1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * Copyright (c) 2012 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_shared.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_bit.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_inode.h" 29 #include "xfs_btree.h" 30 #include "xfs_trans.h" 31 #include "xfs_extfree_item.h" 32 #include "xfs_alloc.h" 33 #include "xfs_bmap.h" 34 #include "xfs_bmap_util.h" 35 #include "xfs_bmap_btree.h" 36 #include "xfs_rtalloc.h" 37 #include "xfs_error.h" 38 #include "xfs_quota.h" 39 #include "xfs_trans_space.h" 40 #include "xfs_trace.h" 41 #include "xfs_icache.h" 42 #include "xfs_log.h" 43 44 /* Kernel only BMAP related definitions and functions */ 45 46 /* 47 * Convert the given file system block to a disk block. We have to treat it 48 * differently based on whether the file is a real time file or not, because the 49 * bmap code does. 50 */ 51 xfs_daddr_t 52 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) 53 { 54 return (XFS_IS_REALTIME_INODE(ip) ? \ 55 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \ 56 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb))); 57 } 58 59 /* 60 * Routine to zero an extent on disk allocated to the specific inode. 61 * 62 * The VFS functions take a linearised filesystem block offset, so we have to 63 * convert the sparse xfs fsb to the right format first. 64 * VFS types are real funky, too. 65 */ 66 int 67 xfs_zero_extent( 68 struct xfs_inode *ip, 69 xfs_fsblock_t start_fsb, 70 xfs_off_t count_fsb) 71 { 72 struct xfs_mount *mp = ip->i_mount; 73 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb); 74 sector_t block = XFS_BB_TO_FSBT(mp, sector); 75 76 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)), 77 block << (mp->m_super->s_blocksize_bits - 9), 78 count_fsb << (mp->m_super->s_blocksize_bits - 9), 79 GFP_NOFS, true); 80 } 81 82 /* Sort bmap items by AG. */ 83 static int 84 xfs_bmap_free_list_cmp( 85 void *priv, 86 struct list_head *a, 87 struct list_head *b) 88 { 89 struct xfs_mount *mp = priv; 90 struct xfs_bmap_free_item *ra; 91 struct xfs_bmap_free_item *rb; 92 93 ra = container_of(a, struct xfs_bmap_free_item, xbfi_list); 94 rb = container_of(b, struct xfs_bmap_free_item, xbfi_list); 95 return XFS_FSB_TO_AGNO(mp, ra->xbfi_startblock) - 96 XFS_FSB_TO_AGNO(mp, rb->xbfi_startblock); 97 } 98 99 /* 100 * Routine to be called at transaction's end by xfs_bmapi, xfs_bunmapi 101 * caller. Frees all the extents that need freeing, which must be done 102 * last due to locking considerations. We never free any extents in 103 * the first transaction. 104 * 105 * If an inode *ip is provided, rejoin it to the transaction if 106 * the transaction was committed. 107 */ 108 int /* error */ 109 xfs_bmap_finish( 110 struct xfs_trans **tp, /* transaction pointer addr */ 111 struct xfs_bmap_free *flist, /* i/o: list extents to free */ 112 struct xfs_inode *ip) 113 { 114 struct xfs_efd_log_item *efd; /* extent free data */ 115 struct xfs_efi_log_item *efi; /* extent free intention */ 116 int error; /* error return value */ 117 int committed;/* xact committed or not */ 118 struct xfs_bmap_free_item *free; /* free extent item */ 119 120 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES); 121 if (flist->xbf_count == 0) 122 return 0; 123 124 list_sort((*tp)->t_mountp, &flist->xbf_flist, xfs_bmap_free_list_cmp); 125 126 efi = xfs_trans_get_efi(*tp, flist->xbf_count); 127 list_for_each_entry(free, &flist->xbf_flist, xbfi_list) 128 xfs_trans_log_efi_extent(*tp, efi, free->xbfi_startblock, 129 free->xbfi_blockcount); 130 131 error = __xfs_trans_roll(tp, ip, &committed); 132 if (error) { 133 /* 134 * If the transaction was committed, drop the EFD reference 135 * since we're bailing out of here. The other reference is 136 * dropped when the EFI hits the AIL. 137 * 138 * If the transaction was not committed, the EFI is freed by the 139 * EFI item unlock handler on abort. Also, we have a new 140 * transaction so we should return committed=1 even though we're 141 * returning an error. 142 */ 143 if (committed) { 144 xfs_efi_release(efi); 145 xfs_force_shutdown((*tp)->t_mountp, 146 SHUTDOWN_META_IO_ERROR); 147 } 148 return error; 149 } 150 151 /* 152 * Get an EFD and free each extent in the list, logging to the EFD in 153 * the process. The remaining bmap free list is cleaned up by the caller 154 * on error. 155 */ 156 efd = xfs_trans_get_efd(*tp, efi, flist->xbf_count); 157 while (!list_empty(&flist->xbf_flist)) { 158 free = list_first_entry(&flist->xbf_flist, 159 struct xfs_bmap_free_item, xbfi_list); 160 error = xfs_trans_free_extent(*tp, efd, free->xbfi_startblock, 161 free->xbfi_blockcount); 162 if (error) 163 return error; 164 165 xfs_bmap_del_free(flist, free); 166 } 167 168 return 0; 169 } 170 171 int 172 xfs_bmap_rtalloc( 173 struct xfs_bmalloca *ap) /* bmap alloc argument struct */ 174 { 175 xfs_alloctype_t atype = 0; /* type for allocation routines */ 176 int error; /* error return value */ 177 xfs_mount_t *mp; /* mount point structure */ 178 xfs_extlen_t prod = 0; /* product factor for allocators */ 179 xfs_extlen_t ralen = 0; /* realtime allocation length */ 180 xfs_extlen_t align; /* minimum allocation alignment */ 181 xfs_rtblock_t rtb; 182 183 mp = ap->ip->i_mount; 184 align = xfs_get_extsz_hint(ap->ip); 185 prod = align / mp->m_sb.sb_rextsize; 186 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, 187 align, 1, ap->eof, 0, 188 ap->conv, &ap->offset, &ap->length); 189 if (error) 190 return error; 191 ASSERT(ap->length); 192 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); 193 194 /* 195 * If the offset & length are not perfectly aligned 196 * then kill prod, it will just get us in trouble. 197 */ 198 if (do_mod(ap->offset, align) || ap->length % align) 199 prod = 1; 200 /* 201 * Set ralen to be the actual requested length in rtextents. 202 */ 203 ralen = ap->length / mp->m_sb.sb_rextsize; 204 /* 205 * If the old value was close enough to MAXEXTLEN that 206 * we rounded up to it, cut it back so it's valid again. 207 * Note that if it's a really large request (bigger than 208 * MAXEXTLEN), we don't hear about that number, and can't 209 * adjust the starting point to match it. 210 */ 211 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) 212 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; 213 214 /* 215 * Lock out modifications to both the RT bitmap and summary inodes 216 */ 217 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL); 218 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); 219 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL); 220 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL); 221 222 /* 223 * If it's an allocation to an empty file at offset 0, 224 * pick an extent that will space things out in the rt area. 225 */ 226 if (ap->eof && ap->offset == 0) { 227 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */ 228 229 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); 230 if (error) 231 return error; 232 ap->blkno = rtx * mp->m_sb.sb_rextsize; 233 } else { 234 ap->blkno = 0; 235 } 236 237 xfs_bmap_adjacent(ap); 238 239 /* 240 * Realtime allocation, done through xfs_rtallocate_extent. 