1 /* 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 3 * Copyright (c) 2012 Red Hat, Inc. 4 * All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it would be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 */ 19 #include "xfs.h" 20 #include "xfs_fs.h" 21 #include "xfs_shared.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_bit.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_defer.h" 29 #include "xfs_inode.h" 30 #include "xfs_btree.h" 31 #include "xfs_trans.h" 32 #include "xfs_extfree_item.h" 33 #include "xfs_alloc.h" 34 #include "xfs_bmap.h" 35 #include "xfs_bmap_util.h" 36 #include "xfs_bmap_btree.h" 37 #include "xfs_rtalloc.h" 38 #include "xfs_error.h" 39 #include "xfs_quota.h" 40 #include "xfs_trans_space.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_log.h" 44 #include "xfs_rmap_btree.h" 45 #include "xfs_iomap.h" 46 #include "xfs_reflink.h" 47 #include "xfs_refcount.h" 48 49 /* Kernel only BMAP related definitions and functions */ 50 51 /* 52 * Convert the given file system block to a disk block. We have to treat it 53 * differently based on whether the file is a real time file or not, because the 54 * bmap code does. 55 */ 56 xfs_daddr_t 57 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb) 58 { 59 return (XFS_IS_REALTIME_INODE(ip) ? \ 60 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \ 61 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb))); 62 } 63 64 /* 65 * Routine to zero an extent on disk allocated to the specific inode. 66 * 67 * The VFS functions take a linearised filesystem block offset, so we have to 68 * convert the sparse xfs fsb to the right format first. 69 * VFS types are real funky, too. 70 */ 71 int 72 xfs_zero_extent( 73 struct xfs_inode *ip, 74 xfs_fsblock_t start_fsb, 75 xfs_off_t count_fsb) 76 { 77 struct xfs_mount *mp = ip->i_mount; 78 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb); 79 sector_t block = XFS_BB_TO_FSBT(mp, sector); 80 81 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)), 82 block << (mp->m_super->s_blocksize_bits - 9), 83 count_fsb << (mp->m_super->s_blocksize_bits - 9), 84 GFP_NOFS, 0); 85 } 86 87 int 88 xfs_bmap_rtalloc( 89 struct xfs_bmalloca *ap) /* bmap alloc argument struct */ 90 { 91 int error; /* error return value */ 92 xfs_mount_t *mp; /* mount point structure */ 93 xfs_extlen_t prod = 0; /* product factor for allocators */ 94 xfs_extlen_t ralen = 0; /* realtime allocation length */ 95 xfs_extlen_t align; /* minimum allocation alignment */ 96 xfs_rtblock_t rtb; 97 98 mp = ap->ip->i_mount; 99 align = xfs_get_extsz_hint(ap->ip); 100 prod = align / mp->m_sb.sb_rextsize; 101 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev, 102 align, 1, ap->eof, 0, 103 ap->conv, &ap->offset, &ap->length); 104 if (error) 105 return error; 106 ASSERT(ap->length); 107 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0); 108 109 /* 110 * If the offset & length are not perfectly aligned 111 * then kill prod, it will just get us in trouble. 112 */ 113 if (do_mod(ap->offset, align) || ap->length % align) 114 prod = 1; 115 /* 116 * Set ralen to be the actual requested length in rtextents. 117 */ 118 ralen = ap->length / mp->m_sb.sb_rextsize; 119 /* 120 * If the old value was close enough to MAXEXTLEN that 121 * we rounded up to it, cut it back so it's valid again. 122 * Note that if it's a really large request (bigger than 123 * MAXEXTLEN), we don't hear about that number, and can't 124 * adjust the starting point to match it. 125 */ 126 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN) 127 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize; 128 129 /* 130 * Lock out modifications to both the RT bitmap and summary inodes 131 */ 132 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP); 133 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL); 134 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM); 135 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL); 136 137 /* 138 * If it's an allocation to an empty file at offset 0, 139 * pick an extent that will space things out in the rt area. 140 */ 141 if (ap->eof && ap->offset == 0) { 142 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */ 143 144 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx); 145 if (error) 146 return error; 147 ap->blkno = rtx * mp->m_sb.sb_rextsize; 148 } else { 149 ap->blkno = 0; 150 } 151 152 xfs_bmap_adjacent(ap); 153 154 /* 155 * Realtime allocation, done through xfs_rtallocate_extent. 156 */ 157 do_div(ap->blkno, mp->m_sb.sb_rextsize); 158 rtb = ap->blkno; 159 ap->length = ralen; 160 error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length, 161 &ralen, ap->wasdel, prod, &rtb); 162 if (error) 163 return error; 164 165 ap->blkno = rtb; 166 if (ap->blkno != NULLFSBLOCK) { 167 ap->blkno *= mp->m_sb.sb_rextsize; 168 ralen *= mp->m_sb.sb_rextsize; 169 ap->length = ralen; 170 ap->ip->i_d.di_nblocks += ralen; 171 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE); 172 if (ap->wasdel) 173 ap->ip->i_delayed_blks -= ralen; 174 /* 175 * Adjust the disk quota also. This was reserved 176 * earlier. 177 */ 178 xfs_trans_mod_dquot_byino(ap->tp, ap->ip, 179 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT : 180 XFS_TRANS_DQ_RTBCOUNT, (long) ralen); 181 182 /* Zero the extent if we were asked to do so */ 183 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) { 184 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length); 185 if (error) 186 return error; 187 } 188 } else { 189 ap->length = 0; 190 } 191 return 0; 192 } 193 194 /* 195 * Check if the endoff is outside the last extent. If so the caller will grow 196 * the allocation to a stripe unit boundary. All offsets are considered outside 197 * the end of file for an empty fork, so 1 is returned in *eof in that case. 198 */ 199 int 200 xfs_bmap_eof( 201 struct xfs_inode *ip, 202 xfs_fileoff_t endoff, 203 int whichfork, 204 int *eof) 205 { 206 struct xfs_bmbt_irec rec; 207 int error; 208 209 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof); 210 if (error || *eof) 211 return error; 212 213 *eof = endoff >= rec.br_startoff + rec.br_blockcount; 214 return 0; 215 } 216 217 /* 218 * Extent tree block counting routines. 219 */ 220 221 /* 222 * Count leaf blocks given a range of extent records. Delayed allocation 223 * extents are not counted towards the totals. 224 */ 225 STATIC void 226 xfs_bmap_count_leaves( 227 struct xfs_ifork *ifp, 228 xfs_extnum_t *numrecs, 229 xfs_filblks_t *count) 230 { 231 xfs_extnum_t i; 232 xfs_extnum_t nr_exts = xfs_iext_count(ifp); 233 234 for (i = 0; i < nr_exts; i++) { 235 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, i); 236 if (!isnullstartblock(xfs_bmbt_get_startblock(frp))) { 237 (*numrecs)++; 238 *count += xfs_bmbt_get_blockcount(frp); 239 } 240 } 241 } 242 243 /* 244 * Count leaf blocks given a range of extent records originally 245 * in btree format. 