1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2012 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_btree.h" 18 #include "xfs_trans.h" 19 #include "xfs_alloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_bmap_util.h" 22 #include "xfs_bmap_btree.h" 23 #include "xfs_rtalloc.h" 24 #include "xfs_error.h" 25 #include "xfs_quota.h" 26 #include "xfs_trans_space.h" 27 #include "xfs_trace.h" 28 #include "xfs_icache.h" 29 #include "xfs_iomap.h" 30 #include "xfs_reflink.h" 31 32 /* Kernel only BMAP related definitions and functions */ 33 34 /* 35 * Convert the given file system block to a disk block. We have to treat it 36 * differently based on whether the file is a real time file or not, because the 37 * bmap code does. 38 */ 39 xfs_daddr_t 40 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) 41 { 42 if (XFS_IS_REALTIME_INODE(ip)) 43 return XFS_FSB_TO_BB(ip->i_mount, fsb); 44 return XFS_FSB_TO_DADDR(ip->i_mount, fsb); 45 } 46 47 /* 48 * Routine to zero an extent on disk allocated to the specific inode. 49 * 50 * The VFS functions take a linearised filesystem block offset, so we have to 51 * convert the sparse xfs fsb to the right format first. 52 * VFS types are real funky, too. 53 */ 54 int 55 xfs_zero_extent( 56 struct xfs_inode *ip, 57 xfs_fsblock_t start_fsb, 58 xfs_off_t count_fsb) 59 { 60 struct xfs_mount *mp = ip->i_mount; 61 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb); 62 sector_t block = XFS_BB_TO_FSBT(mp, sector); 63 64 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)), 65 block << (mp->m_super->s_blocksize_bits - 9), 66 count_fsb << (mp->m_super->s_blocksize_bits - 9), 67 GFP_NOFS, 0); 68 } 69 70 #ifdef CONFIG_XFS_RT 71 int 72 xfs_bmap_rtalloc( 73 struct xfs_bmalloca *ap) /* bmap alloc argument struct */ 74 { 75 int error; /* error return value */ 76 xfs_mount_t *mp; /* mount point structure */ 77 xfs_extlen_t prod = 0; /* product factor for allocators */ 78 xfs_extlen_t mod = 0; /* product factor for allocators */ 79 xfs_extlen_t ralen = 0; /* realtime allocation length */ 80 xfs_extlen_t align; /* minimum allocation alignment */ 81 xfs_rtblock_t rtb; 82 83 mp = ap->ip->i_mount; 84 align = xfs_get_extsz_hint(ap->ip); 85 prod = align / mp->m_sb.sb_rextsize; 86 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, 87 align, 1, ap->eof, 0, 88 ap->conv, &ap->offset, &ap->length); 89 if (error) 90 return error; 91 ASSERT(ap->length); 92 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); 93 94 /* 95 * If the offset & length are not perfectly aligned 96 * then kill prod, it will just get us in trouble. 97 */ 98 div_u64_rem(ap->offset, align, &mod); 99 if (mod || ap->length % align) 100 prod = 1; 101 /* 102 * Set ralen to be the actual requested length in rtextents. 103 */ 104 ralen = ap->length / mp->m_sb.sb_rextsize; 105 /* 106 * If the old value was close enough to MAXEXTLEN that 107 * we rounded up to it, cut it back so it's valid again. 108 * Note that if it's a really large request (bigger than 109 * MAXEXTLEN), we don't hear about that number, and can't 110 * adjust the starting point to match it. 111 */ 112 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) 113 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; 114 115 /* 116 * Lock out modifications to both the RT bitmap and summary inodes 117 */ 118 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP); 119 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); 120 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM); 121 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL); 122 123 /* 124 * If it's an allocation to an empty file at offset 0, 125 * pick an extent that will space things out in the rt area. 126 */ 127 if (ap->eof && ap->offset == 0) { 128 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */ 129 130 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); 131 if (error) 132 return error; 133 ap->blkno = rtx * mp->m_sb.sb_rextsize; 134 } else { 135 ap->blkno = 0; 136 } 137 138 xfs_bmap_adjacent(ap); 139 140 /* 141 * Realtime allocation, done through xfs_rtallocate_extent. 142 */ 143 do_div(ap->blkno, mp->m_sb.sb_rextsize); 144 rtb = ap->blkno; 145 ap->length = ralen; 146 error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, 147 &ralen, ap->wasdel, prod, &rtb); 148 if (error) 149 return error; 150 151 ap->blkno = rtb; 152 if (ap->blkno != NULLFSBLOCK) { 153 ap->blkno *= mp->m_sb.sb_rextsize; 154 ralen *= mp->m_sb.sb_rextsize; 155 ap->length = ralen; 156 ap->ip->i_d.di_nblocks += ralen; 157 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); 158 if (ap->wasdel) 159 ap->ip->i_delayed_blks -= ralen; 160 /* 161 * Adjust the disk quota also. This was reserved 162 * earlier. 163 */ 164 xfs_trans_mod_dquot_byino(ap->tp, ap->ip, 165 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : 166 XFS_TRANS_DQ_RTBCOUNT, (long) ralen); 167 168 /* Zero the extent if we were asked to do so */ 169 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) { 170 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length); 171 if (error) 172 return error; 173 } 174 } else { 175 ap->length = 0; 176 } 177 return 0; 178 } 179 #endif /* CONFIG_XFS_RT */ 180 181 /* 182 * Check if the endoff is outside the last extent. If so the caller will grow 183 * the allocation to a stripe unit boundary. All offsets are considered outside 184 * the end of file for an empty fork, so 1 is returned in *eof in that case. 185 */ 186 int 187 xfs_bmap_eof( 188 struct xfs_inode *ip, 189 xfs_fileoff_t endoff, 190 int whichfork, 191 int *eof) 192 { 193 struct xfs_bmbt_irec rec; 194 int error; 195 196 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof); 197 if (error || *eof) 198 return error; 199 200 *eof = endoff >= rec.br_startoff + rec.br_blockcount; 201 return 0; 202 } 203 204 /* 205 * Extent tree block counting routines. 206 */ 207 208 /* 209 * Count leaf blocks given a range of extent records. Delayed allocation 210 * extents are not counted towards the totals. 211 */ 212 xfs_extnum_t 213 xfs_bmap_count_leaves( 214 struct xfs_ifork *ifp, 215 xfs_filblks_t *count) 216 { 217 struct xfs_iext_cursor icur; 218 struct xfs_bmbt_irec got; 219 xfs_extnum_t numrecs = 0; 220 221 for_each_xfs_iext(ifp, &icur, &got) { 222 if (!isnullstartblock(got.br_startblock)) { 223 *count += got.br_blockcount; 224 numrecs++; 225 } 226 } 227 228 return numrecs; 229 } 230 231 /* 232 * Count leaf blocks given a range of extent records originally 233 * in btree format. 