1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * Copyright (c) 2012 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_shared.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_bit.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_defer.h" 29 #include "xfs_inode.h" 30 #include "xfs_btree.h" 31 #include "xfs_trans.h" 32 #include "xfs_extfree_item.h" 33 #include "xfs_alloc.h" 34 #include "xfs_bmap.h" 35 #include "xfs_bmap_util.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_rtalloc.h" 38 #include "xfs_error.h" 39 #include "xfs_quota.h" 40 #include "xfs_trans_space.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_log.h" 44 #include "xfs_rmap_btree.h" 45 #include "xfs_iomap.h" 46 #include "xfs_reflink.h" 47 #include "xfs_refcount.h" 48 49 /* Kernel only BMAP related definitions and functions */ 50 51 /* 52 * Convert the given file system block to a disk block. We have to treat it 53 * differently based on whether the file is a real time file or not, because the 54 * bmap code does. 55 */ 56 xfs_daddr_t 57 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) 58 { 59 return (XFS_IS_REALTIME_INODE(ip) ? \ 60 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \ 61 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb))); 62 } 63 64 /* 65 * Routine to zero an extent on disk allocated to the specific inode. 66 * 67 * The VFS functions take a linearised filesystem block offset, so we have to 68 * convert the sparse xfs fsb to the right format first. 69 * VFS types are real funky, too. 70 */ 71 int 72 xfs_zero_extent( 73 struct xfs_inode *ip, 74 xfs_fsblock_t start_fsb, 75 xfs_off_t count_fsb) 76 { 77 struct xfs_mount *mp = ip->i_mount; 78 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb); 79 sector_t block = XFS_BB_TO_FSBT(mp, sector); 80 81 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)), 82 block << (mp->m_super->s_blocksize_bits - 9), 83 count_fsb << (mp->m_super->s_blocksize_bits - 9), 84 GFP_NOFS, true); 85 } 86 87 int 88 xfs_bmap_rtalloc( 89 struct xfs_bmalloca *ap) /* bmap alloc argument struct */ 90 { 91 xfs_alloctype_t atype = 0; /* type for allocation routines */ 92 int error; /* error return value */ 93 xfs_mount_t *mp; /* mount point structure */ 94 xfs_extlen_t prod = 0; /* product factor for allocators */ 95 xfs_extlen_t ralen = 0; /* realtime allocation length */ 96 xfs_extlen_t align; /* minimum allocation alignment */ 97 xfs_rtblock_t rtb; 98 99 mp = ap->ip->i_mount; 100 align = xfs_get_extsz_hint(ap->ip); 101 prod = align / mp->m_sb.sb_rextsize; 102 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, 103 align, 1, ap->eof, 0, 104 ap->conv, &ap->offset, &ap->length); 105 if (error) 106 return error; 107 ASSERT(ap->length); 108 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); 109 110 /* 111 * If the offset & length are not perfectly aligned 112 * then kill prod, it will just get us in trouble. 113 */ 114 if (do_mod(ap->offset, align) || ap->length % align) 115 prod = 1; 116 /* 117 * Set ralen to be the actual requested length in rtextents. 118 */ 119 ralen = ap->length / mp->m_sb.sb_rextsize; 120 /* 121 * If the old value was close enough to MAXEXTLEN that 122 * we rounded up to it, cut it back so it's valid again. 123 * Note that if it's a really large request (bigger than 124 * MAXEXTLEN), we don't hear about that number, and can't 125 * adjust the starting point to match it. 126 */ 127 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) 128 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; 129 130 /* 131 * Lock out modifications to both the RT bitmap and summary inodes 132 */ 133 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP); 134 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); 135 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM); 136 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL); 137 138 /* 139 * If it's an allocation to an empty file at offset 0, 140 * pick an extent that will space things out in the rt area. 141 */ 142 if (ap->eof && ap->offset == 0) { 143 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */ 144 145 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); 146 if (error) 147 return error; 148 ap->blkno = rtx * mp->m_sb.sb_rextsize; 149 } else { 150 ap->blkno = 0; 151 } 152 153 xfs_bmap_adjacent(ap); 154 155 /* 156 * Realtime allocation, done through xfs_rtallocate_extent. 157 */ 158 atype = ap->blkno == 0 ? XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO; 159 do_div(ap->blkno, mp->m_sb.sb_rextsize); 160 rtb = ap->blkno; 161 ap->length = ralen; 162 if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, 163 &ralen, atype, ap->wasdel, prod, &rtb))) 164 return error; 165 if (rtb == NULLFSBLOCK && prod > 1 && 166 (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, 167 ap->length, &ralen, atype, 168 ap->wasdel, 1, &rtb))) 169 return error; 170 ap->blkno = rtb; 171 if (ap->blkno != NULLFSBLOCK) { 172 ap->blkno *= mp->m_sb.sb_rextsize; 173 ralen *= mp->m_sb.sb_rextsize; 174 ap->length = ralen; 175 ap->ip->i_d.di_nblocks += ralen; 176 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); 177 if (ap->wasdel) 178 ap->ip->i_delayed_blks -= ralen; 179 /* 180 * Adjust the disk quota also. This was reserved 181 * earlier. 182 */ 183 xfs_trans_mod_dquot_byino(ap->tp, ap->ip, 184 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : 185 XFS_TRANS_DQ_RTBCOUNT, (long) ralen); 186 187 /* Zero the extent if we were asked to do so */ 188 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) { 189 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length); 190 if (error) 191 return error; 192 } 193 } else { 194 ap->length = 0; 195 } 196 return 0; 197 } 198 199 /* 200 * Check if the endoff is outside the last extent. If so the caller will grow 201 * the allocation to a stripe unit boundary. All offsets are considered outside 202 * the end of file for an empty fork, so 1 is returned in *eof in that case. 203 */ 204 int 205 xfs_bmap_eof( 206 struct xfs_inode *ip, 207 xfs_fileoff_t endoff, 208 int whichfork, 209 int *eof) 210 { 211 struct xfs_bmbt_irec rec; 212 int error; 213 214 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof); 215 if (error || *eof) 216 return error; 217 218 *eof = endoff >= rec.br_startoff + rec.br_blockcount; 219 return 0; 220 } 221 222 /* 223 * Extent tree block counting routines. 224 */ 225 226 /* 227 * Count leaf blocks given a range of extent records. 228 */ 229 STATIC void 230 xfs_bmap_count_leaves( 231 xfs_ifork_t *ifp, 232 xfs_extnum_t idx, 233 int numrecs, 234 int *count) 235 { 236 int b; 237 238 for (b = 0; b < numrecs; b++) { 239 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b); 240 *count += xfs_bmbt_get_blockcount(frp); 241 } 242 } 243 244 /* 245 * Count leaf blocks given a range of extent records originally 246 * in btree format. 