1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * Copyright (c) 2012 Red Hat, Inc. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 17 #include "xfs_btree.h" 18 #include "xfs_trans.h" 19 #include "xfs_alloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_bmap_util.h" 22 #include "xfs_bmap_btree.h" 23 #include "xfs_rtalloc.h" 24 #include "xfs_error.h" 25 #include "xfs_quota.h" 26 #include "xfs_trans_space.h" 27 #include "xfs_trace.h" 28 #include "xfs_icache.h" 29 #include "xfs_iomap.h" 30 #include "xfs_reflink.h" 31 32 /* Kernel only BMAP related definitions and functions */ 33 34 /* 35 * Convert the given file system block to a disk block. We have to treat it 36 * differently based on whether the file is a real time file or not, because the 37 * bmap code does. 38 */ 39 xfs_daddr_t 40 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) 41 { 42 return (XFS_IS_REALTIME_INODE(ip) ? \ 43 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \ 44 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb))); 45 } 46 47 /* 48 * Routine to zero an extent on disk allocated to the specific inode. 49 * 50 * The VFS functions take a linearised filesystem block offset, so we have to 51 * convert the sparse xfs fsb to the right format first. 52 * VFS types are real funky, too. 53 */ 54 int 55 xfs_zero_extent( 56 struct xfs_inode *ip, 57 xfs_fsblock_t start_fsb, 58 xfs_off_t count_fsb) 59 { 60 struct xfs_mount *mp = ip->i_mount; 61 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb); 62 sector_t block = XFS_BB_TO_FSBT(mp, sector); 63 64 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)), 65 block << (mp->m_super->s_blocksize_bits - 9), 66 count_fsb << (mp->m_super->s_blocksize_bits - 9), 67 GFP_NOFS, 0); 68 } 69 70 #ifdef CONFIG_XFS_RT 71 int 72 xfs_bmap_rtalloc( 73 struct xfs_bmalloca *ap) /* bmap alloc argument struct */ 74 { 75 int error; /* error return value */ 76 xfs_mount_t *mp; /* mount point structure */ 77 xfs_extlen_t prod = 0; /* product factor for allocators */ 78 xfs_extlen_t mod = 0; /* product factor for allocators */ 79 xfs_extlen_t ralen = 0; /* realtime allocation length */ 80 xfs_extlen_t align; /* minimum allocation alignment */ 81 xfs_rtblock_t rtb; 82 83 mp = ap->ip->i_mount; 84 align = xfs_get_extsz_hint(ap->ip); 85 prod = align / mp->m_sb.sb_rextsize; 86 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, 87 align, 1, ap->eof, 0, 88 ap->conv, &ap->offset, &ap->length); 89 if (error) 90 return error; 91 ASSERT(ap->length); 92 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); 93 94 /* 95 * If the offset & length are not perfectly aligned 96 * then kill prod, it will just get us in trouble. 97 */ 98 div_u64_rem(ap->offset, align, &mod); 99 if (mod || ap->length % align) 100 prod = 1; 101 /* 102 * Set ralen to be the actual requested length in rtextents. 103 */ 104 ralen = ap->length / mp->m_sb.sb_rextsize; 105 /* 106 * If the old value was close enough to MAXEXTLEN that 107 * we rounded up to it, cut it back so it's valid again. 108 * Note that if it's a really large request (bigger than 109 * MAXEXTLEN), we don't hear about that number, and can't 110 * adjust the starting point to match it. 111 */ 112 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) 113 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; 114 115 /* 116 * Lock out modifications to both the RT bitmap and summary inodes 117 */ 118 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP); 119 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); 120 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM); 121 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL); 122 123 /* 124 * If it's an allocation to an empty file at offset 0, 125 * pick an extent that will space things out in the rt area. 126 */ 127 if (ap->eof && ap->offset == 0) { 128 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */ 129 130 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); 131 if (error) 132 return error; 133 ap->blkno = rtx * mp->m_sb.sb_rextsize; 134 } else { 135 ap->blkno = 0; 136 } 137 138 xfs_bmap_adjacent(ap); 139 140 /* 141 * Realtime allocation, done through xfs_rtallocate_extent. 142 */ 143 do_div(ap->blkno, mp->m_sb.sb_rextsize); 144 rtb = ap->blkno; 145 ap->length = ralen; 146 error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, 147 &ralen, ap->wasdel, prod, &rtb); 148 if (error) 149 return error; 150 151 ap->blkno = rtb; 152 if (ap->blkno != NULLFSBLOCK) { 153 ap->blkno *= mp->m_sb.sb_rextsize; 154 ralen *= mp->m_sb.sb_rextsize; 155 ap->length = ralen; 156 ap->ip->i_d.di_nblocks += ralen; 157 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); 158 if (ap->wasdel) 159 ap->ip->i_delayed_blks -= ralen; 160 /* 161 * Adjust the disk quota also. This was reserved 162 * earlier. 163 */ 164 xfs_trans_mod_dquot_byino(ap->tp, ap->ip, 165 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : 166 XFS_TRANS_DQ_RTBCOUNT, (long) ralen); 167 168 /* Zero the extent if we were asked to do so */ 169 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) { 170 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length); 171 if (error) 172 return error; 173 } 174 } else { 175 ap->length = 0; 176 } 177 return 0; 178 } 179 #endif /* CONFIG_XFS_RT */ 180 181 /* 182 * Check if the endoff is outside the last extent. If so the caller will grow 183 * the allocation to a stripe unit boundary. All offsets are considered outside 184 * the end of file for an empty fork, so 1 is returned in *eof in that case. 185 */ 186 int 187 xfs_bmap_eof( 188 struct xfs_inode *ip, 189 xfs_fileoff_t endoff, 190 int whichfork, 191 int *eof) 192 { 193 struct xfs_bmbt_irec rec; 194 int error; 195 196 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof); 197 if (error || *eof) 198 return error; 199 200 *eof = endoff >= rec.br_startoff + rec.br_blockcount; 201 return 0; 202 } 203 204 /* 205 * Extent tree block counting routines. 206 */ 207 208 /* 209 * Count leaf blocks given a range of extent records. Delayed allocation 210 * extents are not counted towards the totals. 211 */ 212 xfs_extnum_t 213 xfs_bmap_count_leaves( 214 struct xfs_ifork *ifp, 215 xfs_filblks_t *count) 216 { 217 struct xfs_iext_cursor icur; 218 struct xfs_bmbt_irec got; 219 xfs_extnum_t numrecs = 0; 220 221 for_each_xfs_iext(ifp, &icur, &got) { 222 if (!isnullstartblock(got.br_startblock)) { 223 *count += got.br_blockcount; 224 numrecs++; 225 } 226 } 227 228 return numrecs; 229 } 230 231 /* 232 * Count leaf blocks given a range of extent records originally 233 * in btree format. 