4  * All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it would be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write the Free Software Foundation,
17  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
18  */
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
25 #include "xfs_bit.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_trans.h"
31 #include "xfs_extfree_item.h"
32 #include "xfs_alloc.h"
33 #include "xfs_bmap.h"
34 #include "xfs_bmap_util.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_rtalloc.h"
37 #include "xfs_error.h"
38 #include "xfs_quota.h"
39 #include "xfs_trans_space.h"
40 #include "xfs_trace.h"
41 #include "xfs_icache.h"
42 #include "xfs_log.h"
43 
44 /* Kernel only BMAP related definitions and functions */
45 
46 /*
47  * Convert the given file system block to a disk block.  We have to treat it
48  * differently based on whether the file is a real time file or not, because the
49  * bmap code does.
50  */
51 xfs_daddr_t
52 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
53 {
54 	return (XFS_IS_REALTIME_INODE(ip) ? \
55 		 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
56 		 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
57 }
58 
59 /*
60  * Routine to zero an extent on disk allocated to the specific inode.
61  *
62  * The VFS functions take a linearised filesystem block offset, so we have to
63  * convert the sparse xfs fsb to the right format first.
64  * VFS types are real funky, too.
65  */
66 int
67 xfs_zero_extent(
68 	struct xfs_inode *ip,
69 	xfs_fsblock_t	start_fsb,
70 	xfs_off_t	count_fsb)
71 {
72 	struct xfs_mount *mp = ip->i_mount;
73 	xfs_daddr_t	sector = xfs_fsb_to_db(ip, start_fsb);
74 	sector_t	block = XFS_BB_TO_FSBT(mp, sector);
75 	ssize_t		size = XFS_FSB_TO_B(mp, count_fsb);
76 
77 	if (IS_DAX(VFS_I(ip)))
78 		return dax_clear_blocks(VFS_I(ip), block, size);
79 
80 	/*
81 	 * let the block layer decide on the fastest method of
82 	 * implementing the zeroing.
83 	 */
84 	return sb_issue_zeroout(mp->m_super, block, count_fsb, GFP_NOFS);
85 
86 }
87 
88 /*
89  * Routine to be called at transaction's end by xfs_bmapi, xfs_bunmapi
90  * caller.  Frees all the extents that need freeing, which must be done
91  * last due to locking considerations.  We never free any extents in
92  * the first transaction.
93  *
94  * Return 1 if the given transaction was committed and a new one
95  * started, and 0 otherwise in the committed parameter.
96  */
97 int						/* error */
98 xfs_bmap_finish(
99 	struct xfs_trans		**tp,	/* transaction pointer addr */
100 	struct xfs_bmap_free		*flist,	/* i/o: list extents to free */
101 	int				*committed)/* xact committed or not */
102 {
103 	struct xfs_efd_log_item		*efd;	/* extent free data */
104 	struct xfs_efi_log_item		*efi;	/* extent free intention */
105 	int				error;	/* error return value */
106 	struct xfs_bmap_free_item	*free;	/* free extent item */
107 	struct xfs_bmap_free_item	*next;	/* next item on free list */
108 
109 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
110 	if (flist->xbf_count == 0) {
111 		*committed = 0;
112 		return 0;
113 	}
114 	efi = xfs_trans_get_efi(*tp, flist->xbf_count);
115 	for (free = flist->xbf_first; free; free = free->xbfi_next)
116 		xfs_trans_log_efi_extent(*tp, efi, free->xbfi_startblock,
117 			free->xbfi_blockcount);
118 
119 	error = __xfs_trans_roll(tp, NULL, committed);
120 	if (error) {
121 		/*
122 		 * If the transaction was committed, drop the EFD reference
123 		 * since we're bailing out of here. The other reference is
124 		 * dropped when the EFI hits the AIL.
125 		 *
126 		 * If the transaction was not committed, the EFI is freed by the
127 		 * EFI item unlock handler on abort. Also, we have a new
128 		 * transaction so we should return committed=1 even though we're
129 		 * returning an error.
130 		 */
131 		if (*committed) {
132 			xfs_efi_release(efi);
133 			xfs_force_shutdown((*tp)->t_mountp,
134 				(error == -EFSCORRUPTED) ?
135 					SHUTDOWN_CORRUPT_INCORE :
136 					SHUTDOWN_META_IO_ERROR);
137 		} else {
138 			*committed = 1;
139 		}
140 
141 		return error;
142 	}
143 
144 	/*
145 	 * Get an EFD and free each extent in the list, logging to the EFD in
146 	 * the process. The remaining bmap free list is cleaned up by the caller
147 	 * on error.
148 	 */
149 	efd = xfs_trans_get_efd(*tp, efi, flist->xbf_count);
150 	for (free = flist->xbf_first; free != NULL; free = next) {
151 		next = free->xbfi_next;
152 
153 		error = xfs_trans_free_extent(*tp, efd, free->xbfi_startblock,
154 					      free->xbfi_blockcount);
155 		if (error)
156 			return error;
157 
158 		xfs_bmap_del_free(flist, NULL, free);
159 	}
160 
161 	return 0;
162 }
163 
164 int
165 xfs_bmap_rtalloc(
166 	struct xfs_bmalloca	*ap)	/* bmap alloc argument struct */
167 {
168 	xfs_alloctype_t	atype = 0;	/* type for allocation routines */
169 	int		error;		/* error return value */
170 	xfs_mount_t	*mp;		/* mount point structure */
171 	xfs_extlen_t	prod = 0;	/* product factor for allocators */
172 	xfs_extlen_t	ralen = 0;	/* realtime allocation length */
173 	xfs_extlen_t	align;		/* minimum allocation alignment */
174 	xfs_rtblock_t	rtb;
175 
176 	mp = ap->ip->i_mount;
177 	align = xfs_get_extsz_hint(ap->ip);
178 	prod = align / mp->m_sb.sb_rextsize;
179 	error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
180 					align, 1, ap->eof, 0,
181 					ap->conv, &ap->offset, &ap->length);
182 	if (error)
183 		return error;
184 	ASSERT(ap->length);
185 	ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
186 
187 	/*
188 	 * If the offset & length are not perfectly aligned
189 	 * then kill prod, it will just get us in trouble.
190 	 */
191 	if (do_mod(ap->offset, align) || ap->length % align)
192 		prod = 1;
193 	/*
194 	 * Set ralen to be the actual requested length in rtextents.
195 	 */
196 	ralen = ap->length / mp->m_sb.sb_rextsize;
197 	/*
198 	 * If the old value was close enough to MAXEXTLEN that
199 	 * we rounded up to it, cut it back so it's valid again.
200 	 * Note that if it's a really large request (bigger than
201 	 * MAXEXTLEN), we don't hear about that number, and can't
202 	 * adjust the starting point to match it.
203 	 */
204 	if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
205 		ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
206 
207 	/*
208 	 * Lock out other modifications to the RT bitmap inode.
209 	 */
210 	xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL);
211 	xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
212 
213 	/*
214 	 * If it's an allocation to an empty file at offset 0,
215 	 * pick an extent that will space things out in the rt area.
216 	 */
217 	if (ap->eof && ap->offset == 0) {
218 		xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
219 
220 		error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
221 		if (error)
222 			return error;
223 		ap->blkno = rtx * mp->m_sb.sb_rextsize;
224 	} else {
225 		ap->blkno = 0;
226 	}
227 
228 	xfs_bmap_adjacent(ap);
229 
230 	/*
231 	 * Realtime allocation, done through xfs_rtallocate_extent.
232 	 */
233 	atype = ap->blkno == 0 ?  XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO;
234 	do_div(ap->blkno, mp->m_sb.sb_rextsize);
235 	rtb = ap->blkno;
236 	ap->length = ralen;
237 	if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
238 				&ralen, atype, ap->wasdel, prod, &rtb)))
239 		return error;
240 	if (rtb == NULLFSBLOCK && prod > 1 &&
241 	    (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1,
242 					   ap->length, &ralen, atype,
243 					   ap->wasdel, 1, &rtb)))
244 		return error;
245 	ap->blkno = rtb;
246 	if (ap->blkno != NULLFSBLOCK) {
247 		ap->blkno *= mp->m_sb.sb_rextsize;
248 		ralen *= mp->m_sb.sb_rextsize;
249 		ap->length = ralen;
250 		ap->ip->i_d.di_nblocks += ralen;
251 		xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
252 		if (ap->wasdel)
253 			ap->ip->i_delayed_blks -= ralen;
254 		/*
255 		 * Adjust the disk quota also. This was reserved
256 		 * earlier.