247 */ 248 STATIC void 249 xfs_bmap_disk_count_leaves( 250 struct xfs_mount *mp, 251 struct xfs_btree_block *block, 252 int numrecs, 253 int *count) 254 { 255 int b; 256 xfs_bmbt_rec_t *frp; 257 258 for (b = 1; b <= numrecs; b++) { 259 frp = XFS_BMBT_REC_ADDR(mp, block, b); 260 *count += xfs_bmbt_disk_get_blockcount(frp); 261 } 262 } 263 264 /* 265 * Recursively walks each level of a btree 266 * to count total fsblocks in use. 267 */ 268 STATIC int /* error */ 269 xfs_bmap_count_tree( 270 xfs_mount_t *mp, /* file system mount point */ 271 xfs_trans_t *tp, /* transaction pointer */ 272 xfs_ifork_t *ifp, /* inode fork pointer */ 273 xfs_fsblock_t blockno, /* file system block number */ 274 int levelin, /* level in btree */ 275 int *count) /* Count of blocks */ 276 { 277 int error; 278 xfs_buf_t *bp, *nbp; 279 int level = levelin; 280 __be64 *pp; 281 xfs_fsblock_t bno = blockno; 282 xfs_fsblock_t nextbno; 283 struct xfs_btree_block *block, *nextblock; 284 int numrecs; 285 286 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF, 287 &xfs_bmbt_buf_ops); 288 if (error) 289 return error; 290 *count += 1; 291 block = XFS_BUF_TO_BLOCK(bp); 292 293 if (--level) { 294 /* Not at node above leaves, count this level of nodes */ 295 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 296 while (nextbno != NULLFSBLOCK) { 297 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp, 298 XFS_BMAP_BTREE_REF, 299 &xfs_bmbt_buf_ops); 300 if (error) 301 return error; 302 *count += 1; 303 nextblock = XFS_BUF_TO_BLOCK(nbp); 304 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib); 305 xfs_trans_brelse(tp, nbp); 306 } 307 308 /* Dive to the next level */ 309 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]); 310 bno = be64_to_cpu(*pp); 311 if (unlikely((error = 312 xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) { 313 xfs_trans_brelse(tp, bp); 314 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)", 315 XFS_ERRLEVEL_LOW, mp); 316 return -EFSCORRUPTED; 317 } 318 xfs_trans_brelse(tp, bp); 319 } else { 320 /* count all level 1 nodes and their leaves */ 321 for (;;) { 322 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 323 numrecs = be16_to_cpu(block->bb_numrecs); 324 xfs_bmap_disk_count_leaves(mp, block, numrecs, count); 325 xfs_trans_brelse(tp, bp); 326 if (nextbno == NULLFSBLOCK) 327 break; 328 bno = nextbno; 329 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, 330 XFS_BMAP_BTREE_REF, 331 &xfs_bmbt_buf_ops); 332 if (error) 333 return error; 334 *count += 1; 335 block = XFS_BUF_TO_BLOCK(bp); 336 } 337 } 338 return 0; 339 } 340 341 /* 342 * Count fsblocks of the given fork. 343 */ 344 static int /* error */ 345 xfs_bmap_count_blocks( 346 xfs_trans_t *tp, /* transaction pointer */ 347 xfs_inode_t *ip, /* incore inode */ 348 int whichfork, /* data or attr fork */ 349 int *count) /* out: count of blocks */ 350 { 351 struct xfs_btree_block *block; /* current btree block */ 352 xfs_fsblock_t bno; /* block # of "block" */ 353 xfs_ifork_t *ifp; /* fork structure */ 354 int level; /* btree level, for checking */ 355 xfs_mount_t *mp; /* file system mount structure */ 356 __be64 *pp; /* pointer to block address */ 357 358 bno = NULLFSBLOCK; 359 mp = ip->i_mount; 360 ifp = XFS_IFORK_PTR(ip, whichfork); 361 if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) { 362 xfs_bmap_count_leaves(ifp, 0, 363 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t), 364 count); 365 return 0; 366 } 367 368 /* 369 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out. 370 */ 371 block = ifp->if_broot; 372 level = be16_to_cpu(block->bb_level); 373 ASSERT(level > 0); 374 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes); 375 bno = be64_to_cpu(*pp); 376 ASSERT(bno != NULLFSBLOCK); 377 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount); 378 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks); 379 380 if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) { 381 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW, 382 mp); 383 return -EFSCORRUPTED; 384 } 385 386 return 0; 387 } 388 389 /* 390 * returns 1 for success, 0 if we failed to map the extent. 391 */ 392 STATIC int 393 xfs_getbmapx_fix_eof_hole( 394 xfs_inode_t *ip, /* xfs incore inode pointer */ 395 int whichfork, 396 struct getbmapx *out, /* output structure */ 397 int prealloced, /* this is a file with 398 * preallocated data space */ 399 __int64_t end, /* last block requested */ 400 xfs_fsblock_t startblock, 401 bool moretocome) 402 { 403 __int64_t fixlen; 404 xfs_mount_t *mp; /* file system mount point */ 405 xfs_ifork_t *ifp; /* inode fork pointer */ 406 xfs_extnum_t lastx; /* last extent pointer */ 407 xfs_fileoff_t fileblock; 408 409 if (startblock == HOLESTARTBLOCK) { 410 mp = ip->i_mount; 411 out->bmv_block = -1; 412 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); 413 fixlen -= out->bmv_offset; 414 if (prealloced && out->bmv_offset + out->bmv_length == end) { 415 /* Came to hole at EOF. Trim it. */ 416 if (fixlen <= 0) 417 return 0; 418 out->bmv_length = fixlen; 419 } 420 } else { 421 if (startblock == DELAYSTARTBLOCK) 422 out->bmv_block = -2; 423 else 424 out->bmv_block = xfs_fsb_to_db(ip, startblock); 425 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset); 426 ifp = XFS_IFORK_PTR(ip, whichfork); 427 if (!moretocome && 428 xfs_iext_bno_to_ext(ifp, fileblock, &lastx) && 429 (lastx == (ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t))-1)) 430 out->bmv_oflags |= BMV_OF_LAST; 431 } 432 433 return 1; 434 } 435 436 /* Adjust the reported bmap around shared/unshared extent transitions. */ 437 STATIC int 438 xfs_getbmap_adjust_shared( 439 struct xfs_inode *ip, 440 int whichfork, 441 struct xfs_bmbt_irec *map, 442 struct getbmapx *out, 443 struct xfs_bmbt_irec *next_map) 444 { 445 struct xfs_mount *mp = ip->i_mount; 446 xfs_agnumber_t agno; 447 xfs_agblock_t agbno; 448 xfs_agblock_t ebno; 449 xfs_extlen_t elen; 450 xfs_extlen_t nlen; 451 int error; 452 453 next_map->br_startblock = NULLFSBLOCK; 454 next_map->br_startoff = NULLFILEOFF; 455 next_map->br_blockcount = 0; 456 457 /* Only written data blocks can be shared. */ 458 if (!xfs_is_reflink_inode(ip) || whichfork != XFS_DATA_FORK || 459 map->br_startblock == DELAYSTARTBLOCK || 460 map->br_startblock == HOLESTARTBLOCK || 461 ISUNWRITTEN(map)) 462 return 0; 463 464 agno = XFS_FSB_TO_AGNO(mp, map->br_startblock); 465 agbno = XFS_FSB_TO_AGBNO(mp, map->br_startblock); 466 error = xfs_reflink_find_shared(mp, agno, agbno, map->br_blockcount, 467 &ebno, &elen, true); 468 if (error) 469 return error; 470 471 if (ebno == NULLAGBLOCK) { 472 /* No shared blocks at all. */ 473 return 0; 474 } else if (agbno == ebno) { 475 /* 476 * Shared extent at (agbno, elen). Shrink the reported 477 * extent length and prepare to move the start of map[i] 478 * to agbno+elen, with the aim of (re)formatting the new 479 * map[i] the next time through the inner loop. 480 */ 481 out->bmv_length = XFS_FSB_TO_BB(mp, elen); 482 out->bmv_oflags |= BMV_OF_SHARED; 483 if (elen != map->br_blockcount) { 484 *next_map = *map; 485 next_map->br_startblock += elen; 486 next_map->br_startoff += elen; 487 next_map->br_blockcount -= elen; 488 } 489 map->br_blockcount -= elen; 490 } else { 491 /* 492 * There's an unshared extent (agbno, ebno - agbno) 493 * followed by shared extent at (ebno, elen). Shrink 494 * the reported extent length to cover only the unshared 495 * extent and prepare to move up the start of map[i] to 496 * ebno, with the aim of (re)formatting the new map[i] 497 * the next time through the inner loop. 498 */ 499 *next_map = *map; 500 nlen = ebno - agbno; 501 out->bmv_length = XFS_FSB_TO_BB(mp, nlen); 502 next_map->br_startblock += nlen; 503 next_map->br_startoff += nlen; 504 next_map->br_blockcount -= nlen; 505 map->br_blockcount -= nlen; 506 } 507 508 return 0; 509 } 510 511 /* 512 * Get inode's extents as described in bmv, and format for output. 