234 */ 235 STATIC void 236 xfs_bmap_disk_count_leaves( 237 struct xfs_mount *mp, 238 struct xfs_btree_block *block, 239 int numrecs, 240 xfs_filblks_t *count) 241 { 242 int b; 243 xfs_bmbt_rec_t *frp; 244 245 for (b = 1; b <= numrecs; b++) { 246 frp = XFS_BMBT_REC_ADDR(mp, block, b); 247 *count += xfs_bmbt_disk_get_blockcount(frp); 248 } 249 } 250 251 /* 252 * Recursively walks each level of a btree 253 * to count total fsblocks in use. 254 */ 255 STATIC int 256 xfs_bmap_count_tree( 257 struct xfs_mount *mp, 258 struct xfs_trans *tp, 259 struct xfs_ifork *ifp, 260 xfs_fsblock_t blockno, 261 int levelin, 262 xfs_extnum_t *nextents, 263 xfs_filblks_t *count) 264 { 265 int error; 266 struct xfs_buf *bp, *nbp; 267 int level = levelin; 268 __be64 *pp; 269 xfs_fsblock_t bno = blockno; 270 xfs_fsblock_t nextbno; 271 struct xfs_btree_block *block, *nextblock; 272 int numrecs; 273 274 error = xfs_btree_read_bufl(mp, tp, bno, &bp, XFS_BMAP_BTREE_REF, 275 &xfs_bmbt_buf_ops); 276 if (error) 277 return error; 278 *count += 1; 279 block = XFS_BUF_TO_BLOCK(bp); 280 281 if (--level) { 282 /* Not at node above leaves, count this level of nodes */ 283 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 284 while (nextbno != NULLFSBLOCK) { 285 error = xfs_btree_read_bufl(mp, tp, nextbno, &nbp, 286 XFS_BMAP_BTREE_REF, 287 &xfs_bmbt_buf_ops); 288 if (error) 289 return error; 290 *count += 1; 291 nextblock = XFS_BUF_TO_BLOCK(nbp); 292 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib); 293 xfs_trans_brelse(tp, nbp); 294 } 295 296 /* Dive to the next level */ 297 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]); 298 bno = be64_to_cpu(*pp); 299 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents, 300 count); 301 if (error) { 302 xfs_trans_brelse(tp, bp); 303 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)", 304 XFS_ERRLEVEL_LOW, mp); 305 return -EFSCORRUPTED; 306 } 307 xfs_trans_brelse(tp, bp); 308 } else { 309 /* count all level 1 nodes and their leaves */ 310 for (;;) { 311 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 312 numrecs = be16_to_cpu(block->bb_numrecs); 313 (*nextents) += numrecs; 314 xfs_bmap_disk_count_leaves(mp, block, numrecs, count); 315 xfs_trans_brelse(tp, bp); 316 if (nextbno == NULLFSBLOCK) 317 break; 318 bno = nextbno; 319 error = xfs_btree_read_bufl(mp, tp, bno, &bp, 320 XFS_BMAP_BTREE_REF, 321 &xfs_bmbt_buf_ops); 322 if (error) 323 return error; 324 *count += 1; 325 block = XFS_BUF_TO_BLOCK(bp); 326 } 327 } 328 return 0; 329 } 330 331 /* 332 * Count fsblocks of the given fork. Delayed allocation extents are 333 * not counted towards the totals. 334 */ 335 int 336 xfs_bmap_count_blocks( 337 struct xfs_trans *tp, 338 struct xfs_inode *ip, 339 int whichfork, 340 xfs_extnum_t *nextents, 341 xfs_filblks_t *count) 342 { 343 struct xfs_mount *mp; /* file system mount structure */ 344 __be64 *pp; /* pointer to block address */ 345 struct xfs_btree_block *block; /* current btree block */ 346 struct xfs_ifork *ifp; /* fork structure */ 347 xfs_fsblock_t bno; /* block # of "block" */ 348 int level; /* btree level, for checking */ 349 int error; 350 351 bno = NULLFSBLOCK; 352 mp = ip->i_mount; 353 *nextents = 0; 354 *count = 0; 355 ifp = XFS_IFORK_PTR(ip, whichfork); 356 if (!ifp) 357 return 0; 358 359 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 360 case XFS_DINODE_FMT_EXTENTS: 361 *nextents = xfs_bmap_count_leaves(ifp, count); 362 return 0; 363 case XFS_DINODE_FMT_BTREE: 364 if (!(ifp->if_flags & XFS_IFEXTENTS)) { 365 error = xfs_iread_extents(tp, ip, whichfork); 366 if (error) 367 return error; 368 } 369 370 /* 371 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out. 372 */ 373 block = ifp->if_broot; 374 level = be16_to_cpu(block->bb_level); 375 ASSERT(level > 0); 376 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes); 377 bno = be64_to_cpu(*pp); 378 ASSERT(bno != NULLFSBLOCK); 379 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount); 380 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks); 381 382 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, 383 nextents, count); 384 if (error) { 385 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", 386 XFS_ERRLEVEL_LOW, mp); 387 return -EFSCORRUPTED; 388 } 389 return 0; 390 } 391 392 return 0; 393 } 394 395 static int 396 xfs_getbmap_report_one( 397 struct xfs_inode *ip, 398 struct getbmapx *bmv, 399 struct kgetbmap *out, 400 int64_t bmv_end, 401 struct xfs_bmbt_irec *got) 402 { 403 struct kgetbmap *p = out + bmv->bmv_entries; 404 bool shared = false; 405 int error; 406 407 error = xfs_reflink_trim_around_shared(ip, got, &shared); 408 if (error) 409 return error; 410 411 if (isnullstartblock(got->br_startblock) || 412 got->br_startblock == DELAYSTARTBLOCK) { 413 /* 414 * Delalloc extents that start beyond EOF can occur due to 415 * speculative EOF allocation when the delalloc extent is larger 416 * than the largest freespace extent at conversion time. These 417 * extents cannot be converted by data writeback, so can exist 418 * here even if we are not supposed to be finding delalloc 419 * extents. 420 */ 421 if (got->br_startoff < XFS_B_TO_FSB(ip->i_mount, XFS_ISIZE(ip))) 422 ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0); 423 424 p->bmv_oflags |= BMV_OF_DELALLOC; 425 p->bmv_block = -2; 426 } else { 427 p->bmv_block = xfs_fsb_to_db(ip, got->br_startblock); 428 } 429 430 if (got->br_state == XFS_EXT_UNWRITTEN && 431 (bmv->bmv_iflags & BMV_IF_PREALLOC)) 432 p->bmv_oflags |= BMV_OF_PREALLOC; 433 434 if (shared) 435 p->bmv_oflags |= BMV_OF_SHARED; 436 437 p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, got->br_startoff); 438 p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, got->br_blockcount); 439 440 bmv->bmv_offset = p->bmv_offset + p->bmv_length; 441 bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset); 442 bmv->bmv_entries++; 443 return 0; 444 } 445 446 static void 447 xfs_getbmap_report_hole( 448 struct xfs_inode *ip, 449 struct getbmapx *bmv, 450 struct kgetbmap *out, 451 int64_t bmv_end, 452 xfs_fileoff_t bno, 453 xfs_fileoff_t end) 454 { 455 struct kgetbmap *p = out + bmv->bmv_entries; 456 457 if (bmv->bmv_iflags & BMV_IF_NO_HOLES) 458 return; 459 460 p->bmv_block = -1; 461 p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, bno); 462 p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, end - bno); 463 464 bmv->bmv_offset = p->bmv_offset + p->bmv_length; 465 bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset); 466 bmv->bmv_entries++; 467 } 468 469 static inline bool 470 xfs_getbmap_full( 471 struct getbmapx *bmv) 472 { 473 return bmv->bmv_length == 0 || bmv->bmv_entries >= bmv->bmv_count - 1; 474 } 475 476 static bool 477 xfs_getbmap_next_rec( 478 struct xfs_bmbt_irec *rec, 479 xfs_fileoff_t total_end) 480 { 481 xfs_fileoff_t end = rec->br_startoff + rec->br_blockcount; 482 483 if (end == total_end) 484 return false; 485 486 rec->br_startoff += rec->br_blockcount; 487 if (!isnullstartblock(rec->br_startblock) && 488 rec->br_startblock != DELAYSTARTBLOCK) 489 rec->br_startblock += rec->br_blockcount; 490 rec->br_blockcount = total_end - end; 491 return true; 492 } 493 494 /* 495 * Get inode's extents as described in bmv, and format for output. 