257 		 */
258 		xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
259 			ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
260 					XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
261 
262 		/* Zero the extent if we were asked to do so */
263 		if (ap->userdata & XFS_ALLOC_USERDATA_ZERO) {
264 			error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
265 			if (error)
266 				return error;
267 		}
268 	} else {
269 		ap->length = 0;
270 	}
271 	return 0;
272 }
273 
274 /*
275  * Check if the endoff is outside the last extent. If so the caller will grow
276  * the allocation to a stripe unit boundary.  All offsets are considered outside
277  * the end of file for an empty fork, so 1 is returned in *eof in that case.
278  */
279 int
280 xfs_bmap_eof(
281 	struct xfs_inode	*ip,
282 	xfs_fileoff_t		endoff,
283 	int			whichfork,
284 	int			*eof)
285 {
286 	struct xfs_bmbt_irec	rec;
287 	int			error;
288 
289 	error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
290 	if (error || *eof)
291 		return error;
292 
293 	*eof = endoff >= rec.br_startoff + rec.br_blockcount;
294 	return 0;
295 }
296 
297 /*
298  * Extent tree block counting routines.
299  */
300 
301 /*
302  * Count leaf blocks given a range of extent records.
303  */
304 STATIC void
305 xfs_bmap_count_leaves(
306 	xfs_ifork_t		*ifp,
307 	xfs_extnum_t		idx,
308 	int			numrecs,
309 	int			*count)
310 {
311 	int		b;
312 
313 	for (b = 0; b < numrecs; b++) {
314 		xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b);
315 		*count += xfs_bmbt_get_blockcount(frp);
316 	}
317 }
318 
319 /*
320  * Count leaf blocks given a range of extent records originally
321  * in btree format.
322  */
323 STATIC void
324 xfs_bmap_disk_count_leaves(
325 	struct xfs_mount	*mp,
326 	struct xfs_btree_block	*block,
327 	int			numrecs,
328 	int			*count)
329 {
330 	int		b;
331 	xfs_bmbt_rec_t	*frp;
332 
333 	for (b = 1; b <= numrecs; b++) {
334 		frp = XFS_BMBT_REC_ADDR(mp, block, b);
335 		*count += xfs_bmbt_disk_get_blockcount(frp);
336 	}
337 }
338 
339 /*
340  * Recursively walks each level of a btree
341  * to count total fsblocks in use.
342  */
343 STATIC int                                     /* error */
344 xfs_bmap_count_tree(
345 	xfs_mount_t     *mp,            /* file system mount point */
346 	xfs_trans_t     *tp,            /* transaction pointer */
347 	xfs_ifork_t	*ifp,		/* inode fork pointer */
348 	xfs_fsblock_t   blockno,	/* file system block number */
349 	int             levelin,	/* level in btree */
350 	int		*count)		/* Count of blocks */
351 {
352 	int			error;
353 	xfs_buf_t		*bp, *nbp;
354 	int			level = levelin;
355 	__be64			*pp;
356 	xfs_fsblock_t           bno = blockno;
357 	xfs_fsblock_t		nextbno;
358 	struct xfs_btree_block	*block, *nextblock;
359 	int			numrecs;
360 
361 	error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
362 						&xfs_bmbt_buf_ops);
363 	if (error)
364 		return error;
365 	*count += 1;
366 	block = XFS_BUF_TO_BLOCK(bp);
367 
368 	if (--level) {
369 		/* Not at node above leaves, count this level of nodes */
370 		nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
371 		while (nextbno != NULLFSBLOCK) {
372 			error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
373 						XFS_BMAP_BTREE_REF,
374 						&xfs_bmbt_buf_ops);
375 			if (error)
376 				return error;
377 			*count += 1;
378 			nextblock = XFS_BUF_TO_BLOCK(nbp);
379 			nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
380 			xfs_trans_brelse(tp, nbp);
381 		}
382 
383 		/* Dive to the next level */
384 		pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
385 		bno = be64_to_cpu(*pp);
386 		if (unlikely((error =
387 		     xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) {
388 			xfs_trans_brelse(tp, bp);
389 			XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
390 					 XFS_ERRLEVEL_LOW, mp);
391 			return -EFSCORRUPTED;
392 		}
393 		xfs_trans_brelse(tp, bp);
394 	} else {
395 		/* count all level 1 nodes and their leaves */
396 		for (;;) {
397 			nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
398 			numrecs = be16_to_cpu(block->bb_numrecs);
399 			xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
400 			xfs_trans_brelse(tp, bp);
401 			if (nextbno == NULLFSBLOCK)
402 				break;
403 			bno = nextbno;
404 			error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
405 						XFS_BMAP_BTREE_REF,
406 						&xfs_bmbt_buf_ops);
407 			if (error)
408 				return error;
409 			*count += 1;
410 			block = XFS_BUF_TO_BLOCK(bp);
411 		}
412 	}
413 	return 0;
414 }
415 
416 /*
417  * Count fsblocks of the given fork.
418  */
419 int						/* error */
420 xfs_bmap_count_blocks(
421 	xfs_trans_t		*tp,		/* transaction pointer */
422 	xfs_inode_t		*ip,		/* incore inode */
423 	int			whichfork,	/* data or attr fork */
424 	int			*count)		/* out: count of blocks */
425 {
426 	struct xfs_btree_block	*block;	/* current btree block */
427 	xfs_fsblock_t		bno;	/* block # of "block" */
428 	xfs_ifork_t		*ifp;	/* fork structure */
429 	int			level;	/* btree level, for checking */
430 	xfs_mount_t		*mp;	/* file system mount structure */
431 	__be64			*pp;	/* pointer to block address */
432 
433 	bno = NULLFSBLOCK;
434 	mp = ip->i_mount;
435 	ifp = XFS_IFORK_PTR(ip, whichfork);
436 	if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) {
437 		xfs_bmap_count_leaves(ifp, 0,
438 			ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t),
439 			count);
440 		return 0;
441 	}
442 
443 	/*
444 	 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
445 	 */
446 	block = ifp->if_broot;
447 	level = be16_to_cpu(block->bb_level);
448 	ASSERT(level > 0);
449 	pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
450 	bno = be64_to_cpu(*pp);
451 	ASSERT(bno != NULLFSBLOCK);
452 	ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
453 	ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
454 
455 	if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) {
456 		XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW,
457 				 mp);
458 		return -EFSCORRUPTED;
459 	}
460 
461 	return 0;
462 }
463 
464 /*
465  * returns 1 for success, 0 if we failed to map the extent.
466  */
467 STATIC int
468 xfs_getbmapx_fix_eof_hole(
469 	xfs_inode_t		*ip,		/* xfs incore inode pointer */
470 	struct getbmapx		*out,		/* output structure */
471 	int			prealloced,	/* this is a file with
472 						 * preallocated data space */
473 	__int64_t		end,		/* last block requested */
474 	xfs_fsblock_t		startblock)
475 {
476 	__int64_t		fixlen;
477 	xfs_mount_t		*mp;		/* file system mount point */
478 	xfs_ifork_t		*ifp;		/* inode fork pointer */
479 	xfs_extnum_t		lastx;		/* last extent pointer */
480 	xfs_fileoff_t		fileblock;
481 
482 	if (startblock == HOLESTARTBLOCK) {
483 		mp = ip->i_mount;
484 		out->bmv_block = -1;
485 		fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
486 		fixlen -= out->bmv_offset;
487 		if (prealloced && out->bmv_offset + out->bmv_length == end) {
488 			/* Came to hole at EOF. Trim it. */
489 			if (fixlen <= 0)
490 				return 0;
491 			out->bmv_length = fixlen;
492 		}
493 	} else {
494 		if (startblock == DELAYSTARTBLOCK)
495 			out->bmv_block = -2;
496 		else
497 			out->bmv_block = xfs_fsb_to_db(ip, startblock);
498 		fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset);
499 		ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
500 		if (xfs_iext_bno_to_ext(ifp, fileblock, &lastx) &&
501 		   (lastx == (ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t))-1))
502 			out->bmv_oflags |= BMV_OF_LAST;
503 	}
504 
505 	return 1;
506 }
507 
508 /*
509  * Get inode's extents as described in bmv, and format for output.
510  * Calls formatter to fill the user's buffer until all extents
511  * are mapped, until the passed-in bmv->bmv_count slots have
512  * been filled, or until the formatter short-circuits the loop,
513  * if it is tracking filled-in extents on its own.