241 */ 242 atype = ap->blkno == 0 ? XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO; 243 do_div(ap->blkno, mp->m_sb.sb_rextsize); 244 rtb = ap->blkno; 245 ap->length = ralen; 246 if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, 247 &ralen, atype, ap->wasdel, prod, &rtb))) 248 return error; 249 if (rtb == NULLFSBLOCK && prod > 1 && 250 (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, 251 ap->length, &ralen, atype, 252 ap->wasdel, 1, &rtb))) 253 return error; 254 ap->blkno = rtb; 255 if (ap->blkno != NULLFSBLOCK) { 256 ap->blkno *= mp->m_sb.sb_rextsize; 257 ralen *= mp->m_sb.sb_rextsize; 258 ap->length = ralen; 259 ap->ip->i_d.di_nblocks += ralen; 260 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); 261 if (ap->wasdel) 262 ap->ip->i_delayed_blks -= ralen; 263 /* 264 * Adjust the disk quota also. This was reserved 265 * earlier. 266 */ 267 xfs_trans_mod_dquot_byino(ap->tp, ap->ip, 268 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : 269 XFS_TRANS_DQ_RTBCOUNT, (long) ralen); 270 271 /* Zero the extent if we were asked to do so */ 272 if (ap->userdata & XFS_ALLOC_USERDATA_ZERO) { 273 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length); 274 if (error) 275 return error; 276 } 277 } else { 278 ap->length = 0; 279 } 280 return 0; 281 } 282 283 /* 284 * Check if the endoff is outside the last extent. If so the caller will grow 285 * the allocation to a stripe unit boundary. All offsets are considered outside 286 * the end of file for an empty fork, so 1 is returned in *eof in that case. 287 */ 288 int 289 xfs_bmap_eof( 290 struct xfs_inode *ip, 291 xfs_fileoff_t endoff, 292 int whichfork, 293 int *eof) 294 { 295 struct xfs_bmbt_irec rec; 296 int error; 297 298 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof); 299 if (error || *eof) 300 return error; 301 302 *eof = endoff >= rec.br_startoff + rec.br_blockcount; 303 return 0; 304 } 305 306 /* 307 * Extent tree block counting routines. 308 */ 309 310 /* 311 * Count leaf blocks given a range of extent records. 312 */ 313 STATIC void 314 xfs_bmap_count_leaves( 315 xfs_ifork_t *ifp, 316 xfs_extnum_t idx, 317 int numrecs, 318 int *count) 319 { 320 int b; 321 322 for (b = 0; b < numrecs; b++) { 323 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b); 324 *count += xfs_bmbt_get_blockcount(frp); 325 } 326 } 327 328 /* 329 * Count leaf blocks given a range of extent records originally 330 * in btree format. 331 */ 332 STATIC void 333 xfs_bmap_disk_count_leaves( 334 struct xfs_mount *mp, 335 struct xfs_btree_block *block, 336 int numrecs, 337 int *count) 338 { 339 int b; 340 xfs_bmbt_rec_t *frp; 341 342 for (b = 1; b <= numrecs; b++) { 343 frp = XFS_BMBT_REC_ADDR(mp, block, b); 344 *count += xfs_bmbt_disk_get_blockcount(frp); 345 } 346 } 347 348 /* 349 * Recursively walks each level of a btree 350 * to count total fsblocks in use. 351 */ 352 STATIC int /* error */ 353 xfs_bmap_count_tree( 354 xfs_mount_t *mp, /* file system mount point */ 355 xfs_trans_t *tp, /* transaction pointer */ 356 xfs_ifork_t *ifp, /* inode fork pointer */ 357 xfs_fsblock_t blockno, /* file system block number */ 358 int levelin, /* level in btree */ 359 int *count) /* Count of blocks */ 360 { 361 int error; 362 xfs_buf_t *bp, *nbp; 363 int level = levelin; 364 __be64 *pp; 365 xfs_fsblock_t bno = blockno; 366 xfs_fsblock_t nextbno; 367 struct xfs_btree_block *block, *nextblock; 368 int numrecs; 369 370 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF, 371 &xfs_bmbt_buf_ops); 372 if (error) 373 return error; 374 *count += 1; 375 block = XFS_BUF_TO_BLOCK(bp); 376 377 if (--level) { 378 /* Not at node above leaves, count this level of nodes */ 379 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 380 while (nextbno != NULLFSBLOCK) { 381 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp, 382 XFS_BMAP_BTREE_REF, 383 &xfs_bmbt_buf_ops); 384 if (error) 385 return error; 386 *count += 1; 387 nextblock = XFS_BUF_TO_BLOCK(nbp); 388 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib); 389 xfs_trans_brelse(tp, nbp); 390 } 391 392 /* Dive to the next level */ 393 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]); 394 bno = be64_to_cpu(*pp); 395 if (unlikely((error = 396 xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) { 397 xfs_trans_brelse(tp, bp); 398 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)", 399 XFS_ERRLEVEL_LOW, mp); 400 return -EFSCORRUPTED; 401 } 402 xfs_trans_brelse(tp, bp); 403 } else { 404 /* count all level 1 nodes and their leaves */ 405 for (;;) { 406 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 407 numrecs = be16_to_cpu(block->bb_numrecs); 408 xfs_bmap_disk_count_leaves(mp, block, numrecs, count); 409 xfs_trans_brelse(tp, bp); 410 if (nextbno == NULLFSBLOCK) 411 break; 412 bno = nextbno; 413 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, 414 XFS_BMAP_BTREE_REF, 415 &xfs_bmbt_buf_ops); 416 if (error) 417 return error; 418 *count += 1; 419 block = XFS_BUF_TO_BLOCK(bp); 420 } 421 } 422 return 0; 423 } 424 425 /* 426 * Count fsblocks of the given fork. 427 */ 428 static int /* error */ 429 xfs_bmap_count_blocks( 430 xfs_trans_t *tp, /* transaction pointer */ 431 xfs_inode_t *ip, /* incore inode */ 432 int whichfork, /* data or attr fork */ 433 int *count) /* out: count of blocks */ 434 { 435 struct xfs_btree_block *block; /* current btree block */ 436 xfs_fsblock_t bno; /* block # of "block" */ 437 xfs_ifork_t *ifp; /* fork structure */ 438 int level; /* btree level, for checking */ 439 xfs_mount_t *mp; /* file system mount structure */ 440 __be64 *pp; /* pointer to block address */ 441 442 bno = NULLFSBLOCK; 443 mp = ip->i_mount; 444 ifp = XFS_IFORK_PTR(ip, whichfork); 445 if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) { 446 xfs_bmap_count_leaves(ifp, 0, 447 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t), 448 count); 449 return 0; 450 } 451 452 /* 453 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out. 454 */ 455 block = ifp->if_broot; 456 level = be16_to_cpu(block->bb_level); 457 ASSERT(level > 0); 458 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes); 459 bno = be64_to_cpu(*pp); 460 ASSERT(bno != NULLFSBLOCK); 461 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount); 462 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks); 463 464 if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) { 465 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW, 466 mp); 467 return -EFSCORRUPTED; 468 } 469 470 return 0; 471 } 472 473 /* 474 * returns 1 for success, 0 if we failed to map the extent. 