496 * Calls formatter to fill the user's buffer until all extents 497 * are mapped, until the passed-in bmv->bmv_count slots have 498 * been filled, or until the formatter short-circuits the loop, 499 * if it is tracking filled-in extents on its own. 500 */ 501 int /* error code */ 502 xfs_getbmap( 503 struct xfs_inode *ip, 504 struct getbmapx *bmv, /* user bmap structure */ 505 struct kgetbmap *out) 506 { 507 struct xfs_mount *mp = ip->i_mount; 508 int iflags = bmv->bmv_iflags; 509 int whichfork, lock, error = 0; 510 int64_t bmv_end, max_len; 511 xfs_fileoff_t bno, first_bno; 512 struct xfs_ifork *ifp; 513 struct xfs_bmbt_irec got, rec; 514 xfs_filblks_t len; 515 struct xfs_iext_cursor icur; 516 517 if (bmv->bmv_iflags & ~BMV_IF_VALID) 518 return -EINVAL; 519 #ifndef DEBUG 520 /* Only allow CoW fork queries if we're debugging. */ 521 if (iflags & BMV_IF_COWFORK) 522 return -EINVAL; 523 #endif 524 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK)) 525 return -EINVAL; 526 527 if (bmv->bmv_length < -1) 528 return -EINVAL; 529 bmv->bmv_entries = 0; 530 if (bmv->bmv_length == 0) 531 return 0; 532 533 if (iflags & BMV_IF_ATTRFORK) 534 whichfork = XFS_ATTR_FORK; 535 else if (iflags & BMV_IF_COWFORK) 536 whichfork = XFS_COW_FORK; 537 else 538 whichfork = XFS_DATA_FORK; 539 ifp = XFS_IFORK_PTR(ip, whichfork); 540 541 xfs_ilock(ip, XFS_IOLOCK_SHARED); 542 switch (whichfork) { 543 case XFS_ATTR_FORK: 544 if (!XFS_IFORK_Q(ip)) 545 goto out_unlock_iolock; 546 547 max_len = 1LL << 32; 548 lock = xfs_ilock_attr_map_shared(ip); 549 break; 550 case XFS_COW_FORK: 551 /* No CoW fork? Just return */ 552 if (!ifp) 553 goto out_unlock_iolock; 554 555 if (xfs_get_cowextsz_hint(ip)) 556 max_len = mp->m_super->s_maxbytes; 557 else 558 max_len = XFS_ISIZE(ip); 559 560 lock = XFS_ILOCK_SHARED; 561 xfs_ilock(ip, lock); 562 break; 563 case XFS_DATA_FORK: 564 if (!(iflags & BMV_IF_DELALLOC) && 565 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) { 566 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 567 if (error) 568 goto out_unlock_iolock; 569 570 /* 571 * Even after flushing the inode, there can still be 572 * delalloc blocks on the inode beyond EOF due to 573 * speculative preallocation. These are not removed 574 * until the release function is called or the inode 575 * is inactivated. Hence we cannot assert here that 576 * ip->i_delayed_blks == 0. 577 */ 578 } 579 580 if (xfs_get_extsz_hint(ip) || 581 (ip->i_d.di_flags & 582 (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))) 583 max_len = mp->m_super->s_maxbytes; 584 else 585 max_len = XFS_ISIZE(ip); 586 587 lock = xfs_ilock_data_map_shared(ip); 588 break; 589 } 590 591 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 592 case XFS_DINODE_FMT_EXTENTS: 593 case XFS_DINODE_FMT_BTREE: 594 break; 595 case XFS_DINODE_FMT_LOCAL: 596 /* Local format inode forks report no extents. */ 597 goto out_unlock_ilock; 598 default: 599 error = -EINVAL; 600 goto out_unlock_ilock; 601 } 602 603 if (bmv->bmv_length == -1) { 604 max_len = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, max_len)); 605 bmv->bmv_length = max(0LL, max_len - bmv->bmv_offset); 606 } 607 608 bmv_end = bmv->bmv_offset + bmv->bmv_length; 609 610 first_bno = bno = XFS_BB_TO_FSBT(mp, bmv->bmv_offset); 611 len = XFS_BB_TO_FSB(mp, bmv->bmv_length); 612 613 if (!(ifp->if_flags & XFS_IFEXTENTS)) { 614 error = xfs_iread_extents(NULL, ip, whichfork); 615 if (error) 616 goto out_unlock_ilock; 617 } 618 619 if (!xfs_iext_lookup_extent(ip, ifp, bno, &icur, &got)) { 620 /* 621 * Report a whole-file hole if the delalloc flag is set to 622 * stay compatible with the old implementation. 623 */ 624 if (iflags & BMV_IF_DELALLOC) 625 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno, 626 XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); 627 goto out_unlock_ilock; 628 } 629 630 while (!xfs_getbmap_full(bmv)) { 631 xfs_trim_extent(&got, first_bno, len); 632 633 /* 634 * Report an entry for a hole if this extent doesn't directly 635 * follow the previous one. 636 */ 637 if (got.br_startoff > bno) { 638 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno, 639 got.br_startoff); 640 if (xfs_getbmap_full(bmv)) 641 break; 642 } 643 644 /* 645 * In order to report shared extents accurately, we report each 646 * distinct shared / unshared part of a single bmbt record with 647 * an individual getbmapx record. 648 */ 649 bno = got.br_startoff + got.br_blockcount; 650 rec = got; 651 do { 652 error = xfs_getbmap_report_one(ip, bmv, out, bmv_end, 653 &rec); 654 if (error || xfs_getbmap_full(bmv)) 655 goto out_unlock_ilock; 656 } while (xfs_getbmap_next_rec(&rec, bno)); 657 658 if (!xfs_iext_next_extent(ifp, &icur, &got)) { 659 xfs_fileoff_t end = XFS_B_TO_FSB(mp, XFS_ISIZE(ip)); 660 661 out[bmv->bmv_entries - 1].bmv_oflags |= BMV_OF_LAST; 662 663 if (whichfork != XFS_ATTR_FORK && bno < end && 664 !xfs_getbmap_full(bmv)) { 665 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, 666 bno, end); 667 } 668 break; 669 } 670 671 if (bno >= first_bno + len) 672 break; 673 } 674 675 out_unlock_ilock: 676 xfs_iunlock(ip, lock); 677 out_unlock_iolock: 678 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 679 return error; 680 } 681 682 /* 683 * Dead simple method of punching delalyed allocation blocks from a range in 684 * the inode. This will always punch out both the start and end blocks, even 685 * if the ranges only partially overlap them, so it is up to the caller to 686 * ensure that partial blocks are not passed in. 687 */ 688 int 689 xfs_bmap_punch_delalloc_range( 690 struct xfs_inode *ip, 691 xfs_fileoff_t start_fsb, 692 xfs_fileoff_t length) 693 { 694 struct xfs_ifork *ifp = &ip->i_df; 695 xfs_fileoff_t end_fsb = start_fsb + length; 696 struct xfs_bmbt_irec got, del; 697 struct xfs_iext_cursor icur; 698 int error = 0; 699 700 ASSERT(ifp->if_flags & XFS_IFEXTENTS); 701 702 xfs_ilock(ip, XFS_ILOCK_EXCL); 703 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got)) 704 goto out_unlock; 705 706 while (got.br_startoff + got.br_blockcount > start_fsb) { 707 del = got; 708 xfs_trim_extent(&del, start_fsb, length); 709 710 /* 711 * A delete can push the cursor forward. Step back to the 712 * previous extent on non-delalloc or extents outside the 713 * target range. 714 */ 715 if (!del.br_blockcount || 716 !isnullstartblock(del.br_startblock)) { 717 if (!xfs_iext_prev_extent(ifp, &icur, &got)) 718 break; 719 continue; 720 } 721 722 error = xfs_bmap_del_extent_delay(ip, XFS_DATA_FORK, &icur, 723 &got, &del); 724 if (error || !xfs_iext_get_extent(ifp, &icur, &got)) 725 break; 726 } 727 728 out_unlock: 729 xfs_iunlock(ip, XFS_ILOCK_EXCL); 730 return error; 731 } 732 733 /* 734 * Test whether it is appropriate to check an inode for and free post EOF 735 * blocks. The 'force' parameter determines whether we should also consider 736 * regular files that are marked preallocated or append-only. 737 */ 738 bool 739 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 740 { 741 /* prealloc/delalloc exists only on regular files */ 742 if (!S_ISREG(VFS_I(ip)->i_mode)) 743 return false; 744 745 /* 746 * Zero sized files with no cached pages and delalloc blocks will not 747 * have speculative prealloc/delalloc blocks to remove. 