514  */
515 int						/* error code */
516 xfs_getbmap(
517 	xfs_inode_t		*ip,
518 	struct getbmapx		*bmv,		/* user bmap structure */
519 	xfs_bmap_format_t	formatter,	/* format to user */
520 	void			*arg)		/* formatter arg */
521 {
522 	__int64_t		bmvend;		/* last block requested */
523 	int			error = 0;	/* return value */
524 	__int64_t		fixlen;		/* length for -1 case */
525 	int			i;		/* extent number */
526 	int			lock;		/* lock state */
527 	xfs_bmbt_irec_t		*map;		/* buffer for user's data */
528 	xfs_mount_t		*mp;		/* file system mount point */
529 	int			nex;		/* # of user extents can do */
530 	int			nexleft;	/* # of user extents left */
531 	int			subnex;		/* # of bmapi's can do */
532 	int			nmap;		/* number of map entries */
533 	struct getbmapx		*out;		/* output structure */
534 	int			whichfork;	/* data or attr fork */
535 	int			prealloced;	/* this is a file with
536 						 * preallocated data space */
537 	int			iflags;		/* interface flags */
538 	int			bmapi_flags;	/* flags for xfs_bmapi */
539 	int			cur_ext = 0;
540 
541 	mp = ip->i_mount;
542 	iflags = bmv->bmv_iflags;
543 	whichfork = iflags & BMV_IF_ATTRFORK ? XFS_ATTR_FORK : XFS_DATA_FORK;
544 
545 	if (whichfork == XFS_ATTR_FORK) {
546 		if (XFS_IFORK_Q(ip)) {
547 			if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
548 			    ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
549 			    ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
550 				return -EINVAL;
551 		} else if (unlikely(
552 			   ip->i_d.di_aformat != 0 &&
553 			   ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
554 			XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
555 					 ip->i_mount);
556 			return -EFSCORRUPTED;
557 		}
558 
559 		prealloced = 0;
560 		fixlen = 1LL << 32;
561 	} else {
562 		if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
563 		    ip->i_d.di_format != XFS_DINODE_FMT_BTREE &&
564 		    ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
565 			return -EINVAL;
566 
567 		if (xfs_get_extsz_hint(ip) ||
568 		    ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
569 			prealloced = 1;
570 			fixlen = mp->m_super->s_maxbytes;
571 		} else {
572 			prealloced = 0;
573 			fixlen = XFS_ISIZE(ip);
574 		}
575 	}
576 
577 	if (bmv->bmv_length == -1) {
578 		fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
579 		bmv->bmv_length =
580 			max_t(__int64_t, fixlen - bmv->bmv_offset, 0);
581 	} else if (bmv->bmv_length == 0) {
582 		bmv->bmv_entries = 0;
583 		return 0;
584 	} else if (bmv->bmv_length < 0) {
585 		return -EINVAL;
586 	}
587 
588 	nex = bmv->bmv_count - 1;
589 	if (nex <= 0)
590 		return -EINVAL;
591 	bmvend = bmv->bmv_offset + bmv->bmv_length;
592 
593 
594 	if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
595 		return -ENOMEM;
596 	out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
597 	if (!out)
598 		return -ENOMEM;
599 
600 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
601 	if (whichfork == XFS_DATA_FORK) {
602 		if (!(iflags & BMV_IF_DELALLOC) &&
603 		    (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
604 			error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
605 			if (error)
606 				goto out_unlock_iolock;
607 
608 			/*
609 			 * Even after flushing the inode, there can still be
610 			 * delalloc blocks on the inode beyond EOF due to
611 			 * speculative preallocation.  These are not removed
612 			 * until the release function is called or the inode
613 			 * is inactivated.  Hence we cannot assert here that
614 			 * ip->i_delayed_blks == 0.
615 			 */
616 		}
617 
618 		lock = xfs_ilock_data_map_shared(ip);
619 	} else {
620 		lock = xfs_ilock_attr_map_shared(ip);
621 	}
622 
623 	/*
624 	 * Don't let nex be bigger than the number of extents
625 	 * we can have assuming alternating holes and real extents.
626 	 */
627 	if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
628 		nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;
629 
630 	bmapi_flags = xfs_bmapi_aflag(whichfork);
631 	if (!(iflags & BMV_IF_PREALLOC))
632 		bmapi_flags |= XFS_BMAPI_IGSTATE;
633 
634 	/*
635 	 * Allocate enough space to handle "subnex" maps at a time.
636 	 */
637 	error = -ENOMEM;
638 	subnex = 16;
639 	map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
640 	if (!map)
641 		goto out_unlock_ilock;
642 
643 	bmv->bmv_entries = 0;
644 
645 	if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
646 	    (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
647 		error = 0;
648 		goto out_free_map;
649 	}
650 
651 	nexleft = nex;
652 
653 	do {
654 		nmap = (nexleft > subnex) ? subnex : nexleft;
655 		error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
656 				       XFS_BB_TO_FSB(mp, bmv->bmv_length),
657 				       map, &nmap, bmapi_flags);
658 		if (error)
659 			goto out_free_map;
660 		ASSERT(nmap <= subnex);
661 
662 		for (i = 0; i < nmap && nexleft && bmv->bmv_length; i++) {
663 			out[cur_ext].bmv_oflags = 0;
664 			if (map[i].br_state == XFS_EXT_UNWRITTEN)
665 				out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
666 			else if (map[i].br_startblock == DELAYSTARTBLOCK)
667 				out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
668 			out[cur_ext].bmv_offset =
669 				XFS_FSB_TO_BB(mp, map[i].br_startoff);
670 			out[cur_ext].bmv_length =
671 				XFS_FSB_TO_BB(mp, map[i].br_blockcount);
672 			out[cur_ext].bmv_unused1 = 0;
673 			out[cur_ext].bmv_unused2 = 0;
674 
675 			/*
676 			 * delayed allocation extents that start beyond EOF can
677 			 * occur due to speculative EOF allocation when the
678 			 * delalloc extent is larger than the largest freespace
679 			 * extent at conversion time. These extents cannot be
680 			 * converted by data writeback, so can exist here even
681 			 * if we are not supposed to be finding delalloc
682 			 * extents.
683 			 */
684 			if (map[i].br_startblock == DELAYSTARTBLOCK &&
685 			    map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
686 				ASSERT((iflags & BMV_IF_DELALLOC) != 0);
687 
688                         if (map[i].br_startblock == HOLESTARTBLOCK &&
689 			    whichfork == XFS_ATTR_FORK) {
690 				/* came to the end of attribute fork */
691 				out[cur_ext].bmv_oflags |= BMV_OF_LAST;
692 				goto out_free_map;
693 			}
694 
695 			if (!xfs_getbmapx_fix_eof_hole(ip, &out[cur_ext],
696 					prealloced, bmvend,
697 					map[i].br_startblock))
698 				goto out_free_map;
699 
700 			bmv->bmv_offset =
701 				out[cur_ext].bmv_offset +
702 				out[cur_ext].bmv_length;
703 			bmv->bmv_length =
704 				max_t(__int64_t, 0, bmvend - bmv->bmv_offset);
705 
706 			/*
707 			 * In case we don't want to return the hole,
708 			 * don't increase cur_ext so that we can reuse
709 			 * it in the next loop.
710 			 */
711 			if ((iflags & BMV_IF_NO_HOLES) &&
712 			    map[i].br_startblock == HOLESTARTBLOCK) {
713 				memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
714 				continue;
715 			}
716 
717 			nexleft--;
718 			bmv->bmv_entries++;
719 			cur_ext++;
720 		}
721 	} while (nmap && nexleft && bmv->bmv_length);
722 
723  out_free_map:
724 	kmem_free(map);
725  out_unlock_ilock:
726 	xfs_iunlock(ip, lock);
727  out_unlock_iolock:
728 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
729 
730 	for (i = 0; i < cur_ext; i++) {
731 		int full = 0;	/* user array is full */
732 
733 		/* format results & advance arg */
734 		error = formatter(&arg, &out[i], &full);
735 		if (error || full)
736 			break;
737 	}
738 
739 	kmem_free(out);
740 	return error;
741 }
742 
743 /*
744  * dead simple method of punching delalyed allocation blocks from a range in
745  * the inode. Walks a block at a time so will be slow, but is only executed in
746  * rare error cases so the overhead is not critical. This will always punch out
747  * both the start and end blocks, even if the ranges only partially overlap
748  * them, so it is up to the caller to ensure that partial blocks are not
749  * passed in.