246 */ 247 STATIC void 248 xfs_bmap_disk_count_leaves( 249 struct xfs_mount *mp, 250 struct xfs_btree_block *block, 251 int numrecs, 252 xfs_filblks_t *count) 253 { 254 int b; 255 xfs_bmbt_rec_t *frp; 256 257 for (b = 1; b <= numrecs; b++) { 258 frp = XFS_BMBT_REC_ADDR(mp, block, b); 259 *count += xfs_bmbt_disk_get_blockcount(frp); 260 } 261 } 262 263 /* 264 * Recursively walks each level of a btree 265 * to count total fsblocks in use. 266 */ 267 STATIC int 268 xfs_bmap_count_tree( 269 struct xfs_mount *mp, 270 struct xfs_trans *tp, 271 struct xfs_ifork *ifp, 272 xfs_fsblock_t blockno, 273 int levelin, 274 xfs_extnum_t *nextents, 275 xfs_filblks_t *count) 276 { 277 int error; 278 struct xfs_buf *bp, *nbp; 279 int level = levelin; 280 __be64 *pp; 281 xfs_fsblock_t bno = blockno; 282 xfs_fsblock_t nextbno; 283 struct xfs_btree_block *block, *nextblock; 284 int numrecs; 285 286 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF, 287 &xfs_bmbt_buf_ops); 288 if (error) 289 return error; 290 *count += 1; 291 block = XFS_BUF_TO_BLOCK(bp); 292 293 if (--level) { 294 /* Not at node above leaves, count this level of nodes */ 295 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 296 while (nextbno != NULLFSBLOCK) { 297 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp, 298 XFS_BMAP_BTREE_REF, 299 &xfs_bmbt_buf_ops); 300 if (error) 301 return error; 302 *count += 1; 303 nextblock = XFS_BUF_TO_BLOCK(nbp); 304 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib); 305 xfs_trans_brelse(tp, nbp); 306 } 307 308 /* Dive to the next level */ 309 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]); 310 bno = be64_to_cpu(*pp); 311 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents, 312 count); 313 if (error) { 314 xfs_trans_brelse(tp, bp); 315 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)", 316 XFS_ERRLEVEL_LOW, mp); 317 return -EFSCORRUPTED; 318 } 319 xfs_trans_brelse(tp, bp); 320 } else { 321 /* count all level 1 nodes and their leaves */ 322 for (;;) { 323 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib); 324 numrecs = be16_to_cpu(block->bb_numrecs); 325 (*nextents) += numrecs; 326 xfs_bmap_disk_count_leaves(mp, block, numrecs, count); 327 xfs_trans_brelse(tp, bp); 328 if (nextbno == NULLFSBLOCK) 329 break; 330 bno = nextbno; 331 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, 332 XFS_BMAP_BTREE_REF, 333 &xfs_bmbt_buf_ops); 334 if (error) 335 return error; 336 *count += 1; 337 block = XFS_BUF_TO_BLOCK(bp); 338 } 339 } 340 return 0; 341 } 342 343 /* 344 * Count fsblocks of the given fork. Delayed allocation extents are 345 * not counted towards the totals. 346 */ 347 int 348 xfs_bmap_count_blocks( 349 struct xfs_trans *tp, 350 struct xfs_inode *ip, 351 int whichfork, 352 xfs_extnum_t *nextents, 353 xfs_filblks_t *count) 354 { 355 struct xfs_mount *mp; /* file system mount structure */ 356 __be64 *pp; /* pointer to block address */ 357 struct xfs_btree_block *block; /* current btree block */ 358 struct xfs_ifork *ifp; /* fork structure */ 359 xfs_fsblock_t bno; /* block # of "block" */ 360 int level; /* btree level, for checking */ 361 int error; 362 363 bno = NULLFSBLOCK; 364 mp = ip->i_mount; 365 *nextents = 0; 366 *count = 0; 367 ifp = XFS_IFORK_PTR(ip, whichfork); 368 if (!ifp) 369 return 0; 370 371 switch (XFS_IFORK_FORMAT(ip, whichfork)) { 372 case XFS_DINODE_FMT_EXTENTS: 373 xfs_bmap_count_leaves(ifp, nextents, count); 374 return 0; 375 case XFS_DINODE_FMT_BTREE: 376 if (!(ifp->if_flags & XFS_IFEXTENTS)) { 377 error = xfs_iread_extents(tp, ip, whichfork); 378 if (error) 379 return error; 380 } 381 382 /* 383 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out. 384 */ 385 block = ifp->if_broot; 386 level = be16_to_cpu(block->bb_level); 387 ASSERT(level > 0); 388 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes); 389 bno = be64_to_cpu(*pp); 390 ASSERT(bno != NULLFSBLOCK); 391 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount); 392 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks); 393 394 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, 395 nextents, count); 396 if (error) { 397 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", 398 XFS_ERRLEVEL_LOW, mp); 399 return -EFSCORRUPTED; 400 } 401 return 0; 402 } 403 404 return 0; 405 } 406 407 /* 408 * returns 1 for success, 0 if we failed to map the extent. 409 */ 410 STATIC int 411 xfs_getbmapx_fix_eof_hole( 412 xfs_inode_t *ip, /* xfs incore inode pointer */ 413 int whichfork, 414 struct getbmapx *out, /* output structure */ 415 int prealloced, /* this is a file with 416 * preallocated data space */ 417 int64_t end, /* last block requested */ 418 xfs_fsblock_t startblock, 419 bool moretocome) 420 { 421 int64_t fixlen; 422 xfs_mount_t *mp; /* file system mount point */ 423 xfs_ifork_t *ifp; /* inode fork pointer */ 424 xfs_extnum_t lastx; /* last extent pointer */ 425 xfs_fileoff_t fileblock; 426 427 if (startblock == HOLESTARTBLOCK) { 428 mp = ip->i_mount; 429 out->bmv_block = -1; 430 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip))); 431 fixlen -= out->bmv_offset; 432 if (prealloced && out->bmv_offset + out->bmv_length == end) { 433 /* Came to hole at EOF. Trim it. */ 434 if (fixlen <= 0) 435 return 0; 436 out->bmv_length = fixlen; 437 } 438 } else { 439 if (startblock == DELAYSTARTBLOCK) 440 out->bmv_block = -2; 441 else 442 out->bmv_block = xfs_fsb_to_db(ip, startblock); 443 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset); 444 ifp = XFS_IFORK_PTR(ip, whichfork); 445 if (!moretocome && 446 xfs_iext_bno_to_ext(ifp, fileblock, &lastx) && 447 (lastx == xfs_iext_count(ifp) - 1)) 448 out->bmv_oflags |= BMV_OF_LAST; 449 } 450 451 return 1; 452 } 453 454 /* Adjust the reported bmap around shared/unshared extent transitions. */ 455 STATIC int 456 xfs_getbmap_adjust_shared( 457 struct xfs_inode *ip, 458 int whichfork, 459 struct xfs_bmbt_irec *map, 460 struct getbmapx *out, 461 struct xfs_bmbt_irec *next_map) 462 { 463 struct xfs_mount *mp = ip->i_mount; 464 xfs_agnumber_t agno; 465 xfs_agblock_t agbno; 466 xfs_agblock_t ebno; 467 xfs_extlen_t elen; 468 xfs_extlen_t nlen; 469 int error; 470 471 next_map->br_startblock = NULLFSBLOCK; 472 next_map->br_startoff = NULLFILEOFF; 473 next_map->br_blockcount = 0; 474 475 /* Only written data blocks can be shared. */ 476 if (!xfs_is_reflink_inode(ip) || 477 whichfork != XFS_DATA_FORK || 478 !xfs_bmap_is_real_extent(map)) 479 return 0; 480 481 agno = XFS_FSB_TO_AGNO(mp, map->br_startblock); 482 agbno = XFS_FSB_TO_AGBNO(mp, map->br_startblock); 483 error = xfs_reflink_find_shared(mp, NULL, agno, agbno, 484 map->br_blockcount, &ebno, &elen, true); 485 if (error) 486 return error; 487 488 if (ebno == NULLAGBLOCK) { 489 /* No shared blocks at all. */ 490 return 0; 491 } else if (agbno == ebno) { 492 /* 493 * Shared extent at (agbno, elen). Shrink the reported 494 * extent length and prepare to move the start of map[i] 495 * to agbno+elen, with the aim of (re)formatting the new 496 * map[i] the next time through the inner loop. 497 */ 498 out->bmv_length = XFS_FSB_TO_BB(mp, elen); 499 out->bmv_oflags |= BMV_OF_SHARED; 500 if (elen != map->br_blockcount) { 501 *next_map = *map; 502 next_map->br_startblock += elen; 503 next_map->br_startoff += elen; 504 next_map->br_blockcount -= elen; 505 } 506 map->br_blockcount -= elen; 507 } else { 508 /* 509 * There's an unshared extent (agbno, ebno - agbno) 510 * followed by shared extent at (ebno, elen). Shrink 511 * the reported extent length to cover only the unshared 512 * extent and prepare to move up the start of map[i] to 513 * ebno, with the aim of (re)formatting the new map[i] 514 * the next time through the inner loop. 515 */ 516 *next_map = *map; 517 nlen = ebno - agbno; 518 out->bmv_length = XFS_FSB_TO_BB(mp, nlen); 519 next_map->br_startblock += nlen; 520 next_map->br_startoff += nlen; 521 next_map->br_blockcount -= nlen; 522 map->br_blockcount -= nlen; 523 } 524 525 return 0; 526 } 527 528 /* 529 * Get inode's extents as described in bmv, and format for output. 