748 */ 749 if (VFS_I(ip)->i_size == 0 && 750 VFS_I(ip)->i_mapping->nrpages == 0 && 751 ip->i_delayed_blks == 0) 752 return false; 753 754 /* If we haven't read in the extent list, then don't do it now. */ 755 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 756 return false; 757 758 /* 759 * Do not free real preallocated or append-only files unless the file 760 * has delalloc blocks and we are forced to remove them. 761 */ 762 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 763 if (!force || ip->i_delayed_blks == 0) 764 return false; 765 766 return true; 767 } 768 769 /* 770 * This is called to free any blocks beyond eof. The caller must hold 771 * IOLOCK_EXCL unless we are in the inode reclaim path and have the only 772 * reference to the inode. 773 */ 774 int 775 xfs_free_eofblocks( 776 struct xfs_inode *ip) 777 { 778 struct xfs_trans *tp; 779 int error; 780 xfs_fileoff_t end_fsb; 781 xfs_fileoff_t last_fsb; 782 xfs_filblks_t map_len; 783 int nimaps; 784 struct xfs_bmbt_irec imap; 785 struct xfs_mount *mp = ip->i_mount; 786 787 /* 788 * Figure out if there are any blocks beyond the end 789 * of the file. If not, then there is nothing to do. 790 */ 791 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); 792 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 793 if (last_fsb <= end_fsb) 794 return 0; 795 map_len = last_fsb - end_fsb; 796 797 nimaps = 1; 798 xfs_ilock(ip, XFS_ILOCK_SHARED); 799 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0); 800 xfs_iunlock(ip, XFS_ILOCK_SHARED); 801 802 /* 803 * If there are blocks after the end of file, truncate the file to its 804 * current size to free them up. 805 */ 806 if (!error && (nimaps != 0) && 807 (imap.br_startblock != HOLESTARTBLOCK || 808 ip->i_delayed_blks)) { 809 /* 810 * Attach the dquots to the inode up front. 811 */ 812 error = xfs_qm_dqattach(ip); 813 if (error) 814 return error; 815 816 /* wait on dio to ensure i_size has settled */ 817 inode_dio_wait(VFS_I(ip)); 818 819 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, 820 &tp); 821 if (error) { 822 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 823 return error; 824 } 825 826 xfs_ilock(ip, XFS_ILOCK_EXCL); 827 xfs_trans_ijoin(tp, ip, 0); 828 829 /* 830 * Do not update the on-disk file size. If we update the 831 * on-disk file size and then the system crashes before the 832 * contents of the file are flushed to disk then the files 833 * may be full of holes (ie NULL files bug). 834 */ 835 error = xfs_itruncate_extents_flags(&tp, ip, XFS_DATA_FORK, 836 XFS_ISIZE(ip), XFS_BMAPI_NODISCARD); 837 if (error) { 838 /* 839 * If we get an error at this point we simply don't 840 * bother truncating the file. 841 */ 842 xfs_trans_cancel(tp); 843 } else { 844 error = xfs_trans_commit(tp); 845 if (!error) 846 xfs_inode_clear_eofblocks_tag(ip); 847 } 848 849 xfs_iunlock(ip, XFS_ILOCK_EXCL); 850 } 851 return error; 852 } 853 854 int 855 xfs_alloc_file_space( 856 struct xfs_inode *ip, 857 xfs_off_t offset, 858 xfs_off_t len, 859 int alloc_type) 860 { 861 xfs_mount_t *mp = ip->i_mount; 862 xfs_off_t count; 863 xfs_filblks_t allocated_fsb; 864 xfs_filblks_t allocatesize_fsb; 865 xfs_extlen_t extsz, temp; 866 xfs_fileoff_t startoffset_fsb; 867 int nimaps; 868 int quota_flag; 869 int rt; 870 xfs_trans_t *tp; 871 xfs_bmbt_irec_t imaps[1], *imapp; 872 uint qblocks, resblks, resrtextents; 873 int error; 874 875 trace_xfs_alloc_file_space(ip); 876 877 if (XFS_FORCED_SHUTDOWN(mp)) 878 return -EIO; 879 880 error = xfs_qm_dqattach(ip); 881 if (error) 882 return error; 883 884 if (len <= 0) 885 return -EINVAL; 886 887 rt = XFS_IS_REALTIME_INODE(ip); 888 extsz = xfs_get_extsz_hint(ip); 889 890 count = len; 891 imapp = &imaps[0]; 892 nimaps = 1; 893 startoffset_fsb = XFS_B_TO_FSBT(mp, offset); 894 allocatesize_fsb = XFS_B_TO_FSB(mp, count); 895 896 /* 897 * Allocate file space until done or until there is an error 898 */ 899 while (allocatesize_fsb && !error) { 900 xfs_fileoff_t s, e; 901 902 /* 903 * Determine space reservations for data/realtime. 904 */ 905 if (unlikely(extsz)) { 906 s = startoffset_fsb; 907 do_div(s, extsz); 908 s *= extsz; 909 e = startoffset_fsb + allocatesize_fsb; 910 div_u64_rem(startoffset_fsb, extsz, &temp); 911 if (temp) 912 e += temp; 913 div_u64_rem(e, extsz, &temp); 914 if (temp) 915 e += extsz - temp; 916 } else { 917 s = 0; 918 e = allocatesize_fsb; 919 } 920 921 /* 922 * The transaction reservation is limited to a 32-bit block 923 * count, hence we need to limit the number of blocks we are 924 * trying to reserve to avoid an overflow. We can't allocate 925 * more than @nimaps extents, and an extent is limited on disk 926 * to MAXEXTLEN (21 bits), so use that to enforce the limit. 927 */ 928 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); 929 if (unlikely(rt)) { 930 resrtextents = qblocks = resblks; 931 resrtextents /= mp->m_sb.sb_rextsize; 932 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 933 quota_flag = XFS_QMOPT_RES_RTBLKS; 934 } else { 935 resrtextents = 0; 936 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); 937 quota_flag = XFS_QMOPT_RES_REGBLKS; 938 } 939 940 /* 941 * Allocate and setup the transaction. 942 */ 943 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 944 resrtextents, 0, &tp); 945 946 /* 947 * Check for running out of space 948 */ 949 if (error) { 950 /* 951 * Free the transaction structure. 952 */ 953 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 954 break; 955 } 956 xfs_ilock(ip, XFS_ILOCK_EXCL); 957 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 958 0, quota_flag); 959 if (error) 960 goto error1; 961 962 xfs_trans_ijoin(tp, ip, 0); 963 964 error = xfs_bmapi_write(tp, ip, startoffset_fsb, 965 allocatesize_fsb, alloc_type, resblks, 966 imapp, &nimaps); 967 if (error) 968 goto error0; 969 970 /* 971 * Complete the transaction 972 */ 973 error = xfs_trans_commit(tp); 974 xfs_iunlock(ip, XFS_ILOCK_EXCL); 975 if (error) 976 break; 977 978 allocated_fsb = imapp->br_blockcount; 979 980 if (nimaps == 0) { 981 error = -ENOSPC; 982 break; 983 } 984 985 startoffset_fsb += allocated_fsb; 986 allocatesize_fsb -= allocated_fsb; 987 } 988 989 return error; 990 991 error0: /* unlock inode, unreserve quota blocks, cancel trans */ 992 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 993 994 error1: /* Just cancel transaction */ 995 xfs_trans_cancel(tp); 996 xfs_iunlock(ip, XFS_ILOCK_EXCL); 997 return error; 998 } 999 1000 static int 1001 xfs_unmap_extent( 1002 struct xfs_inode *ip, 1003 xfs_fileoff_t startoffset_fsb, 1004 xfs_filblks_t len_fsb, 1005 int *done) 1006 { 1007 struct xfs_mount *mp = ip->i_mount; 1008 struct xfs_trans *tp; 1009 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1010 int error; 1011 1012 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1013 if (error) { 1014 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1015 return error; 1016 } 1017 1018 xfs_ilock(ip, XFS_ILOCK_EXCL); 1019 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, 1020 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS); 1021 if (error) 1022 goto out_trans_cancel; 1023 1024 xfs_trans_ijoin(tp, ip, 0); 1025 1026 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, done); 1027 if (error) 1028 goto out_trans_cancel; 1029 1030 error = xfs_trans_commit(tp); 1031 out_unlock: 