513 * Calls formatter to fill the user's buffer until all extents 514 * are mapped, until the passed-in bmv->bmv_count slots have 515 * been filled, or until the formatter short-circuits the loop, 516 * if it is tracking filled-in extents on its own. 517 */ 518 int /* error code */ 519 xfs_getbmap( 520 xfs_inode_t *ip, 521 struct getbmapx *bmv, /* user bmap structure */ 522 xfs_bmap_format_t formatter, /* format to user */ 523 void *arg) /* formatter arg */ 524 { 525 __int64_t bmvend; /* last block requested */ 526 int error = 0; /* return value */ 527 __int64_t fixlen; /* length for -1 case */ 528 int i; /* extent number */ 529 int lock; /* lock state */ 530 xfs_bmbt_irec_t *map; /* buffer for user's data */ 531 xfs_mount_t *mp; /* file system mount point */ 532 int nex; /* # of user extents can do */ 533 int nexleft; /* # of user extents left */ 534 int subnex; /* # of bmapi's can do */ 535 int nmap; /* number of map entries */ 536 struct getbmapx *out; /* output structure */ 537 int whichfork; /* data or attr fork */ 538 int prealloced; /* this is a file with 539 * preallocated data space */ 540 int iflags; /* interface flags */ 541 int bmapi_flags; /* flags for xfs_bmapi */ 542 int cur_ext = 0; 543 struct xfs_bmbt_irec inject_map; 544 545 mp = ip->i_mount; 546 iflags = bmv->bmv_iflags; 547 548 #ifndef DEBUG 549 /* Only allow CoW fork queries if we're debugging. */ 550 if (iflags & BMV_IF_COWFORK) 551 return -EINVAL; 552 #endif 553 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK)) 554 return -EINVAL; 555 556 if (iflags & BMV_IF_ATTRFORK) 557 whichfork = XFS_ATTR_FORK; 558 else if (iflags & BMV_IF_COWFORK) 559 whichfork = XFS_COW_FORK; 560 else 561 whichfork = XFS_DATA_FORK; 562 563 switch (whichfork) { 564 case XFS_ATTR_FORK: 565 if (XFS_IFORK_Q(ip)) { 566 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS && 567 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE && 568 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) 569 return -EINVAL; 570 } else if (unlikely( 571 ip->i_d.di_aformat != 0 && 572 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) { 573 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW, 574 ip->i_mount); 575 return -EFSCORRUPTED; 576 } 577 578 prealloced = 0; 579 fixlen = 1LL << 32; 580 break; 581 case XFS_COW_FORK: 582 if (ip->i_cformat != XFS_DINODE_FMT_EXTENTS) 583 return -EINVAL; 584 585 if (xfs_get_cowextsz_hint(ip)) { 586 prealloced = 1; 587 fixlen = mp->m_super->s_maxbytes; 588 } else { 589 prealloced = 0; 590 fixlen = XFS_ISIZE(ip); 591 } 592 break; 593 default: 594 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS && 595 ip->i_d.di_format != XFS_DINODE_FMT_BTREE && 596 ip->i_d.di_format != XFS_DINODE_FMT_LOCAL) 597 return -EINVAL; 598 599 if (xfs_get_extsz_hint(ip) || 600 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){ 601 prealloced = 1; 602 fixlen = mp->m_super->s_maxbytes; 603 } else { 604 prealloced = 0; 605 fixlen = XFS_ISIZE(ip); 606 } 607 break; 608 } 609 610 if (bmv->bmv_length == -1) { 611 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen)); 612 bmv->bmv_length = 613 max_t(__int64_t, fixlen - bmv->bmv_offset, 0); 614 } else if (bmv->bmv_length == 0) { 615 bmv->bmv_entries = 0; 616 return 0; 617 } else if (bmv->bmv_length < 0) { 618 return -EINVAL; 619 } 620 621 nex = bmv->bmv_count - 1; 622 if (nex <= 0) 623 return -EINVAL; 624 bmvend = bmv->bmv_offset + bmv->bmv_length; 625 626 627 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx)) 628 return -ENOMEM; 629 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0); 630 if (!out) 631 return -ENOMEM; 632 633 xfs_ilock(ip, XFS_IOLOCK_SHARED); 634 switch (whichfork) { 635 case XFS_DATA_FORK: 636 if (!(iflags & BMV_IF_DELALLOC) && 637 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) { 638 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 639 if (error) 640 goto out_unlock_iolock; 641 642 /* 643 * Even after flushing the inode, there can still be 644 * delalloc blocks on the inode beyond EOF due to 645 * speculative preallocation. These are not removed 646 * until the release function is called or the inode 647 * is inactivated. Hence we cannot assert here that 648 * ip->i_delayed_blks == 0. 649 */ 650 } 651 652 lock = xfs_ilock_data_map_shared(ip); 653 break; 654 case XFS_COW_FORK: 655 lock = XFS_ILOCK_SHARED; 656 xfs_ilock(ip, lock); 657 break; 658 case XFS_ATTR_FORK: 659 lock = xfs_ilock_attr_map_shared(ip); 660 break; 661 } 662 663 /* 664 * Don't let nex be bigger than the number of extents 665 * we can have assuming alternating holes and real extents. 666 */ 667 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1) 668 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1; 669 670 bmapi_flags = xfs_bmapi_aflag(whichfork); 671 if (!(iflags & BMV_IF_PREALLOC)) 672 bmapi_flags |= XFS_BMAPI_IGSTATE; 673 674 /* 675 * Allocate enough space to handle "subnex" maps at a time. 676 */ 677 error = -ENOMEM; 678 subnex = 16; 679 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS); 680 if (!map) 681 goto out_unlock_ilock; 682 683 bmv->bmv_entries = 0; 684 685 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 && 686 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) { 687 error = 0; 688 goto out_free_map; 689 } 690 691 nexleft = nex; 692 693 do { 694 nmap = (nexleft > subnex) ? subnex : nexleft; 695 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset), 696 XFS_BB_TO_FSB(mp, bmv->bmv_length), 697 map, &nmap, bmapi_flags); 698 if (error) 699 goto out_free_map; 700 ASSERT(nmap <= subnex); 701 702 for (i = 0; i < nmap && nexleft && bmv->bmv_length && 703 cur_ext < bmv->bmv_count; i++) { 704 out[cur_ext].bmv_oflags = 0; 705 if (map[i].br_state == XFS_EXT_UNWRITTEN) 706 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC; 707 else if (map[i].br_startblock == DELAYSTARTBLOCK) 708 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC; 709 out[cur_ext].bmv_offset = 710 XFS_FSB_TO_BB(mp, map[i].br_startoff); 711 out[cur_ext].bmv_length = 712 XFS_FSB_TO_BB(mp, map[i].br_blockcount); 713 out[cur_ext].bmv_unused1 = 0; 714 out[cur_ext].bmv_unused2 = 0; 715 716 /* 717 * delayed allocation extents that start beyond EOF can 718 * occur due to speculative EOF allocation when the 719 * delalloc extent is larger than the largest freespace 720 * extent at conversion time. These extents cannot be 721 * converted by data writeback, so can exist here even 722 * if we are not supposed to be finding delalloc 723 * extents. 724 */ 725 if (map[i].br_startblock == DELAYSTARTBLOCK && 726 map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip))) 727 ASSERT((iflags & BMV_IF_DELALLOC) != 0); 728 729 if (map[i].br_startblock == HOLESTARTBLOCK && 730 whichfork == XFS_ATTR_FORK) { 731 /* came to the end of attribute fork */ 732 out[cur_ext].bmv_oflags |= BMV_OF_LAST; 733 goto out_free_map; 734 } 735 736 /* Is this a shared block? */ 737 error = xfs_getbmap_adjust_shared(ip, whichfork, 738 &map[i], &out[cur_ext], &inject_map); 739 if (error) 740 goto out_free_map; 741 742 if (!xfs_getbmapx_fix_eof_hole(ip, whichfork, 743 &out[cur_ext], prealloced, bmvend, 744 map[i].br_startblock, 745 inject_map.br_startblock != NULLFSBLOCK)) 746 goto out_free_map; 747 748 bmv->bmv_offset = 749 out[cur_ext].bmv_offset + 750 out[cur_ext].bmv_length; 751 bmv->bmv_length = 752 max_t(__int64_t, 0, bmvend - bmv->bmv_offset); 753 754 /* 755 * In case we don't want to return the hole, 756 * don't increase cur_ext so that we can reuse 757 * it in the next loop. 758 */ 759 if ((iflags & BMV_IF_NO_HOLES) && 760 map[i].br_startblock == HOLESTARTBLOCK) { 761 memset(&out[cur_ext], 0, sizeof(out[cur_ext])); 762 continue; 763 } 764 765 if (inject_map.br_startblock != NULLFSBLOCK) { 766 map[i] = inject_map; 767 i--; 768 } else 769 nexleft--; 770 bmv->bmv_entries++; 771 cur_ext++; 772 } 773 } while (nmap && nexleft && bmv->bmv_length && 774 cur_ext < bmv->bmv_count); 775 776 out_free_map: 777 kmem_free(map); 778 out_unlock_ilock: 779 xfs_iunlock(ip, lock); 780 out_unlock_iolock: 781 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 782 783 for (i = 0; i < cur_ext; i++) { 784 int full = 0; /* user array is full */ 785 786 /* format results & advance arg */ 787 error = formatter(&arg, &out[i], &full); 788 if (error || full) 789 break; 790 } 791 792 kmem_free(out); 793 return error; 794 } 795 796 /* 797 * dead simple method of punching delalyed allocation blocks from a range in 798 * the inode. Walks a block at a time so will be slow, but is only executed in 799 * rare