475 */ 476 STATIC int 477 xfs_getbmapx_fix_eof_hole( 478 xfs_inode_t *ip, /* xfs incore inode pointer */ 479 struct getbmapx *out, /* output structure */ 480 int prealloced, /* this is a file with 481 * preallocated data space */ 482 __int64_t end, /* last block requested */ 483 xfs_fsblock_t startblock) 484 { 485 __int64_t fixlen; 486 xfs_mount_t *mp; /* file system mount point */ 487 xfs_ifork_t *ifp; /* inode fork pointer */ 488 xfs_extnum_t lastx; /* last extent pointer */ 489 xfs_fileoff_t fileblock; 490 491 if (startblock == HOLESTARTBLOCK) { 492 mp = ip->i_mount; 493 out->bmv_block = -1; 494 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); 495 fixlen -= out->bmv_offset; 496 if (prealloced && out->bmv_offset + out->bmv_length == end) { 497 /* Came to hole at EOF. Trim it. */ 498 if (fixlen <= 0) 499 return 0; 500 out->bmv_length = fixlen; 501 } 502 } else { 503 if (startblock == DELAYSTARTBLOCK) 504 out->bmv_block = -2; 505 else 506 out->bmv_block = xfs_fsb_to_db(ip, startblock); 507 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset); 508 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK); 509 if (xfs_iext_bno_to_ext(ifp, fileblock, &lastx) && 510 (lastx == (ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t))-1)) 511 out->bmv_oflags |= BMV_OF_LAST; 512 } 513 514 return 1; 515 } 516 517 /* 518 * Get inode's extents as described in bmv, and format for output. 519 * Calls formatter to fill the user's buffer until all extents 520 * are mapped, until the passed-in bmv->bmv_count slots have 521 * been filled, or until the formatter short-circuits the loop, 522 * if it is tracking filled-in extents on its own. 523 */ 524 int /* error code */ 525 xfs_getbmap( 526 xfs_inode_t *ip, 527 struct getbmapx *bmv, /* user bmap structure */ 528 xfs_bmap_format_t formatter, /* format to user */ 529 void *arg) /* formatter arg */ 530 { 531 __int64_t bmvend; /* last block requested */ 532 int error = 0; /* return value */ 533 __int64_t fixlen; /* length for -1 case */ 534 int i; /* extent number */ 535 int lock; /* lock state */ 536 xfs_bmbt_irec_t *map; /* buffer for user's data */ 537 xfs_mount_t *mp; /* file system mount point */ 538 int nex; /* # of user extents can do */ 539 int nexleft; /* # of user extents left */ 540 int subnex; /* # of bmapi's can do */ 541 int nmap; /* number of map entries */ 542 struct getbmapx *out; /* output structure */ 543 int whichfork; /* data or attr fork */ 544 int prealloced; /* this is a file with 545 * preallocated data space */ 546 int iflags; /* interface flags */ 547 int bmapi_flags; /* flags for xfs_bmapi */ 548 int cur_ext = 0; 549 550 mp = ip->i_mount; 551 iflags = bmv->bmv_iflags; 552 whichfork = iflags & BMV_IF_ATTRFORK ? XFS_ATTR_FORK : XFS_DATA_FORK; 553 554 if (whichfork == XFS_ATTR_FORK) { 555 if (XFS_IFORK_Q(ip)) { 556 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS && 557 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE && 558 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) 559 return -EINVAL; 560 } else if (unlikely( 561 ip->i_d.di_aformat != 0 && 562 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) { 563 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW, 564 ip->i_mount); 565 return -EFSCORRUPTED; 566 } 567 568 prealloced = 0; 569 fixlen = 1LL << 32; 570 } else { 571 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS && 572 ip->i_d.di_format != XFS_DINODE_FMT_BTREE && 573 ip->i_d.di_format != XFS_DINODE_FMT_LOCAL) 574 return -EINVAL; 575 576 if (xfs_get_extsz_hint(ip) || 577 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){ 578 prealloced = 1; 579 fixlen = mp->m_super->s_maxbytes; 580 } else { 581 prealloced = 0; 582 fixlen = XFS_ISIZE(ip); 583 } 584 } 585 586 if (bmv->bmv_length == -1) { 587 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen)); 588 bmv->bmv_length = 589 max_t(__int64_t, fixlen - bmv->bmv_offset, 0); 590 } else if (bmv->bmv_length == 0) { 591 bmv->bmv_entries = 0; 592 return 0; 593 } else if (bmv->bmv_length < 0) { 594 return -EINVAL; 595 } 596 597 nex = bmv->bmv_count - 1; 598 if (nex <= 0) 599 return -EINVAL; 600 bmvend = bmv->bmv_offset + bmv->bmv_length; 601 602 603 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx)) 604 return -ENOMEM; 605 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0); 606 if (!out) 607 return -ENOMEM; 608 609 xfs_ilock(ip, XFS_IOLOCK_SHARED); 610 if (whichfork == XFS_DATA_FORK) { 611 if (!(iflags & BMV_IF_DELALLOC) && 612 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) { 613 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 614 if (error) 615 goto out_unlock_iolock; 616 617 /* 618 * Even after flushing the inode, there can still be 619 * delalloc blocks on the inode beyond EOF due to 620 * speculative preallocation. These are not removed 621 * until the release function is called or the inode 622 * is inactivated. Hence we cannot assert here that 623 * ip->i_delayed_blks == 0. 624 */ 625 } 626 627 lock = xfs_ilock_data_map_shared(ip); 628 } else { 629 lock = xfs_ilock_attr_map_shared(ip); 630 } 631 632 /* 633 * Don't let nex be bigger than the number of extents 634 * we can have assuming alternating holes and real extents. 635 */ 636 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1) 637 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1; 638 639 bmapi_flags = xfs_bmapi_aflag(whichfork); 640 if (!(iflags & BMV_IF_PREALLOC)) 641 bmapi_flags |= XFS_BMAPI_IGSTATE; 642 643 /* 644 * Allocate enough space to handle "subnex" maps at a time. 645 */ 646 error = -ENOMEM; 647 subnex = 16; 648 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS); 649 if (!map) 650 goto out_unlock_ilock; 651 652 bmv->bmv_entries = 0; 653 654 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 && 655 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) { 656 error = 0; 657 goto out_free_map; 658 } 659 660 nexleft = nex; 661 662 do { 663 nmap = (nexleft > subnex) ? subnex : nexleft; 664 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset), 665 XFS_BB_TO_FSB(mp, bmv->bmv_length), 666 map, &nmap, bmapi_flags); 667 if (error) 668 goto out_free_map; 669 ASSERT(nmap <= subnex); 670 671 for (i = 0; i < nmap && nexleft && bmv->bmv_length; i++) { 672 out[cur_ext].bmv_oflags = 0; 673 if (map[i].br_state == XFS_EXT_UNWRITTEN) 674 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC; 675 else if (map[i].br_startblock == DELAYSTARTBLOCK) 676 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC; 677 out[cur_ext].bmv_offset = 678 XFS_FSB_TO_BB(mp, map[i].br_startoff); 679 out[cur_ext].bmv_length = 680 XFS_FSB_TO_BB(mp, map[i].br_blockcount); 681 out[cur_ext].bmv_unused1 = 0; 682 out[cur_ext].bmv_unused2 = 0; 683 684 /* 685 * delayed allocation extents that start beyond EOF can 686 * occur due to speculative EOF allocation when the 687 * delalloc extent is larger than the largest freespace 688 * extent at conversion time. These extents cannot be 689 * converted by data writeback, so can exist here even 690 * if we are not supposed to be finding delalloc 691 * extents. 