1032 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1033 return error; 1034 1035 out_trans_cancel: 1036 xfs_trans_cancel(tp); 1037 goto out_unlock; 1038 } 1039 1040 int 1041 xfs_flush_unmap_range( 1042 struct xfs_inode *ip, 1043 xfs_off_t offset, 1044 xfs_off_t len) 1045 { 1046 struct xfs_mount *mp = ip->i_mount; 1047 struct inode *inode = VFS_I(ip); 1048 xfs_off_t rounding, start, end; 1049 int error; 1050 1051 /* wait for the completion of any pending DIOs */ 1052 inode_dio_wait(inode); 1053 1054 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE); 1055 start = round_down(offset, rounding); 1056 end = round_up(offset + len, rounding) - 1; 1057 1058 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 1059 if (error) 1060 return error; 1061 truncate_pagecache_range(inode, start, end); 1062 return 0; 1063 } 1064 1065 int 1066 xfs_free_file_space( 1067 struct xfs_inode *ip, 1068 xfs_off_t offset, 1069 xfs_off_t len) 1070 { 1071 struct xfs_mount *mp = ip->i_mount; 1072 xfs_fileoff_t startoffset_fsb; 1073 xfs_fileoff_t endoffset_fsb; 1074 int done = 0, error; 1075 1076 trace_xfs_free_file_space(ip); 1077 1078 error = xfs_qm_dqattach(ip); 1079 if (error) 1080 return error; 1081 1082 if (len <= 0) /* if nothing being freed */ 1083 return 0; 1084 1085 error = xfs_flush_unmap_range(ip, offset, len); 1086 if (error) 1087 return error; 1088 1089 startoffset_fsb = XFS_B_TO_FSB(mp, offset); 1090 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); 1091 1092 /* 1093 * Need to zero the stuff we're not freeing, on disk. 1094 */ 1095 if (endoffset_fsb > startoffset_fsb) { 1096 while (!done) { 1097 error = xfs_unmap_extent(ip, startoffset_fsb, 1098 endoffset_fsb - startoffset_fsb, &done); 1099 if (error) 1100 return error; 1101 } 1102 } 1103 1104 /* 1105 * Now that we've unmap all full blocks we'll have to zero out any 1106 * partial block at the beginning and/or end. iomap_zero_range is smart 1107 * enough to skip any holes, including those we just created, but we 1108 * must take care not to zero beyond EOF and enlarge i_size. 1109 */ 1110 if (offset >= XFS_ISIZE(ip)) 1111 return 0; 1112 if (offset + len > XFS_ISIZE(ip)) 1113 len = XFS_ISIZE(ip) - offset; 1114 error = iomap_zero_range(VFS_I(ip), offset, len, NULL, &xfs_iomap_ops); 1115 if (error) 1116 return error; 1117 1118 /* 1119 * If we zeroed right up to EOF and EOF straddles a page boundary we 1120 * must make sure that the post-EOF area is also zeroed because the 1121 * page could be mmap'd and iomap_zero_range doesn't do that for us. 1122 * Writeback of the eof page will do this, albeit clumsily. 1123 */ 1124 if (offset + len >= XFS_ISIZE(ip) && offset_in_page(offset + len) > 0) { 1125 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 1126 round_down(offset + len, PAGE_SIZE), LLONG_MAX); 1127 } 1128 1129 return error; 1130 } 1131 1132 /* 1133 * Preallocate and zero a range of a file. This mechanism has the allocation 1134 * semantics of fallocate and in addition converts data in the range to zeroes. 1135 */ 1136 int 1137 xfs_zero_file_space( 1138 struct xfs_inode *ip, 1139 xfs_off_t offset, 1140 xfs_off_t len) 1141 { 1142 struct xfs_mount *mp = ip->i_mount; 1143 uint blksize; 1144 int error; 1145 1146 trace_xfs_zero_file_space(ip); 1147 1148 blksize = 1 << mp->m_sb.sb_blocklog; 1149 1150 /* 1151 * Punch a hole and prealloc the range. We use hole punch rather than 1152 * unwritten extent conversion for two reasons: 1153 * 1154 * 1.) Hole punch handles partial block zeroing for us. 1155 * 1156 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued 1157 * by virtue of the hole punch. 1158 */ 1159 error = xfs_free_file_space(ip, offset, len); 1160 if (error || xfs_is_always_cow_inode(ip)) 1161 return error; 1162 1163 return xfs_alloc_file_space(ip, round_down(offset, blksize), 1164 round_up(offset + len, blksize) - 1165 round_down(offset, blksize), 1166 XFS_BMAPI_PREALLOC); 1167 } 1168 1169 static int 1170 xfs_prepare_shift( 1171 struct xfs_inode *ip, 1172 loff_t offset) 1173 { 1174 int error; 1175 1176 /* 1177 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation 1178 * into the accessible region of the file. 1179 */ 1180 if (xfs_can_free_eofblocks(ip, true)) { 1181 error = xfs_free_eofblocks(ip); 1182 if (error) 1183 return error; 1184 } 1185 1186 /* 1187 * Writeback and invalidate cache for the remainder of the file as we're 1188 * about to shift down every extent from offset to EOF. 1189 */ 1190 error = xfs_flush_unmap_range(ip, offset, XFS_ISIZE(ip)); 1191 if (error) 1192 return error; 1193 1194 /* 1195 * Clean out anything hanging around in the cow fork now that 1196 * we've flushed all the dirty data out to disk to avoid having 1197 * CoW extents at the wrong offsets. 1198 */ 1199 if (xfs_inode_has_cow_data(ip)) { 1200 error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF, 1201 true); 1202 if (error) 1203 return error; 1204 } 1205 1206 return 0; 1207 } 1208 1209 /* 1210 * xfs_collapse_file_space() 1211 * This routine frees disk space and shift extent for the given file. 1212 * The first thing we do is to free data blocks in the specified range 1213 * by calling xfs_free_file_space(). It would also sync dirty data 1214 * and invalidate page cache over the region on which collapse range 1215 * is working. And Shift extent records to the left to cover a hole. 1216 * RETURNS: 1217 * 0 on success 1218 * errno on error 1219 * 1220 */ 1221 int 1222 xfs_collapse_file_space( 1223 struct xfs_inode *ip, 1224 xfs_off_t offset, 1225 xfs_off_t len) 1226 { 1227 struct xfs_mount *mp = ip->i_mount; 1228 struct xfs_trans *tp; 1229 int error; 1230 xfs_fileoff_t next_fsb = XFS_B_TO_FSB(mp, offset + len); 1231 xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len); 1232 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1233 bool done = false; 1234 1235 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1236 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); 1237 1238 trace_xfs_collapse_file_space(ip); 1239 1240 error = xfs_free_file_space(ip, offset, len); 1241 if (error) 1242 return error; 1243 1244 error = xfs_prepare_shift(ip, offset); 1245 if (error) 1246 return error; 1247 1248 while (!error && !done) { 1249 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, 1250 &tp); 1251 if (error) 1252 break; 1253 1254 xfs_ilock(ip, XFS_ILOCK_EXCL); 1255 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, 1256 ip->i_gdquot, ip->i_pdquot, resblks, 0, 1257 XFS_QMOPT_RES_REGBLKS); 1258 if (error) 1259 goto out_trans_cancel; 1260 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1261 1262 error = xfs_bmap_collapse_extents(tp, ip, &next_fsb, shift_fsb, 1263 &done); 1264 if (error) 1265 goto out_trans_cancel; 1266 1267 error = xfs_trans_commit(tp); 1268 } 1269 1270 return error; 1271 1272 out_trans_cancel: 1273 xfs_trans_cancel(tp); 1274 return error; 1275 } 1276 1277 /* 1278 * xfs_insert_file_space() 1279 * This routine create hole space by shifting extents for the given file. 1280 * The first thing we do is to sync dirty data and invalidate page cache 1281 * over the region on which insert range is working. And split an extent 1282 * to two extents at given offset by calling xfs_bmap_split_extent. 