750  */
751 int
752 xfs_bmap_punch_delalloc_range(
753 	struct xfs_inode	*ip,
754 	xfs_fileoff_t		start_fsb,
755 	xfs_fileoff_t		length)
756 {
757 	xfs_fileoff_t		remaining = length;
758 	int			error = 0;
759 
760 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
761 
762 	do {
763 		int		done;
764 		xfs_bmbt_irec_t	imap;
765 		int		nimaps = 1;
766 		xfs_fsblock_t	firstblock;
767 		xfs_bmap_free_t flist;
768 
769 		/*
770 		 * Map the range first and check that it is a delalloc extent
771 		 * before trying to unmap the range. Otherwise we will be
772 		 * trying to remove a real extent (which requires a
773 		 * transaction) or a hole, which is probably a bad idea...
774 		 */
775 		error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps,
776 				       XFS_BMAPI_ENTIRE);
777 
778 		if (error) {
779 			/* something screwed, just bail */
780 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
781 				xfs_alert(ip->i_mount,
782 			"Failed delalloc mapping lookup ino %lld fsb %lld.",
783 						ip->i_ino, start_fsb);
784 			}
785 			break;
786 		}
787 		if (!nimaps) {
788 			/* nothing there */
789 			goto next_block;
790 		}
791 		if (imap.br_startblock != DELAYSTARTBLOCK) {
792 			/* been converted, ignore */
793 			goto next_block;
794 		}
795 		WARN_ON(imap.br_blockcount == 0);
796 
797 		/*
798 		 * Note: while we initialise the firstblock/flist pair, they
799 		 * should never be used because blocks should never be
800 		 * allocated or freed for a delalloc extent and hence we need
801 		 * don't cancel or finish them after the xfs_bunmapi() call.
802 		 */
803 		xfs_bmap_init(&flist, &firstblock);
804 		error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock,
805 					&flist, &done);
806 		if (error)
807 			break;
808 
809 		ASSERT(!flist.xbf_count && !flist.xbf_first);
810 next_block:
811 		start_fsb++;
812 		remaining--;
813 	} while(remaining > 0);
814 
815 	return error;
816 }
817 
818 /*
819  * Test whether it is appropriate to check an inode for and free post EOF
820  * blocks. The 'force' parameter determines whether we should also consider
821  * regular files that are marked preallocated or append-only.
822  */
823 bool
824 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
825 {
826 	/* prealloc/delalloc exists only on regular files */
827 	if (!S_ISREG(ip->i_d.di_mode))
828 		return false;
829 
830 	/*
831 	 * Zero sized files with no cached pages and delalloc blocks will not
832 	 * have speculative prealloc/delalloc blocks to remove.
833 	 */
834 	if (VFS_I(ip)->i_size == 0 &&
835 	    VFS_I(ip)->i_mapping->nrpages == 0 &&
836 	    ip->i_delayed_blks == 0)
837 		return false;
838 
839 	/* If we haven't read in the extent list, then don't do it now. */
840 	if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
841 		return false;
842 
843 	/*
844 	 * Do not free real preallocated or append-only files unless the file
845 	 * has delalloc blocks and we are forced to remove them.
846 	 */
847 	if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
848 		if (!force || ip->i_delayed_blks == 0)
849 			return false;
850 
851 	return true;
852 }
853 
854 /*
855  * This is called by xfs_inactive to free any blocks beyond eof
856  * when the link count isn't zero and by xfs_dm_punch_hole() when
857  * punching a hole to EOF.
858  */
859 int
860 xfs_free_eofblocks(
861 	xfs_mount_t	*mp,
862 	xfs_inode_t	*ip,
863 	bool		need_iolock)
864 {
865 	xfs_trans_t	*tp;
866 	int		error;
867 	xfs_fileoff_t	end_fsb;
868 	xfs_fileoff_t	last_fsb;
869 	xfs_filblks_t	map_len;
870 	int		nimaps;
871 	xfs_bmbt_irec_t	imap;
872 
873 	/*
874 	 * Figure out if there are any blocks beyond the end
875 	 * of the file.  If not, then there is nothing to do.
876 	 */
877 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
878 	last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
879 	if (last_fsb <= end_fsb)
880 		return 0;
881 	map_len = last_fsb - end_fsb;
882 
883 	nimaps = 1;
884 	xfs_ilock(ip, XFS_ILOCK_SHARED);
885 	error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
886 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
887 
888 	if (!error && (nimaps != 0) &&
889 	    (imap.br_startblock != HOLESTARTBLOCK ||
890 	     ip->i_delayed_blks)) {
891 		/*
892 		 * Attach the dquots to the inode up front.
893 		 */
894 		error = xfs_qm_dqattach(ip, 0);
895 		if (error)
896 			return error;
897 
898 		/*
899 		 * There are blocks after the end of file.
900 		 * Free them up now by truncating the file to
901 		 * its current size.
902 		 */
903 		tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
904 
905 		if (need_iolock) {
906 			if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
907 				xfs_trans_cancel(tp);
908 				return -EAGAIN;
909 			}
910 		}
911 
912 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
913 		if (error) {
914 			ASSERT(XFS_FORCED_SHUTDOWN(mp));
915 			xfs_trans_cancel(tp);
916 			if (need_iolock)
917 				xfs_iunlock(ip, XFS_IOLOCK_EXCL);
918 			return error;
919 		}
920 
921 		xfs_ilock(ip, XFS_ILOCK_EXCL);
922 		xfs_trans_ijoin(tp, ip, 0);
923 
924 		/*
925 		 * Do not update the on-disk file size.  If we update the
926 		 * on-disk file size and then the system crashes before the
927 		 * contents of the file are flushed to disk then the files
928 		 * may be full of holes (ie NULL files bug).
929 		 */
930 		error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK,
931 					      XFS_ISIZE(ip));
932 		if (error) {
933 			/*
934 			 * If we get an error at this point we simply don't
935 			 * bother truncating the file.
936 			 */
937 			xfs_trans_cancel(tp);
938 		} else {
939 			error = xfs_trans_commit(tp);
940 			if (!error)
941 				xfs_inode_clear_eofblocks_tag(ip);
942 		}
943 
944 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
945 		if (need_iolock)
946 			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
947 	}
948 	return error;
949 }
950 
951 int
952 xfs_alloc_file_space(
953 	struct xfs_inode	*ip,
954 	xfs_off_t		offset,
955 	xfs_off_t		len,
956 	int			alloc_type)
957 {
958 	xfs_mount_t		*mp = ip->i_mount;
959 	xfs_off_t		count;
960 	xfs_filblks_t		allocated_fsb;
961 	xfs_filblks_t		allocatesize_fsb;
962 	xfs_extlen_t		extsz, temp;
963 	xfs_fileoff_t		startoffset_fsb;
964 	xfs_fsblock_t		firstfsb;
965 	int			nimaps;
966 	int			quota_flag;
967 	int			rt;
968 	xfs_trans_t		*tp;
969 	xfs_bmbt_irec_t		imaps[1], *imapp;
970 	xfs_bmap_free_t		free_list;
971 	uint			qblocks, resblks, resrtextents;
972 	int			committed;
973 	int			error;
974 
975 	trace_xfs_alloc_file_space(ip);
976 
977 	if (XFS_FORCED_SHUTDOWN(mp))
978 		return -EIO;
979 
980 	error = xfs_qm_dqattach(ip, 0);
981 	if (error)
982 		return error;
983 
984 	if (len <= 0)
985 		return -EINVAL;
986 
987 	rt = XFS_IS_REALTIME_INODE(ip);
988 	extsz = xfs_get_extsz_hint(ip);
989 
990 	count = len;
991 	imapp = &imaps[0];
992 	nimaps = 1;
993 	startoffset_fsb	= XFS_B_TO_FSBT(mp, offset);
994 	allocatesize_fsb = XFS_B_TO_FSB(mp, count);
995 
996 	/*
997 	 * Allocate file space until done or until there is an error
998 	 */
999 	while (allocatesize_fsb && !error) {
1000 		xfs_fileoff_t	s, e;
1001 
1002 		/*
1003 		 * Determine space reservations for data/realtime.