530 * Calls formatter to fill the user's buffer until all extents 531 * are mapped, until the passed-in bmv->bmv_count slots have 532 * been filled, or until the formatter short-circuits the loop, 533 * if it is tracking filled-in extents on its own. 534 */ 535 int /* error code */ 536 xfs_getbmap( 537 xfs_inode_t *ip, 538 struct getbmapx *bmv, /* user bmap structure */ 539 xfs_bmap_format_t formatter, /* format to user */ 540 void *arg) /* formatter arg */ 541 { 542 int64_t bmvend; /* last block requested */ 543 int error = 0; /* return value */ 544 int64_t fixlen; /* length for -1 case */ 545 int i; /* extent number */ 546 int lock; /* lock state */ 547 xfs_bmbt_irec_t *map; /* buffer for user's data */ 548 xfs_mount_t *mp; /* file system mount point */ 549 int nex; /* # of user extents can do */ 550 int subnex; /* # of bmapi's can do */ 551 int nmap; /* number of map entries */ 552 struct getbmapx *out; /* output structure */ 553 int whichfork; /* data or attr fork */ 554 int prealloced; /* this is a file with 555 * preallocated data space */ 556 int iflags; /* interface flags */ 557 int bmapi_flags; /* flags for xfs_bmapi */ 558 int cur_ext = 0; 559 struct xfs_bmbt_irec inject_map; 560 561 mp = ip->i_mount; 562 iflags = bmv->bmv_iflags; 563 564 #ifndef DEBUG 565 /* Only allow CoW fork queries if we're debugging. */ 566 if (iflags & BMV_IF_COWFORK) 567 return -EINVAL; 568 #endif 569 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK)) 570 return -EINVAL; 571 572 if (iflags & BMV_IF_ATTRFORK) 573 whichfork = XFS_ATTR_FORK; 574 else if (iflags & BMV_IF_COWFORK) 575 whichfork = XFS_COW_FORK; 576 else 577 whichfork = XFS_DATA_FORK; 578 579 switch (whichfork) { 580 case XFS_ATTR_FORK: 581 if (XFS_IFORK_Q(ip)) { 582 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS && 583 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE && 584 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL) 585 return -EINVAL; 586 } else if (unlikely( 587 ip->i_d.di_aformat != 0 && 588 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) { 589 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW, 590 ip->i_mount); 591 return -EFSCORRUPTED; 592 } 593 594 prealloced = 0; 595 fixlen = 1LL << 32; 596 break; 597 case XFS_COW_FORK: 598 if (ip->i_cformat != XFS_DINODE_FMT_EXTENTS) 599 return -EINVAL; 600 601 if (xfs_get_cowextsz_hint(ip)) { 602 prealloced = 1; 603 fixlen = mp->m_super->s_maxbytes; 604 } else { 605 prealloced = 0; 606 fixlen = XFS_ISIZE(ip); 607 } 608 break; 609 default: 610 /* Local format data forks report no extents. */ 611 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL) { 612 bmv->bmv_entries = 0; 613 return 0; 614 } 615 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS && 616 ip->i_d.di_format != XFS_DINODE_FMT_BTREE) 617 return -EINVAL; 618 619 if (xfs_get_extsz_hint(ip) || 620 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){ 621 prealloced = 1; 622 fixlen = mp->m_super->s_maxbytes; 623 } else { 624 prealloced = 0; 625 fixlen = XFS_ISIZE(ip); 626 } 627 break; 628 } 629 630 if (bmv->bmv_length == -1) { 631 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen)); 632 bmv->bmv_length = 633 max_t(int64_t, fixlen - bmv->bmv_offset, 0); 634 } else if (bmv->bmv_length == 0) { 635 bmv->bmv_entries = 0; 636 return 0; 637 } else if (bmv->bmv_length < 0) { 638 return -EINVAL; 639 } 640 641 nex = bmv->bmv_count - 1; 642 if (nex <= 0) 643 return -EINVAL; 644 bmvend = bmv->bmv_offset + bmv->bmv_length; 645 646 647 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx)) 648 return -ENOMEM; 649 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0); 650 if (!out) 651 return -ENOMEM; 652 653 xfs_ilock(ip, XFS_IOLOCK_SHARED); 654 switch (whichfork) { 655 case XFS_DATA_FORK: 656 if (!(iflags & BMV_IF_DELALLOC) && 657 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) { 658 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 659 if (error) 660 goto out_unlock_iolock; 661 662 /* 663 * Even after flushing the inode, there can still be 664 * delalloc blocks on the inode beyond EOF due to 665 * speculative preallocation. These are not removed 666 * until the release function is called or the inode 667 * is inactivated. Hence we cannot assert here that 668 * ip->i_delayed_blks == 0. 669 */ 670 } 671 672 lock = xfs_ilock_data_map_shared(ip); 673 break; 674 case XFS_COW_FORK: 675 lock = XFS_ILOCK_SHARED; 676 xfs_ilock(ip, lock); 677 break; 678 case XFS_ATTR_FORK: 679 lock = xfs_ilock_attr_map_shared(ip); 680 break; 681 } 682 683 /* 684 * Don't let nex be bigger than the number of extents 685 * we can have assuming alternating holes and real extents. 686 */ 687 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1) 688 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1; 689 690 bmapi_flags = xfs_bmapi_aflag(whichfork); 691 if (!(iflags & BMV_IF_PREALLOC)) 692 bmapi_flags |= XFS_BMAPI_IGSTATE; 693 694 /* 695 * Allocate enough space to handle "subnex" maps at a time. 696 */ 697 error = -ENOMEM; 698 subnex = 16; 699 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS); 700 if (!map) 701 goto out_unlock_ilock; 702 703 bmv->bmv_entries = 0; 704 705 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 && 706 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) { 707 error = 0; 708 goto out_free_map; 709 } 710 711 do { 712 nmap = (nex> subnex) ? subnex : nex; 713 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset), 714 XFS_BB_TO_FSB(mp, bmv->bmv_length), 715 map, &nmap, bmapi_flags); 716 if (error) 717 goto out_free_map; 718 ASSERT(nmap <= subnex); 719 720 for (i = 0; i < nmap && bmv->bmv_length && 721 cur_ext < bmv->bmv_count - 1; i++) { 722 out[cur_ext].bmv_oflags = 0; 723 if (map[i].br_state == XFS_EXT_UNWRITTEN) 724 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC; 725 else if (map[i].br_startblock == DELAYSTARTBLOCK) 726 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC; 727 out[cur_ext].bmv_offset = 728 XFS_FSB_TO_BB(mp, map[i].br_startoff); 729 out[cur_ext].bmv_length = 730 XFS_FSB_TO_BB(mp, map[i].br_blockcount); 731 out[cur_ext].bmv_unused1 = 0; 732 out[cur_ext].bmv_unused2 = 0; 733 734 /* 735 * delayed allocation extents that start beyond EOF can 736 * occur due to speculative EOF allocation when the 737 * delalloc extent is larger than the largest freespace 738 * extent at conversion time. These extents cannot be 739 * converted by data writeback, so can exist here even 740 * if we are not supposed to be finding delalloc 741 * extents. 742 */ 743 if (map[i].br_startblock == DELAYSTARTBLOCK && 744 map[i].br_startoff < XFS_B_TO_FSB(mp, XFS_ISIZE(ip))) 745 ASSERT((iflags & BMV_IF_DELALLOC) != 0); 746 747 if (map[i].br_startblock == HOLESTARTBLOCK && 748 whichfork == XFS_ATTR_FORK) { 749 /* came to the end of attribute fork */ 750 out[cur_ext].bmv_oflags |= BMV_OF_LAST; 751 goto out_free_map; 752 } 753 754 /* Is this a shared block? */ 755 error = xfs_getbmap_adjust_shared(ip, whichfork, 756 &map[i], &out[cur_ext], &inject_map); 757 if (error) 758 goto out_free_map; 759 760 if (!xfs_getbmapx_fix_eof_hole(ip, whichfork, 761 &out[cur_ext], prealloced, bmvend, 762 map[i].br_startblock, 763 inject_map.br_startblock != NULLFSBLOCK)) 764 goto out_free_map; 765 766 bmv->bmv_offset = 767 out[cur_ext].bmv_offset + 768 out[cur_ext].bmv_length; 769 bmv->bmv_length = 770 max_t(int64_t, 0, bmvend - bmv->bmv_offset); 771 772 /* 773 * In case we don't want to return the hole, 774 * don't increase cur_ext so that we can reuse 775 * it in the next loop. 776 */ 777 if ((iflags & BMV_IF_NO_HOLES) && 778 map[i].br_startblock == HOLESTARTBLOCK) { 779 memset(&out[cur_ext], 0, sizeof(out[cur_ext])); 780 continue; 781 } 782 783 /* 784 * In order to report shared extents accurately, 785 * we report each distinct shared/unshared part 786 * of a single bmbt record using multiple bmap 787 * extents. To make that happen, we iterate the 788 * same map array item multiple times, each 789 * time trimming out the subextent that we just 790 * reported. 791 * 792 * Because of this, we must check the out array 793 * index (cur_ext) directly against bmv_count-1 794 * to avoid overflows. 