692 */ 693 if (map[i].br_startblock == DELAYSTARTBLOCK && 694 map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip))) 695 ASSERT((iflags & BMV_IF_DELALLOC) != 0); 696 697 if (map[i].br_startblock == HOLESTARTBLOCK && 698 whichfork == XFS_ATTR_FORK) { 699 /* came to the end of attribute fork */ 700 out[cur_ext].bmv_oflags |= BMV_OF_LAST; 701 goto out_free_map; 702 } 703 704 if (!xfs_getbmapx_fix_eof_hole(ip, &out[cur_ext], 705 prealloced, bmvend, 706 map[i].br_startblock)) 707 goto out_free_map; 708 709 bmv->bmv_offset = 710 out[cur_ext].bmv_offset + 711 out[cur_ext].bmv_length; 712 bmv->bmv_length = 713 max_t(__int64_t, 0, bmvend - bmv->bmv_offset); 714 715 /* 716 * In case we don't want to return the hole, 717 * don't increase cur_ext so that we can reuse 718 * it in the next loop. 719 */ 720 if ((iflags & BMV_IF_NO_HOLES) && 721 map[i].br_startblock == HOLESTARTBLOCK) { 722 memset(&out[cur_ext], 0, sizeof(out[cur_ext])); 723 continue; 724 } 725 726 nexleft--; 727 bmv->bmv_entries++; 728 cur_ext++; 729 } 730 } while (nmap && nexleft && bmv->bmv_length); 731 732 out_free_map: 733 kmem_free(map); 734 out_unlock_ilock: 735 xfs_iunlock(ip, lock); 736 out_unlock_iolock: 737 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 738 739 for (i = 0; i < cur_ext; i++) { 740 int full = 0; /* user array is full */ 741 742 /* format results & advance arg */ 743 error = formatter(&arg, &out[i], &full); 744 if (error || full) 745 break; 746 } 747 748 kmem_free(out); 749 return error; 750 } 751 752 /* 753 * dead simple method of punching delalyed allocation blocks from a range in 754 * the inode. Walks a block at a time so will be slow, but is only executed in 755 * rare error cases so the overhead is not critical. This will always punch out 756 * both the start and end blocks, even if the ranges only partially overlap 757 * them, so it is up to the caller to ensure that partial blocks are not 758 * passed in. 759 */ 760 int 761 xfs_bmap_punch_delalloc_range( 762 struct xfs_inode *ip, 763 xfs_fileoff_t start_fsb, 764 xfs_fileoff_t length) 765 { 766 xfs_fileoff_t remaining = length; 767 int error = 0; 768 769 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 770 771 do { 772 int done; 773 xfs_bmbt_irec_t imap; 774 int nimaps = 1; 775 xfs_fsblock_t firstblock; 776 xfs_bmap_free_t flist; 777 778 /* 779 * Map the range first and check that it is a delalloc extent 780 * before trying to unmap the range. Otherwise we will be 781 * trying to remove a real extent (which requires a 782 * transaction) or a hole, which is probably a bad idea... 783 */ 784 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps, 785 XFS_BMAPI_ENTIRE); 786 787 if (error) { 788 /* something screwed, just bail */ 789 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 790 xfs_alert(ip->i_mount, 791 "Failed delalloc mapping lookup ino %lld fsb %lld.", 792 ip->i_ino, start_fsb); 793 } 794 break; 795 } 796 if (!nimaps) { 797 /* nothing there */ 798 goto next_block; 799 } 800 if (imap.br_startblock != DELAYSTARTBLOCK) { 801 /* been converted, ignore */ 802 goto next_block; 803 } 804 WARN_ON(imap.br_blockcount == 0); 805 806 /* 807 * Note: while we initialise the firstblock/flist pair, they 808 * should never be used because blocks should never be 809 * allocated or freed for a delalloc extent and hence we need 810 * don't cancel or finish them after the xfs_bunmapi() call. 811 */ 812 xfs_bmap_init(&flist, &firstblock); 813 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock, 814 &flist, &done); 815 if (error) 816 break; 817 818 ASSERT(!flist.xbf_count && list_empty(&flist.xbf_flist)); 819 next_block: 820 start_fsb++; 821 remaining--; 822 } while(remaining > 0); 823 824 return error; 825 } 826 827 /* 828 * Test whether it is appropriate to check an inode for and free post EOF 829 * blocks. The 'force' parameter determines whether we should also consider 830 * regular files that are marked preallocated or append-only. 831 */ 832 bool 833 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 834 { 835 /* prealloc/delalloc exists only on regular files */ 836 if (!S_ISREG(VFS_I(ip)->i_mode)) 837 return false; 838 839 /* 840 * Zero sized files with no cached pages and delalloc blocks will not 841 * have speculative prealloc/delalloc blocks to remove. 842 */ 843 if (VFS_I(ip)->i_size == 0 && 844 VFS_I(ip)->i_mapping->nrpages == 0 && 845 ip->i_delayed_blks == 0) 846 return false; 847 848 /* If we haven't read in the extent list, then don't do it now. */ 849 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 850 return false; 851 852 /* 853 * Do not free real preallocated or append-only files unless the file 854 * has delalloc blocks and we are forced to remove them. 855 */ 856 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 857 if (!force || ip->i_delayed_blks == 0) 858 return false; 859 860 return true; 861 } 862 863 /* 864 * This is called by xfs_inactive to free any blocks beyond eof 865 * when the link count isn't zero and by xfs_dm_punch_hole() when 866 * punching a hole to EOF. 867 */ 868 int 869 xfs_free_eofblocks( 870 xfs_mount_t *mp, 871 xfs_inode_t *ip, 872 bool need_iolock) 873 { 874 xfs_trans_t *tp; 875 int error; 876 xfs_fileoff_t end_fsb; 877 xfs_fileoff_t last_fsb; 878 xfs_filblks_t map_len; 879 int nimaps; 880 xfs_bmbt_irec_t imap; 881 882 /* 883 * Figure out if there are any blocks beyond the end 884 * of the file. If not, then there is nothing to do. 885 */ 886 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); 887 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 888 if (last_fsb <= end_fsb) 889 return 0; 890 map_len = last_fsb - end_fsb; 891 892 nimaps = 1; 893 xfs_ilock(ip, XFS_ILOCK_SHARED); 894 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0); 895 xfs_iunlock(ip, XFS_ILOCK_SHARED); 896 897 if (!error && (nimaps != 0) && 898 (imap.br_startblock != HOLESTARTBLOCK || 899 ip->i_delayed_blks)) { 900 /* 901 * Attach the dquots to the inode up front. 902 */ 903 error = xfs_qm_dqattach(ip, 0); 904 if (error) 905 return error; 906 907 /* 908 * There are blocks after the end of file. 909 * Free them up now by truncating the file to 910 * its current size. 911 */ 912 if (need_iolock) { 913 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 914 return -EAGAIN; 915 } 916 917 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, 918 &tp); 919 if (error) { 920 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 921 if (need_iolock) 922 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 923 return error; 924 } 925 926 xfs_ilock(ip, XFS_ILOCK_EXCL); 927 xfs_trans_ijoin(tp, ip, 0); 928 929 /* 930 * Do not update the on-disk file size. If we update the 931 * on-disk file size and then the system crashes before the 932 * contents of the file are flushed to disk then the files 933 * may be full of holes (ie NULL files bug). 