1004 		 */
1005 		if (unlikely(extsz)) {
1006 			s = startoffset_fsb;
1007 			do_div(s, extsz);
1008 			s *= extsz;
1009 			e = startoffset_fsb + allocatesize_fsb;
1010 			if ((temp = do_mod(startoffset_fsb, extsz)))
1011 				e += temp;
1012 			if ((temp = do_mod(e, extsz)))
1013 				e += extsz - temp;
1014 		} else {
1015 			s = 0;
1016 			e = allocatesize_fsb;
1017 		}
1018 
1019 		/*
1020 		 * The transaction reservation is limited to a 32-bit block
1021 		 * count, hence we need to limit the number of blocks we are
1022 		 * trying to reserve to avoid an overflow. We can't allocate
1023 		 * more than @nimaps extents, and an extent is limited on disk
1024 		 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
1025 		 */
1026 		resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
1027 		if (unlikely(rt)) {
1028 			resrtextents = qblocks = resblks;
1029 			resrtextents /= mp->m_sb.sb_rextsize;
1030 			resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1031 			quota_flag = XFS_QMOPT_RES_RTBLKS;
1032 		} else {
1033 			resrtextents = 0;
1034 			resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
1035 			quota_flag = XFS_QMOPT_RES_REGBLKS;
1036 		}
1037 
1038 		/*
1039 		 * Allocate and setup the transaction.
1040 		 */
1041 		tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
1042 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write,
1043 					  resblks, resrtextents);
1044 		/*
1045 		 * Check for running out of space
1046 		 */
1047 		if (error) {
1048 			/*
1049 			 * Free the transaction structure.
1050 			 */
1051 			ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1052 			xfs_trans_cancel(tp);
1053 			break;
1054 		}
1055 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1056 		error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
1057 						      0, quota_flag);
1058 		if (error)
1059 			goto error1;
1060 
1061 		xfs_trans_ijoin(tp, ip, 0);
1062 
1063 		xfs_bmap_init(&free_list, &firstfsb);
1064 		error = xfs_bmapi_write(tp, ip, startoffset_fsb,
1065 					allocatesize_fsb, alloc_type, &firstfsb,
1066 					resblks, imapp, &nimaps, &free_list);
1067 		if (error) {
1068 			goto error0;
1069 		}
1070 
1071 		/*
1072 		 * Complete the transaction
1073 		 */
1074 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1075 		if (error) {
1076 			goto error0;
1077 		}
1078 
1079 		error = xfs_trans_commit(tp);
1080 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1081 		if (error) {
1082 			break;
1083 		}
1084 
1085 		allocated_fsb = imapp->br_blockcount;
1086 
1087 		if (nimaps == 0) {
1088 			error = -ENOSPC;
1089 			break;
1090 		}
1091 
1092 		startoffset_fsb += allocated_fsb;
1093 		allocatesize_fsb -= allocated_fsb;
1094 	}
1095 
1096 	return error;
1097 
1098 error0:	/* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1099 	xfs_bmap_cancel(&free_list);
1100 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
1101 
1102 error1:	/* Just cancel transaction */
1103 	xfs_trans_cancel(tp);
1104 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1105 	return error;
1106 }
1107 
1108 /*
1109  * Zero file bytes between startoff and endoff inclusive.
1110  * The iolock is held exclusive and no blocks are buffered.
1111  *
1112  * This function is used by xfs_free_file_space() to zero
1113  * partial blocks when the range to free is not block aligned.
1114  * When unreserving space with boundaries that are not block
1115  * aligned we round up the start and round down the end
1116  * boundaries and then use this function to zero the parts of
1117  * the blocks that got dropped during the rounding.
1118  */
1119 STATIC int
1120 xfs_zero_remaining_bytes(
1121 	xfs_inode_t		*ip,
1122 	xfs_off_t		startoff,
1123 	xfs_off_t		endoff)
1124 {
1125 	xfs_bmbt_irec_t		imap;
1126 	xfs_fileoff_t		offset_fsb;
1127 	xfs_off_t		lastoffset;
1128 	xfs_off_t		offset;
1129 	xfs_buf_t		*bp;
1130 	xfs_mount_t		*mp = ip->i_mount;
1131 	int			nimap;
1132 	int			error = 0;
1133 
1134 	/*
1135 	 * Avoid doing I/O beyond eof - it's not necessary
1136 	 * since nothing can read beyond eof.  The space will
1137 	 * be zeroed when the file is extended anyway.
1138 	 */
1139 	if (startoff >= XFS_ISIZE(ip))
1140 		return 0;
1141 
1142 	if (endoff > XFS_ISIZE(ip))
1143 		endoff = XFS_ISIZE(ip);
1144 
1145 	for (offset = startoff; offset <= endoff; offset = lastoffset + 1) {
1146 		uint lock_mode;
1147 
1148 		offset_fsb = XFS_B_TO_FSBT(mp, offset);
1149 		nimap = 1;
1150 
1151 		lock_mode = xfs_ilock_data_map_shared(ip);
1152 		error = xfs_bmapi_read(ip, offset_fsb, 1, &imap, &nimap, 0);
1153 		xfs_iunlock(ip, lock_mode);
1154 
1155 		if (error || nimap < 1)
1156 			break;
1157 		ASSERT(imap.br_blockcount >= 1);
1158 		ASSERT(imap.br_startoff == offset_fsb);
1159 		ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1160 
1161 		if (imap.br_startblock == HOLESTARTBLOCK ||
1162 		    imap.br_state == XFS_EXT_UNWRITTEN) {
1163 			/* skip the entire extent */
1164 			lastoffset = XFS_FSB_TO_B(mp, imap.br_startoff +
1165 						      imap.br_blockcount) - 1;
1166 			continue;
1167 		}
1168 
1169 		lastoffset = XFS_FSB_TO_B(mp, imap.br_startoff + 1) - 1;
1170 		if (lastoffset > endoff)
1171 			lastoffset = endoff;
1172 
1173 		/* DAX can just zero the backing device directly */
1174 		if (IS_DAX(VFS_I(ip))) {
1175 			error = dax_zero_page_range(VFS_I(ip), offset,
1176 						    lastoffset - offset + 1,
1177 						    xfs_get_blocks_direct);
1178 			if (error)
1179 				return error;
1180 			continue;
1181 		}
1182 
1183 		error = xfs_buf_read_uncached(XFS_IS_REALTIME_INODE(ip) ?
1184 				mp->m_rtdev_targp : mp->m_ddev_targp,
1185 				xfs_fsb_to_db(ip, imap.br_startblock),
1186 				BTOBB(mp->m_sb.sb_blocksize),
1187 				0, &bp, NULL);
1188 		if (error)
1189 			return error;
1190 
1191 		memset(bp->b_addr +
1192 				(offset - XFS_FSB_TO_B(mp, imap.br_startoff)),
1193 		       0, lastoffset - offset + 1);
1194 
1195 		error = xfs_bwrite(bp);
1196 		xfs_buf_relse(bp);
1197 		if (error)
1198 			return error;
1199 	}
1200 	return error;
1201 }
1202 
1203 int
1204 xfs_free_file_space(
1205 	struct xfs_inode	*ip,
1206 	xfs_off_t		offset,
1207 	xfs_off_t		len)
1208 {
1209 	int			committed;
1210 	int			done;
1211 	xfs_fileoff_t		endoffset_fsb;
1212 	int			error;
1213 	xfs_fsblock_t		firstfsb;
1214 	xfs_bmap_free_t		free_list;
1215 	xfs_bmbt_irec_t		imap;
1216 	xfs_off_t		ioffset;
1217 	xfs_off_t		iendoffset;
1218 	xfs_extlen_t		mod=0;
1219 	xfs_mount_t		*mp;
1220 	int			nimap;
1221 	uint			resblks;
1222 	xfs_off_t		rounding;
1223 	int			rt;
1224 	xfs_fileoff_t		startoffset_fsb;
1225 	xfs_trans_t		*tp;
1226 
1227 	mp = ip->i_mount;
1228 
1229 	trace_xfs_free_file_space(ip);
1230 
1231 	error = xfs_qm_dqattach(ip, 0);
1232 	if (error)
1233 		return error;
1234 
1235 	error = 0;
1236 	if (len <= 0)	/* if nothing being freed */
1237 		return error;
1238 	rt = XFS_IS_REALTIME_INODE(ip);
1239 	startoffset_fsb	= XFS_B_TO_FSB(mp, offset);
1240 	endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1241 
1242 	/* wait for the completion of any pending DIOs */
1243 	inode_dio_wait(VFS_I(ip));
1244 
1245 	rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_CACHE_SIZE);
1246 	ioffset = round_down(offset, rounding);
1247 	iendoffset = round_up(offset + len, rounding) - 1;
1248 	error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, ioffset,
1249 					     iendoffset);
1250 	if (error)
1251 		goto out;
1252 	truncate_pagecache_range(VFS_I(ip), ioffset, iendoffset);
1253 
1254 	/*
1255 	 * Need to zero the stuff we're not freeing, on disk.