795 */ 796 if (inject_map.br_startblock != NULLFSBLOCK) { 797 map[i] = inject_map; 798 i--; 799 } 800 bmv->bmv_entries++; 801 cur_ext++; 802 } 803 } while (nmap && bmv->bmv_length && cur_ext < bmv->bmv_count - 1); 804 805 out_free_map: 806 kmem_free(map); 807 out_unlock_ilock: 808 xfs_iunlock(ip, lock); 809 out_unlock_iolock: 810 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 811 812 for (i = 0; i < cur_ext; i++) { 813 /* format results & advance arg */ 814 error = formatter(&arg, &out[i]); 815 if (error) 816 break; 817 } 818 819 kmem_free(out); 820 return error; 821 } 822 823 /* 824 * dead simple method of punching delalyed allocation blocks from a range in 825 * the inode. Walks a block at a time so will be slow, but is only executed in 826 * rare error cases so the overhead is not critical. This will always punch out 827 * both the start and end blocks, even if the ranges only partially overlap 828 * them, so it is up to the caller to ensure that partial blocks are not 829 * passed in. 830 */ 831 int 832 xfs_bmap_punch_delalloc_range( 833 struct xfs_inode *ip, 834 xfs_fileoff_t start_fsb, 835 xfs_fileoff_t length) 836 { 837 xfs_fileoff_t remaining = length; 838 int error = 0; 839 840 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL)); 841 842 do { 843 int done; 844 xfs_bmbt_irec_t imap; 845 int nimaps = 1; 846 xfs_fsblock_t firstblock; 847 struct xfs_defer_ops dfops; 848 849 /* 850 * Map the range first and check that it is a delalloc extent 851 * before trying to unmap the range. Otherwise we will be 852 * trying to remove a real extent (which requires a 853 * transaction) or a hole, which is probably a bad idea... 854 */ 855 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps, 856 XFS_BMAPI_ENTIRE); 857 858 if (error) { 859 /* something screwed, just bail */ 860 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 861 xfs_alert(ip->i_mount, 862 "Failed delalloc mapping lookup ino %lld fsb %lld.", 863 ip->i_ino, start_fsb); 864 } 865 break; 866 } 867 if (!nimaps) { 868 /* nothing there */ 869 goto next_block; 870 } 871 if (imap.br_startblock != DELAYSTARTBLOCK) { 872 /* been converted, ignore */ 873 goto next_block; 874 } 875 WARN_ON(imap.br_blockcount == 0); 876 877 /* 878 * Note: while we initialise the firstblock/dfops pair, they 879 * should never be used because blocks should never be 880 * allocated or freed for a delalloc extent and hence we need 881 * don't cancel or finish them after the xfs_bunmapi() call. 882 */ 883 xfs_defer_init(&dfops, &firstblock); 884 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock, 885 &dfops, &done); 886 if (error) 887 break; 888 889 ASSERT(!xfs_defer_has_unfinished_work(&dfops)); 890 next_block: 891 start_fsb++; 892 remaining--; 893 } while(remaining > 0); 894 895 return error; 896 } 897 898 /* 899 * Test whether it is appropriate to check an inode for and free post EOF 900 * blocks. The 'force' parameter determines whether we should also consider 901 * regular files that are marked preallocated or append-only. 902 */ 903 bool 904 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force) 905 { 906 /* prealloc/delalloc exists only on regular files */ 907 if (!S_ISREG(VFS_I(ip)->i_mode)) 908 return false; 909 910 /* 911 * Zero sized files with no cached pages and delalloc blocks will not 912 * have speculative prealloc/delalloc blocks to remove. 913 */ 914 if (VFS_I(ip)->i_size == 0 && 915 VFS_I(ip)->i_mapping->nrpages == 0 && 916 ip->i_delayed_blks == 0) 917 return false; 918 919 /* If we haven't read in the extent list, then don't do it now. */ 920 if (!(ip->i_df.if_flags & XFS_IFEXTENTS)) 921 return false; 922 923 /* 924 * Do not free real preallocated or append-only files unless the file 925 * has delalloc blocks and we are forced to remove them. 926 */ 927 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) 928 if (!force || ip->i_delayed_blks == 0) 929 return false; 930 931 return true; 932 } 933 934 /* 935 * This is called to free any blocks beyond eof. The caller must hold 936 * IOLOCK_EXCL unless we are in the inode reclaim path and have the only 937 * reference to the inode. 938 */ 939 int 940 xfs_free_eofblocks( 941 struct xfs_inode *ip) 942 { 943 struct xfs_trans *tp; 944 int error; 945 xfs_fileoff_t end_fsb; 946 xfs_fileoff_t last_fsb; 947 xfs_filblks_t map_len; 948 int nimaps; 949 struct xfs_bmbt_irec imap; 950 struct xfs_mount *mp = ip->i_mount; 951 952 /* 953 * Figure out if there are any blocks beyond the end 954 * of the file. If not, then there is nothing to do. 955 */ 956 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip)); 957 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes); 958 if (last_fsb <= end_fsb) 959 return 0; 960 map_len = last_fsb - end_fsb; 961 962 nimaps = 1; 963 xfs_ilock(ip, XFS_ILOCK_SHARED); 964 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0); 965 xfs_iunlock(ip, XFS_ILOCK_SHARED); 966 967 /* 968 * If there are blocks after the end of file, truncate the file to its 969 * current size to free them up. 970 */ 971 if (!error && (nimaps != 0) && 972 (imap.br_startblock != HOLESTARTBLOCK || 973 ip->i_delayed_blks)) { 974 /* 975 * Attach the dquots to the inode up front. 976 */ 977 error = xfs_qm_dqattach(ip, 0); 978 if (error) 979 return error; 980 981 /* wait on dio to ensure i_size has settled */ 982 inode_dio_wait(VFS_I(ip)); 983 984 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, 985 &tp); 986 if (error) { 987 ASSERT(XFS_FORCED_SHUTDOWN(mp)); 988 return error; 989 } 990 991 xfs_ilock(ip, XFS_ILOCK_EXCL); 992 xfs_trans_ijoin(tp, ip, 0); 993 994 /* 995 * Do not update the on-disk file size. If we update the 996 * on-disk file size and then the system crashes before the 997 * contents of the file are flushed to disk then the files 998 * may be full of holes (ie NULL files bug). 999 */ 1000 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 1001 XFS_ISIZE(ip)); 1002 if (error) { 1003 /* 1004 * If we get an error at this point we simply don't 1005 * bother truncating the file. 1006 */ 1007 xfs_trans_cancel(tp); 1008 } else { 1009 error = xfs_trans_commit(tp); 1010 if (!error) 1011 xfs_inode_clear_eofblocks_tag(ip); 1012 } 1013 1014 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1015 } 1016 return error; 1017 } 1018 1019 int 1020 xfs_alloc_file_space( 1021 struct xfs_inode *ip, 1022 xfs_off_t offset, 1023 xfs_off_t len, 1024 int alloc_type) 1025 { 1026 xfs_mount_t *mp = ip->i_mount; 1027 xfs_off_t count; 1028 xfs_filblks_t allocated_fsb; 1029 xfs_filblks_t allocatesize_fsb; 1030 xfs_extlen_t extsz, temp; 1031 xfs_fileoff_t startoffset_fsb; 1032 xfs_fsblock_t firstfsb; 1033 int nimaps; 1034 int quota_flag; 1035 int rt; 1036 xfs_trans_t *tp; 1037 xfs_bmbt_irec_t imaps[1], *imapp; 1038 struct xfs_defer_ops dfops; 1039 uint qblocks, resblks, resrtextents; 1040 int error; 1041 1042 trace_xfs_alloc_file_space(ip); 1043 1044 if (XFS_FORCED_SHUTDOWN(mp)) 1045 return -EIO; 1046 1047 error = xfs_qm_dqattach(ip, 0); 1048 if (error) 1049 return error; 1050 1051 if (len <= 0) 1052 return -EINVAL; 1053 1054 rt = XFS_IS_REALTIME_INODE(ip); 1055 extsz = xfs_get_extsz_hint(ip); 1056 1057 count = len; 1058 imapp = &imaps[0]; 1059 nimaps = 1; 1060 startoffset_fsb = XFS_B_TO_FSBT(mp, offset); 1061 allocatesize_fsb = XFS_B_TO_FSB(mp, count); 1062 1063 /* 1064 * Allocate file space until done or until there is an error 1065 */ 1066 while (allocatesize_fsb && !error) { 1067 xfs_fileoff_t s, e; 1068 1069 /* 1070 * Determine space reservations for data/realtime. 1071 */ 1072 if (unlikely(extsz)) { 1073 s = startoffset_fsb; 1074 do_div(s, extsz); 1075 s *= extsz; 1076 e = startoffset_fsb + allocatesize_fsb; 1077 if ((temp = do_mod(startoffset_fsb, extsz))) 1078 e += temp; 1079 if ((temp = do_mod(e, extsz))) 1080 e += extsz - temp; 1081 } else { 1082 s = 0; 1083 e = allocatesize_fsb; 1084 } 1085 1086 /* 1087 * The transaction reservation is limited to a 32-bit block 1088 * count, hence we need to limit the number of blocks we are 1089 * trying to reserve to avoid an overflow. We can't allocate 1090 * more than @nimaps extents, and an extent is limited on disk 1091 * to MAXEXTLEN (21 bits), so use that to enforce the limit. 