234 */ 235 STATIC void 236 xfs_bmap_disk_count_leaves( 237 struct xfs_mount *mp, 238 struct xfs_btree_block *block, 239 int numrecs, 240 xfs_filblks_t *count) 241 { 242 int b; 243 xfs_bmbt_rec_t *frp; 244 245 for (b = 1; b <= numrecs; b++) { 246 frp = XFS_BMBT_REC_ADDR(mp, block, b); 247 *count += xfs_bmbt_disk_get_blockcount(frp); 248 } 249 } 250 251 /* 252 * Recursively walks each level of a btree 253 * to count total fsblocks in use. 254 */ 255 STATIC int 256 xfs_bmap_count_tree( 257 struct xfs_mount *mp, 258 struct xfs_trans *tp, 259 struct xfs_ifork *ifp, 260 xfs_fsblock_t blockno, 261 int levelin, 262 xfs_extnum_t *nextents, 263 xfs_filblks_t *count) 264 { 265 int error; 266 struct xfs_buf *bp, *nbp; 267 int level = levelin; 268 __be64 *pp; 269 xfs_fsblock_t bno = blockno; 270 xfs_fsblock_t nextbno; 271 struct xfs_btree_block *block, *nextblock; 272 int numrecs; 273 274 error = xfs_btree_read_bufl(mp, tp, bno, &bp, XFS_BMAP_BTREE_REF, 275 &xfs_bmbt_buf_ops); 276 if (error) 277 return error; 278 *count += 1; 279 block = XFS_BUF_TO_BLOCK(bp); 280 281 if (--level) { 282 /* Not at node above leaves, count this level of nodes */ 283 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 284 while (nextbno != NULLFSBLOCK) { 285 error = xfs_btree_read_bufl(mp, tp, nextbno, &nbp, 286 XFS_BMAP_BTREE_REF, 287 &xfs_bmbt_buf_ops); 288 if (error) 289 return error; 290 *count += 1; 291 nextblock = XFS_BUF_TO_BLOCK(nbp); 292 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib); 293 xfs_trans_brelse(tp, nbp); 294 } 295 296 /* Dive to the next level */ 297 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]); 298 bno = be64_to_cpu(*pp); 299 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents, 300 count); 301 if (error) { 302 xfs_trans_brelse(tp, bp); 303 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)", 304 XFS_ERRLEVEL_LOW, mp); 305 return -EFSCORRUPTED; 306 } 307 xfs_trans_brelse(tp, bp); 308 } else { 309 /* count all level 1 nodes and their leaves */ 310 for (;;) { 311 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 312 numrecs = be16_to_cpu(block->bb_numrecs); 313 (*nextents) += numrecs; 314 xfs_bmap_disk_count_leaves(mp, block, numrecs, count); 315 xfs_trans_brelse(tp, bp); 316 if (nextbno == NULLFSBLOCK) 317 break; 318 bno = nextbno; 319 error = xfs_btree_read_bufl(mp, tp, bno, &bp, 320 XFS_BMAP_BTREE_REF, 321 &xfs_bmbt_buf_ops); 322 if (error) 323 return error; 324 *count += 1; 325 block = XFS_BUF_TO_BLOCK(bp); 326 } 327 } 328 return 0; 329 } 330 331 /* 332 * Count fsblocks of the given fork. Delayed allocation extents are 333 * not counted towards the totals. 334 */ 335 int 336 xfs_bmap_count_blocks( 337 struct xfs_trans *tp, 338 struct xfs_inode *ip, 339 int whichfork, 340 xfs_extnum_t *nextents, 341 xfs_filblks_t *count) 342 { 343 struct xfs_mount *mp; /* file system mount structure */ 344 __be64 *pp; /* pointer to block address */ 345 struct xfs_btree_block *block; /* current btree block */ 346 struct xfs_ifork *ifp; /* fork structure */ 347 xfs_fsblock_t bno; /* block # of "block" */ 348 int level; /* btree level, for checking */ 349 int error; 350 351 bno = NULLFSBLOCK; 352 mp = ip->i_mount; 353 *nextents = 0; 354 *count = 0; 355 ifp = XFS_IFORK_PTR(ip, whichfork); 356 if (!ifp) 357 return 0; 358 359 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 360 case XFS_DINODE_FMT_EXTENTS: 361 *nextents = xfs_bmap_count_leaves(ifp, count); 362 return 0; 363 case XFS_DINODE_FMT_BTREE: 364 if (!(ifp->if_flags & XFS_IFEXTENTS)) { 365 error = xfs_iread_extents(tp, ip, whichfork); 366 if (error) 367 return error; 368 } 369 370 /* 371 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out. 372 */ 373 block = ifp->if_broot; 374 level = be16_to_cpu(block->bb_level); 375 ASSERT(level > 0); 376 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes); 377 bno = be64_to_cpu(*pp); 378 ASSERT(bno != NULLFSBLOCK); 379 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount); 380 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks); 381 382 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, 383 nextents, count); 384 if (error) { 385 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", 386 XFS_ERRLEVEL_LOW, mp); 387 return -EFSCORRUPTED; 388 } 389 return 0; 390 } 391 392 return 0; 393 } 394 395 static int 396 xfs_getbmap_report_one( 397 struct xfs_inode *ip, 398 struct getbmapx *bmv, 399 struct kgetbmap *out, 400 int64_t bmv_end, 401 struct xfs_bmbt_irec *got) 402 { 403 struct kgetbmap *p = out + bmv->bmv_entries; 404 bool shared = false; 405 int error; 406 407 error = xfs_reflink_trim_around_shared(ip, got, &shared); 408 if (error) 409 return error; 410 411 if (isnullstartblock(got->br_startblock) || 412 got->br_startblock == DELAYSTARTBLOCK) { 413 /* 414 * Delalloc extents that start beyond EOF can occur due to 415 * speculative EOF allocation when the delalloc extent is larger 416 * than the largest freespace extent at conversion time. These 417 * extents cannot be converted by data writeback, so can exist 418 * here even if we are not supposed to be finding delalloc 419 * extents. 420 */ 421 if (got->br_startoff < XFS_B_TO_FSB(ip->i_mount, XFS_ISIZE(ip))) 422 ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0); 423 424 p->bmv_oflags |= BMV_OF_DELALLOC; 425 p->bmv_block = -2; 426 } else { 427 p->bmv_block = xfs_fsb_to_db(ip, got->br_startblock); 428 } 429 430 if (got->br_state == XFS_EXT_UNWRITTEN && 431 (bmv->bmv_iflags & BMV_IF_PREALLOC)) 432 p->bmv_oflags |= BMV_OF_PREALLOC; 433 434 if (shared) 435 p->bmv_oflags |= BMV_OF_SHARED; 436 437 p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, got->br_startoff); 438 p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, got->br_blockcount); 439 440 bmv->bmv_offset = p->bmv_offset + p->bmv_length; 441 bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset); 442 bmv->bmv_entries++; 443 return 0; 444 } 445 446 static void 447 xfs_getbmap_report_hole( 448 struct xfs_inode *ip, 449 struct getbmapx *bmv, 450 struct kgetbmap *out, 451 int64_t bmv_end, 452 xfs_fileoff_t bno, 453 xfs_fileoff_t end) 454 { 455 struct kgetbmap *p = out + bmv->bmv_entries; 456 457 if (bmv->bmv_iflags & BMV_IF_NO_HOLES) 458 return; 459 460 p->bmv_block = -1; 461 p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, bno); 462 p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, end - bno); 463 464 bmv->bmv_offset = p->bmv_offset + p->bmv_length; 465 bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset); 466 bmv->bmv_entries++; 467 } 468 469 static inline bool 470 xfs_getbmap_full( 471 struct getbmapx *bmv) 472 { 473 return bmv->bmv_length == 0 || bmv->bmv_entries >= bmv->bmv_count - 1; 474 } 475 476 static bool 477 xfs_getbmap_next_rec( 478 struct xfs_bmbt_irec *rec, 479 xfs_fileoff_t total_end) 480 { 481 xfs_fileoff_t end = rec->br_startoff + rec->br_blockcount; 482 483 if (end == total_end) 484 return false; 485 486 rec->br_startoff += rec->br_blockcount; 487 if (!isnullstartblock(rec->br_startblock) && 488 rec->br_startblock != DELAYSTARTBLOCK) 489 rec->br_startblock += rec->br_blockcount; 490 rec->br_blockcount = total_end - end; 491 return true; 492 } 493 494 /* 495 * Get inode's extents as described in bmv, and format for output. 