1283 * And shift all extent records which are laying between [offset, 1284 * last allocated extent] to the right to reserve hole range. 1285 * RETURNS: 1286 * 0 on success 1287 * errno on error 1288 */ 1289 int 1290 xfs_insert_file_space( 1291 struct xfs_inode *ip, 1292 loff_t offset, 1293 loff_t len) 1294 { 1295 struct xfs_mount *mp = ip->i_mount; 1296 struct xfs_trans *tp; 1297 int error; 1298 xfs_fileoff_t stop_fsb = XFS_B_TO_FSB(mp, offset); 1299 xfs_fileoff_t next_fsb = NULLFSBLOCK; 1300 xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len); 1301 bool done = false; 1302 1303 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1304 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL)); 1305 1306 trace_xfs_insert_file_space(ip); 1307 1308 error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb); 1309 if (error) 1310 return error; 1311 1312 error = xfs_prepare_shift(ip, offset); 1313 if (error) 1314 return error; 1315 1316 /* 1317 * The extent shifting code works on extent granularity. So, if stop_fsb 1318 * is not the starting block of extent, we need to split the extent at 1319 * stop_fsb. 1320 */ 1321 error = xfs_bmap_split_extent(ip, stop_fsb); 1322 if (error) 1323 return error; 1324 1325 while (!error && !done) { 1326 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, 1327 &tp); 1328 if (error) 1329 break; 1330 1331 xfs_ilock(ip, XFS_ILOCK_EXCL); 1332 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1333 error = xfs_bmap_insert_extents(tp, ip, &next_fsb, shift_fsb, 1334 &done, stop_fsb); 1335 if (error) 1336 goto out_trans_cancel; 1337 1338 error = xfs_trans_commit(tp); 1339 } 1340 1341 return error; 1342 1343 out_trans_cancel: 1344 xfs_trans_cancel(tp); 1345 return error; 1346 } 1347 1348 /* 1349 * We need to check that the format of the data fork in the temporary inode is 1350 * valid for the target inode before doing the swap. This is not a problem with 1351 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized 1352 * data fork depending on the space the attribute fork is taking so we can get 1353 * invalid formats on the target inode. 1354 * 1355 * E.g. target has space for 7 extents in extent format, temp inode only has 1356 * space for 6. If we defragment down to 7 extents, then the tmp format is a 1357 * btree, but when swapped it needs to be in extent format. Hence we can't just 1358 * blindly swap data forks on attr2 filesystems. 1359 * 1360 * Note that we check the swap in both directions so that we don't end up with 1361 * a corrupt temporary inode, either. 1362 * 1363 * Note that fixing the way xfs_fsr sets up the attribute fork in the source 1364 * inode will prevent this situation from occurring, so all we do here is 1365 * reject and log the attempt. basically we are putting the responsibility on 1366 * userspace to get this right. 1367 */ 1368 static int 1369 xfs_swap_extents_check_format( 1370 struct xfs_inode *ip, /* target inode */ 1371 struct xfs_inode *tip) /* tmp inode */ 1372 { 1373 1374 /* Should never get a local format */ 1375 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL || 1376 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL) 1377 return -EINVAL; 1378 1379 /* 1380 * if the target inode has less extents that then temporary inode then 1381 * why did userspace call us? 1382 */ 1383 if (ip->i_d.di_nextents < tip->i_d.di_nextents) 1384 return -EINVAL; 1385 1386 /* 1387 * If we have to use the (expensive) rmap swap method, we can 1388 * handle any number of extents and any format. 1389 */ 1390 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb)) 1391 return 0; 1392 1393 /* 1394 * if the target inode is in extent form and the temp inode is in btree 1395 * form then we will end up with the target inode in the wrong format 1396 * as we already know there are less extents in the temp inode. 1397 */ 1398 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1399 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1400 return -EINVAL; 1401 1402 /* Check temp in extent form to max in target */ 1403 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1404 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) > 1405 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1406 return -EINVAL; 1407 1408 /* Check target in extent form to max in temp */ 1409 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1410 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) > 1411 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1412 return -EINVAL; 1413 1414 /* 1415 * If we are in a btree format, check that the temp root block will fit 1416 * in the target and that it has enough extents to be in btree format 1417 * in the target. 1418 * 1419 * Note that we have to be careful to allow btree->extent conversions 1420 * (a common defrag case) which will occur when the temp inode is in 1421 * extent format... 1422 */ 1423 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1424 if (XFS_IFORK_Q(ip) && 1425 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip)) 1426 return -EINVAL; 1427 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <= 1428 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1429 return -EINVAL; 1430 } 1431 1432 /* Reciprocal target->temp btree format checks */ 1433 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1434 if (XFS_IFORK_Q(tip) && 1435 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) 1436 return -EINVAL; 1437 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <= 1438 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1439 return -EINVAL; 1440 } 1441 1442 return 0; 1443 } 1444 1445 static int 1446 xfs_swap_extent_flush( 1447 struct xfs_inode *ip) 1448 { 1449 int error; 1450 1451 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 1452 if (error) 1453 return error; 1454 truncate_pagecache_range(VFS_I(ip), 0, -1); 1455 1456 /* Verify O_DIRECT for ftmp */ 1457 if (VFS_I(ip)->i_mapping->nrpages) 1458 return -EINVAL; 1459 return 0; 1460 } 1461 1462 /* 1463 * Move extents from one file to another, when rmap is enabled. 1464 */ 1465 STATIC int 1466 xfs_swap_extent_rmap( 1467 struct xfs_trans **tpp, 1468 struct xfs_inode *ip, 1469 struct xfs_inode *tip) 1470 { 1471 struct xfs_trans *tp = *tpp; 1472 struct xfs_bmbt_irec irec; 1473 struct xfs_bmbt_irec uirec; 1474 struct xfs_bmbt_irec tirec; 1475 xfs_fileoff_t offset_fsb; 1476 xfs_fileoff_t end_fsb; 1477 xfs_filblks_t count_fsb; 1478 int error; 1479 xfs_filblks_t ilen; 1480 xfs_filblks_t rlen; 1481 int nimaps; 1482 uint64_t tip_flags2; 1483 1484 /* 1485 * If the source file has shared blocks, we must flag the donor 1486 * file as having shared blocks so that we get the shared-block 1487 * rmap functions when we go to fix up the rmaps. The flags 1488 * will be switch for reals later. 