1092 */ 1093 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps)); 1094 if (unlikely(rt)) { 1095 resrtextents = qblocks = resblks; 1096 resrtextents /= mp->m_sb.sb_rextsize; 1097 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1098 quota_flag = XFS_QMOPT_RES_RTBLKS; 1099 } else { 1100 resrtextents = 0; 1101 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks); 1102 quota_flag = XFS_QMOPT_RES_REGBLKS; 1103 } 1104 1105 /* 1106 * Allocate and setup the transaction. 1107 */ 1108 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 1109 resrtextents, 0, &tp); 1110 1111 /* 1112 * Check for running out of space 1113 */ 1114 if (error) { 1115 /* 1116 * Free the transaction structure. 1117 */ 1118 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1119 break; 1120 } 1121 xfs_ilock(ip, XFS_ILOCK_EXCL); 1122 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks, 1123 0, quota_flag); 1124 if (error) 1125 goto error1; 1126 1127 xfs_trans_ijoin(tp, ip, 0); 1128 1129 xfs_defer_init(&dfops, &firstfsb); 1130 error = xfs_bmapi_write(tp, ip, startoffset_fsb, 1131 allocatesize_fsb, alloc_type, &firstfsb, 1132 resblks, imapp, &nimaps, &dfops); 1133 if (error) 1134 goto error0; 1135 1136 /* 1137 * Complete the transaction 1138 */ 1139 error = xfs_defer_finish(&tp, &dfops, NULL); 1140 if (error) 1141 goto error0; 1142 1143 error = xfs_trans_commit(tp); 1144 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1145 if (error) 1146 break; 1147 1148 allocated_fsb = imapp->br_blockcount; 1149 1150 if (nimaps == 0) { 1151 error = -ENOSPC; 1152 break; 1153 } 1154 1155 startoffset_fsb += allocated_fsb; 1156 allocatesize_fsb -= allocated_fsb; 1157 } 1158 1159 return error; 1160 1161 error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */ 1162 xfs_defer_cancel(&dfops); 1163 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag); 1164 1165 error1: /* Just cancel transaction */ 1166 xfs_trans_cancel(tp); 1167 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1168 return error; 1169 } 1170 1171 static int 1172 xfs_unmap_extent( 1173 struct xfs_inode *ip, 1174 xfs_fileoff_t startoffset_fsb, 1175 xfs_filblks_t len_fsb, 1176 int *done) 1177 { 1178 struct xfs_mount *mp = ip->i_mount; 1179 struct xfs_trans *tp; 1180 struct xfs_defer_ops dfops; 1181 xfs_fsblock_t firstfsb; 1182 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1183 int error; 1184 1185 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp); 1186 if (error) { 1187 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp)); 1188 return error; 1189 } 1190 1191 xfs_ilock(ip, XFS_ILOCK_EXCL); 1192 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot, 1193 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS); 1194 if (error) 1195 goto out_trans_cancel; 1196 1197 xfs_trans_ijoin(tp, ip, 0); 1198 1199 xfs_defer_init(&dfops, &firstfsb); 1200 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb, 1201 &dfops, done); 1202 if (error) 1203 goto out_bmap_cancel; 1204 1205 error = xfs_defer_finish(&tp, &dfops, ip); 1206 if (error) 1207 goto out_bmap_cancel; 1208 1209 error = xfs_trans_commit(tp); 1210 out_unlock: 1211 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1212 return error; 1213 1214 out_bmap_cancel: 1215 xfs_defer_cancel(&dfops); 1216 out_trans_cancel: 1217 xfs_trans_cancel(tp); 1218 goto out_unlock; 1219 } 1220 1221 static int 1222 xfs_adjust_extent_unmap_boundaries( 1223 struct xfs_inode *ip, 1224 xfs_fileoff_t *startoffset_fsb, 1225 xfs_fileoff_t *endoffset_fsb) 1226 { 1227 struct xfs_mount *mp = ip->i_mount; 1228 struct xfs_bmbt_irec imap; 1229 int nimap, error; 1230 xfs_extlen_t mod = 0; 1231 1232 nimap = 1; 1233 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0); 1234 if (error) 1235 return error; 1236 1237 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1238 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1239 mod = do_mod(imap.br_startblock, mp->m_sb.sb_rextsize); 1240 if (mod) 1241 *startoffset_fsb += mp->m_sb.sb_rextsize - mod; 1242 } 1243 1244 nimap = 1; 1245 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0); 1246 if (error) 1247 return error; 1248 1249 if (nimap && imap.br_startblock != HOLESTARTBLOCK) { 1250 ASSERT(imap.br_startblock != DELAYSTARTBLOCK); 1251 mod++; 1252 if (mod && mod != mp->m_sb.sb_rextsize) 1253 *endoffset_fsb -= mod; 1254 } 1255 1256 return 0; 1257 } 1258 1259 static int 1260 xfs_flush_unmap_range( 1261 struct xfs_inode *ip, 1262 xfs_off_t offset, 1263 xfs_off_t len) 1264 { 1265 struct xfs_mount *mp = ip->i_mount; 1266 struct inode *inode = VFS_I(ip); 1267 xfs_off_t rounding, start, end; 1268 int error; 1269 1270 /* wait for the completion of any pending DIOs */ 1271 inode_dio_wait(inode); 1272 1273 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE); 1274 start = round_down(offset, rounding); 1275 end = round_up(offset + len, rounding) - 1; 1276 1277 error = filemap_write_and_wait_range(inode->i_mapping, start, end); 1278 if (error) 1279 return error; 1280 truncate_pagecache_range(inode, start, end); 1281 return 0; 1282 } 1283 1284 int 1285 xfs_free_file_space( 1286 struct xfs_inode *ip, 1287 xfs_off_t offset, 1288 xfs_off_t len) 1289 { 1290 struct xfs_mount *mp = ip->i_mount; 1291 xfs_fileoff_t startoffset_fsb; 1292 xfs_fileoff_t endoffset_fsb; 1293 int done = 0, error; 1294 1295 trace_xfs_free_file_space(ip); 1296 1297 error = xfs_qm_dqattach(ip, 0); 1298 if (error) 1299 return error; 1300 1301 if (len <= 0) /* if nothing being freed */ 1302 return 0; 1303 1304 error = xfs_flush_unmap_range(ip, offset, len); 1305 if (error) 1306 return error; 1307 1308 startoffset_fsb = XFS_B_TO_FSB(mp, offset); 1309 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); 1310 1311 /* 1312 * Need to zero the stuff we're not freeing, on disk. If it's a RT file 1313 * and we can't use unwritten extents then we actually need to ensure 1314 * to zero the whole extent, otherwise we just need to take of block 1315 * boundaries, and xfs_bunmapi will handle the rest. 1316 */ 1317 if (XFS_IS_REALTIME_INODE(ip) && 1318 !xfs_sb_version_hasextflgbit(&mp->m_sb)) { 1319 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb, 1320 &endoffset_fsb); 1321 if (error) 1322 return error; 1323 } 1324 1325 if (endoffset_fsb > startoffset_fsb) { 1326 while (!done) { 1327 error = xfs_unmap_extent(ip, startoffset_fsb, 1328 endoffset_fsb - startoffset_fsb, &done); 1329 if (error) 1330 return error; 1331 } 1332 } 1333 1334 /* 1335 * Now that we've unmap all full blocks we'll have to zero out any 1336 * partial block at the beginning and/or end. xfs_zero_range is 1337 * smart enough to skip any holes, including those we just created, 1338 * but we must take care not to zero beyond EOF and enlarge i_size. 1339 */ 1340 1341 if (offset >= XFS_ISIZE(ip)) 1342 return 0; 1343 1344 if (offset + len > XFS_ISIZE(ip)) 1345 len = XFS_ISIZE(ip) - offset; 1346 1347 return xfs_zero_range(ip, offset, len, NULL); 1348 } 1349 1350 /* 1351 * Preallocate and zero a range of a file. This mechanism has the allocation 1352 * semantics of fallocate and in addition converts data in the range to zeroes. 1353 */ 1354 int 1355 xfs_zero_file_space( 1356 struct xfs_inode *ip, 1357 xfs_off_t offset, 1358 xfs_off_t len) 1359 { 1360 struct xfs_mount *mp = ip->i_mount; 1361 uint blksize; 1362 int error; 1363 1364 trace_xfs_zero_file_space(ip); 1365 1366 blksize = 1 << mp->m_sb.sb_blocklog; 1367 1368 /* 1369 * Punch a hole and prealloc the range. We use hole punch rather than 1370 * unwritten extent conversion for two reasons: 1371 * 1372 * 1.) Hole punch handles partial block zeroing for us. 1373 * 1374 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued 1375 * by virtue of the hole punch. 