error cases so the overhead is not critical. This will always punch out 800 * both the start and end blocks, even if the ranges only partially overlap 801 * them, so it is up to the caller to ensure that partial blocks are not 802 * passed in. 803 */ 804 int 805 xfs_bmap_punch_delalloc_range( 806 struct xfs_inode *ip, 807 xfs_fileoff_t start_fsb, 808 xfs_fileoff_t length) 809 { 810 xfs_fileoff_t remaining = length; 811 int error = 0; 812 813 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 814 815 do { 816 int done; 817 xfs_bmbt_irec_t imap; 818 int nimaps = 1; 819 xfs_fsblock_t firstblock; 820 struct xfs_defer_ops dfops; 821 822 /* 823 * Map the range first and check that it is a delalloc extent 824 * before trying to unmap the range. Otherwise we will be 825 * trying to remove a real extent (which requires a 826 * transaction) or a hole, which is probably a bad idea... 827 */ 828 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps, 829 XFS_BMAPI_ENTIRE); 830 831 if (error) { 832 /* something screwed, just bail */ 833 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 834 xfs_alert(ip->i_mount, 835 "Failed delalloc mapping lookup ino %lld fsb %lld.", 836 ip->i_ino, start_fsb); 837 } 838 break; 839 } 840 if (!nimaps) { 841 /* nothing there */ 842 goto next_block; 843 } 844 if (imap.br_startblock != DELAYSTARTBLOCK) { 845 /* been converted, ignore */ 846 goto next_block; 847 } 848 WARN_ON(imap.br_blockcount == 0); 849 850 /* 851 * Note: while we initialise the firstblock/dfops pair, they 852 * should never be used because blocks should never be 853 * allocated or freed for a delalloc extent and hence we need 854 * don't cancel or finish them after the xfs_bunmapi() call. 855 */ 856 xfs_defer_init(&dfops, &firstblock); 857 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock, 858 &dfops, &done); 859 if (error) 860 break; 861 862 ASSERT(!xfs_defer_has_unfinished_work(&dfops)); 863 next_block: 864 start_fsb++; 865 remaining--; 866 } while(remaining > 0); 867 868 return error; 869 } 870 871 /* 872 * Test whether it is appropriate to check an inode for and free post EOF 873 * blocks. The 'force' parameter determines whether we should also consider 874 * regular files that are marked preallocated or append-only. 875 */ 876 bool 877 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 878 { 879 /* prealloc/delalloc exists only on regular files */ 880 if (!S_ISREG(VFS_I(ip)->i_mode)) 881 return false; 882 883 /* 884 * Zero sized files with no cached pages and delalloc blocks will not 885 * have speculative prealloc/delalloc blocks to remove. 886 */ 887 if (VFS_I(ip)->i_size == 0 && 888 VFS_I(ip)->i_mapping->nrpages == 0 && 889 ip->i_delayed_blks == 0) 890 return false; 891 892 /* If we haven't read in the extent list, then don't do it now. */ 893 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 894 return false; 895 896 /* 897 * Do not free real preallocated or append-only files unless the file 898 * has delalloc blocks and we are forced to remove them. 899 */ 900 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 901 if (!force || ip->i_delayed_blks == 0) 902 return false; 903 904 return true; 905 } 906 907 /* 908 * This is called by xfs_inactive to free any blocks beyond eof 909 * when the link count isn't zero and by xfs_dm_punch_hole() when 910 * punching a hole to EOF. 911 */ 912 int 913 xfs_free_eofblocks( 914 xfs_mount_t *mp, 915 xfs_inode_t *ip, 916 bool need_iolock) 917 { 918 xfs_trans_t *tp; 919 int error; 920 xfs_fileoff_t end_fsb; 921 xfs_fileoff_t last_fsb; 922 xfs_filblks_t map_len; 923 int nimaps; 924 xfs_bmbt_irec_t imap; 925 926 /* 927 * Figure out if there are any blocks beyond the end 928 * of the file. If not, then there is nothing to do. 929 */ 930 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); 931 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 932 if (last_fsb <= end_fsb) 933 return 0; 934 map_len = last_fsb - end_fsb; 935 936 nimaps = 1; 937 xfs_ilock(ip, XFS_ILOCK_SHARED); 938 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0); 939 xfs_iunlock(ip, XFS_ILOCK_SHARED); 940 941 if (!error && (nimaps != 0) && 942 (imap.br_startblock != HOLESTARTBLOCK || 943 ip->i_delayed_blks)) { 944 /* 945 * Attach the dquots to the inode up front. 946 */ 947 error = xfs_qm_dqattach(ip, 0); 948 if (error) 949 return error; 950 951 /* 952 * There are blocks after the end of file. 953 * Free them up now by truncating the file to 954 * its current size. 955 */ 956 if (need_iolock) { 957 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) 958 return -EAGAIN; 959 } 960 961 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, 962 &tp); 963 if (error) { 964 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 965 if (need_iolock) 966 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 967 return error; 968 } 969 970 xfs_ilock(ip, XFS_ILOCK_EXCL); 971 xfs_trans_ijoin(tp, ip, 0); 972 973 /* 974 * Do not update the on-disk file size. If we update the 975 * on-disk file size and then the system crashes before the 976 * contents of the file are flushed to disk then the files 977 * may be full of holes (ie NULL files bug). 978 */ 979 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 980 XFS_ISIZE(ip)); 981 if (error) { 982 /* 983 * If we get an error at this point we simply don't 984 * bother truncating the file. 985 */ 986 xfs_trans_cancel(tp); 987 } else { 988 error = xfs_trans_commit(tp); 989 if (!error) 990 xfs_inode_clear_eofblocks_tag(ip); 991 } 992 993 xfs_iunlock(ip, XFS_ILOCK_EXCL); 994 if (need_iolock) 995 xfs_iunlock(ip, XFS_IOLOCK_EXCL); 996 } 997 return error; 998 } 999 1000 int 1001 xfs_alloc_file_space( 1002 struct xfs_inode *ip, 1003 xfs_off_t offset, 1004 xfs_off_t len, 1005 int alloc_type) 1006 { 1007 xfs_mount_t *mp = ip->i_mount; 1008 xfs_off_t count; 1009 xfs_filblks_t allocated_fsb; 1010 xfs_filblks_t allocatesize_fsb; 1011 xfs_extlen_t extsz, temp; 1012 xfs_fileoff_t startoffset_fsb; 1013 xfs_fsblock_t firstfsb; 1014 int nimaps; 1015 int quota_flag; 1016 int rt; 1017 xfs_trans_t *tp; 1018 xfs_bmbt_irec_t imaps[1], *imapp; 1019 struct xfs_defer_ops dfops; 1020 uint qblocks, resblks, resrtextents; 1021 int error; 1022 1023 trace_xfs_alloc_file_space(ip); 1024 1025 if (XFS_FORCED_SHUTDOWN(mp)) 1026 return -EIO; 1027 1028 error = xfs_qm_dqattach(ip, 0); 1029 if (error) 1030 return error; 1031 1032 if (len <= 0) 1033 return -EINVAL; 1034 1035 rt = XFS_IS_REALTIME_INODE(ip); 1036 extsz = xfs_get_extsz_hint(ip); 1037 1038 count = len; 1039 imapp = &imaps[0]; 1040 nimaps = 1; 1041 startoffset_fsb = XFS_B_TO_FSBT(mp, offset); 1042 allocatesize_fsb = XFS_B_TO_FSB(mp, count); 1043 1044 /* 1045 * Allocate file space until done or until there is an error 1046 */ 1047 while (allocatesize_fsb && !error) { 1048 xfs_fileoff_t s, e; 1049 1050 /* 1051 * Determine space reservations for data/realtime. 1052 */ 1053 if (unlikely(extsz)) { 1054 s = startoffset_fsb; 1055 do_div(s, extsz); 1056 s *= extsz; 1057 e = startoffset_fsb + allocatesize_fsb; 1058 if ((temp = do_mod(startoffset_fsb, extsz))) 1059 e += temp; 1060 if ((temp = do_mod(e, extsz))) 1061 e += extsz - temp; 1062 } else { 1063 s = 0; 1064 e = allocatesize_fsb; 1065 } 1066 1067 /* 1068 * The transaction reservation is limited to a 32-bit block 1069 * count, hence we need to limit the number of blocks we are 1070 * trying to reserve to avoid an overflow. We can't allocate 1071 * more than @nimaps extents, and an extent is limited on disk 1072 * to MAXEXTLEN (21 bits), so use that to enforce the limit. 