496 * Calls formatter to fill the user's buffer until all extents 497 * are mapped, until the passed-in bmv->bmv_count slots have 498 * been filled, or until the formatter short-circuits the loop, 499 * if it is tracking filled-in extents on its own. 500 */ 501 int /* error code */ 502 xfs_getbmap( 503 struct xfs_inode *ip, 504 struct getbmapx *bmv, /* user bmap structure */ 505 struct kgetbmap *out) 506 { 507 struct xfs_mount *mp = ip->i_mount; 508 int iflags = bmv->bmv_iflags; 509 int whichfork, lock, error = 0; 510 int64_t bmv_end, max_len; 511 xfs_fileoff_t bno, first_bno; 512 struct xfs_ifork *ifp; 513 struct xfs_bmbt_irec got, rec; 514 xfs_filblks_t len; 515 struct xfs_iext_cursor icur; 516 517 if (bmv->bmv_iflags & ~BMV_IF_VALID) 518 return -EINVAL; 519 #ifndef DEBUG 520 /* Only allow CoW fork queries if we're debugging. */ 521 if (iflags & BMV_IF_COWFORK) 522 return -EINVAL; 523 #endif 524 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK)) 525 return -EINVAL; 526 527 if (bmv->bmv_length < -1) 528 return -EINVAL; 529 bmv->bmv_entries = 0; 530 if (bmv->bmv_length == 0) 531 return 0; 532 533 if (iflags & BMV_IF_ATTRFORK) 534 whichfork = XFS_ATTR_FORK; 535 else if (iflags & BMV_IF_COWFORK) 536 whichfork = XFS_COW_FORK; 537 else 538 whichfork = XFS_DATA_FORK; 539 ifp = XFS_IFORK_PTR(ip, whichfork); 540 541 xfs_ilock(ip, XFS_IOLOCK_SHARED); 542 switch (whichfork) { 543 case XFS_ATTR_FORK: 544 if (!XFS_IFORK_Q(ip)) 545 goto out_unlock_iolock; 546 547 max_len = 1LL << 32; 548 lock = xfs_ilock_attr_map_shared(ip); 549 break; 550 case XFS_COW_FORK: 551 /* No CoW fork? Just return */ 552 if (!ifp) 553 goto out_unlock_iolock; 554 555 if (xfs_get_cowextsz_hint(ip)) 556 max_len = mp->m_super->s_maxbytes; 557 else 558 max_len = XFS_ISIZE(ip); 559 560 lock = XFS_ILOCK_SHARED; 561 xfs_ilock(ip, lock); 562 break; 563 case XFS_DATA_FORK: 564 if (!(iflags & BMV_IF_DELALLOC) && 565 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) { 566 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 567 if (error) 568 goto out_unlock_iolock; 569 570 /* 571 * Even after flushing the inode, there can still be 572 * delalloc blocks on the inode beyond EOF due to 573 * speculative preallocation. These are not removed 574 * until the release function is called or the inode 575 * is inactivated. Hence we cannot assert here that 576 * ip->i_delayed_blks == 0. 577 */ 578 } 579 580 if (xfs_get_extsz_hint(ip) || 581 (ip->i_d.di_flags & 582 (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))) 583 max_len = mp->m_super->s_maxbytes; 584 else 585 max_len = XFS_ISIZE(ip); 586 587 lock = xfs_ilock_data_map_shared(ip); 588 break; 589 } 590 591 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 592 case XFS_DINODE_FMT_EXTENTS: 593 case XFS_DINODE_FMT_BTREE: 594 break; 595 case XFS_DINODE_FMT_LOCAL: 596 /* Local format inode forks report no extents. */ 597 goto out_unlock_ilock; 598 default: 599 error = -EINVAL; 600 goto out_unlock_ilock; 601 } 602 603 if (bmv->bmv_length == -1) { 604 max_len = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, max_len)); 605 bmv->bmv_length = max(0LL, max_len - bmv->bmv_offset); 606 } 607 608 bmv_end = bmv->bmv_offset + bmv->bmv_length; 609 610 first_bno = bno = XFS_BB_TO_FSBT(mp, bmv->bmv_offset); 611 len = XFS_BB_TO_FSB(mp, bmv->bmv_length); 612 613 if (!(ifp->if_flags & XFS_IFEXTENTS)) { 614 error = xfs_iread_extents(NULL, ip, whichfork); 615 if (error) 616 goto out_unlock_ilock; 617 } 618 619 if (!xfs_iext_lookup_extent(ip, ifp, bno, &icur, &got)) { 620 /* 621 * Report a whole-file hole if the delalloc flag is set to 622 * stay compatible with the old implementation. 623 */ 624 if (iflags & BMV_IF_DELALLOC) 625 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno, 626 XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); 627 goto out_unlock_ilock; 628 } 629 630 while (!xfs_getbmap_full(bmv)) { 631 xfs_trim_extent(&got, first_bno, len); 632 633 /* 634 * Report an entry for a hole if this extent doesn't directly 635 * follow the previous one. 636 */ 637 if (got.br_startoff > bno) { 638 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno, 639 got.br_startoff); 640 if (xfs_getbmap_full(bmv)) 641 break; 642 } 643 644 /* 645 * In order to report shared extents accurately, we report each 646 * distinct shared / unshared part of a single bmbt record with 647 * an individual getbmapx record. 648 */ 649 bno = got.br_startoff + got.br_blockcount; 650 rec = got; 651 do { 652 error = xfs_getbmap_report_one(ip, bmv, out, bmv_end, 653 &rec); 654 if (error || xfs_getbmap_full(bmv)) 655 goto out_unlock_ilock; 656 } while (xfs_getbmap_next_rec(&rec, bno)); 657 658 if (!xfs_iext_next_extent(ifp, &icur, &got)) { 659 xfs_fileoff_t end = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); 660 661 out[bmv->bmv_entries - 1].bmv_oflags |= BMV_OF_LAST; 662 663 if (whichfork != XFS_ATTR_FORK && bno < end && 664 !xfs_getbmap_full(bmv)) { 665 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, 666 bno, end); 667 } 668 break; 669 } 670 671 if (bno >= first_bno + len) 672 break; 673 } 674 675 out_unlock_ilock: 676 xfs_iunlock(ip, lock); 677 out_unlock_iolock: 678 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 679 return error; 680 } 681 682 /* 683 * Dead simple method of punching delalyed allocation blocks from a range in 684 * the inode. This will always punch out both the start and end blocks, even 685 * if the ranges only partially overlap them, so it is up to the caller to 686 * ensure that partial blocks are not passed in. 687 */ 688 int 689 xfs_bmap_punch_delalloc_range( 690 struct xfs_inode *ip, 691 xfs_fileoff_t start_fsb, 692 xfs_fileoff_t length) 693 { 694 struct xfs_ifork *ifp = &ip->i_df; 695 xfs_fileoff_t end_fsb = start_fsb + length; 696 struct xfs_bmbt_irec got, del; 697 struct xfs_iext_cursor icur; 698 int error = 0; 699 700 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 701 702 xfs_ilock(ip, XFS_ILOCK_EXCL); 703 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 704 goto out_unlock; 705 706 while (got.br_startoff + got.br_blockcount > start_fsb) { 707 del = got; 708 xfs_trim_extent(&del, start_fsb, length); 709 710 /* 711 * A delete can push the cursor forward. Step back to the 712 * previous extent on non-delalloc or extents outside the 713 * target range. 714 */ 715 if (!del.br_blockcount || 716 !isnullstartblock(del.br_startblock)) { 717 if (!xfs_iext_prev_extent(ifp, &icur, &got)) 718 break; 719 continue; 720 } 721 722 error = xfs_bmap_del_extent_delay(ip, XFS_DATA_FORK, &icur, 723 &got, &del); 724 if (error || !xfs_iext_get_extent(ifp, &icur, &got)) 725 break; 726 } 727 728 out_unlock: 729 xfs_iunlock(ip, XFS_ILOCK_EXCL); 730 return error; 731 } 732 733 /* 734 * Test whether it is appropriate to check an inode for and free post EOF 735 * blocks. The 'force' parameter determines whether we should also consider 736 * regular files that are marked preallocated or append-only. 737 */ 738 bool 739 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 740 { 741 /* prealloc/delalloc exists only on regular files */ 742 if (!S_ISREG(VFS_I(ip)->i_mode)) 743 return false; 744 745 /* 746 * Zero sized files with no cached pages and delalloc blocks will not 747 * have speculative prealloc/delalloc blocks to remove. 