1489 */ 1490 tip_flags2 = tip->i_d.di_flags2; 1491 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) 1492 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; 1493 1494 offset_fsb = 0; 1495 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip))); 1496 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); 1497 1498 while (count_fsb) { 1499 /* Read extent from the donor file */ 1500 nimaps = 1; 1501 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec, 1502 &nimaps, 0); 1503 if (error) 1504 goto out; 1505 ASSERT(nimaps == 1); 1506 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK); 1507 1508 trace_xfs_swap_extent_rmap_remap(tip, &tirec); 1509 ilen = tirec.br_blockcount; 1510 1511 /* Unmap the old blocks in the source file. */ 1512 while (tirec.br_blockcount) { 1513 ASSERT(tp->t_firstblock == NULLFSBLOCK); 1514 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec); 1515 1516 /* Read extent from the source file */ 1517 nimaps = 1; 1518 error = xfs_bmapi_read(ip, tirec.br_startoff, 1519 tirec.br_blockcount, &irec, 1520 &nimaps, 0); 1521 if (error) 1522 goto out; 1523 ASSERT(nimaps == 1); 1524 ASSERT(tirec.br_startoff == irec.br_startoff); 1525 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec); 1526 1527 /* Trim the extent. */ 1528 uirec = tirec; 1529 uirec.br_blockcount = rlen = min_t(xfs_filblks_t, 1530 tirec.br_blockcount, 1531 irec.br_blockcount); 1532 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec); 1533 1534 /* Remove the mapping from the donor file. */ 1535 error = xfs_bmap_unmap_extent(tp, tip, &uirec); 1536 if (error) 1537 goto out; 1538 1539 /* Remove the mapping from the source file. */ 1540 error = xfs_bmap_unmap_extent(tp, ip, &irec); 1541 if (error) 1542 goto out; 1543 1544 /* Map the donor file's blocks into the source file. */ 1545 error = xfs_bmap_map_extent(tp, ip, &uirec); 1546 if (error) 1547 goto out; 1548 1549 /* Map the source file's blocks into the donor file. */ 1550 error = xfs_bmap_map_extent(tp, tip, &irec); 1551 if (error) 1552 goto out; 1553 1554 error = xfs_defer_finish(tpp); 1555 tp = *tpp; 1556 if (error) 1557 goto out; 1558 1559 tirec.br_startoff += rlen; 1560 if (tirec.br_startblock != HOLESTARTBLOCK && 1561 tirec.br_startblock != DELAYSTARTBLOCK) 1562 tirec.br_startblock += rlen; 1563 tirec.br_blockcount -= rlen; 1564 } 1565 1566 /* Roll on... */ 1567 count_fsb -= ilen; 1568 offset_fsb += ilen; 1569 } 1570 1571 tip->i_d.di_flags2 = tip_flags2; 1572 return 0; 1573 1574 out: 1575 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_); 1576 tip->i_d.di_flags2 = tip_flags2; 1577 return error; 1578 } 1579 1580 /* Swap the extents of two files by swapping data forks. */ 1581 STATIC int 1582 xfs_swap_extent_forks( 1583 struct xfs_trans *tp, 1584 struct xfs_inode *ip, 1585 struct xfs_inode *tip, 1586 int *src_log_flags, 1587 int *target_log_flags) 1588 { 1589 xfs_filblks_t aforkblks = 0; 1590 xfs_filblks_t taforkblks = 0; 1591 xfs_extnum_t junk; 1592 uint64_t tmp; 1593 int error; 1594 1595 /* 1596 * Count the number of extended attribute blocks 1597 */ 1598 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) && 1599 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1600 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk, 1601 &aforkblks); 1602 if (error) 1603 return error; 1604 } 1605 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) && 1606 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1607 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk, 1608 &taforkblks); 1609 if (error) 1610 return error; 1611 } 1612 1613 /* 1614 * Btree format (v3) inodes have the inode number stamped in the bmbt 1615 * block headers. We can't start changing the bmbt blocks until the 1616 * inode owner change is logged so recovery does the right thing in the 1617 * event of a crash. Set the owner change log flags now and leave the 1618 * bmbt scan as the last step. 1619 */ 1620 if (ip->i_d.di_version == 3 && 1621 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1622 (*target_log_flags) |= XFS_ILOG_DOWNER; 1623 if (tip->i_d.di_version == 3 && 1624 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1625 (*src_log_flags) |= XFS_ILOG_DOWNER; 1626 1627 /* 1628 * Swap the data forks of the inodes 1629 */ 1630 swap(ip->i_df, tip->i_df); 1631 1632 /* 1633 * Fix the on-disk inode values 1634 */ 1635 tmp = (uint64_t)ip->i_d.di_nblocks; 1636 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks; 1637 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks; 1638 1639 swap(ip->i_d.di_nextents, tip->i_d.di_nextents); 1640 swap(ip->i_d.di_format, tip->i_d.di_format); 1641 1642 /* 1643 * The extents in the source inode could still contain speculative 1644 * preallocation beyond EOF (e.g. the file is open but not modified 1645 * while defrag is in progress). In that case, we need to copy over the 1646 * number of delalloc blocks the data fork in the source inode is 1647 * tracking beyond EOF so that when the fork is truncated away when the 1648 * temporary inode is unlinked we don't underrun the i_delayed_blks 1649 * counter on that inode. 1650 */ 1651 ASSERT(tip->i_delayed_blks == 0); 1652 tip->i_delayed_blks = ip->i_delayed_blks; 1653 ip->i_delayed_blks = 0; 1654 1655 switch (ip->i_d.di_format) { 1656 case XFS_DINODE_FMT_EXTENTS: 1657 (*src_log_flags) |= XFS_ILOG_DEXT; 1658 break; 1659 case XFS_DINODE_FMT_BTREE: 1660 ASSERT(ip->i_d.di_version < 3 || 1661 (*src_log_flags & XFS_ILOG_DOWNER)); 1662 (*src_log_flags) |= XFS_ILOG_DBROOT; 1663 break; 1664 } 1665 1666 switch (tip->i_d.di_format) { 1667 case XFS_DINODE_FMT_EXTENTS: 1668 (*target_log_flags) |= XFS_ILOG_DEXT; 1669 break; 1670 case XFS_DINODE_FMT_BTREE: 1671 (*target_log_flags) |= XFS_ILOG_DBROOT; 1672 ASSERT(tip->i_d.di_version < 3 || 1673 (*target_log_flags & XFS_ILOG_DOWNER)); 1674 break; 1675 } 1676 1677 return 0; 1678 } 1679 1680 /* 1681 * Fix up the owners of the bmbt blocks to refer to the current inode. The 1682 * change owner scan attempts to order all modified buffers in the current 1683 * transaction. In the event of ordered buffer failure, the offending buffer is 1684 * physically logged as a fallback and the scan returns -EAGAIN. We must roll 1685 * the transaction in this case to replenish the fallback log reservation and 1686 * restart the scan. This process repeats until the scan completes. 1687 */ 1688 static int 1689 xfs_swap_change_owner( 1690 struct xfs_trans **tpp, 1691 struct xfs_inode *ip, 1692 struct xfs_inode *tmpip) 1693 { 1694 int error; 1695 struct xfs_trans *tp = *tpp; 1696 1697 do { 1698 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino, 1699 NULL); 1700 /* success or fatal error */ 1701 if (error != -EAGAIN) 1702 break; 1703 1704 error = xfs_trans_roll(tpp); 1705 if (error) 1706 break; 1707 tp = *tpp; 1708 1709 /* 1710 * Redirty both inodes so they can relog and keep the log tail 1711 * moving forward. 