1073 */ 1074 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); 1075 if (unlikely(rt)) { 1076 resrtextents = qblocks = resblks; 1077 resrtextents /= mp->m_sb.sb_rextsize; 1078 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1079 quota_flag = XFS_QMOPT_RES_RTBLKS; 1080 } else { 1081 resrtextents = 0; 1082 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); 1083 quota_flag = XFS_QMOPT_RES_REGBLKS; 1084 } 1085 1086 /* 1087 * Allocate and setup the transaction. 1088 */ 1089 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 1090 resrtextents, 0, &tp); 1091 1092 /* 1093 * Check for running out of space 1094 */ 1095 if (error) { 1096 /* 1097 * Free the transaction structure. 1098 */ 1099 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1100 break; 1101 } 1102 xfs_ilock(ip, XFS_ILOCK_EXCL); 1103 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 1104 0, quota_flag); 1105 if (error) 1106 goto error1; 1107 1108 xfs_trans_ijoin(tp, ip, 0); 1109 1110 xfs_defer_init(&dfops, &firstfsb); 1111 error = xfs_bmapi_write(tp, ip, startoffset_fsb, 1112 allocatesize_fsb, alloc_type, &firstfsb, 1113 resblks, imapp, &nimaps, &dfops); 1114 if (error) 1115 goto error0; 1116 1117 /* 1118 * Complete the transaction 1119 */ 1120 error = xfs_defer_finish(&tp, &dfops, NULL); 1121 if (error) 1122 goto error0; 1123 1124 error = xfs_trans_commit(tp); 1125 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1126 if (error) 1127 break; 1128 1129 allocated_fsb = imapp->br_blockcount; 1130 1131 if (nimaps == 0) { 1132 error = -ENOSPC; 1133 break; 1134 } 1135 1136 startoffset_fsb += allocated_fsb; 1137 allocatesize_fsb -= allocated_fsb; 1138 } 1139 1140 return error; 1141 1142 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */ 1143 xfs_defer_cancel(&dfops); 1144 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 1145 1146 error1: /* Just cancel transaction */ 1147 xfs_trans_cancel(tp); 1148 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1149 return error; 1150 } 1151 1152 static int 1153 xfs_unmap_extent( 1154 struct xfs_inode *ip, 1155 xfs_fileoff_t startoffset_fsb, 1156 xfs_filblks_t len_fsb, 1157 int *done) 1158 { 1159 struct xfs_mount *mp = ip->i_mount; 1160 struct xfs_trans *tp; 1161 struct xfs_defer_ops dfops; 1162 xfs_fsblock_t firstfsb; 1163 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1164 int error; 1165 1166 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1167 if (error) { 1168 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1169 return error; 1170 } 1171 1172 xfs_ilock(ip, XFS_ILOCK_EXCL); 1173 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, 1174 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS); 1175 if (error) 1176 goto out_trans_cancel; 1177 1178 xfs_trans_ijoin(tp, ip, 0); 1179 1180 xfs_defer_init(&dfops, &firstfsb); 1181 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb, 1182 &dfops, done); 1183 if (error) 1184 goto out_bmap_cancel; 1185 1186 error = xfs_defer_finish(&tp, &dfops, ip); 1187 if (error) 1188 goto out_bmap_cancel; 1189 1190 error = xfs_trans_commit(tp); 1191 out_unlock: 1192 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1193 return error; 1194 1195 out_bmap_cancel: 1196 xfs_defer_cancel(&dfops); 1197 out_trans_cancel: 1198 xfs_trans_cancel(tp); 1199 goto out_unlock; 1200 } 1201 1202 static int 1203 xfs_adjust_extent_unmap_boundaries( 1204 struct xfs_inode *ip, 1205 xfs_fileoff_t *startoffset_fsb, 1206 xfs_fileoff_t *endoffset_fsb) 1207 { 1208 struct xfs_mount *mp = ip->i_mount; 1209 struct xfs_bmbt_irec imap; 1210 int nimap, error; 1211 xfs_extlen_t mod = 0; 1212 1213 nimap = 1; 1214 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0); 1215 if (error) 1216 return error; 1217 1218 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1219 xfs_daddr_t block; 1220 1221 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1222 block = imap.br_startblock; 1223 mod = do_div(block, mp->m_sb.sb_rextsize); 1224 if (mod) 1225 *startoffset_fsb += mp->m_sb.sb_rextsize - mod; 1226 } 1227 1228 nimap = 1; 1229 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0); 1230 if (error) 1231 return error; 1232 1233 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1234 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1235 mod++; 1236 if (mod && mod != mp->m_sb.sb_rextsize) 1237 *endoffset_fsb -= mod; 1238 } 1239 1240 return 0; 1241 } 1242 1243 static int 1244 xfs_flush_unmap_range( 1245 struct xfs_inode *ip, 1246 xfs_off_t offset, 1247 xfs_off_t len) 1248 { 1249 struct xfs_mount *mp = ip->i_mount; 1250 struct inode *inode = VFS_I(ip); 1251 xfs_off_t rounding, start, end; 1252 int error; 1253 1254 /* wait for the completion of any pending DIOs */ 1255 inode_dio_wait(inode); 1256 1257 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE); 1258 start = round_down(offset, rounding); 1259 end = round_up(offset + len, rounding) - 1; 1260 1261 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 1262 if (error) 1263 return error; 1264 truncate_pagecache_range(inode, start, end); 1265 return 0; 1266 } 1267 1268 int 1269 xfs_free_file_space( 1270 struct xfs_inode *ip, 1271 xfs_off_t offset, 1272 xfs_off_t len) 1273 { 1274 struct xfs_mount *mp = ip->i_mount; 1275 xfs_fileoff_t startoffset_fsb; 1276 xfs_fileoff_t endoffset_fsb; 1277 int done = 0, error; 1278 1279 trace_xfs_free_file_space(ip); 1280 1281 error = xfs_qm_dqattach(ip, 0); 1282 if (error) 1283 return error; 1284 1285 if (len <= 0) /* if nothing being freed */ 1286 return 0; 1287 1288 error = xfs_flush_unmap_range(ip, offset, len); 1289 if (error) 1290 return error; 1291 1292 startoffset_fsb = XFS_B_TO_FSB(mp, offset); 1293 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); 1294 1295 /* 1296 * Need to zero the stuff we're not freeing, on disk. If it's a RT file 1297 * and we can't use unwritten extents then we actually need to ensure 1298 * to zero the whole extent, otherwise we just need to take of block 1299 * boundaries, and xfs_bunmapi will handle the rest. 1300 */ 1301 if (XFS_IS_REALTIME_INODE(ip) && 1302 !xfs_sb_version_hasextflgbit(&mp->m_sb)) { 1303 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb, 1304 &endoffset_fsb); 1305 if (error) 1306 return error; 1307 } 1308 1309 if (endoffset_fsb > startoffset_fsb) { 1310 while (!done) { 1311 error = xfs_unmap_extent(ip, startoffset_fsb, 1312 endoffset_fsb - startoffset_fsb, &done); 1313 if (error) 1314 return error; 1315 } 1316 } 1317 1318 /* 1319 * Now that we've unmap all full blocks we'll have to zero out any 1320 * partial block at the beginning and/or end. xfs_zero_range is 1321 * smart enough to skip any holes, including those we just created. 1322 */ 1323 return xfs_zero_range(ip, offset, len, NULL); 1324 } 1325 1326 /* 1327 * Preallocate and zero a range of a file. This mechanism has the allocation 1328 * semantics of fallocate and in addition converts data in the range to zeroes. 1329 */ 1330 int 1331 xfs_zero_file_space( 1332 struct xfs_inode *ip, 1333 xfs_off_t offset, 1334 xfs_off_t len) 1335 { 1336 struct xfs_mount *mp = ip->i_mount; 1337 uint blksize; 1338 int error; 1339 1340 trace_xfs_zero_file_space(ip); 1341 1342 blksize = 1 << mp->m_sb.sb_blocklog; 1343 1344 /* 1345 * Punch a hole and prealloc the range. We use hole punch rather than 1346 * unwritten extent conversion for two reasons: 1347 * 1348 * 1.) Hole punch handles partial block zeroing for us. 1349 * 1350 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued 1351 * by virtue of the hole punch. 1352 */ 1353 error = xfs_free_file_space(ip, offset, len); 1354 if (error) 1355 goto out; 1356 1357 error = xfs_alloc_file_space(ip, round_down(offset, blksize), 1358 round_up(offset + len, blksize) - 1359 round_down(offset, blksize), 1360 XFS_BMAPI_PREALLOC); 1361 out: 1362 return error; 1363 1364 } 1365 1366 /* 1367 * @next_fsb will keep track of the extent currently undergoing shift. 