748 */ 749 if (VFS_I(ip)->i_size == 0 && 750 VFS_I(ip)->i_mapping->nrpages == 0 && 751 ip->i_delayed_blks == 0) 752 return false; 753 754 /* If we haven't read in the extent list, then don't do it now. */ 755 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 756 return false; 757 758 /* 759 * Do not free real preallocated or append-only files unless the file 760 * has delalloc blocks and we are forced to remove them. 761 */ 762 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 763 if (!force || ip->i_delayed_blks == 0) 764 return false; 765 766 return true; 767 } 768 769 /* 770 * This is called to free any blocks beyond eof. The caller must hold 771 * IOLOCK_EXCL unless we are in the inode reclaim path and have the only 772 * reference to the inode. 773 */ 774 int 775 xfs_free_eofblocks( 776 struct xfs_inode *ip) 777 { 778 struct xfs_trans *tp; 779 int error; 780 xfs_fileoff_t end_fsb; 781 xfs_fileoff_t last_fsb; 782 xfs_filblks_t map_len; 783 int nimaps; 784 struct xfs_bmbt_irec imap; 785 struct xfs_mount *mp = ip->i_mount; 786 787 /* 788 * Figure out if there are any blocks beyond the end 789 * of the file. If not, then there is nothing to do. 790 */ 791 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); 792 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 793 if (last_fsb <= end_fsb) 794 return 0; 795 map_len = last_fsb - end_fsb; 796 797 nimaps = 1; 798 xfs_ilock(ip, XFS_ILOCK_SHARED); 799 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0); 800 xfs_iunlock(ip, XFS_ILOCK_SHARED); 801 802 /* 803 * If there are blocks after the end of file, truncate the file to its 804 * current size to free them up. 805 */ 806 if (!error && (nimaps != 0) && 807 (imap.br_startblock != HOLESTARTBLOCK || 808 ip->i_delayed_blks)) { 809 /* 810 * Attach the dquots to the inode up front. 811 */ 812 error = xfs_qm_dqattach(ip); 813 if (error) 814 return error; 815 816 /* wait on dio to ensure i_size has settled */ 817 inode_dio_wait(VFS_I(ip)); 818 819 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, 820 &tp); 821 if (error) { 822 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 823 return error; 824 } 825 826 xfs_ilock(ip, XFS_ILOCK_EXCL); 827 xfs_trans_ijoin(tp, ip, 0); 828 829 /* 830 * Do not update the on-disk file size. If we update the 831 * on-disk file size and then the system crashes before the 832 * contents of the file are flushed to disk then the files 833 * may be full of holes (ie NULL files bug). 834 */ 835 error = xfs_itruncate_extents_flags(&tp, ip, XFS_DATA_FORK, 836 XFS_ISIZE(ip), XFS_BMAPI_NODISCARD); 837 if (error) { 838 /* 839 * If we get an error at this point we simply don't 840 * bother truncating the file. 841 */ 842 xfs_trans_cancel(tp); 843 } else { 844 error = xfs_trans_commit(tp); 845 if (!error) 846 xfs_inode_clear_eofblocks_tag(ip); 847 } 848 849 xfs_iunlock(ip, XFS_ILOCK_EXCL); 850 } 851 return error; 852 } 853 854 int 855 xfs_alloc_file_space( 856 struct xfs_inode *ip, 857 xfs_off_t offset, 858 xfs_off_t len, 859 int alloc_type) 860 { 861 xfs_mount_t *mp = ip->i_mount; 862 xfs_off_t count; 863 xfs_filblks_t allocated_fsb; 864 xfs_filblks_t allocatesize_fsb; 865 xfs_extlen_t extsz, temp; 866 xfs_fileoff_t startoffset_fsb; 867 xfs_fileoff_t endoffset_fsb; 868 int nimaps; 869 int quota_flag; 870 int rt; 871 xfs_trans_t *tp; 872 xfs_bmbt_irec_t imaps[1], *imapp; 873 uint qblocks, resblks, resrtextents; 874 int error; 875 876 trace_xfs_alloc_file_space(ip); 877 878 if (XFS_FORCED_SHUTDOWN(mp)) 879 return -EIO; 880 881 error = xfs_qm_dqattach(ip); 882 if (error) 883 return error; 884 885 if (len <= 0) 886 return -EINVAL; 887 888 rt = XFS_IS_REALTIME_INODE(ip); 889 extsz = xfs_get_extsz_hint(ip); 890 891 count = len; 892 imapp = &imaps[0]; 893 nimaps = 1; 894 startoffset_fsb = XFS_B_TO_FSBT(mp, offset); 895 endoffset_fsb = XFS_B_TO_FSB(mp, offset + count); 896 allocatesize_fsb = endoffset_fsb - startoffset_fsb; 897 898 /* 899 * Allocate file space until done or until there is an error 900 */ 901 while (allocatesize_fsb && !error) { 902 xfs_fileoff_t s, e; 903 904 /* 905 * Determine space reservations for data/realtime. 906 */ 907 if (unlikely(extsz)) { 908 s = startoffset_fsb; 909 do_div(s, extsz); 910 s *= extsz; 911 e = startoffset_fsb + allocatesize_fsb; 912 div_u64_rem(startoffset_fsb, extsz, &temp); 913 if (temp) 914 e += temp; 915 div_u64_rem(e, extsz, &temp); 916 if (temp) 917 e += extsz - temp; 918 } else { 919 s = 0; 920 e = allocatesize_fsb; 921 } 922 923 /* 924 * The transaction reservation is limited to a 32-bit block 925 * count, hence we need to limit the number of blocks we are 926 * trying to reserve to avoid an overflow. We can't allocate 927 * more than @nimaps extents, and an extent is limited on disk 928 * to MAXEXTLEN (21 bits), so use that to enforce the limit. 929 */ 930 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); 931 if (unlikely(rt)) { 932 resrtextents = qblocks = resblks; 933 resrtextents /= mp->m_sb.sb_rextsize; 934 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 935 quota_flag = XFS_QMOPT_RES_RTBLKS; 936 } else { 937 resrtextents = 0; 938 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); 939 quota_flag = XFS_QMOPT_RES_REGBLKS; 940 } 941 942 /* 943 * Allocate and setup the transaction. 944 */ 945 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 946 resrtextents, 0, &tp); 947 948 /* 949 * Check for running out of space 950 */ 951 if (error) { 952 /* 953 * Free the transaction structure. 954 */ 955 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 956 break; 957 } 958 xfs_ilock(ip, XFS_ILOCK_EXCL); 959 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 960 0, quota_flag); 961 if (error) 962 goto error1; 963 964 xfs_trans_ijoin(tp, ip, 0); 965 966 error = xfs_bmapi_write(tp, ip, startoffset_fsb, 967 allocatesize_fsb, alloc_type, resblks, 968 imapp, &nimaps); 969 if (error) 970 goto error0; 971 972 /* 973 * Complete the transaction 974 */ 975 error = xfs_trans_commit(tp); 976 xfs_iunlock(ip, XFS_ILOCK_EXCL); 977 if (error) 978 break; 979 980 allocated_fsb = imapp->br_blockcount; 981 982 if (nimaps == 0) { 983 error = -ENOSPC; 984 break; 985 } 986 987 startoffset_fsb += allocated_fsb; 988 allocatesize_fsb -= allocated_fsb; 989 } 990 991 return error; 992 993 error0: /* unlock inode, unreserve quota blocks, cancel trans */ 994 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 995 996 error1: /* Just cancel transaction */ 997 xfs_trans_cancel(tp); 998 xfs_iunlock(ip, XFS_ILOCK_EXCL); 999 return error; 1000 } 1001 1002 static int 1003 xfs_unmap_extent( 1004 struct xfs_inode *ip, 1005 xfs_fileoff_t startoffset_fsb, 1006 xfs_filblks_t len_fsb, 1007 int *done) 1008 { 1009 struct xfs_mount *mp = ip->i_mount; 1010 struct xfs_trans *tp; 1011 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1012 int error; 1013 1014 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1015 if (error) { 1016 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1017 return error; 1018 } 1019 1020 xfs_ilock(ip, XFS_ILOCK_EXCL); 1021 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, 1022 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS); 1023 if (error) 1024 goto out_trans_cancel; 1025 1026 xfs_trans_ijoin(tp, ip, 0); 1027 1028 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, done); 1029 if (error) 1030 goto out_trans_cancel; 1031 1032 error = xfs_trans_commit(tp); 1033 out_unlock: 1034 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1035 return error; 1036 1037 out_trans_cancel: 1038 xfs_trans_cancel(tp); 1039 goto out_unlock; 1040 } 1041 1042 int 1043 xfs_flush_unmap_range( 1044 struct xfs_inode *ip, 1045 xfs_off_t offset, 1046 xfs_off_t len) 1047 { 1048 struct xfs_mount *mp = ip->i_mount; 1049 struct inode *inode = VFS_I(ip); 1050 xfs_off_t rounding, start, end; 1051 int error; 1052 1053 /* wait for the completion of any pending DIOs */ 1054 inode_dio_wait(inode); 1055 1056 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE); 1057 start = round_down(offset, rounding); 1058 end = round_up(offset + len, rounding) - 1; 1059 1060 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 1061 if (error) 1062 return error; 1063 truncate_pagecache_range(inode, start, end); 1064 return 0; 1065 } 1066 1067 int 1068 xfs_free_file_space( 1069 struct xfs_inode *ip, 1070 xfs_off_t offset, 1071 xfs_off_t len) 1072 { 1073 struct xfs_mount *mp = ip->i_mount; 1074 xfs_fileoff_t startoffset_fsb; 1075 xfs_fileoff_t endoffset_fsb; 1076 int done = 0, error; 1077 1078 trace_xfs_free_file_space(ip); 1079 1080 error = xfs_qm_dqattach(ip); 1081 if (error) 1082 return error; 1083 1084 if (len <= 0) /* if nothing being freed */ 1085 return 0; 1086 1087 error = xfs_flush_unmap_range(ip, offset, len); 1088 if (error) 1089 return error; 1090 1091 startoffset_fsb = XFS_B_TO_FSB(mp, offset); 1092 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); 1093 1094 /* 1095 * Need to zero the stuff we're not freeing, on disk. 1096 */ 1097 if (endoffset_fsb > startoffset_fsb) { 1098 while (!done) { 1099 error = xfs_unmap_extent(ip, startoffset_fsb, 1100 endoffset_fsb - startoffset_fsb, &done); 1101 if (error) 1102 return error; 1103 } 1104 } 1105 1106 /* 1107 * Now that we've unmap all full blocks we'll have to zero out any 1108 * partial block at the beginning and/or end. iomap_zero_range is smart 1109 * enough to skip any holes, including those we just created, but we 1110 * must take care not to zero beyond EOF and enlarge i_size. 1111 */ 1112 if (offset >= XFS_ISIZE(ip)) 1113 return 0; 1114 if (offset + len > XFS_ISIZE(ip)) 1115 len = XFS_ISIZE(ip) - offset; 1116 error = iomap_zero_range(VFS_I(ip), offset, len, NULL, &xfs_iomap_ops); 1117 if (error) 1118 return error; 1119 1120 /* 1121 * If we zeroed right up to EOF and EOF straddles a page boundary we 1122 * must make sure that the post-EOF area is also zeroed because the 1123 * page could be mmap'd and iomap_zero_range doesn't do that for us. 1124 * Writeback of the eof page will do this, albeit clumsily. 1125 */ 1126 if (offset + len >= XFS_ISIZE(ip) && offset_in_page(offset + len) > 0) { 1127 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 1128 round_down(offset + len, PAGE_SIZE), LLONG_MAX); 1129 } 1130 1131 return error; 1132 } 1133 1134 /* 1135 * Preallocate and zero a range of a file. This mechanism has the allocation 1136 * semantics of fallocate and in addition converts data in the range to zeroes. 1137 */ 1138 int 1139 xfs_zero_file_space( 1140 struct xfs_inode *ip, 1141 xfs_off_t offset, 1142 xfs_off_t len) 1143 { 1144 struct xfs_mount *mp = ip->i_mount; 1145 uint blksize; 1146 int error; 1147 1148 trace_xfs_zero_file_space(ip); 1149 1150 blksize = 1 << mp->m_sb.sb_blocklog; 1151 1152 /* 1153 * Punch a hole and prealloc the range. We use hole punch rather than 1154 * unwritten extent conversion for two reasons: 1155 * 1156 * 1.) Hole punch handles partial block zeroing for us. 1157 * 1158 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued 1159 * by virtue of the hole punch. 1160 */ 1161 error = xfs_free_file_space(ip, offset, len); 1162 if (error || xfs_is_always_cow_inode(ip)) 1163 return error; 1164 1165 return xfs_alloc_file_space(ip, round_down(offset, blksize), 1166 round_up(offset + len, blksize) - 1167 round_down(offset, blksize), 1168 XFS_BMAPI_PREALLOC); 1169 } 1170 1171 static int 1172 xfs_prepare_shift( 1173 struct xfs_inode *ip, 1174 loff_t offset) 1175 { 1176 int error; 1177 1178 /* 1179 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation 1180 * into the accessible region of the file. 1181 */ 1182 if (xfs_can_free_eofblocks(ip, true)) { 1183 error = xfs_free_eofblocks(ip); 1184 if (error) 1185 return error; 1186 } 1187 1188 /* 1189 * Writeback and invalidate cache for the remainder of the file as we're 1190 * about to shift down every extent from offset to EOF. 1191 */ 1192 error = xfs_flush_unmap_range(ip, offset, XFS_ISIZE(ip)); 1193 if (error) 1194 return error; 1195 1196 /* 1197 * Clean out anything hanging around in the cow fork now that 1198 * we've flushed all the dirty data out to disk to avoid having 1199 * CoW extents at the wrong offsets. 1200 */ 1201 if (xfs_inode_has_cow_data(ip)) { 1202 error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF, 1203 true); 1204 if (error) 1205 return error; 1206 } 1207 1208 return 0; 1209 } 1210 1211 /* 1212 * xfs_collapse_file_space() 1213 * This routine frees disk space and shift extent for the given file. 1214 * The first thing we do is to free data blocks in the specified range 1215 * by calling xfs_free_file_space(). It would also sync dirty data 1216 * and invalidate page cache over the region on which collapse range 1217 * is working. And Shift extent records to the left to cover a hole. 1218 * RETURNS: 1219 * 0 on success 1220 * errno on error 1221 * 1222 */ 1223 int 1224 xfs_collapse_file_space( 1225 struct xfs_inode *ip, 1226 xfs_off_t offset, 1227 xfs_off_t len) 1228 { 1229 struct xfs_mount *mp = ip->i_mount; 1230 struct xfs_trans *tp; 1231 int error; 1232 xfs_fileoff_t next_fsb = XFS_B_TO_FSB(mp, offset + len); 1233 xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len); 1234 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1235 bool done = false; 1236 1237 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1238 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); 1239 1240 trace_xfs_collapse_file_space(ip); 1241 1242 error = xfs_free_file_space(ip, offset, len); 1243 if (error) 1244 return error; 1245 1246 error = xfs_prepare_shift(ip, offset); 1247 if (error) 1248 return error; 1249 1250 while (!error && !done) { 1251 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, 1252 &tp); 1253 if (error) 1254 break; 1255 1256 xfs_ilock(ip, XFS_ILOCK_EXCL); 1257 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, 1258 ip->i_gdquot, ip->i_pdquot, resblks, 0, 1259 XFS_QMOPT_RES_REGBLKS); 1260 if (error) 1261 goto out_trans_cancel; 1262 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1263 1264 error = xfs_bmap_collapse_extents(tp, ip, &next_fsb, shift_fsb, 1265 &done); 1266 if (error) 1267 goto out_trans_cancel; 1268 1269 error = xfs_trans_commit(tp); 1270 } 1271 1272 return error; 1273 1274 out_trans_cancel: 1275 xfs_trans_cancel(tp); 1276 return error; 1277 } 1278 1279 /* 1280 * xfs_insert_file_space() 1281 * This routine create hole space by shifting extents for the given file. 1282 * The first thing we do is to sync dirty data and invalidate page cache 1283 * over the region on which insert range is working. And split an extent 1284 * to two extents at given offset by calling xfs_bmap_split_extent. 