1712 */ 1713 xfs_trans_ijoin(tp, ip, 0); 1714 xfs_trans_ijoin(tp, tmpip, 0); 1715 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 1716 xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE); 1717 } while (true); 1718 1719 return error; 1720 } 1721 1722 int 1723 xfs_swap_extents( 1724 struct xfs_inode *ip, /* target inode */ 1725 struct xfs_inode *tip, /* tmp inode */ 1726 struct xfs_swapext *sxp) 1727 { 1728 struct xfs_mount *mp = ip->i_mount; 1729 struct xfs_trans *tp; 1730 struct xfs_bstat *sbp = &sxp->sx_stat; 1731 int src_log_flags, target_log_flags; 1732 int error = 0; 1733 int lock_flags; 1734 uint64_t f; 1735 int resblks = 0; 1736 1737 /* 1738 * Lock the inodes against other IO, page faults and truncate to 1739 * begin with. Then we can ensure the inodes are flushed and have no 1740 * page cache safely. Once we have done this we can take the ilocks and 1741 * do the rest of the checks. 1742 */ 1743 lock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 1744 lock_flags = XFS_MMAPLOCK_EXCL; 1745 xfs_lock_two_inodes(ip, XFS_MMAPLOCK_EXCL, tip, XFS_MMAPLOCK_EXCL); 1746 1747 /* Verify that both files have the same format */ 1748 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) { 1749 error = -EINVAL; 1750 goto out_unlock; 1751 } 1752 1753 /* Verify both files are either real-time or non-realtime */ 1754 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { 1755 error = -EINVAL; 1756 goto out_unlock; 1757 } 1758 1759 error = xfs_swap_extent_flush(ip); 1760 if (error) 1761 goto out_unlock; 1762 error = xfs_swap_extent_flush(tip); 1763 if (error) 1764 goto out_unlock; 1765 1766 if (xfs_inode_has_cow_data(tip)) { 1767 error = xfs_reflink_cancel_cow_range(tip, 0, NULLFILEOFF, true); 1768 if (error) 1769 return error; 1770 } 1771 1772 /* 1773 * Extent "swapping" with rmap requires a permanent reservation and 1774 * a block reservation because it's really just a remap operation 1775 * performed with log redo items! 1776 */ 1777 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 1778 int w = XFS_DATA_FORK; 1779 uint32_t ipnext = XFS_IFORK_NEXTENTS(ip, w); 1780 uint32_t tipnext = XFS_IFORK_NEXTENTS(tip, w); 1781 1782 /* 1783 * Conceptually this shouldn't affect the shape of either bmbt, 1784 * but since we atomically move extents one by one, we reserve 1785 * enough space to rebuild both trees. 1786 */ 1787 resblks = XFS_SWAP_RMAP_SPACE_RES(mp, ipnext, w); 1788 resblks += XFS_SWAP_RMAP_SPACE_RES(mp, tipnext, w); 1789 1790 /* 1791 * Handle the corner case where either inode might straddle the 1792 * btree format boundary. If so, the inode could bounce between 1793 * btree <-> extent format on unmap -> remap cycles, freeing and 1794 * allocating a bmapbt block each time. 1795 */ 1796 if (ipnext == (XFS_IFORK_MAXEXT(ip, w) + 1)) 1797 resblks += XFS_IFORK_MAXEXT(ip, w); 1798 if (tipnext == (XFS_IFORK_MAXEXT(tip, w) + 1)) 1799 resblks += XFS_IFORK_MAXEXT(tip, w); 1800 } 1801 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1802 if (error) 1803 goto out_unlock; 1804 1805 /* 1806 * Lock and join the inodes to the tansaction so that transaction commit 1807 * or cancel will unlock the inodes from this point onwards. 1808 */ 1809 xfs_lock_two_inodes(ip, XFS_ILOCK_EXCL, tip, XFS_ILOCK_EXCL); 1810 lock_flags |= XFS_ILOCK_EXCL; 1811 xfs_trans_ijoin(tp, ip, 0); 1812 xfs_trans_ijoin(tp, tip, 0); 1813 1814 1815 /* Verify all data are being swapped */ 1816 if (sxp->sx_offset != 0 || 1817 sxp->sx_length != ip->i_d.di_size || 1818 sxp->sx_length != tip->i_d.di_size) { 1819 error = -EFAULT; 1820 goto out_trans_cancel; 1821 } 1822 1823 trace_xfs_swap_extent_before(ip, 0); 1824 trace_xfs_swap_extent_before(tip, 1); 1825 1826 /* check inode formats now that data is flushed */ 1827 error = xfs_swap_extents_check_format(ip, tip); 1828 if (error) { 1829 xfs_notice(mp, 1830 "%s: inode 0x%llx format is incompatible for exchanging.", 1831 __func__, ip->i_ino); 1832 goto out_trans_cancel; 1833 } 1834 1835 /* 1836 * Compare the current change & modify times with that 1837 * passed in. If they differ, we abort this swap. 1838 * This is the mechanism used to ensure the calling 1839 * process that the file was not changed out from 1840 * under it. 1841 */ 1842 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || 1843 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || 1844 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || 1845 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { 1846 error = -EBUSY; 1847 goto out_trans_cancel; 1848 } 1849 1850 /* 1851 * Note the trickiness in setting the log flags - we set the owner log 1852 * flag on the opposite inode (i.e. the inode we are setting the new 1853 * owner to be) because once we swap the forks and log that, log 1854 * recovery is going to see the fork as owned by the swapped inode, 1855 * not the pre-swapped inodes. 1856 */ 1857 src_log_flags = XFS_ILOG_CORE; 1858 target_log_flags = XFS_ILOG_CORE; 1859 1860 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) 1861 error = xfs_swap_extent_rmap(&tp, ip, tip); 1862 else 1863 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags, 1864 &target_log_flags); 1865 if (error) 1866 goto out_trans_cancel; 1867 1868 /* Do we have to swap reflink flags? */ 1869 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^ 1870 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) { 1871 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 1872 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1873 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 1874 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 1875 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK; 1876 } 1877 1878 /* Swap the cow forks. */ 1879 if (xfs_sb_version_hasreflink(&mp->m_sb)) { 1880 ASSERT(ip->i_cformat == XFS_DINODE_FMT_EXTENTS); 1881 ASSERT(tip->i_cformat == XFS_DINODE_FMT_EXTENTS); 1882 1883 swap(ip->i_cnextents, tip->i_cnextents); 1884 swap(ip->i_cowfp, tip->i_cowfp); 1885 1886 if (ip->i_cowfp && ip->i_cowfp->if_bytes) 1887 xfs_inode_set_cowblocks_tag(ip); 1888 else 1889 xfs_inode_clear_cowblocks_tag(ip); 1890 if (tip->i_cowfp && tip->i_cowfp->if_bytes) 1891 xfs_inode_set_cowblocks_tag(tip); 1892 else 1893 xfs_inode_clear_cowblocks_tag(tip); 1894 } 1895 1896 xfs_trans_log_inode(tp, ip, src_log_flags); 1897 xfs_trans_log_inode(tp, tip, target_log_flags); 1898 1899 /* 1900 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems 1901 * have inode number owner values in the bmbt blocks that still refer to 1902 * the old inode. Scan each bmbt to fix up the owner values with the 1903 * inode number of the current inode. 1904 */ 1905 if (src_log_flags & XFS_ILOG_DOWNER) { 1906 error = xfs_swap_change_owner(&tp, ip, tip); 1907 if (error) 1908 goto out_trans_cancel; 1909 } 1910 if (target_log_flags & XFS_ILOG_DOWNER) { 1911 error = xfs_swap_change_owner(&tp, tip, ip); 1912 if (error) 1913 goto out_trans_cancel; 1914 } 1915 1916 /* 1917 * If this is a synchronous mount, make sure that the 1918 * transaction goes to disk before returning to the user. 1919 */ 1920 if (mp->m_flags & XFS_MOUNT_WSYNC) 1921 xfs_trans_set_sync(tp); 1922 1923 error = xfs_trans_commit(tp); 1924 1925 trace_xfs_swap_extent_after(ip, 0); 1926 trace_xfs_swap_extent_after(tip, 1); 1927 1928 out_unlock: 1929 xfs_iunlock(ip, lock_flags); 1930 xfs_iunlock(tip, lock_flags); 1931 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 1932 return error; 1933 1934 out_trans_cancel: 1935 xfs_trans_cancel(tp); 1936 goto out_unlock; 1937 } 1938