1376 */ 1377 error = xfs_free_file_space(ip, offset, len); 1378 if (error) 1379 goto out; 1380 1381 error = xfs_alloc_file_space(ip, round_down(offset, blksize), 1382 round_up(offset + len, blksize) - 1383 round_down(offset, blksize), 1384 XFS_BMAPI_PREALLOC); 1385 out: 1386 return error; 1387 1388 } 1389 1390 /* 1391 * @next_fsb will keep track of the extent currently undergoing shift. 1392 * @stop_fsb will keep track of the extent at which we have to stop. 1393 * If we are shifting left, we will start with block (offset + len) and 1394 * shift each extent till last extent. 1395 * If we are shifting right, we will start with last extent inside file space 1396 * and continue until we reach the block corresponding to offset. 1397 */ 1398 static int 1399 xfs_shift_file_space( 1400 struct xfs_inode *ip, 1401 xfs_off_t offset, 1402 xfs_off_t len, 1403 enum shift_direction direction) 1404 { 1405 int done = 0; 1406 struct xfs_mount *mp = ip->i_mount; 1407 struct xfs_trans *tp; 1408 int error; 1409 struct xfs_defer_ops dfops; 1410 xfs_fsblock_t first_block; 1411 xfs_fileoff_t stop_fsb; 1412 xfs_fileoff_t next_fsb; 1413 xfs_fileoff_t shift_fsb; 1414 uint resblks; 1415 1416 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT); 1417 1418 if (direction == SHIFT_LEFT) { 1419 /* 1420 * Reserve blocks to cover potential extent merges after left 1421 * shift operations. 1422 */ 1423 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0); 1424 next_fsb = XFS_B_TO_FSB(mp, offset + len); 1425 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size); 1426 } else { 1427 /* 1428 * If right shift, delegate the work of initialization of 1429 * next_fsb to xfs_bmap_shift_extent as it has ilock held. 1430 */ 1431 resblks = 0; 1432 next_fsb = NULLFSBLOCK; 1433 stop_fsb = XFS_B_TO_FSB(mp, offset); 1434 } 1435 1436 shift_fsb = XFS_B_TO_FSB(mp, len); 1437 1438 /* 1439 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation 1440 * into the accessible region of the file. 1441 */ 1442 if (xfs_can_free_eofblocks(ip, true)) { 1443 error = xfs_free_eofblocks(ip); 1444 if (error) 1445 return error; 1446 } 1447 1448 /* 1449 * Writeback and invalidate cache for the remainder of the file as we're 1450 * about to shift down every extent from offset to EOF. 1451 */ 1452 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, 1453 offset, -1); 1454 if (error) 1455 return error; 1456 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping, 1457 offset >> PAGE_SHIFT, -1); 1458 if (error) 1459 return error; 1460 1461 /* 1462 * The extent shiting code works on extent granularity. So, if 1463 * stop_fsb is not the starting block of extent, we need to split 1464 * the extent at stop_fsb. 1465 */ 1466 if (direction == SHIFT_RIGHT) { 1467 error = xfs_bmap_split_extent(ip, stop_fsb); 1468 if (error) 1469 return error; 1470 } 1471 1472 while (!error && !done) { 1473 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, 1474 &tp); 1475 if (error) 1476 break; 1477 1478 xfs_ilock(ip, XFS_ILOCK_EXCL); 1479 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, 1480 ip->i_gdquot, ip->i_pdquot, resblks, 0, 1481 XFS_QMOPT_RES_REGBLKS); 1482 if (error) 1483 goto out_trans_cancel; 1484 1485 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 1486 1487 xfs_defer_init(&dfops, &first_block); 1488 1489 /* 1490 * We are using the write transaction in which max 2 bmbt 1491 * updates are allowed 1492 */ 1493 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb, 1494 &done, stop_fsb, &first_block, &dfops, 1495 direction, XFS_BMAP_MAX_SHIFT_EXTENTS); 1496 if (error) 1497 goto out_bmap_cancel; 1498 1499 error = xfs_defer_finish(&tp, &dfops, NULL); 1500 if (error) 1501 goto out_bmap_cancel; 1502 1503 error = xfs_trans_commit(tp); 1504 } 1505 1506 return error; 1507 1508 out_bmap_cancel: 1509 xfs_defer_cancel(&dfops); 1510 out_trans_cancel: 1511 xfs_trans_cancel(tp); 1512 return error; 1513 } 1514 1515 /* 1516 * xfs_collapse_file_space() 1517 * This routine frees disk space and shift extent for the given file. 1518 * The first thing we do is to free data blocks in the specified range 1519 * by calling xfs_free_file_space(). It would also sync dirty data 1520 * and invalidate page cache over the region on which collapse range 1521 * is working. And Shift extent records to the left to cover a hole. 1522 * RETURNS: 1523 * 0 on success 1524 * errno on error 1525 * 1526 */ 1527 int 1528 xfs_collapse_file_space( 1529 struct xfs_inode *ip, 1530 xfs_off_t offset, 1531 xfs_off_t len) 1532 { 1533 int error; 1534 1535 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1536 trace_xfs_collapse_file_space(ip); 1537 1538 error = xfs_free_file_space(ip, offset, len); 1539 if (error) 1540 return error; 1541 1542 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT); 1543 } 1544 1545 /* 1546 * xfs_insert_file_space() 1547 * This routine create hole space by shifting extents for the given file. 1548 * The first thing we do is to sync dirty data and invalidate page cache 1549 * over the region on which insert range is working. And split an extent 1550 * to two extents at given offset by calling xfs_bmap_split_extent. 1551 * And shift all extent records which are laying between [offset, 1552 * last allocated extent] to the right to reserve hole range. 1553 * RETURNS: 1554 * 0 on success 1555 * errno on error 1556 */ 1557 int 1558 xfs_insert_file_space( 1559 struct xfs_inode *ip, 1560 loff_t offset, 1561 loff_t len) 1562 { 1563 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL)); 1564 trace_xfs_insert_file_space(ip); 1565 1566 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT); 1567 } 1568 1569 /* 1570 * We need to check that the format of the data fork in the temporary inode is 1571 * valid for the target inode before doing the swap. This is not a problem with 1572 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized 1573 * data fork depending on the space the attribute fork is taking so we can get 1574 * invalid formats on the target inode. 1575 * 1576 * E.g. target has space for 7 extents in extent format, temp inode only has 1577 * space for 6. If we defragment down to 7 extents, then the tmp format is a 1578 * btree, but when swapped it needs to be in extent format. Hence we can't just 1579 * blindly swap data forks on attr2 filesystems. 1580 * 1581 * Note that we check the swap in both directions so that we don't end up with 1582 * a corrupt temporary inode, either. 1583 * 1584 * Note that fixing the way xfs_fsr sets up the attribute fork in the source 1585 * inode will prevent this situation from occurring, so all we do here is 1586 * reject and log the attempt. basically we are putting the responsibility on 1587 * userspace to get this right. 1588 */ 1589 static int 1590 xfs_swap_extents_check_format( 1591 struct xfs_inode *ip, /* target inode */ 1592 struct xfs_inode *tip) /* tmp inode */ 1593 { 1594 1595 /* Should never get a local format */ 1596 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL || 1597 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL) 1598 return -EINVAL; 1599 1600 /* 1601 * if the target inode has less extents that then temporary inode then 1602 * why did userspace call us? 1603 */ 1604 if (ip->i_d.di_nextents < tip->i_d.di_nextents) 1605 return -EINVAL; 1606 1607 /* 1608 * If we have to use the (expensive) rmap swap method, we can 1609 * handle any number of extents and any format. 1610 */ 1611 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb)) 1612 return 0; 1613 1614 /* 1615 * if the target inode is in extent form and the temp inode is in btree 1616 * form then we will end up with the target inode in the wrong format 1617 * as we already know there are less extents in the temp inode. 