934 */ 935 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 936 XFS_ISIZE(ip)); 937 if (error) { 938 /* 939 * If we get an error at this point we simply don't 940 * bother truncating the file. 941 */ 942 xfs_trans_cancel(tp); 943 } else { 944 error = xfs_trans_commit(tp); 945 if (!error) 946 xfs_inode_clear_eofblocks_tag(ip); 947 } 948 949 xfs_iunlock(ip, XFS_ILOCK_EXCL); 950 if (need_iolock) 951 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 952 } 953 return error; 954 } 955 956 int 957 xfs_alloc_file_space( 958 struct xfs_inode *ip, 959 xfs_off_t offset, 960 xfs_off_t len, 961 int alloc_type) 962 { 963 xfs_mount_t *mp = ip->i_mount; 964 xfs_off_t count; 965 xfs_filblks_t allocated_fsb; 966 xfs_filblks_t allocatesize_fsb; 967 xfs_extlen_t extsz, temp; 968 xfs_fileoff_t startoffset_fsb; 969 xfs_fsblock_t firstfsb; 970 int nimaps; 971 int quota_flag; 972 int rt; 973 xfs_trans_t *tp; 974 xfs_bmbt_irec_t imaps[1], *imapp; 975 xfs_bmap_free_t free_list; 976 uint qblocks, resblks, resrtextents; 977 int error; 978 979 trace_xfs_alloc_file_space(ip); 980 981 if (XFS_FORCED_SHUTDOWN(mp)) 982 return -EIO; 983 984 error = xfs_qm_dqattach(ip, 0); 985 if (error) 986 return error; 987 988 if (len <= 0) 989 return -EINVAL; 990 991 rt = XFS_IS_REALTIME_INODE(ip); 992 extsz = xfs_get_extsz_hint(ip); 993 994 count = len; 995 imapp = &imaps[0]; 996 nimaps = 1; 997 startoffset_fsb = XFS_B_TO_FSBT(mp, offset); 998 allocatesize_fsb = XFS_B_TO_FSB(mp, count); 999 1000 /* 1001 * Allocate file space until done or until there is an error 1002 */ 1003 while (allocatesize_fsb && !error) { 1004 xfs_fileoff_t s, e; 1005 1006 /* 1007 * Determine space reservations for data/realtime. 1008 */ 1009 if (unlikely(extsz)) { 1010 s = startoffset_fsb; 1011 do_div(s, extsz); 1012 s *= extsz; 1013 e = startoffset_fsb + allocatesize_fsb; 1014 if ((temp = do_mod(startoffset_fsb, extsz))) 1015 e += temp; 1016 if ((temp = do_mod(e, extsz))) 1017 e += extsz - temp; 1018 } else { 1019 s = 0; 1020 e = allocatesize_fsb; 1021 } 1022 1023 /* 1024 * The transaction reservation is limited to a 32-bit block 1025 * count, hence we need to limit the number of blocks we are 1026 * trying to reserve to avoid an overflow. We can't allocate 1027 * more than @nimaps extents, and an extent is limited on disk 1028 * to MAXEXTLEN (21 bits), so use that to enforce the limit. 1029 */ 1030 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); 1031 if (unlikely(rt)) { 1032 resrtextents = qblocks = resblks; 1033 resrtextents /= mp->m_sb.sb_rextsize; 1034 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1035 quota_flag = XFS_QMOPT_RES_RTBLKS; 1036 } else { 1037 resrtextents = 0; 1038 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); 1039 quota_flag = XFS_QMOPT_RES_REGBLKS; 1040 } 1041 1042 /* 1043 * Allocate and setup the transaction. 1044 */ 1045 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 1046 resrtextents, 0, &tp); 1047 1048 /* 1049 * Check for running out of space 1050 */ 1051 if (error) { 1052 /* 1053 * Free the transaction structure. 1054 */ 1055 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1056 break; 1057 } 1058 xfs_ilock(ip, XFS_ILOCK_EXCL); 1059 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 1060 0, quota_flag); 1061 if (error) 1062 goto error1; 1063 1064 xfs_trans_ijoin(tp, ip, 0); 1065 1066 xfs_bmap_init(&free_list, &firstfsb); 1067 error = xfs_bmapi_write(tp, ip, startoffset_fsb, 1068 allocatesize_fsb, alloc_type, &firstfsb, 1069 resblks, imapp, &nimaps, &free_list); 1070 if (error) 1071 goto error0; 1072 1073 /* 1074 * Complete the transaction 1075 */ 1076 error = xfs_bmap_finish(&tp, &free_list, NULL); 1077 if (error) 1078 goto error0; 1079 1080 error = xfs_trans_commit(tp); 1081 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1082 if (error) 1083 break; 1084 1085 allocated_fsb = imapp->br_blockcount; 1086 1087 if (nimaps == 0) { 1088 error = -ENOSPC; 1089 break; 1090 } 1091 1092 startoffset_fsb += allocated_fsb; 1093 allocatesize_fsb -= allocated_fsb; 1094 } 1095 1096 return error; 1097 1098 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */ 1099 xfs_bmap_cancel(&free_list); 1100 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 1101 1102 error1: /* Just cancel transaction */ 1103 xfs_trans_cancel(tp); 1104 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1105 return error; 1106 } 1107 1108 static int 1109 xfs_unmap_extent( 1110 struct xfs_inode *ip, 1111 xfs_fileoff_t startoffset_fsb, 1112 xfs_filblks_t len_fsb, 1113 int *done) 1114 { 1115 struct xfs_mount *mp = ip->i_mount; 1116 struct xfs_trans *tp; 1117 struct xfs_bmap_free free_list; 1118 xfs_fsblock_t firstfsb; 1119 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1120 int error; 1121 1122 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1123 if (error) { 1124 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1125 return error; 1126 } 1127 1128 xfs_ilock(ip, XFS_ILOCK_EXCL); 1129 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, 1130 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS); 1131 if (error) 1132 goto out_trans_cancel; 1133 1134 xfs_trans_ijoin(tp, ip, 0); 1135 1136 xfs_bmap_init(&free_list, &firstfsb); 1137 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb, 1138 &free_list, done); 1139 if (error) 1140 goto out_bmap_cancel; 1141 1142 error = xfs_bmap_finish(&tp, &free_list, NULL); 1143 if (error) 1144 goto out_bmap_cancel; 1145 1146 error = xfs_trans_commit(tp); 1147 out_unlock: 1148 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1149 return error; 1150 1151 out_bmap_cancel: 1152 xfs_bmap_cancel(&free_list); 1153 out_trans_cancel: 1154 xfs_trans_cancel(tp); 1155 goto out_unlock; 1156 } 1157 1158 static int 1159 xfs_adjust_extent_unmap_boundaries( 1160 struct xfs_inode *ip, 1161 xfs_fileoff_t *startoffset_fsb, 1162 xfs_fileoff_t *endoffset_fsb) 1163 { 1164 struct xfs_mount *mp = ip->i_mount; 1165 struct xfs_bmbt_irec imap; 1166 int nimap, error; 1167 xfs_extlen_t mod = 0; 1168 1169 nimap = 1; 1170 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0); 1171 if (error) 1172 return error; 1173 1174 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1175 xfs_daddr_t block; 1176 1177 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1178 block = imap.br_startblock; 1179 mod = do_div(block, mp->m_sb.sb_rextsize); 1180 if (mod) 1181 *startoffset_fsb += mp->m_sb.sb_rextsize - mod; 1182 } 1183 1184 nimap = 1; 1185 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0); 1186 if (error) 1187 return error; 1188 1189 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1190 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1191 mod++; 1192 if (mod && mod != mp->m_sb.sb_rextsize) 1193 *endoffset_fsb -= mod; 1194 } 1195 1196 return 0; 1197 } 1198 1199 static int 1200 xfs_flush_unmap_range( 1201 struct xfs_inode *ip, 1202 xfs_off_t offset, 1203 xfs_off_t len) 1204 { 1205 struct xfs_mount *mp = ip->i_mount; 1206 struct inode *inode = VFS_I(ip); 1207 xfs_off_t