1256 	 * If it's a realtime file & can't use unwritten extents then we
1257 	 * actually need to zero the extent edges.  Otherwise xfs_bunmapi
1258 	 * will take care of it for us.
1259 	 */
1260 	if (rt && !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1261 		nimap = 1;
1262 		error = xfs_bmapi_read(ip, startoffset_fsb, 1,
1263 					&imap, &nimap, 0);
1264 		if (error)
1265 			goto out;
1266 		ASSERT(nimap == 0 || nimap == 1);
1267 		if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1268 			xfs_daddr_t	block;
1269 
1270 			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1271 			block = imap.br_startblock;
1272 			mod = do_div(block, mp->m_sb.sb_rextsize);
1273 			if (mod)
1274 				startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1275 		}
1276 		nimap = 1;
1277 		error = xfs_bmapi_read(ip, endoffset_fsb - 1, 1,
1278 					&imap, &nimap, 0);
1279 		if (error)
1280 			goto out;
1281 		ASSERT(nimap == 0 || nimap == 1);
1282 		if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1283 			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1284 			mod++;
1285 			if (mod && (mod != mp->m_sb.sb_rextsize))
1286 				endoffset_fsb -= mod;
1287 		}
1288 	}
1289 	if ((done = (endoffset_fsb <= startoffset_fsb)))
1290 		/*
1291 		 * One contiguous piece to clear
1292 		 */
1293 		error = xfs_zero_remaining_bytes(ip, offset, offset + len - 1);
1294 	else {
1295 		/*
1296 		 * Some full blocks, possibly two pieces to clear
1297 		 */
1298 		if (offset < XFS_FSB_TO_B(mp, startoffset_fsb))
1299 			error = xfs_zero_remaining_bytes(ip, offset,
1300 				XFS_FSB_TO_B(mp, startoffset_fsb) - 1);
1301 		if (!error &&
1302 		    XFS_FSB_TO_B(mp, endoffset_fsb) < offset + len)
1303 			error = xfs_zero_remaining_bytes(ip,
1304 				XFS_FSB_TO_B(mp, endoffset_fsb),
1305 				offset + len - 1);
1306 	}
1307 
1308 	/*
1309 	 * free file space until done or until there is an error
1310 	 */
1311 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1312 	while (!error && !done) {
1313 
1314 		/*
1315 		 * allocate and setup the transaction. Allow this
1316 		 * transaction to dip into the reserve blocks to ensure
1317 		 * the freeing of the space succeeds at ENOSPC.
1318 		 */
1319 		tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
1320 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write, resblks, 0);
1321 
1322 		/*
1323 		 * check for running out of space
1324 		 */
1325 		if (error) {
1326 			/*
1327 			 * Free the transaction structure.
1328 			 */
1329 			ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1330 			xfs_trans_cancel(tp);
1331 			break;
1332 		}
1333 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1334 		error = xfs_trans_reserve_quota(tp, mp,
1335 				ip->i_udquot, ip->i_gdquot, ip->i_pdquot,
1336 				resblks, 0, XFS_QMOPT_RES_REGBLKS);
1337 		if (error)
1338 			goto error1;
1339 
1340 		xfs_trans_ijoin(tp, ip, 0);
1341 
1342 		/*
1343 		 * issue the bunmapi() call to free the blocks
1344 		 */
1345 		xfs_bmap_init(&free_list, &firstfsb);
1346 		error = xfs_bunmapi(tp, ip, startoffset_fsb,
1347 				  endoffset_fsb - startoffset_fsb,
1348 				  0, 2, &firstfsb, &free_list, &done);
1349 		if (error) {
1350 			goto error0;
1351 		}
1352 
1353 		/*
1354 		 * complete the transaction
1355 		 */
1356 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1357 		if (error) {
1358 			goto error0;
1359 		}
1360 
1361 		error = xfs_trans_commit(tp);
1362 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1363 	}
1364 
1365  out:
1366 	return error;
1367 
1368  error0:
1369 	xfs_bmap_cancel(&free_list);
1370  error1:
1371 	xfs_trans_cancel(tp);
1372 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1373 	goto out;
1374 }
1375 
1376 /*
1377  * Preallocate and zero a range of a file. This mechanism has the allocation
1378  * semantics of fallocate and in addition converts data in the range to zeroes.
1379  */
1380 int
1381 xfs_zero_file_space(
1382 	struct xfs_inode	*ip,
1383 	xfs_off_t		offset,
1384 	xfs_off_t		len)
1385 {
1386 	struct xfs_mount	*mp = ip->i_mount;
1387 	uint			blksize;
1388 	int			error;
1389 
1390 	trace_xfs_zero_file_space(ip);
1391 
1392 	blksize = 1 << mp->m_sb.sb_blocklog;
1393 
1394 	/*
1395 	 * Punch a hole and prealloc the range. We use hole punch rather than
1396 	 * unwritten extent conversion for two reasons:
1397 	 *
1398 	 * 1.) Hole punch handles partial block zeroing for us.
1399 	 *
1400 	 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1401 	 * by virtue of the hole punch.
1402 	 */
1403 	error = xfs_free_file_space(ip, offset, len);
1404 	if (error)
1405 		goto out;
1406 
1407 	error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1408 				     round_up(offset + len, blksize) -
1409 				     round_down(offset, blksize),
1410 				     XFS_BMAPI_PREALLOC);
1411 out:
1412 	return error;
1413 
1414 }
1415 
1416 /*
1417  * @next_fsb will keep track of the extent currently undergoing shift.
1418  * @stop_fsb will keep track of the extent at which we have to stop.
1419  * If we are shifting left, we will start with block (offset + len) and
1420  * shift each extent till last extent.
1421  * If we are shifting right, we will start with last extent inside file space
1422  * and continue until we reach the block corresponding to offset.
1423  */
1424 static int
1425 xfs_shift_file_space(
1426 	struct xfs_inode        *ip,
1427 	xfs_off_t               offset,
1428 	xfs_off_t               len,
1429 	enum shift_direction	direction)
1430 {
1431 	int			done = 0;
1432 	struct xfs_mount	*mp = ip->i_mount;
1433 	struct xfs_trans	*tp;
1434 	int			error;
1435 	struct xfs_bmap_free	free_list;
1436 	xfs_fsblock_t		first_block;
1437 	int			committed;
1438 	xfs_fileoff_t		stop_fsb;
1439 	xfs_fileoff_t		next_fsb;
1440 	xfs_fileoff_t		shift_fsb;
1441 
1442 	ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT);
1443 
1444 	if (direction == SHIFT_LEFT) {
1445 		next_fsb = XFS_B_TO_FSB(mp, offset + len);
1446 		stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size);
1447 	} else {
1448 		/*
1449 		 * If right shift, delegate the work of initialization of
1450 		 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1451 		 */
1452 		next_fsb = NULLFSBLOCK;
1453 		stop_fsb = XFS_B_TO_FSB(mp, offset);
1454 	}
1455 
1456 	shift_fsb = XFS_B_TO_FSB(mp, len);
1457 
1458 	/*
1459 	 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1460 	 * into the accessible region of the file.
1461 	 */
1462 	if (xfs_can_free_eofblocks(ip, true)) {
1463 		error = xfs_free_eofblocks(mp, ip, false);
1464 		if (error)
1465 			return error;
1466 	}
1467 
1468 	/*
1469 	 * Writeback and invalidate cache for the remainder of the file as we're
1470 	 * about to shift down every extent from offset to EOF.
1471 	 */
1472 	error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1473 					     offset, -1);
1474 	if (error)
1475 		return error;
1476 	error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1477 					offset >> PAGE_CACHE_SHIFT, -1);
1478 	if (error)
1479 		return error;
1480 
1481 	/*
1482 	 * The extent shiting code works on extent granularity. So, if
1483 	 * stop_fsb is not the starting block of extent, we need to split
1484 	 * the extent at stop_fsb.
1485 	 */
1486 	if (direction == SHIFT_RIGHT) {
1487 		error = xfs_bmap_split_extent(ip, stop_fsb);
1488 		if (error)
1489 			return error;
1490 	}
1491 
1492 	while (!error && !done) {
1493 		tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
1494 		/*
1495 		 * We would need to reserve permanent block for transaction.