1618 */ 1619 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1620 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) 1621 return -EINVAL; 1622 1623 /* Check temp in extent form to max in target */ 1624 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1625 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) > 1626 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1627 return -EINVAL; 1628 1629 /* Check target in extent form to max in temp */ 1630 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS && 1631 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) > 1632 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1633 return -EINVAL; 1634 1635 /* 1636 * If we are in a btree format, check that the temp root block will fit 1637 * in the target and that it has enough extents to be in btree format 1638 * in the target. 1639 * 1640 * Note that we have to be careful to allow btree->extent conversions 1641 * (a common defrag case) which will occur when the temp inode is in 1642 * extent format... 1643 */ 1644 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1645 if (XFS_IFORK_Q(ip) && 1646 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip)) 1647 return -EINVAL; 1648 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <= 1649 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)) 1650 return -EINVAL; 1651 } 1652 1653 /* Reciprocal target->temp btree format checks */ 1654 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1655 if (XFS_IFORK_Q(tip) && 1656 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip)) 1657 return -EINVAL; 1658 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <= 1659 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK)) 1660 return -EINVAL; 1661 } 1662 1663 return 0; 1664 } 1665 1666 static int 1667 xfs_swap_extent_flush( 1668 struct xfs_inode *ip) 1669 { 1670 int error; 1671 1672 error = filemap_write_and_wait(VFS_I(ip)->i_mapping); 1673 if (error) 1674 return error; 1675 truncate_pagecache_range(VFS_I(ip), 0, -1); 1676 1677 /* Verify O_DIRECT for ftmp */ 1678 if (VFS_I(ip)->i_mapping->nrpages) 1679 return -EINVAL; 1680 return 0; 1681 } 1682 1683 /* 1684 * Move extents from one file to another, when rmap is enabled. 1685 */ 1686 STATIC int 1687 xfs_swap_extent_rmap( 1688 struct xfs_trans **tpp, 1689 struct xfs_inode *ip, 1690 struct xfs_inode *tip) 1691 { 1692 struct xfs_bmbt_irec irec; 1693 struct xfs_bmbt_irec uirec; 1694 struct xfs_bmbt_irec tirec; 1695 xfs_fileoff_t offset_fsb; 1696 xfs_fileoff_t end_fsb; 1697 xfs_filblks_t count_fsb; 1698 xfs_fsblock_t firstfsb; 1699 struct xfs_defer_ops dfops; 1700 int error; 1701 xfs_filblks_t ilen; 1702 xfs_filblks_t rlen; 1703 int nimaps; 1704 uint64_t tip_flags2; 1705 1706 /* 1707 * If the source file has shared blocks, we must flag the donor 1708 * file as having shared blocks so that we get the shared-block 1709 * rmap functions when we go to fix up the rmaps. The flags 1710 * will be switch for reals later. 1711 */ 1712 tip_flags2 = tip->i_d.di_flags2; 1713 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) 1714 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK; 1715 1716 offset_fsb = 0; 1717 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip))); 1718 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb); 1719 1720 while (count_fsb) { 1721 /* Read extent from the donor file */ 1722 nimaps = 1; 1723 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec, 1724 &nimaps, 0); 1725 if (error) 1726 goto out; 1727 ASSERT(nimaps == 1); 1728 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK); 1729 1730 trace_xfs_swap_extent_rmap_remap(tip, &tirec); 1731 ilen = tirec.br_blockcount; 1732 1733 /* Unmap the old blocks in the source file. */ 1734 while (tirec.br_blockcount) { 1735 xfs_defer_init(&dfops, &firstfsb); 1736 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec); 1737 1738 /* Read extent from the source file */ 1739 nimaps = 1; 1740 error = xfs_bmapi_read(ip, tirec.br_startoff, 1741 tirec.br_blockcount, &irec, 1742 &nimaps, 0); 1743 if (error) 1744 goto out_defer; 1745 ASSERT(nimaps == 1); 1746 ASSERT(tirec.br_startoff == irec.br_startoff); 1747 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec); 1748 1749 /* Trim the extent. */ 1750 uirec = tirec; 1751 uirec.br_blockcount = rlen = min_t(xfs_filblks_t, 1752 tirec.br_blockcount, 1753 irec.br_blockcount); 1754 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec); 1755 1756 /* Remove the mapping from the donor file. */ 1757 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops, 1758 tip, &uirec); 1759 if (error) 1760 goto out_defer; 1761 1762 /* Remove the mapping from the source file. */ 1763 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops, 1764 ip, &irec); 1765 if (error) 1766 goto out_defer; 1767 1768 /* Map the donor file's blocks into the source file. */ 1769 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops, 1770 ip, &uirec); 1771 if (error) 1772 goto out_defer; 1773 1774 /* Map the source file's blocks into the donor file. */ 1775 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops, 1776 tip, &irec); 1777 if (error) 1778 goto out_defer; 1779 1780 error = xfs_defer_finish(tpp, &dfops, ip); 1781 if (error) 1782 goto out_defer; 1783 1784 tirec.br_startoff += rlen; 1785 if (tirec.br_startblock != HOLESTARTBLOCK && 1786 tirec.br_startblock != DELAYSTARTBLOCK) 1787 tirec.br_startblock += rlen; 1788 tirec.br_blockcount -= rlen; 1789 } 1790 1791 /* Roll on... */ 1792 count_fsb -= ilen; 1793 offset_fsb += ilen; 1794 } 1795 1796 tip->i_d.di_flags2 = tip_flags2; 1797 return 0; 1798 1799 out_defer: 1800 xfs_defer_cancel(&dfops); 1801 out: 1802 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_); 1803 tip->i_d.di_flags2 = tip_flags2; 1804 return error; 1805 } 1806 1807 /* Swap the extents of two files by swapping data forks. */ 1808 STATIC int 1809 xfs_swap_extent_forks( 1810 struct xfs_trans *tp, 1811 struct xfs_inode *ip, 1812 struct xfs_inode *tip, 1813 int *src_log_flags, 1814 int *target_log_flags) 1815 { 1816 struct xfs_ifork tempifp, *ifp, *tifp; 1817 xfs_filblks_t aforkblks = 0; 1818 xfs_filblks_t taforkblks = 0; 1819 xfs_extnum_t junk; 1820 xfs_extnum_t nextents; 1821 uint64_t tmp; 1822 int error; 1823 1824 /* 1825 * Count the number of extended attribute blocks 1826 */ 1827 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) && 1828 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1829 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk, 1830 &aforkblks); 1831 if (error) 1832 return error; 1833 } 1834 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) && 1835 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) { 1836 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk, 1837 &taforkblks); 1838 if (error) 1839 return error; 1840 } 1841 1842 /* 1843 * Before we've swapped the forks, lets set the owners of the forks 1844 * appropriately. We have to do this as we are demand paging the btree 1845 * buffers, and so the validation done on read will expect the owner 1846 * field to be correctly set. Once we change the owners, we can swap the 1847 * inode forks. 