1285 * And shift all extent records which are laying between [offset, 1286 * last allocated extent] to the right to reserve hole range. 1287 * RETURNS: 1288 * 0 on success 1289 * errno on error 1290 */ 1291 int 1292 xfs_insert_file_space( 1293 struct xfs_inode *ip, 1294 loff_t offset, 1295 loff_t len) 1296 { 1297 struct xfs_mount *mp = ip->i_mount; 1298 struct xfs_trans *tp; 1299 int error; 1300 xfs_fileoff_t stop_fsb = XFS_B_TO_FSB(mp, offset); 1301 xfs_fileoff_t next_fsb = NULLFSBLOCK; 1302 xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len); 1303 bool done = false; 1304 1305 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1306 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); 1307 1308 trace_xfs_insert_file_space(ip); 1309 1310 error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb); 1311 if (error) 1312 return error; 1313 1314 error = xfs_prepare_shift(ip, offset); 1315 if (error) 1316 return error; 1317 1318 /* 1319 * The extent shifting code works on extent granularity. So, if stop_fsb 1320 * is not the starting block of extent, we need to split the extent at 1321 * stop_fsb. 1322 */ 1323 error = xfs_bmap_split_extent(ip, stop_fsb); 1324 if (error) 1325 return error; 1326 1327 while (!error && !done) { 1328 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, 1329 &tp); 1330 if (error) 1331 break; 1332 1333 xfs_ilock(ip, XFS_ILOCK_EXCL); 1334 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1335 error = xfs_bmap_insert_extents(tp, ip, &next_fsb, shift_fsb, 1336 &done, stop_fsb); 1337 if (error) 1338 goto out_trans_cancel; 1339 1340 error = xfs_trans_commit(tp); 1341 } 1342 1343 return error; 1344 1345 out_trans_cancel: 1346 xfs_trans_cancel(tp); 1347 return error; 1348 } 1349 1350 /* 1351 * We need to check that the format of the data fork in the temporary inode is 1352 * valid for the target inode before doing the swap. This is not a problem with 1353 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized 1354 * data fork depending on the space the attribute fork is taking so we can get 1355 * invalid formats on the target inode. 1356 * 1357 * E.g. target has space for 7 extents in extent format, temp inode only has 1358 * space for 6. If we defragment down to 7 extents, then the tmp format is a 1359 * btree, but when swapped it needs to be in extent format. Hence we can't just 1360 * blindly swap data forks on attr2 filesystems. 1361 * 1362 * Note that we check the swap in both directions so that we don't end up with 1363 * a corrupt temporary inode, either. 1364 * 1365 * Note that fixing the way xfs_fsr sets up the attribute fork in the source 1366 * inode will prevent this situation from occurring, so all we do here is 1367 * reject and log the attempt. basically we are putting the responsibility on 1368 * userspace to get this right. 1369 */ 1370 static int 1371 xfs_swap_extents_check_format( 1372 struct xfs_inode *ip, /* target inode */ 1373 struct xfs_inode *tip) /* tmp inode */ 1374 { 1375 1376 /* Should never get a local format */ 1377 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL || 1378 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL) 1379 return -EINVAL; 1380 1381 /* 1382 * if the target inode has less extents that then temporary inode then 1383 * why did userspace call us? 1384 */ 1385 if (ip->i_d.di_nextents < tip->i_d.di_nextents) 1386 return -EINVAL; 1387 1388 /* 1389 * If we have to use the (expensive) rmap swap method, we can 1390 * handle any number of extents and any format. 1391 */ 1392 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb)) 1393 return 0; 1394 1395 /* 1396 * if the target inode is in extent form and the temp inode is in btree 1397 * form then we will end up with the target inode in the wrong format 1398 * as we already know there are less extents in the temp inode. 1399 */ 1400 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1401 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1402 return -EINVAL; 1403 1404 /* Check temp in extent form to max in target */ 1405 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1406 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) > 1407 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1408 return -EINVAL; 1409 1410 /* Check target in extent form to max in temp */ 1411 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1412 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) > 1413 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1414 return -EINVAL; 1415 1416 /* 1417 * If we are in a btree format, check that the temp root block will fit 1418 * in the target and that it has enough extents to be in btree format 1419 * in the target. 1420 * 1421 * Note that we have to be careful to allow btree->extent conversions 1422 * (a common defrag case) which will occur when the temp inode is in 1423 * extent format... 1424 */ 1425 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1426 if (XFS_IFORK_Q(ip) && 1427 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip)) 1428 return -EINVAL; 1429 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <= 1430 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1431 return -EINVAL; 1432 } 1433 1434 /* Reciprocal target->temp btree format checks */ 1435 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1436 if (XFS_IFORK_Q(tip) && 1437 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) 1438 return -EINVAL; 1439 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <= 1440 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1441 return -EINVAL; 1442 } 1443 1444 return 0; 1445 } 1446 1447 static int 1448 xfs_swap_extent_flush( 1449 struct xfs_inode *ip) 1450 { 1451 int error; 1452 1453 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 1454 if (error) 1455 return error; 1456 truncate_pagecache_range(VFS_I(ip), 0, -1); 1457 1458 /* Verify O_DIRECT for ftmp */ 1459 if (VFS_I(ip)->i_mapping->nrpages) 1460 return -EINVAL; 1461 return 0; 1462 } 1463 1464 /* 1465 * Move extents from one file to another, when rmap is enabled. 1466 */ 1467 STATIC int 1468 xfs_swap_extent_rmap( 1469 struct xfs_trans **tpp, 1470 struct xfs_inode *ip, 1471 struct xfs_inode *tip) 1472 { 1473 struct xfs_trans *tp = *tpp; 1474 struct xfs_bmbt_irec irec; 1475 struct xfs_bmbt_irec uirec; 1476 struct xfs_bmbt_irec tirec; 1477 xfs_fileoff_t offset_fsb; 1478 xfs_fileoff_t end_fsb; 1479 xfs_filblks_t count_fsb; 1480 int error; 1481 xfs_filblks_t ilen; 1482 xfs_filblks_t rlen; 1483 int nimaps; 1484 uint64_t tip_flags2; 1485 1486 /* 1487 * If the source file has shared blocks, we must flag the donor 1488 * file as having shared blocks so that we get the shared-block 1489 * rmap functions when we go to fix up the rmaps. The flags 1490 * will be switch for reals later. 