1496 		 * This will come into picture when after shifting extent into
1497 		 * hole we found that adjacent extents can be merged which
1498 		 * may lead to freeing of a block during record update.
1499 		 */
1500 		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write,
1501 				XFS_DIOSTRAT_SPACE_RES(mp, 0), 0);
1502 		if (error) {
1503 			xfs_trans_cancel(tp);
1504 			break;
1505 		}
1506 
1507 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1508 		error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1509 				ip->i_gdquot, ip->i_pdquot,
1510 				XFS_DIOSTRAT_SPACE_RES(mp, 0), 0,
1511 				XFS_QMOPT_RES_REGBLKS);
1512 		if (error)
1513 			goto out_trans_cancel;
1514 
1515 		xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1516 
1517 		xfs_bmap_init(&free_list, &first_block);
1518 
1519 		/*
1520 		 * We are using the write transaction in which max 2 bmbt
1521 		 * updates are allowed
1522 		 */
1523 		error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb,
1524 				&done, stop_fsb, &first_block, &free_list,
1525 				direction, XFS_BMAP_MAX_SHIFT_EXTENTS);
1526 		if (error)
1527 			goto out_bmap_cancel;
1528 
1529 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1530 		if (error)
1531 			goto out_bmap_cancel;
1532 
1533 		error = xfs_trans_commit(tp);
1534 	}
1535 
1536 	return error;
1537 
1538 out_bmap_cancel:
1539 	xfs_bmap_cancel(&free_list);
1540 out_trans_cancel:
1541 	xfs_trans_cancel(tp);
1542 	return error;
1543 }
1544 
1545 /*
1546  * xfs_collapse_file_space()
1547  *	This routine frees disk space and shift extent for the given file.
1548  *	The first thing we do is to free data blocks in the specified range
1549  *	by calling xfs_free_file_space(). It would also sync dirty data
1550  *	and invalidate page cache over the region on which collapse range
1551  *	is working. And Shift extent records to the left to cover a hole.
1552  * RETURNS:
1553  *	0 on success
1554  *	errno on error
1555  *
1556  */
1557 int
1558 xfs_collapse_file_space(
1559 	struct xfs_inode	*ip,
1560 	xfs_off_t		offset,
1561 	xfs_off_t		len)
1562 {
1563 	int error;
1564 
1565 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1566 	trace_xfs_collapse_file_space(ip);
1567 
1568 	error = xfs_free_file_space(ip, offset, len);
1569 	if (error)
1570 		return error;
1571 
1572 	return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT);
1573 }
1574 
1575 /*
1576  * xfs_insert_file_space()
1577  *	This routine create hole space by shifting extents for the given file.
1578  *	The first thing we do is to sync dirty data and invalidate page cache
1579  *	over the region on which insert range is working. And split an extent
1580  *	to two extents at given offset by calling xfs_bmap_split_extent.
1581  *	And shift all extent records which are laying between [offset,
1582  *	last allocated extent] to the right to reserve hole range.
1583  * RETURNS:
1584  *	0 on success
1585  *	errno on error
1586  */
1587 int
1588 xfs_insert_file_space(
1589 	struct xfs_inode	*ip,
1590 	loff_t			offset,
1591 	loff_t			len)
1592 {
1593 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1594 	trace_xfs_insert_file_space(ip);
1595 
1596 	return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT);
1597 }
1598 
1599 /*
1600  * We need to check that the format of the data fork in the temporary inode is
1601  * valid for the target inode before doing the swap. This is not a problem with
1602  * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1603  * data fork depending on the space the attribute fork is taking so we can get
1604  * invalid formats on the target inode.
1605  *
1606  * E.g. target has space for 7 extents in extent format, temp inode only has
1607  * space for 6.  If we defragment down to 7 extents, then the tmp format is a
1608  * btree, but when swapped it needs to be in extent format. Hence we can't just
1609  * blindly swap data forks on attr2 filesystems.
1610  *
1611  * Note that we check the swap in both directions so that we don't end up with
1612  * a corrupt temporary inode, either.
1613  *
1614  * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1615  * inode will prevent this situation from occurring, so all we do here is
1616  * reject and log the attempt. basically we are putting the responsibility on
1617  * userspace to get this right.
1618  */
1619 static int
1620 xfs_swap_extents_check_format(
1621 	xfs_inode_t	*ip,	/* target inode */
1622 	xfs_inode_t	*tip)	/* tmp inode */
1623 {
1624 
1625 	/* Should never get a local format */
1626 	if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1627 	    tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1628 		return -EINVAL;
1629 
1630 	/*
1631 	 * if the target inode has less extents that then temporary inode then
1632 	 * why did userspace call us?
1633 	 */
1634 	if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1635 		return -EINVAL;
1636 
1637 	/*
1638 	 * if the target inode is in extent form and the temp inode is in btree
1639 	 * form then we will end up with the target inode in the wrong format
1640 	 * as we already know there are less extents in the temp inode.
1641 	 */
1642 	if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1643 	    tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1644 		return -EINVAL;
1645 
1646 	/* Check temp in extent form to max in target */
1647 	if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1648 	    XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1649 			XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1650 		return -EINVAL;
1651 
1652 	/* Check target in extent form to max in temp */
1653 	if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1654 	    XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1655 			XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1656 		return -EINVAL;
1657 
1658 	/*
1659 	 * If we are in a btree format, check that the temp root block will fit
1660 	 * in the target and that it has enough extents to be in btree format
1661 	 * in the target.
1662 	 *
1663 	 * Note that we have to be careful to allow btree->extent conversions
1664 	 * (a common defrag case) which will occur when the temp inode is in
1665 	 * extent format...
1666 	 */
1667 	if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1668 		if (XFS_IFORK_BOFF(ip) &&
1669 		    XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1670 			return -EINVAL;
1671 		if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1672 		    XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1673 			return -EINVAL;
1674 	}
1675 
1676 	/* Reciprocal target->temp btree format checks */
1677 	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1678 		if (XFS_IFORK_BOFF(tip) &&
1679 		    XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1680 			return -EINVAL;
1681 		if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1682 		    XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1683 			return -EINVAL;
1684 	}
1685 
1686 	return 0;
1687 }
1688 
1689 static int
1690 xfs_swap_extent_flush(
1691 	struct xfs_inode	*ip)
1692 {
1693 	int	error;
1694 
1695 	error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1696 	if (error)
1697 		return error;
1698 	truncate_pagecache_range(VFS_I(ip), 0, -1);
1699 
1700 	/* Verify O_DIRECT for ftmp */
1701 	if (VFS_I(ip)->i_mapping->nrpages)
1702 		return -EINVAL;
1703 	return 0;
1704 }
1705 
1706 int
1707 xfs_swap_extents(
1708 	xfs_inode_t	*ip,	/* target inode */
1709 	xfs_inode_t	*tip,	/* tmp inode */
1710 	xfs_swapext_t	*sxp)
1711 {
1712 	xfs_mount_t	*mp = ip->i_mount;
1713 	xfs_trans_t	*tp;
1714 	xfs_bstat_t	*sbp = &sxp->sx_stat;
1715 	xfs_ifork_t	*tempifp, *ifp, *tifp;
1716 	int		src_log_flags, target_log_flags;
1717 	int		error = 0;
1718 	int		aforkblks = 0;
1719 	int		taforkblks = 0;
1720 	__uint64_t	tmp;
1721 	int		lock_flags;
1722 
1723 	tempifp = kmem_alloc(sizeof(xfs_ifork_t), KM_MAYFAIL);
1724 	if (!tempifp) {
1725 		error = -ENOMEM;
1726 		goto out;
1727 	}
1728 
1729 	/*
1730 	 * Lock the inodes against other IO, page faults and truncate to
1731 	 * begin with.  Then we can ensure the inodes are flushed and have no
1732 	 * page cache safely. Once we have done this we can take the ilocks and
1733 	 * do the rest of the checks.