rounding, start, end; 1208 int error; 1209 1210 /* wait for the completion of any pending DIOs */ 1211 inode_dio_wait(inode); 1212 1213 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE); 1214 start = round_down(offset, rounding); 1215 end = round_up(offset + len, rounding) - 1; 1216 1217 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 1218 if (error) 1219 return error; 1220 truncate_pagecache_range(inode, start, end); 1221 return 0; 1222 } 1223 1224 int 1225 xfs_free_file_space( 1226 struct xfs_inode *ip, 1227 xfs_off_t offset, 1228 xfs_off_t len) 1229 { 1230 struct xfs_mount *mp = ip->i_mount; 1231 xfs_fileoff_t startoffset_fsb; 1232 xfs_fileoff_t endoffset_fsb; 1233 int done = 0, error; 1234 1235 trace_xfs_free_file_space(ip); 1236 1237 error = xfs_qm_dqattach(ip, 0); 1238 if (error) 1239 return error; 1240 1241 if (len <= 0) /* if nothing being freed */ 1242 return 0; 1243 1244 error = xfs_flush_unmap_range(ip, offset, len); 1245 if (error) 1246 return error; 1247 1248 startoffset_fsb = XFS_B_TO_FSB(mp, offset); 1249 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); 1250 1251 /* 1252 * Need to zero the stuff we're not freeing, on disk. If it's a RT file 1253 * and we can't use unwritten extents then we actually need to ensure 1254 * to zero the whole extent, otherwise we just need to take of block 1255 * boundaries, and xfs_bunmapi will handle the rest. 1256 */ 1257 if (XFS_IS_REALTIME_INODE(ip) && 1258 !xfs_sb_version_hasextflgbit(&mp->m_sb)) { 1259 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb, 1260 &endoffset_fsb); 1261 if (error) 1262 return error; 1263 } 1264 1265 if (endoffset_fsb > startoffset_fsb) { 1266 while (!done) { 1267 error = xfs_unmap_extent(ip, startoffset_fsb, 1268 endoffset_fsb - startoffset_fsb, &done); 1269 if (error) 1270 return error; 1271 } 1272 } 1273 1274 /* 1275 * Now that we've unmap all full blocks we'll have to zero out any 1276 * partial block at the beginning and/or end. xfs_zero_range is 1277 * smart enough to skip any holes, including those we just created. 1278 */ 1279 return xfs_zero_range(ip, offset, len, NULL); 1280 } 1281 1282 /* 1283 * Preallocate and zero a range of a file. This mechanism has the allocation 1284 * semantics of fallocate and in addition converts data in the range to zeroes. 1285 */ 1286 int 1287 xfs_zero_file_space( 1288 struct xfs_inode *ip, 1289 xfs_off_t offset, 1290 xfs_off_t len) 1291 { 1292 struct xfs_mount *mp = ip->i_mount; 1293 uint blksize; 1294 int error; 1295 1296 trace_xfs_zero_file_space(ip); 1297 1298 blksize = 1 << mp->m_sb.sb_blocklog; 1299 1300 /* 1301 * Punch a hole and prealloc the range. We use hole punch rather than 1302 * unwritten extent conversion for two reasons: 1303 * 1304 * 1.) Hole punch handles partial block zeroing for us. 1305 * 1306 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued 1307 * by virtue of the hole punch. 1308 */ 1309 error = xfs_free_file_space(ip, offset, len); 1310 if (error) 1311 goto out; 1312 1313 error = xfs_alloc_file_space(ip, round_down(offset, blksize), 1314 round_up(offset + len, blksize) - 1315 round_down(offset, blksize), 1316 XFS_BMAPI_PREALLOC); 1317 out: 1318 return error; 1319 1320 } 1321 1322 /* 1323 * @next_fsb will keep track of the extent currently undergoing shift. 1324 * @stop_fsb will keep track of the extent at which we have to stop. 1325 * If we are shifting left, we will start with block (offset + len) and 1326 * shift each extent till last extent. 1327 * If we are shifting right, we will start with last extent inside file space 1328 * and continue until we reach the block corresponding to offset. 1329 */ 1330 static int 1331 xfs_shift_file_space( 1332 struct xfs_inode *ip, 1333 xfs_off_t offset, 1334 xfs_off_t len, 1335 enum shift_direction direction) 1336 { 1337 int done = 0; 1338 struct xfs_mount *mp = ip->i_mount; 1339 struct xfs_trans *tp; 1340 int error; 1341 struct xfs_bmap_free free_list; 1342 xfs_fsblock_t first_block; 1343 xfs_fileoff_t stop_fsb; 1344 xfs_fileoff_t next_fsb; 1345 xfs_fileoff_t shift_fsb; 1346 1347 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT); 1348 1349 if (direction == SHIFT_LEFT) { 1350 next_fsb = XFS_B_TO_FSB(mp, offset + len); 1351 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size); 1352 } else { 1353 /* 1354 * If right shift, delegate the work of initialization of 1355 * next_fsb to xfs_bmap_shift_extent as it has ilock held. 1356 */ 1357 next_fsb = NULLFSBLOCK; 1358 stop_fsb = XFS_B_TO_FSB(mp, offset); 1359 } 1360 1361 shift_fsb = XFS_B_TO_FSB(mp, len); 1362 1363 /* 1364 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation 1365 * into the accessible region of the file. 1366 */ 1367 if (xfs_can_free_eofblocks(ip, true)) { 1368 error = xfs_free_eofblocks(mp, ip, false); 1369 if (error) 1370 return error; 1371 } 1372 1373 /* 1374 * Writeback and invalidate cache for the remainder of the file as we're 1375 * about to shift down every extent from offset to EOF. 1376 */ 1377 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 1378 offset, -1); 1379 if (error) 1380 return error; 1381 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 1382 offset >> PAGE_SHIFT, -1); 1383 if (error) 1384 return error; 1385 1386 /* 1387 * The extent shiting code works on extent granularity. So, if 1388 * stop_fsb is not the starting block of extent, we need to split 1389 * the extent at stop_fsb. 1390 */ 1391 if (direction == SHIFT_RIGHT) { 1392 error = xfs_bmap_split_extent(ip, stop_fsb); 1393 if (error) 1394 return error; 1395 } 1396 1397 while (!error && !done) { 1398 /* 1399 * We would need to reserve permanent block for transaction. 1400 * This will come into picture when after shifting extent into 1401 * hole we found that adjacent extents can be merged which 1402 * may lead to freeing of a block during record update. 1403 */ 1404 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 1405 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 0, &tp); 1406 if (error) 1407 break; 1408 1409 xfs_ilock(ip, XFS_ILOCK_EXCL); 1410 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, 1411 ip->i_gdquot, ip->i_pdquot, 1412 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 1413 XFS_QMOPT_RES_REGBLKS); 1414 if (error) 1415 goto out_trans_cancel; 1416 1417 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1418 1419 xfs_bmap_init(&free_list, &first_block); 1420 1421 /* 1422 * We are using the write transaction in which max 2 bmbt 1423 * updates are allowed 1424 */ 1425 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb, 1426 &done, stop_fsb, &first_block, &free_list, 1427 direction, XFS_BMAP_MAX_SHIFT_EXTENTS); 1428 if (error) 1429 goto out_bmap_cancel; 1430 1431 error = xfs_bmap_finish(&tp, &free_list, NULL); 1432 if (error) 1433 goto out_bmap_cancel; 1434 1435 error = xfs_trans_commit(tp); 1436 } 1437 1438 return error; 1439 1440 out_bmap_cancel: 1441 xfs_bmap_cancel(&free_list); 1442 out_trans_cancel: 