1491 */ 1492 tip_flags2 = tip->i_d.di_flags2; 1493 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) 1494 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; 1495 1496 offset_fsb = 0; 1497 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip))); 1498 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); 1499 1500 while (count_fsb) { 1501 /* Read extent from the donor file */ 1502 nimaps = 1; 1503 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec, 1504 &nimaps, 0); 1505 if (error) 1506 goto out; 1507 ASSERT(nimaps == 1); 1508 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK); 1509 1510 trace_xfs_swap_extent_rmap_remap(tip, &tirec); 1511 ilen = tirec.br_blockcount; 1512 1513 /* Unmap the old blocks in the source file. */ 1514 while (tirec.br_blockcount) { 1515 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1516 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec); 1517 1518 /* Read extent from the source file */ 1519 nimaps = 1; 1520 error = xfs_bmapi_read(ip, tirec.br_startoff, 1521 tirec.br_blockcount, &irec, 1522 &nimaps, 0); 1523 if (error) 1524 goto out; 1525 ASSERT(nimaps == 1); 1526 ASSERT(tirec.br_startoff == irec.br_startoff); 1527 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec); 1528 1529 /* Trim the extent. */ 1530 uirec = tirec; 1531 uirec.br_blockcount = rlen = min_t(xfs_filblks_t, 1532 tirec.br_blockcount, 1533 irec.br_blockcount); 1534 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec); 1535 1536 /* Remove the mapping from the donor file. */ 1537 xfs_bmap_unmap_extent(tp, tip, &uirec); 1538 1539 /* Remove the mapping from the source file. */ 1540 xfs_bmap_unmap_extent(tp, ip, &irec); 1541 1542 /* Map the donor file's blocks into the source file. */ 1543 xfs_bmap_map_extent(tp, ip, &uirec); 1544 1545 /* Map the source file's blocks into the donor file. */ 1546 xfs_bmap_map_extent(tp, tip, &irec); 1547 1548 error = xfs_defer_finish(tpp); 1549 tp = *tpp; 1550 if (error) 1551 goto out; 1552 1553 tirec.br_startoff += rlen; 1554 if (tirec.br_startblock != HOLESTARTBLOCK && 1555 tirec.br_startblock != DELAYSTARTBLOCK) 1556 tirec.br_startblock += rlen; 1557 tirec.br_blockcount -= rlen; 1558 } 1559 1560 /* Roll on... */ 1561 count_fsb -= ilen; 1562 offset_fsb += ilen; 1563 } 1564 1565 tip->i_d.di_flags2 = tip_flags2; 1566 return 0; 1567 1568 out: 1569 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_); 1570 tip->i_d.di_flags2 = tip_flags2; 1571 return error; 1572 } 1573 1574 /* Swap the extents of two files by swapping data forks. */ 1575 STATIC int 1576 xfs_swap_extent_forks( 1577 struct xfs_trans *tp, 1578 struct xfs_inode *ip, 1579 struct xfs_inode *tip, 1580 int *src_log_flags, 1581 int *target_log_flags) 1582 { 1583 xfs_filblks_t aforkblks = 0; 1584 xfs_filblks_t taforkblks = 0; 1585 xfs_extnum_t junk; 1586 uint64_t tmp; 1587 int error; 1588 1589 /* 1590 * Count the number of extended attribute blocks 1591 */ 1592 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) && 1593 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1594 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk, 1595 &aforkblks); 1596 if (error) 1597 return error; 1598 } 1599 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) && 1600 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1601 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk, 1602 &taforkblks); 1603 if (error) 1604 return error; 1605 } 1606 1607 /* 1608 * Btree format (v3) inodes have the inode number stamped in the bmbt 1609 * block headers. We can't start changing the bmbt blocks until the 1610 * inode owner change is logged so recovery does the right thing in the 1611 * event of a crash. Set the owner change log flags now and leave the 1612 * bmbt scan as the last step. 1613 */ 1614 if (ip->i_d.di_version == 3 && 1615 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1616 (*target_log_flags) |= XFS_ILOG_DOWNER; 1617 if (tip->i_d.di_version == 3 && 1618 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1619 (*src_log_flags) |= XFS_ILOG_DOWNER; 1620 1621 /* 1622 * Swap the data forks of the inodes 1623 */ 1624 swap(ip->i_df, tip->i_df); 1625 1626 /* 1627 * Fix the on-disk inode values 1628 */ 1629 tmp = (uint64_t)ip->i_d.di_nblocks; 1630 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks; 1631 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks; 1632 1633 swap(ip->i_d.di_nextents, tip->i_d.di_nextents); 1634 swap(ip->i_d.di_format, tip->i_d.di_format); 1635 1636 /* 1637 * The extents in the source inode could still contain speculative 1638 * preallocation beyond EOF (e.g. the file is open but not modified 1639 * while defrag is in progress). In that case, we need to copy over the 1640 * number of delalloc blocks the data fork in the source inode is 1641 * tracking beyond EOF so that when the fork is truncated away when the 1642 * temporary inode is unlinked we don't underrun the i_delayed_blks 1643 * counter on that inode. 1644 */ 1645 ASSERT(tip->i_delayed_blks == 0); 1646 tip->i_delayed_blks = ip->i_delayed_blks; 1647 ip->i_delayed_blks = 0; 1648 1649 switch (ip->i_d.di_format) { 1650 case XFS_DINODE_FMT_EXTENTS: 1651 (*src_log_flags) |= XFS_ILOG_DEXT; 1652 break; 1653 case XFS_DINODE_FMT_BTREE: 1654 ASSERT(ip->i_d.di_version < 3 || 1655 (*src_log_flags & XFS_ILOG_DOWNER)); 1656 (*src_log_flags) |= XFS_ILOG_DBROOT; 1657 break; 1658 } 1659 1660 switch (tip->i_d.di_format) { 1661 case XFS_DINODE_FMT_EXTENTS: 1662 (*target_log_flags) |= XFS_ILOG_DEXT; 1663 break; 1664 case XFS_DINODE_FMT_BTREE: 1665 (*target_log_flags) |= XFS_ILOG_DBROOT; 1666 ASSERT(tip->i_d.di_version < 3 || 1667 (*target_log_flags & XFS_ILOG_DOWNER)); 1668 break; 1669 } 1670 1671 return 0; 1672 } 1673 1674 /* 1675 * Fix up the owners of the bmbt blocks to refer to the current inode. The 1676 * change owner scan attempts to order all modified buffers in the current 1677 * transaction. In the event of ordered buffer failure, the offending buffer is 1678 * physically logged as a fallback and the scan returns -EAGAIN. We must roll 1679 * the transaction in this case to replenish the fallback log reservation and 1680 * restart the scan. This process repeats until the scan completes. 1681 */ 1682 static int 1683 xfs_swap_change_owner( 1684 struct xfs_trans **tpp, 1685 struct xfs_inode *ip, 1686 struct xfs_inode *tmpip) 1687 { 1688 int error; 1689 struct xfs_trans *tp = *tpp; 1690 1691 do { 1692 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino, 1693 NULL); 1694 /* success or fatal error */ 1695 if (error != -EAGAIN) 1696 break; 1697 1698 error = xfs_trans_roll(tpp); 1699 if (error) 1700 break; 1701 tp = *tpp; 1702 1703 /* 1704 * Redirty both inodes so they can relog and keep the log tail 1705 * moving forward. 