1734 	 */
1735 	lock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1736 	xfs_lock_two_inodes(ip, tip, XFS_IOLOCK_EXCL);
1737 	xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL);
1738 
1739 	/* Verify that both files have the same format */
1740 	if ((ip->i_d.di_mode & S_IFMT) != (tip->i_d.di_mode & S_IFMT)) {
1741 		error = -EINVAL;
1742 		goto out_unlock;
1743 	}
1744 
1745 	/* Verify both files are either real-time or non-realtime */
1746 	if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1747 		error = -EINVAL;
1748 		goto out_unlock;
1749 	}
1750 
1751 	error = xfs_swap_extent_flush(ip);
1752 	if (error)
1753 		goto out_unlock;
1754 	error = xfs_swap_extent_flush(tip);
1755 	if (error)
1756 		goto out_unlock;
1757 
1758 	tp = xfs_trans_alloc(mp, XFS_TRANS_SWAPEXT);
1759 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ichange, 0, 0);
1760 	if (error) {
1761 		xfs_trans_cancel(tp);
1762 		goto out_unlock;
1763 	}
1764 
1765 	/*
1766 	 * Lock and join the inodes to the tansaction so that transaction commit
1767 	 * or cancel will unlock the inodes from this point onwards.
1768 	 */
1769 	xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL);
1770 	lock_flags |= XFS_ILOCK_EXCL;
1771 	xfs_trans_ijoin(tp, ip, lock_flags);
1772 	xfs_trans_ijoin(tp, tip, lock_flags);
1773 
1774 
1775 	/* Verify all data are being swapped */
1776 	if (sxp->sx_offset != 0 ||
1777 	    sxp->sx_length != ip->i_d.di_size ||
1778 	    sxp->sx_length != tip->i_d.di_size) {
1779 		error = -EFAULT;
1780 		goto out_trans_cancel;
1781 	}
1782 
1783 	trace_xfs_swap_extent_before(ip, 0);
1784 	trace_xfs_swap_extent_before(tip, 1);
1785 
1786 	/* check inode formats now that data is flushed */
1787 	error = xfs_swap_extents_check_format(ip, tip);
1788 	if (error) {
1789 		xfs_notice(mp,
1790 		    "%s: inode 0x%llx format is incompatible for exchanging.",
1791 				__func__, ip->i_ino);
1792 		goto out_trans_cancel;
1793 	}
1794 
1795 	/*
1796 	 * Compare the current change & modify times with that
1797 	 * passed in.  If they differ, we abort this swap.
1798 	 * This is the mechanism used to ensure the calling
1799 	 * process that the file was not changed out from
1800 	 * under it.
1801 	 */
1802 	if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
1803 	    (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
1804 	    (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
1805 	    (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
1806 		error = -EBUSY;
1807 		goto out_trans_cancel;
1808 	}
1809 	/*
1810 	 * Count the number of extended attribute blocks
1811 	 */
1812 	if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1813 	     (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1814 		error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &aforkblks);
1815 		if (error)
1816 			goto out_trans_cancel;
1817 	}
1818 	if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1819 	     (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1820 		error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK,
1821 			&taforkblks);
1822 		if (error)
1823 			goto out_trans_cancel;
1824 	}
1825 
1826 	/*
1827 	 * Before we've swapped the forks, lets set the owners of the forks
1828 	 * appropriately. We have to do this as we are demand paging the btree
1829 	 * buffers, and so the validation done on read will expect the owner
1830 	 * field to be correctly set. Once we change the owners, we can swap the
1831 	 * inode forks.
1832 	 *
1833 	 * Note the trickiness in setting the log flags - we set the owner log
1834 	 * flag on the opposite inode (i.e. the inode we are setting the new
1835 	 * owner to be) because once we swap the forks and log that, log
1836 	 * recovery is going to see the fork as owned by the swapped inode,
1837 	 * not the pre-swapped inodes.
1838 	 */
1839 	src_log_flags = XFS_ILOG_CORE;
1840 	target_log_flags = XFS_ILOG_CORE;
1841 	if (ip->i_d.di_version == 3 &&
1842 	    ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1843 		target_log_flags |= XFS_ILOG_DOWNER;
1844 		error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK,
1845 					      tip->i_ino, NULL);
1846 		if (error)
1847 			goto out_trans_cancel;
1848 	}
1849 
1850 	if (tip->i_d.di_version == 3 &&
1851 	    tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1852 		src_log_flags |= XFS_ILOG_DOWNER;
1853 		error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK,
1854 					      ip->i_ino, NULL);
1855 		if (error)
1856 			goto out_trans_cancel;
1857 	}
1858 
1859 	/*
1860 	 * Swap the data forks of the inodes
1861 	 */
1862 	ifp = &ip->i_df;
1863 	tifp = &tip->i_df;
1864 	*tempifp = *ifp;	/* struct copy */
1865 	*ifp = *tifp;		/* struct copy */
1866 	*tifp = *tempifp;	/* struct copy */
1867 
1868 	/*
1869 	 * Fix the on-disk inode values
1870 	 */
1871 	tmp = (__uint64_t)ip->i_d.di_nblocks;
1872 	ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1873 	tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1874 
1875 	tmp = (__uint64_t) ip->i_d.di_nextents;
1876 	ip->i_d.di_nextents = tip->i_d.di_nextents;
1877 	tip->i_d.di_nextents = tmp;
1878 
1879 	tmp = (__uint64_t) ip->i_d.di_format;
1880 	ip->i_d.di_format = tip->i_d.di_format;
1881 	tip->i_d.di_format = tmp;
1882 
1883 	/*
1884 	 * The extents in the source inode could still contain speculative
1885 	 * preallocation beyond EOF (e.g. the file is open but not modified
1886 	 * while defrag is in progress). In that case, we need to copy over the
1887 	 * number of delalloc blocks the data fork in the source inode is
1888 	 * tracking beyond EOF so that when the fork is truncated away when the
1889 	 * temporary inode is unlinked we don't underrun the i_delayed_blks
1890 	 * counter on that inode.
1891 	 */
1892 	ASSERT(tip->i_delayed_blks == 0);
1893 	tip->i_delayed_blks = ip->i_delayed_blks;
1894 	ip->i_delayed_blks = 0;
1895 
1896 	switch (ip->i_d.di_format) {
1897 	case XFS_DINODE_FMT_EXTENTS:
1898 		/* If the extents fit in the inode, fix the
1899 		 * pointer.  Otherwise it's already NULL or
1900 		 * pointing to the extent.
1901 		 */
1902 		if (ip->i_d.di_nextents <= XFS_INLINE_EXTS) {
1903 			ifp->if_u1.if_extents =
1904 				ifp->if_u2.if_inline_ext;
1905 		}
1906 		src_log_flags |= XFS_ILOG_DEXT;
1907 		break;
1908 	case XFS_DINODE_FMT_BTREE:
1909 		ASSERT(ip->i_d.di_version < 3 ||
1910 		       (src_log_flags & XFS_ILOG_DOWNER));
1911 		src_log_flags |= XFS_ILOG_DBROOT;
1912 		break;
1913 	}
1914 
1915 	switch (tip->i_d.di_format) {
1916 	case XFS_DINODE_FMT_EXTENTS:
1917 		/* If the extents fit in the inode, fix the
1918 		 * pointer.  Otherwise it's already NULL or
1919 		 * pointing to the extent.
1920 		 */
1921 		if (tip->i_d.di_nextents <= XFS_INLINE_EXTS) {
1922 			tifp->if_u1.if_extents =
1923 				tifp->if_u2.if_inline_ext;
1924 		}
1925 		target_log_flags |= XFS_ILOG_DEXT;
1926 		break;
1927 	case XFS_DINODE_FMT_BTREE:
1928 		target_log_flags |= XFS_ILOG_DBROOT;
1929 		ASSERT(tip->i_d.di_version < 3 ||
1930 		       (target_log_flags & XFS_ILOG_DOWNER));
1931 		break;
1932 	}
1933 
1934 	xfs_trans_log_inode(tp, ip,  src_log_flags);
1935 	xfs_trans_log_inode(tp, tip, target_log_flags);
1936 
1937 	/*
1938 	 * If this is a synchronous mount, make sure that the
1939 	 * transaction goes to disk before returning to the user.
1940 	 */
1941 	if (mp->m_flags & XFS_MOUNT_WSYNC)
1942 		xfs_trans_set_sync(tp);
1943 
1944 	error = xfs_trans_commit(tp);
1945 
1946 	trace_xfs_swap_extent_after(ip, 0);
1947 	trace_xfs_swap_extent_after(tip, 1);
1948 out:
1949 	kmem_free(tempifp);
1950 	return error;
1951 
1952 out_unlock:
1953 	xfs_iunlock(ip, lock_flags);
1954 	xfs_iunlock(tip, lock_flags);
1955 	goto out;
1956 
1957 out_trans_cancel:
1958 	xfs_trans_cancel(tp);
1959 	goto out;
1960 }
1961