1443 xfs_trans_cancel(tp); 1444 return error; 1445 } 1446 1447 /* 1448 * xfs_collapse_file_space() 1449 * This routine frees disk space and shift extent for the given file. 1450 * The first thing we do is to free data blocks in the specified range 1451 * by calling xfs_free_file_space(). It would also sync dirty data 1452 * and invalidate page cache over the region on which collapse range 1453 * is working. And Shift extent records to the left to cover a hole. 1454 * RETURNS: 1455 * 0 on success 1456 * errno on error 1457 * 1458 */ 1459 int 1460 xfs_collapse_file_space( 1461 struct xfs_inode *ip, 1462 xfs_off_t offset, 1463 xfs_off_t len) 1464 { 1465 int error; 1466 1467 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1468 trace_xfs_collapse_file_space(ip); 1469 1470 error = xfs_free_file_space(ip, offset, len); 1471 if (error) 1472 return error; 1473 1474 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT); 1475 } 1476 1477 /* 1478 * xfs_insert_file_space() 1479 * This routine create hole space by shifting extents for the given file. 1480 * The first thing we do is to sync dirty data and invalidate page cache 1481 * over the region on which insert range is working. And split an extent 1482 * to two extents at given offset by calling xfs_bmap_split_extent. 1483 * And shift all extent records which are laying between [offset, 1484 * last allocated extent] to the right to reserve hole range. 1485 * RETURNS: 1486 * 0 on success 1487 * errno on error 1488 */ 1489 int 1490 xfs_insert_file_space( 1491 struct xfs_inode *ip, 1492 loff_t offset, 1493 loff_t len) 1494 { 1495 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1496 trace_xfs_insert_file_space(ip); 1497 1498 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT); 1499 } 1500 1501 /* 1502 * We need to check that the format of the data fork in the temporary inode is 1503 * valid for the target inode before doing the swap. This is not a problem with 1504 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized 1505 * data fork depending on the space the attribute fork is taking so we can get 1506 * invalid formats on the target inode. 1507 * 1508 * E.g. target has space for 7 extents in extent format, temp inode only has 1509 * space for 6. If we defragment down to 7 extents, then the tmp format is a 1510 * btree, but when swapped it needs to be in extent format. Hence we can't just 1511 * blindly swap data forks on attr2 filesystems. 1512 * 1513 * Note that we check the swap in both directions so that we don't end up with 1514 * a corrupt temporary inode, either. 1515 * 1516 * Note that fixing the way xfs_fsr sets up the attribute fork in the source 1517 * inode will prevent this situation from occurring, so all we do here is 1518 * reject and log the attempt. basically we are putting the responsibility on 1519 * userspace to get this right. 1520 */ 1521 static int 1522 xfs_swap_extents_check_format( 1523 xfs_inode_t *ip, /* target inode */ 1524 xfs_inode_t *tip) /* tmp inode */ 1525 { 1526 1527 /* Should never get a local format */ 1528 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL || 1529 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL) 1530 return -EINVAL; 1531 1532 /* 1533 * if the target inode has less extents that then temporary inode then 1534 * why did userspace call us? 1535 */ 1536 if (ip->i_d.di_nextents < tip->i_d.di_nextents) 1537 return -EINVAL; 1538 1539 /* 1540 * if the target inode is in extent form and the temp inode is in btree 1541 * form then we will end up with the target inode in the wrong format 1542 * as we already know there are less extents in the temp inode. 1543 */ 1544 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1545 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1546 return -EINVAL; 1547 1548 /* Check temp in extent form to max in target */ 1549 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1550 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) > 1551 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1552 return -EINVAL; 1553 1554 /* Check target in extent form to max in temp */ 1555 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1556 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) > 1557 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1558 return -EINVAL; 1559 1560 /* 1561 * If we are in a btree format, check that the temp root block will fit 1562 * in the target and that it has enough extents to be in btree format 1563 * in the target. 1564 * 1565 * Note that we have to be careful to allow btree->extent conversions 1566 * (a common defrag case) which will occur when the temp inode is in 1567 * extent format... 1568 */ 1569 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1570 if (XFS_IFORK_BOFF(ip) && 1571 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip)) 1572 return -EINVAL; 1573 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <= 1574 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1575 return -EINVAL; 1576 } 1577 1578 /* Reciprocal target->temp btree format checks */ 1579 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1580 if (XFS_IFORK_BOFF(tip) && 1581 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) 1582 return -EINVAL; 1583 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <= 1584 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1585 return -EINVAL; 1586 } 1587 1588 return 0; 1589 } 1590 1591 static int 1592 xfs_swap_extent_flush( 1593 struct xfs_inode *ip) 1594 { 1595 int error; 1596 1597 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 1598 if (error) 1599 return error; 1600 truncate_pagecache_range(VFS_I(ip), 0, -1); 1601 1602 /* Verify O_DIRECT for ftmp */ 1603 if (VFS_I(ip)->i_mapping->nrpages) 1604 return -EINVAL; 1605 return 0; 1606 } 1607 1608 int 1609 xfs_swap_extents( 1610 xfs_inode_t *ip, /* target inode */ 1611 xfs_inode_t *tip, /* tmp inode */ 1612 xfs_swapext_t *sxp) 1613 { 1614 xfs_mount_t *mp = ip->i_mount; 1615 xfs_trans_t *tp; 1616 xfs_bstat_t *sbp = &sxp->sx_stat; 1617 xfs_ifork_t *tempifp, *ifp, *tifp; 1618 int src_log_flags, target_log_flags; 1619 int error = 0; 1620 int aforkblks = 0; 1621 int taforkblks = 0; 1622 __uint64_t tmp; 1623 int lock_flags; 1624 1625 tempifp = kmem_alloc(sizeof(xfs_ifork_t), KM_MAYFAIL); 1626 if (!tempifp) { 1627 error = -ENOMEM; 1628 goto out; 1629 } 1630 1631 /* 1632 * Lock the inodes against other IO, page faults and truncate to 1633 * begin with. Then we can ensure the inodes are flushed and have no 1634 * page cache safely. Once we have done this we can take the ilocks and 1635 * do the rest of the checks. 