1706 */ 1707 xfs_trans_ijoin(tp, ip, 0); 1708 xfs_trans_ijoin(tp, tmpip, 0); 1709 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1710 xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE); 1711 } while (true); 1712 1713 return error; 1714 } 1715 1716 int 1717 xfs_swap_extents( 1718 struct xfs_inode *ip, /* target inode */ 1719 struct xfs_inode *tip, /* tmp inode */ 1720 struct xfs_swapext *sxp) 1721 { 1722 struct xfs_mount *mp = ip->i_mount; 1723 struct xfs_trans *tp; 1724 struct xfs_bstat *sbp = &sxp->sx_stat; 1725 int src_log_flags, target_log_flags; 1726 int error = 0; 1727 int lock_flags; 1728 uint64_t f; 1729 int resblks = 0; 1730 1731 /* 1732 * Lock the inodes against other IO, page faults and truncate to 1733 * begin with. Then we can ensure the inodes are flushed and have no 1734 * page cache safely. Once we have done this we can take the ilocks and 1735 * do the rest of the checks. 1736 */ 1737 lock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 1738 lock_flags = XFS_MMAPLOCK_EXCL; 1739 xfs_lock_two_inodes(ip, XFS_MMAPLOCK_EXCL, tip, XFS_MMAPLOCK_EXCL); 1740 1741 /* Verify that both files have the same format */ 1742 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) { 1743 error = -EINVAL; 1744 goto out_unlock; 1745 } 1746 1747 /* Verify both files are either real-time or non-realtime */ 1748 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { 1749 error = -EINVAL; 1750 goto out_unlock; 1751 } 1752 1753 error = xfs_swap_extent_flush(ip); 1754 if (error) 1755 goto out_unlock; 1756 error = xfs_swap_extent_flush(tip); 1757 if (error) 1758 goto out_unlock; 1759 1760 if (xfs_inode_has_cow_data(tip)) { 1761 error = xfs_reflink_cancel_cow_range(tip, 0, NULLFILEOFF, true); 1762 if (error) 1763 return error; 1764 } 1765 1766 /* 1767 * Extent "swapping" with rmap requires a permanent reservation and 1768 * a block reservation because it's really just a remap operation 1769 * performed with log redo items! 1770 */ 1771 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 1772 int w = XFS_DATA_FORK; 1773 uint32_t ipnext = XFS_IFORK_NEXTENTS(ip, w); 1774 uint32_t tipnext = XFS_IFORK_NEXTENTS(tip, w); 1775 1776 /* 1777 * Conceptually this shouldn't affect the shape of either bmbt, 1778 * but since we atomically move extents one by one, we reserve 1779 * enough space to rebuild both trees. 1780 */ 1781 resblks = XFS_SWAP_RMAP_SPACE_RES(mp, ipnext, w); 1782 resblks += XFS_SWAP_RMAP_SPACE_RES(mp, tipnext, w); 1783 1784 /* 1785 * Handle the corner case where either inode might straddle the 1786 * btree format boundary. If so, the inode could bounce between 1787 * btree <-> extent format on unmap -> remap cycles, freeing and 1788 * allocating a bmapbt block each time. 1789 */ 1790 if (ipnext == (XFS_IFORK_MAXEXT(ip, w) + 1)) 1791 resblks += XFS_IFORK_MAXEXT(ip, w); 1792 if (tipnext == (XFS_IFORK_MAXEXT(tip, w) + 1)) 1793 resblks += XFS_IFORK_MAXEXT(tip, w); 1794 } 1795 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1796 if (error) 1797 goto out_unlock; 1798 1799 /* 1800 * Lock and join the inodes to the tansaction so that transaction commit 1801 * or cancel will unlock the inodes from this point onwards. 1802 */ 1803 xfs_lock_two_inodes(ip, XFS_ILOCK_EXCL, tip, XFS_ILOCK_EXCL); 1804 lock_flags |= XFS_ILOCK_EXCL; 1805 xfs_trans_ijoin(tp, ip, 0); 1806 xfs_trans_ijoin(tp, tip, 0); 1807 1808 1809 /* Verify all data are being swapped */ 1810 if (sxp->sx_offset != 0 || 1811 sxp->sx_length != ip->i_d.di_size || 1812 sxp->sx_length != tip->i_d.di_size) { 1813 error = -EFAULT; 1814 goto out_trans_cancel; 1815 } 1816 1817 trace_xfs_swap_extent_before(ip, 0); 1818 trace_xfs_swap_extent_before(tip, 1); 1819 1820 /* check inode formats now that data is flushed */ 1821 error = xfs_swap_extents_check_format(ip, tip); 1822 if (error) { 1823 xfs_notice(mp, 1824 "%s: inode 0x%llx format is incompatible for exchanging.", 1825 __func__, ip->i_ino); 1826 goto out_trans_cancel; 1827 } 1828 1829 /* 1830 * Compare the current change & modify times with that 1831 * passed in. If they differ, we abort this swap. 1832 * This is the mechanism used to ensure the calling 1833 * process that the file was not changed out from 1834 * under it. 1835 */ 1836 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || 1837 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || 1838 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || 1839 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { 1840 error = -EBUSY; 1841 goto out_trans_cancel; 1842 } 1843 1844 /* 1845 * Note the trickiness in setting the log flags - we set the owner log 1846 * flag on the opposite inode (i.e. the inode we are setting the new 1847 * owner to be) because once we swap the forks and log that, log 1848 * recovery is going to see the fork as owned by the swapped inode, 1849 * not the pre-swapped inodes. 1850 */ 1851 src_log_flags = XFS_ILOG_CORE; 1852 target_log_flags = XFS_ILOG_CORE; 1853 1854 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) 1855 error = xfs_swap_extent_rmap(&tp, ip, tip); 1856 else 1857 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags, 1858 &target_log_flags); 1859 if (error) 1860 goto out_trans_cancel; 1861 1862 /* Do we have to swap reflink flags? */ 1863 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^ 1864 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) { 1865 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 1866 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1867 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 1868 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1869 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK; 1870 } 1871 1872 /* Swap the cow forks. */ 1873 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1874 ASSERT(ip->i_cformat == XFS_DINODE_FMT_EXTENTS); 1875 ASSERT(tip->i_cformat == XFS_DINODE_FMT_EXTENTS); 1876 1877 swap(ip->i_cnextents, tip->i_cnextents); 1878 swap(ip->i_cowfp, tip->i_cowfp); 1879 1880 if (ip->i_cowfp && ip->i_cowfp->if_bytes) 1881 xfs_inode_set_cowblocks_tag(ip); 1882 else 1883 xfs_inode_clear_cowblocks_tag(ip); 1884 if (tip->i_cowfp && tip->i_cowfp->if_bytes) 1885 xfs_inode_set_cowblocks_tag(tip); 1886 else 1887 xfs_inode_clear_cowblocks_tag(tip); 1888 } 1889 1890 xfs_trans_log_inode(tp, ip, src_log_flags); 1891 xfs_trans_log_inode(tp, tip, target_log_flags); 1892 1893 /* 1894 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems 1895 * have inode number owner values in the bmbt blocks that still refer to 1896 * the old inode. Scan each bmbt to fix up the owner values with the 1897 * inode number of the current inode. 1898 */ 1899 if (src_log_flags & XFS_ILOG_DOWNER) { 1900 error = xfs_swap_change_owner(&tp, ip, tip); 1901 if (error) 1902 goto out_trans_cancel; 1903 } 1904 if (target_log_flags & XFS_ILOG_DOWNER) { 1905 error = xfs_swap_change_owner(&tp, tip, ip); 1906 if (error) 1907 goto out_trans_cancel; 1908 } 1909 1910 /* 1911 * If this is a synchronous mount, make sure that the 1912 * transaction goes to disk before returning to the user. 1913 */ 1914 if (mp->m_flags & XFS_MOUNT_WSYNC) 1915 xfs_trans_set_sync(tp); 1916 1917 error = xfs_trans_commit(tp); 1918 1919 trace_xfs_swap_extent_after(ip, 0); 1920 trace_xfs_swap_extent_after(tip, 1); 1921 1922 out_unlock: 1923 xfs_iunlock(ip, lock_flags); 1924 xfs_iunlock(tip, lock_flags); 1925 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 1926 return error; 1927 1928 out_trans_cancel: 1929 xfs_trans_cancel(tp); 1930 goto out_unlock; 1931 } 1932