1368 * @stop_fsb will keep track of the extent at which we have to stop. 1369 * If we are shifting left, we will start with block (offset + len) and 1370 * shift each extent till last extent. 1371 * If we are shifting right, we will start with last extent inside file space 1372 * and continue until we reach the block corresponding to offset. 1373 */ 1374 static int 1375 xfs_shift_file_space( 1376 struct xfs_inode *ip, 1377 xfs_off_t offset, 1378 xfs_off_t len, 1379 enum shift_direction direction) 1380 { 1381 int done = 0; 1382 struct xfs_mount *mp = ip->i_mount; 1383 struct xfs_trans *tp; 1384 int error; 1385 struct xfs_defer_ops dfops; 1386 xfs_fsblock_t first_block; 1387 xfs_fileoff_t stop_fsb; 1388 xfs_fileoff_t next_fsb; 1389 xfs_fileoff_t shift_fsb; 1390 1391 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT); 1392 1393 if (direction == SHIFT_LEFT) { 1394 next_fsb = XFS_B_TO_FSB(mp, offset + len); 1395 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size); 1396 } else { 1397 /* 1398 * If right shift, delegate the work of initialization of 1399 * next_fsb to xfs_bmap_shift_extent as it has ilock held. 1400 */ 1401 next_fsb = NULLFSBLOCK; 1402 stop_fsb = XFS_B_TO_FSB(mp, offset); 1403 } 1404 1405 shift_fsb = XFS_B_TO_FSB(mp, len); 1406 1407 /* 1408 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation 1409 * into the accessible region of the file. 1410 */ 1411 if (xfs_can_free_eofblocks(ip, true)) { 1412 error = xfs_free_eofblocks(mp, ip, false); 1413 if (error) 1414 return error; 1415 } 1416 1417 /* 1418 * Writeback and invalidate cache for the remainder of the file as we're 1419 * about to shift down every extent from offset to EOF. 1420 */ 1421 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 1422 offset, -1); 1423 if (error) 1424 return error; 1425 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 1426 offset >> PAGE_SHIFT, -1); 1427 if (error) 1428 return error; 1429 1430 /* 1431 * The extent shiting code works on extent granularity. So, if 1432 * stop_fsb is not the starting block of extent, we need to split 1433 * the extent at stop_fsb. 1434 */ 1435 if (direction == SHIFT_RIGHT) { 1436 error = xfs_bmap_split_extent(ip, stop_fsb); 1437 if (error) 1438 return error; 1439 } 1440 1441 while (!error && !done) { 1442 /* 1443 * We would need to reserve permanent block for transaction. 1444 * This will come into picture when after shifting extent into 1445 * hole we found that adjacent extents can be merged which 1446 * may lead to freeing of a block during record update. 1447 */ 1448 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 1449 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 0, &tp); 1450 if (error) 1451 break; 1452 1453 xfs_ilock(ip, XFS_ILOCK_EXCL); 1454 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, 1455 ip->i_gdquot, ip->i_pdquot, 1456 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0, 1457 XFS_QMOPT_RES_REGBLKS); 1458 if (error) 1459 goto out_trans_cancel; 1460 1461 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1462 1463 xfs_defer_init(&dfops, &first_block); 1464 1465 /* 1466 * We are using the write transaction in which max 2 bmbt 1467 * updates are allowed 1468 */ 1469 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb, 1470 &done, stop_fsb, &first_block, &dfops, 1471 direction, XFS_BMAP_MAX_SHIFT_EXTENTS); 1472 if (error) 1473 goto out_bmap_cancel; 1474 1475 error = xfs_defer_finish(&tp, &dfops, NULL); 1476 if (error) 1477 goto out_bmap_cancel; 1478 1479 error = xfs_trans_commit(tp); 1480 } 1481 1482 return error; 1483 1484 out_bmap_cancel: 1485 xfs_defer_cancel(&dfops); 1486 out_trans_cancel: 1487 xfs_trans_cancel(tp); 1488 return error; 1489 } 1490 1491 /* 1492 * xfs_collapse_file_space() 1493 * This routine frees disk space and shift extent for the given file. 1494 * The first thing we do is to free data blocks in the specified range 1495 * by calling xfs_free_file_space(). It would also sync dirty data 1496 * and invalidate page cache over the region on which collapse range 1497 * is working. And Shift extent records to the left to cover a hole. 1498 * RETURNS: 1499 * 0 on success 1500 * errno on error 1501 * 1502 */ 1503 int 1504 xfs_collapse_file_space( 1505 struct xfs_inode *ip, 1506 xfs_off_t offset, 1507 xfs_off_t len) 1508 { 1509 int error; 1510 1511 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1512 trace_xfs_collapse_file_space(ip); 1513 1514 error = xfs_free_file_space(ip, offset, len); 1515 if (error) 1516 return error; 1517 1518 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT); 1519 } 1520 1521 /* 1522 * xfs_insert_file_space() 1523 * This routine create hole space by shifting extents for the given file. 1524 * The first thing we do is to sync dirty data and invalidate page cache 1525 * over the region on which insert range is working. And split an extent 1526 * to two extents at given offset by calling xfs_bmap_split_extent. 1527 * And shift all extent records which are laying between [offset, 1528 * last allocated extent] to the right to reserve hole range. 1529 * RETURNS: 1530 * 0 on success 1531 * errno on error 1532 */ 1533 int 1534 xfs_insert_file_space( 1535 struct xfs_inode *ip, 1536 loff_t offset, 1537 loff_t len) 1538 { 1539 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1540 trace_xfs_insert_file_space(ip); 1541 1542 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT); 1543 } 1544 1545 /* 1546 * We need to check that the format of the data fork in the temporary inode is 1547 * valid for the target inode before doing the swap. This is not a problem with 1548 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized 1549 * data fork depending on the space the attribute fork is taking so we can get 1550 * invalid formats on the target inode. 1551 * 1552 * E.g. target has space for 7 extents in extent format, temp inode only has 1553 * space for 6. If we defragment down to 7 extents, then the tmp format is a 1554 * btree, but when swapped it needs to be in extent format. Hence we can't just 1555 * blindly swap data forks on attr2 filesystems. 1556 * 1557 * Note that we check the swap in both directions so that we don't end up with 1558 * a corrupt temporary inode, either. 1559 * 1560 * Note that fixing the way xfs_fsr sets up the attribute fork in the source 1561 * inode will prevent this situation from occurring, so all we do here is 1562 * reject and log the attempt. basically we are putting the responsibility on 1563 * userspace to get this right. 1564 */ 1565 static int 1566 xfs_swap_extents_check_format( 1567 struct xfs_inode *ip, /* target inode */ 1568 struct xfs_inode *tip) /* tmp inode */ 1569 { 1570 1571 /* Should never get a local format */ 1572 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL || 1573 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL) 1574 return -EINVAL; 1575 1576 /* 1577 * if the target inode has less extents that then temporary inode then 1578 * why did userspace call us? 1579 */ 1580 if (ip->i_d.di_nextents < tip->i_d.di_nextents) 1581 return -EINVAL; 1582 1583 /* 1584 * If we have to use the (expensive) rmap swap method, we can 1585 * handle any number of extents and any format. 1586 */ 1587 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb)) 1588 return 0; 1589 1590 /* 1591 * if the target inode is in extent form and the temp inode is in btree 1592 * form then we will end up with the target inode in the wrong format 1593 * as we already know there are less extents in the temp inode. 