1636 */ 1637 lock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 1638 xfs_lock_two_inodes(ip, tip, XFS_IOLOCK_EXCL); 1639 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL); 1640 1641 /* Verify that both files have the same format */ 1642 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) { 1643 error = -EINVAL; 1644 goto out_unlock; 1645 } 1646 1647 /* Verify both files are either real-time or non-realtime */ 1648 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { 1649 error = -EINVAL; 1650 goto out_unlock; 1651 } 1652 1653 error = xfs_swap_extent_flush(ip); 1654 if (error) 1655 goto out_unlock; 1656 error = xfs_swap_extent_flush(tip); 1657 if (error) 1658 goto out_unlock; 1659 1660 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp); 1661 if (error) 1662 goto out_unlock; 1663 1664 /* 1665 * Lock and join the inodes to the tansaction so that transaction commit 1666 * or cancel will unlock the inodes from this point onwards. 1667 */ 1668 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL); 1669 lock_flags |= XFS_ILOCK_EXCL; 1670 xfs_trans_ijoin(tp, ip, lock_flags); 1671 xfs_trans_ijoin(tp, tip, lock_flags); 1672 1673 1674 /* Verify all data are being swapped */ 1675 if (sxp->sx_offset != 0 || 1676 sxp->sx_length != ip->i_d.di_size || 1677 sxp->sx_length != tip->i_d.di_size) { 1678 error = -EFAULT; 1679 goto out_trans_cancel; 1680 } 1681 1682 trace_xfs_swap_extent_before(ip, 0); 1683 trace_xfs_swap_extent_before(tip, 1); 1684 1685 /* check inode formats now that data is flushed */ 1686 error = xfs_swap_extents_check_format(ip, tip); 1687 if (error) { 1688 xfs_notice(mp, 1689 "%s: inode 0x%llx format is incompatible for exchanging.", 1690 __func__, ip->i_ino); 1691 goto out_trans_cancel; 1692 } 1693 1694 /* 1695 * Compare the current change & modify times with that 1696 * passed in. If they differ, we abort this swap. 1697 * This is the mechanism used to ensure the calling 1698 * process that the file was not changed out from 1699 * under it. 1700 */ 1701 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || 1702 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || 1703 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || 1704 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { 1705 error = -EBUSY; 1706 goto out_trans_cancel; 1707 } 1708 /* 1709 * Count the number of extended attribute blocks 1710 */ 1711 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) && 1712 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1713 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &aforkblks); 1714 if (error) 1715 goto out_trans_cancel; 1716 } 1717 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) && 1718 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1719 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, 1720 &taforkblks); 1721 if (error) 1722 goto out_trans_cancel; 1723 } 1724 1725 /* 1726 * Before we've swapped the forks, lets set the owners of the forks 1727 * appropriately. We have to do this as we are demand paging the btree 1728 * buffers, and so the validation done on read will expect the owner 1729 * field to be correctly set. Once we change the owners, we can swap the 1730 * inode forks. 1731 * 1732 * Note the trickiness in setting the log flags - we set the owner log 1733 * flag on the opposite inode (i.e. the inode we are setting the new 1734 * owner to be) because once we swap the forks and log that, log 1735 * recovery is going to see the fork as owned by the swapped inode, 1736 * not the pre-swapped inodes. 1737 */ 1738 src_log_flags = XFS_ILOG_CORE; 1739 target_log_flags = XFS_ILOG_CORE; 1740 if (ip->i_d.di_version == 3 && 1741 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1742 target_log_flags |= XFS_ILOG_DOWNER; 1743 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, 1744 tip->i_ino, NULL); 1745 if (error) 1746 goto out_trans_cancel; 1747 } 1748 1749 if (tip->i_d.di_version == 3 && 1750 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1751 src_log_flags |= XFS_ILOG_DOWNER; 1752 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK, 1753 ip->i_ino, NULL); 1754 if (error) 1755 goto out_trans_cancel; 1756 } 1757 1758 /* 1759 * Swap the data forks of the inodes 1760 */ 1761 ifp = &ip->i_df; 1762 tifp = &tip->i_df; 1763 *tempifp = *ifp; /* struct copy */ 1764 *ifp = *tifp; /* struct copy */ 1765 *tifp = *tempifp; /* struct copy */ 1766 1767 /* 1768 * Fix the on-disk inode values 1769 */ 1770 tmp = (__uint64_t)ip->i_d.di_nblocks; 1771 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks; 1772 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks; 1773 1774 tmp = (__uint64_t) ip->i_d.di_nextents; 1775 ip->i_d.di_nextents = tip->i_d.di_nextents; 1776 tip->i_d.di_nextents = tmp; 1777 1778 tmp = (__uint64_t) ip->i_d.di_format; 1779 ip->i_d.di_format = tip->i_d.di_format; 1780 tip->i_d.di_format = tmp; 1781 1782 /* 1783 * The extents in the source inode could still contain speculative 1784 * preallocation beyond EOF (e.g. the file is open but not modified 1785 * while defrag is in progress). In that case, we need to copy over the 1786 * number of delalloc blocks the data fork in the source inode is 1787 * tracking beyond EOF so that when the fork is truncated away when the 1788 * temporary inode is unlinked we don't underrun the i_delayed_blks 1789 * counter on that inode. 1790 */ 1791 ASSERT(tip->i_delayed_blks == 0); 1792 tip->i_delayed_blks = ip->i_delayed_blks; 1793 ip->i_delayed_blks = 0; 1794 1795 switch (ip->i_d.di_format) { 1796 case XFS_DINODE_FMT_EXTENTS: 1797 /* If the extents fit in the inode, fix the 1798 * pointer. Otherwise it's already NULL or 1799 * pointing to the extent. 1800 */ 1801 if (ip->i_d.di_nextents <= XFS_INLINE_EXTS) { 1802 ifp->if_u1.if_extents = 1803 ifp->if_u2.if_inline_ext; 1804 } 1805 src_log_flags |= XFS_ILOG_DEXT; 1806 break; 1807 case XFS_DINODE_FMT_BTREE: 1808 ASSERT(ip->i_d.di_version < 3 || 1809 (src_log_flags & XFS_ILOG_DOWNER)); 1810 src_log_flags |= XFS_ILOG_DBROOT; 1811 break; 1812 } 1813 1814 switch (tip->i_d.di_format) { 1815 case XFS_DINODE_FMT_EXTENTS: 1816 /* If the extents fit in the inode, fix the 1817 * pointer. Otherwise it's already NULL or 1818 * pointing to the extent. 1819 */ 1820 if (tip->i_d.di_nextents <= XFS_INLINE_EXTS) { 1821 tifp->if_u1.if_extents = 1822 tifp->if_u2.if_inline_ext; 1823 } 1824 target_log_flags |= XFS_ILOG_DEXT; 1825 break; 1826 case XFS_DINODE_FMT_BTREE: 1827 target_log_flags |= XFS_ILOG_DBROOT; 1828 ASSERT(tip->i_d.di_version < 3 || 1829 (target_log_flags & XFS_ILOG_DOWNER)); 1830 break; 1831 } 1832 1833 xfs_trans_log_inode(tp, ip, src_log_flags); 1834 xfs_trans_log_inode(tp, tip, target_log_flags); 1835 1836 /* 1837 * If this is a synchronous mount, make sure that the 1838 * transaction goes to disk before returning to the user. 1839 */ 1840 if (mp->m_flags & XFS_MOUNT_WSYNC) 1841 xfs_trans_set_sync(tp); 1842 1843 error = xfs_trans_commit(tp); 1844 1845 trace_xfs_swap_extent_after(ip, 0); 1846 trace_xfs_swap_extent_after(tip, 1); 1847 out: 1848 kmem_free(tempifp); 1849 return error; 1850 1851 out_unlock: 1852 xfs_iunlock(ip, lock_flags); 1853 xfs_iunlock(tip, lock_flags); 1854 goto out; 1855 1856 out_trans_cancel: 1857 xfs_trans_cancel(tp); 1858 goto out; 1859 } 1860