1594 */ 1595 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1596 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1597 return -EINVAL; 1598 1599 /* Check temp in extent form to max in target */ 1600 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1601 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) > 1602 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1603 return -EINVAL; 1604 1605 /* Check target in extent form to max in temp */ 1606 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1607 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) > 1608 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1609 return -EINVAL; 1610 1611 /* 1612 * If we are in a btree format, check that the temp root block will fit 1613 * in the target and that it has enough extents to be in btree format 1614 * in the target. 1615 * 1616 * Note that we have to be careful to allow btree->extent conversions 1617 * (a common defrag case) which will occur when the temp inode is in 1618 * extent format... 1619 */ 1620 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1621 if (XFS_IFORK_BOFF(ip) && 1622 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip)) 1623 return -EINVAL; 1624 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <= 1625 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1626 return -EINVAL; 1627 } 1628 1629 /* Reciprocal target->temp btree format checks */ 1630 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1631 if (XFS_IFORK_BOFF(tip) && 1632 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) 1633 return -EINVAL; 1634 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <= 1635 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1636 return -EINVAL; 1637 } 1638 1639 return 0; 1640 } 1641 1642 static int 1643 xfs_swap_extent_flush( 1644 struct xfs_inode *ip) 1645 { 1646 int error; 1647 1648 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 1649 if (error) 1650 return error; 1651 truncate_pagecache_range(VFS_I(ip), 0, -1); 1652 1653 /* Verify O_DIRECT for ftmp */ 1654 if (VFS_I(ip)->i_mapping->nrpages) 1655 return -EINVAL; 1656 return 0; 1657 } 1658 1659 /* 1660 * Move extents from one file to another, when rmap is enabled. 1661 */ 1662 STATIC int 1663 xfs_swap_extent_rmap( 1664 struct xfs_trans **tpp, 1665 struct xfs_inode *ip, 1666 struct xfs_inode *tip) 1667 { 1668 struct xfs_bmbt_irec irec; 1669 struct xfs_bmbt_irec uirec; 1670 struct xfs_bmbt_irec tirec; 1671 xfs_fileoff_t offset_fsb; 1672 xfs_fileoff_t end_fsb; 1673 xfs_filblks_t count_fsb; 1674 xfs_fsblock_t firstfsb; 1675 struct xfs_defer_ops dfops; 1676 int error; 1677 xfs_filblks_t ilen; 1678 xfs_filblks_t rlen; 1679 int nimaps; 1680 __uint64_t tip_flags2; 1681 1682 /* 1683 * If the source file has shared blocks, we must flag the donor 1684 * file as having shared blocks so that we get the shared-block 1685 * rmap functions when we go to fix up the rmaps. The flags 1686 * will be switch for reals later. 1687 */ 1688 tip_flags2 = tip->i_d.di_flags2; 1689 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) 1690 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; 1691 1692 offset_fsb = 0; 1693 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip))); 1694 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); 1695 1696 while (count_fsb) { 1697 /* Read extent from the donor file */ 1698 nimaps = 1; 1699 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec, 1700 &nimaps, 0); 1701 if (error) 1702 goto out; 1703 ASSERT(nimaps == 1); 1704 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK); 1705 1706 trace_xfs_swap_extent_rmap_remap(tip, &tirec); 1707 ilen = tirec.br_blockcount; 1708 1709 /* Unmap the old blocks in the source file. */ 1710 while (tirec.br_blockcount) { 1711 xfs_defer_init(&dfops, &firstfsb); 1712 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec); 1713 1714 /* Read extent from the source file */ 1715 nimaps = 1; 1716 error = xfs_bmapi_read(ip, tirec.br_startoff, 1717 tirec.br_blockcount, &irec, 1718 &nimaps, 0); 1719 if (error) 1720 goto out_defer; 1721 ASSERT(nimaps == 1); 1722 ASSERT(tirec.br_startoff == irec.br_startoff); 1723 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec); 1724 1725 /* Trim the extent. */ 1726 uirec = tirec; 1727 uirec.br_blockcount = rlen = min_t(xfs_filblks_t, 1728 tirec.br_blockcount, 1729 irec.br_blockcount); 1730 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec); 1731 1732 /* Remove the mapping from the donor file. */ 1733 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops, 1734 tip, &uirec); 1735 if (error) 1736 goto out_defer; 1737 1738 /* Remove the mapping from the source file. */ 1739 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops, 1740 ip, &irec); 1741 if (error) 1742 goto out_defer; 1743 1744 /* Map the donor file's blocks into the source file. */ 1745 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops, 1746 ip, &uirec); 1747 if (error) 1748 goto out_defer; 1749 1750 /* Map the source file's blocks into the donor file. */ 1751 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops, 1752 tip, &irec); 1753 if (error) 1754 goto out_defer; 1755 1756 error = xfs_defer_finish(tpp, &dfops, ip); 1757 if (error) 1758 goto out_defer; 1759 1760 tirec.br_startoff += rlen; 1761 if (tirec.br_startblock != HOLESTARTBLOCK && 1762 tirec.br_startblock != DELAYSTARTBLOCK) 1763 tirec.br_startblock += rlen; 1764 tirec.br_blockcount -= rlen; 1765 } 1766 1767 /* Roll on... */ 1768 count_fsb -= ilen; 1769 offset_fsb += ilen; 1770 } 1771 1772 tip->i_d.di_flags2 = tip_flags2; 1773 return 0; 1774 1775 out_defer: 1776 xfs_defer_cancel(&dfops); 1777 out: 1778 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_); 1779 tip->i_d.di_flags2 = tip_flags2; 1780 return error; 1781 } 1782 1783 /* Swap the extents of two files by swapping data forks. */ 1784 STATIC int 1785 xfs_swap_extent_forks( 1786 struct xfs_trans *tp, 1787 struct xfs_inode *ip, 1788 struct xfs_inode *tip, 1789 int *src_log_flags, 1790 int *target_log_flags) 1791 { 1792 struct xfs_ifork tempifp, *ifp, *tifp; 1793 int aforkblks = 0; 1794 int taforkblks = 0; 1795 __uint64_t tmp; 1796 int error; 1797 1798 /* 1799 * Count the number of extended attribute blocks 1800 */ 1801 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) && 1802 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1803 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, 1804 &aforkblks); 1805 if (error) 1806 return error; 1807 } 1808 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) && 1809 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1810 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, 1811 &taforkblks); 1812 if (error) 1813 return error; 1814 } 1815 1816 /* 1817 * Before we've swapped the forks, lets set the owners of the forks 1818 * appropriately. We have to do this as we are demand paging the btree 1819 * buffers, and so the validation done on read will expect the owner 1820 * field to be correctly set. Once we change the owners, we can swap the 1821 * inode forks. 1822 */ 1823 if (ip->i_d.di_version == 3 && 1824 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1825 (*target_log_flags) |= XFS_ILOG_DOWNER; 1826 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, 1827 tip->i_ino, NULL); 1828 if (error) 1829 return error; 1830 } 1831 1832 if (tip->i_d.di_version == 3 && 1833 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1834 (*src_log_flags) |= XFS_ILOG_DOWNER; 1835 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK, 1836 ip->i_ino, NULL); 1837 if (error) 1838 return error; 1839 } 1840 1841 /* 1842 * Swap the data forks of the inodes 1843 */ 1844 ifp = &ip->i_df; 1845 tifp = &tip->i_df; 1846 tempifp = *ifp; /* struct copy */ 1847 *ifp = *tifp; /* struct copy */ 1848 *tifp = tempifp; /* struct copy */ 1849 1850 /* 1851 * Fix the on-disk inode values 1852 */ 1853 tmp = (__uint64_t)ip->i_d.di_nblocks; 1854 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks; 1855 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks; 1856 1857 tmp = (__uint64_t) ip->i_d.di_nextents; 1858 ip->i_d.di_nextents = tip->i_d.di_nextents; 1859 tip->i_d.di_nextents = tmp; 1860 1861 tmp = (__uint64_t) ip->i_d.di_format; 1862 ip->i_d.di_format = tip->i_d.di_format; 1863 tip->i_d.di_format = tmp; 1864 1865 /* 1866 * The extents in the source inode could still contain speculative 1867 * preallocation beyond EOF (e.g. the file is open but not modified 1868 * while defrag is in progress). In that case, we need to copy over the 1869 * number of delalloc blocks the data fork in the source inode is 1870 * tracking beyond EOF so that when the fork is truncated away when the 1871 * temporary inode is unlinked we don't underrun the i_delayed_blks 1872 * counter on that inode. 1873 */ 1874 ASSERT(tip->i_delayed_blks == 0); 1875 tip->i_delayed_blks = ip->i_delayed_blks; 1876 ip->i_delayed_blks = 0; 1877 1878 switch (ip->i_d.di_format) { 1879 case XFS_DINODE_FMT_EXTENTS: 1880 /* If the extents fit in the inode, fix the 1881 * pointer. Otherwise it's already NULL or 1882 * pointing to the extent. 1883 */ 1884 if (ip->i_d.di_nextents <= XFS_INLINE_EXTS) { 1885 ifp->if_u1.if_extents = 1886 ifp->if_u2.if_inline_ext; 1887 } 1888 (*src_log_flags) |= XFS_ILOG_DEXT; 1889 break; 1890 case XFS_DINODE_FMT_BTREE: 1891 ASSERT(ip->i_d.di_version < 3 || 1892 (*src_log_flags & XFS_ILOG_DOWNER)); 1893 (*src_log_flags) |= XFS_ILOG_DBROOT; 1894 break; 1895 } 1896 1897 switch (tip->i_d.di_format) { 1898 case XFS_DINODE_FMT_EXTENTS: 1899 /* If the extents fit in the inode, fix the 1900 * pointer. Otherwise it's already NULL or 1901 * pointing to the extent. 1902 */ 1903 if (tip->i_d.di_nextents <= XFS_INLINE_EXTS) { 1904 tifp->if_u1.if_extents = 1905 tifp->if_u2.if_inline_ext; 1906 } 1907 (*target_log_flags) |= XFS_ILOG_DEXT; 1908 break; 1909 case XFS_DINODE_FMT_BTREE: 1910 (*target_log_flags) |= XFS_ILOG_DBROOT; 1911 ASSERT(tip->i_d.di_version < 3 || 1912 (*target_log_flags & XFS_ILOG_DOWNER)); 1913 break; 1914 } 1915 1916 return 0; 1917 } 1918 1919 int 1920 xfs_swap_extents( 1921 struct xfs_inode *ip, /* target inode */ 1922 struct xfs_inode *tip, /* tmp inode */ 1923 struct xfs_swapext *sxp) 1924 { 1925 struct xfs_mount *mp = ip->i_mount; 1926 struct xfs_trans *tp; 1927 struct xfs_bstat *sbp = &sxp->sx_stat; 1928 int src_log_flags, target_log_flags; 1929 int error = 0; 1930 int lock_flags; 1931 struct xfs_ifork *cowfp; 1932 __uint64_t f; 1933 int resblks; 1934 1935 /* 1936 * Lock the inodes against other IO, page faults and truncate to 1937 * begin with. Then we can ensure the inodes are flushed and have no 1938 * page cache safely. Once we have done this we can take the ilocks and 1939 * do the rest of the checks. 1940 */ 1941 lock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL; 1942 xfs_lock_two_inodes(ip, tip, XFS_IOLOCK_EXCL); 1943 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL); 1944 1945 /* Verify that both files have the same format */ 1946 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) { 1947 error = -EINVAL; 1948 goto out_unlock; 1949 } 1950 1951 /* Verify both files are either real-time or non-realtime */ 1952 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { 1953 error = -EINVAL; 1954 goto out_unlock; 1955 } 1956 1957 error = xfs_swap_extent_flush(ip); 1958 if (error) 1959 goto out_unlock; 1960 error = xfs_swap_extent_flush(tip); 1961 if (error) 1962 goto out_unlock; 1963 1964 /* 1965 * Extent "swapping" with rmap requires a permanent reservation and 1966 * a block reservation because it's really just a remap operation 1967 * performed with log redo items! 1968 */ 1969 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 1970 /* 1971 * Conceptually this shouldn't affect the shape of either 1972 * bmbt, but since we atomically move extents one by one, 1973 * we reserve enough space to rebuild both trees. 1974 */ 1975 resblks = XFS_SWAP_RMAP_SPACE_RES(mp, 1976 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK), 1977 XFS_DATA_FORK) + 1978 XFS_SWAP_RMAP_SPACE_RES(mp, 1979 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK), 1980 XFS_DATA_FORK); 1981 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 1982 0, 0, &tp); 1983 } else 1984 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 1985 0, 0, &tp); 1986 if (error) 1987 goto out_unlock; 1988 1989 /* 1990 * Lock and join the inodes to the tansaction so that transaction commit 1991 * or cancel will unlock the inodes from this point onwards. 1992 */ 1993 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL); 1994 lock_flags |= XFS_ILOCK_EXCL; 1995 xfs_trans_ijoin(tp, ip, 0); 1996 xfs_trans_ijoin(tp, tip, 0); 1997 1998 1999 /* Verify all data are being swapped */ 2000 if (sxp->sx_offset != 0 || 2001 sxp->sx_length != ip->i_d.di_size || 2002 sxp->sx_length != tip->i_d.di_size) { 2003 error = -EFAULT; 2004 goto out_trans_cancel; 2005 } 2006 2007 trace_xfs_swap_extent_before(ip, 0); 2008 trace_xfs_swap_extent_before(tip, 1); 2009 2010 /* check inode formats now that data is flushed */ 2011 error = xfs_swap_extents_check_format(ip, tip); 2012 if (error) { 2013 xfs_notice(mp, 2014 "%s: inode 0x%llx format is incompatible for exchanging.", 2015 __func__, ip->i_ino); 2016 goto out_trans_cancel; 2017 } 2018 2019 /* 2020 * Compare the current change & modify times with that 2021 * passed in. If they differ, we abort this swap. 2022 * This is the mechanism used to ensure the calling 2023 * process that the file was not changed out from 2024 * under it. 2025 */ 2026 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || 2027 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || 2028 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || 2029 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { 2030 error = -EBUSY; 2031 goto out_trans_cancel; 2032 } 2033 2034 /* 2035 * Note the trickiness in setting the log flags - we set the owner log 2036 * flag on the opposite inode (i.e. the inode we are setting the new 2037 * owner to be) because once we swap the forks and log that, log 2038 * recovery is going to see the fork as owned by the swapped inode, 2039 * not the pre-swapped inodes. 2040 */ 2041 src_log_flags = XFS_ILOG_CORE; 2042 target_log_flags = XFS_ILOG_CORE; 2043 2044 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) 2045 error = xfs_swap_extent_rmap(&tp, ip, tip); 2046 else 2047 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags, 2048 &target_log_flags); 2049 if (error) 2050 goto out_trans_cancel; 2051 2052 /* Do we have to swap reflink flags? */ 2053 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^ 2054 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) { 2055 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 2056 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 2057 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 2058 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 2059 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK; 2060 cowfp = ip->i_cowfp; 2061 ip->i_cowfp = tip->i_cowfp; 2062 tip->i_cowfp = cowfp; 2063 xfs_inode_set_cowblocks_tag(ip); 2064 xfs_inode_set_cowblocks_tag(tip); 2065 } 2066 2067 xfs_trans_log_inode(tp, ip, src_log_flags); 2068 xfs_trans_log_inode(tp, tip, target_log_flags); 2069 2070 /* 2071 * If this is a synchronous mount, make sure that the 2072 * transaction goes to disk before returning to the user. 2073 */ 2074 if (mp->m_flags & XFS_MOUNT_WSYNC) 2075 xfs_trans_set_sync(tp); 2076 2077 error = xfs_trans_commit(tp); 2078 2079 trace_xfs_swap_extent_after(ip, 0); 2080 trace_xfs_swap_extent_after(tip, 1); 2081 2082 xfs_iunlock(ip, lock_flags); 2083 xfs_iunlock(tip, lock_flags); 2084 return error; 2085 2086 out_trans_cancel: 2087 xfs_trans_cancel(tp); 2088 2089 out_unlock: 2090 xfs_iunlock(ip, lock_flags); 2091 xfs_iunlock(tip, lock_flags); 2092 return error; 2093 } 2094