1848 */ 1849 if (ip->i_d.di_version == 3 && 1850 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1851 (*target_log_flags) |= XFS_ILOG_DOWNER; 1852 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, 1853 tip->i_ino, NULL); 1854 if (error) 1855 return error; 1856 } 1857 1858 if (tip->i_d.di_version == 3 && 1859 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) { 1860 (*src_log_flags) |= XFS_ILOG_DOWNER; 1861 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK, 1862 ip->i_ino, NULL); 1863 if (error) 1864 return error; 1865 } 1866 1867 /* 1868 * Swap the data forks of the inodes 1869 */ 1870 ifp = &ip->i_df; 1871 tifp = &tip->i_df; 1872 tempifp = *ifp; /* struct copy */ 1873 *ifp = *tifp; /* struct copy */ 1874 *tifp = tempifp; /* struct copy */ 1875 1876 /* 1877 * Fix the on-disk inode values 1878 */ 1879 tmp = (uint64_t)ip->i_d.di_nblocks; 1880 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks; 1881 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks; 1882 1883 tmp = (uint64_t) ip->i_d.di_nextents; 1884 ip->i_d.di_nextents = tip->i_d.di_nextents; 1885 tip->i_d.di_nextents = tmp; 1886 1887 tmp = (uint64_t) ip->i_d.di_format; 1888 ip->i_d.di_format = tip->i_d.di_format; 1889 tip->i_d.di_format = tmp; 1890 1891 /* 1892 * The extents in the source inode could still contain speculative 1893 * preallocation beyond EOF (e.g. the file is open but not modified 1894 * while defrag is in progress). In that case, we need to copy over the 1895 * number of delalloc blocks the data fork in the source inode is 1896 * tracking beyond EOF so that when the fork is truncated away when the 1897 * temporary inode is unlinked we don't underrun the i_delayed_blks 1898 * counter on that inode. 1899 */ 1900 ASSERT(tip->i_delayed_blks == 0); 1901 tip->i_delayed_blks = ip->i_delayed_blks; 1902 ip->i_delayed_blks = 0; 1903 1904 switch (ip->i_d.di_format) { 1905 case XFS_DINODE_FMT_EXTENTS: 1906 /* 1907 * If the extents fit in the inode, fix the pointer. Otherwise 1908 * it's already NULL or pointing to the extent. 1909 */ 1910 nextents = xfs_iext_count(&ip->i_df); 1911 if (nextents <= XFS_INLINE_EXTS) 1912 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext; 1913 (*src_log_flags) |= XFS_ILOG_DEXT; 1914 break; 1915 case XFS_DINODE_FMT_BTREE: 1916 ASSERT(ip->i_d.di_version < 3 || 1917 (*src_log_flags & XFS_ILOG_DOWNER)); 1918 (*src_log_flags) |= XFS_ILOG_DBROOT; 1919 break; 1920 } 1921 1922 switch (tip->i_d.di_format) { 1923 case XFS_DINODE_FMT_EXTENTS: 1924 /* 1925 * If the extents fit in the inode, fix the pointer. Otherwise 1926 * it's already NULL or pointing to the extent. 1927 */ 1928 nextents = xfs_iext_count(&tip->i_df); 1929 if (nextents <= XFS_INLINE_EXTS) 1930 tifp->if_u1.if_extents = tifp->if_u2.if_inline_ext; 1931 (*target_log_flags) |= XFS_ILOG_DEXT; 1932 break; 1933 case XFS_DINODE_FMT_BTREE: 1934 (*target_log_flags) |= XFS_ILOG_DBROOT; 1935 ASSERT(tip->i_d.di_version < 3 || 1936 (*target_log_flags & XFS_ILOG_DOWNER)); 1937 break; 1938 } 1939 1940 return 0; 1941 } 1942 1943 int 1944 xfs_swap_extents( 1945 struct xfs_inode *ip, /* target inode */ 1946 struct xfs_inode *tip, /* tmp inode */ 1947 struct xfs_swapext *sxp) 1948 { 1949 struct xfs_mount *mp = ip->i_mount; 1950 struct xfs_trans *tp; 1951 struct xfs_bstat *sbp = &sxp->sx_stat; 1952 int src_log_flags, target_log_flags; 1953 int error = 0; 1954 int lock_flags; 1955 struct xfs_ifork *cowfp; 1956 uint64_t f; 1957 int resblks; 1958 1959 /* 1960 * Lock the inodes against other IO, page faults and truncate to 1961 * begin with. Then we can ensure the inodes are flushed and have no 1962 * page cache safely. Once we have done this we can take the ilocks and 1963 * do the rest of the checks. 1964 */ 1965 lock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 1966 lock_flags = XFS_MMAPLOCK_EXCL; 1967 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL); 1968 1969 /* Verify that both files have the same format */ 1970 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) { 1971 error = -EINVAL; 1972 goto out_unlock; 1973 } 1974 1975 /* Verify both files are either real-time or non-realtime */ 1976 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) { 1977 error = -EINVAL; 1978 goto out_unlock; 1979 } 1980 1981 error = xfs_swap_extent_flush(ip); 1982 if (error) 1983 goto out_unlock; 1984 error = xfs_swap_extent_flush(tip); 1985 if (error) 1986 goto out_unlock; 1987 1988 /* 1989 * Extent "swapping" with rmap requires a permanent reservation and 1990 * a block reservation because it's really just a remap operation 1991 * performed with log redo items! 1992 */ 1993 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { 1994 /* 1995 * Conceptually this shouldn't affect the shape of either 1996 * bmbt, but since we atomically move extents one by one, 1997 * we reserve enough space to rebuild both trees. 1998 */ 1999 resblks = XFS_SWAP_RMAP_SPACE_RES(mp, 2000 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK), 2001 XFS_DATA_FORK) + 2002 XFS_SWAP_RMAP_SPACE_RES(mp, 2003 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK), 2004 XFS_DATA_FORK); 2005 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 2006 0, 0, &tp); 2007 } else 2008 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 2009 0, 0, &tp); 2010 if (error) 2011 goto out_unlock; 2012 2013 /* 2014 * Lock and join the inodes to the tansaction so that transaction commit 2015 * or cancel will unlock the inodes from this point onwards. 2016 */ 2017 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL); 2018 lock_flags |= XFS_ILOCK_EXCL; 2019 xfs_trans_ijoin(tp, ip, 0); 2020 xfs_trans_ijoin(tp, tip, 0); 2021 2022 2023 /* Verify all data are being swapped */ 2024 if (sxp->sx_offset != 0 || 2025 sxp->sx_length != ip->i_d.di_size || 2026 sxp->sx_length != tip->i_d.di_size) { 2027 error = -EFAULT; 2028 goto out_trans_cancel; 2029 } 2030 2031 trace_xfs_swap_extent_before(ip, 0); 2032 trace_xfs_swap_extent_before(tip, 1); 2033 2034 /* check inode formats now that data is flushed */ 2035 error = xfs_swap_extents_check_format(ip, tip); 2036 if (error) { 2037 xfs_notice(mp, 2038 "%s: inode 0x%llx format is incompatible for exchanging.", 2039 __func__, ip->i_ino); 2040 goto out_trans_cancel; 2041 } 2042 2043 /* 2044 * Compare the current change & modify times with that 2045 * passed in. If they differ, we abort this swap. 2046 * This is the mechanism used to ensure the calling 2047 * process that the file was not changed out from 2048 * under it. 2049 */ 2050 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) || 2051 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) || 2052 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) || 2053 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) { 2054 error = -EBUSY; 2055 goto out_trans_cancel; 2056 } 2057 2058 /* 2059 * Note the trickiness in setting the log flags - we set the owner log 2060 * flag on the opposite inode (i.e. the inode we are setting the new 2061 * owner to be) because once we swap the forks and log that, log 2062 * recovery is going to see the fork as owned by the swapped inode, 2063 * not the pre-swapped inodes. 2064 */ 2065 src_log_flags = XFS_ILOG_CORE; 2066 target_log_flags = XFS_ILOG_CORE; 2067 2068 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) 2069 error = xfs_swap_extent_rmap(&tp, ip, tip); 2070 else 2071 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags, 2072 &target_log_flags); 2073 if (error) 2074 goto out_trans_cancel; 2075 2076 /* Do we have to swap reflink flags? */ 2077 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^ 2078 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) { 2079 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 2080 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 2081 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK; 2082 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK; 2083 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK; 2084 cowfp = ip->i_cowfp; 2085 ip->i_cowfp = tip->i_cowfp; 2086 tip->i_cowfp = cowfp; 2087 xfs_inode_set_cowblocks_tag(ip); 2088 xfs_inode_set_cowblocks_tag(tip); 2089 } 2090 2091 xfs_trans_log_inode(tp, ip, src_log_flags); 2092 xfs_trans_log_inode(tp, tip, target_log_flags); 2093 2094 /* 2095 * If this is a synchronous mount, make sure that the 2096 * transaction goes to disk before returning to the user. 2097 */ 2098 if (mp->m_flags & XFS_MOUNT_WSYNC) 2099 xfs_trans_set_sync(tp); 2100 2101 error = xfs_trans_commit(tp); 2102 2103 trace_xfs_swap_extent_after(ip, 0); 2104 trace_xfs_swap_extent_after(tip, 1); 2105 2106 out_unlock: 2107 xfs_iunlock(ip, lock_flags); 2108 xfs_iunlock(tip, lock_flags); 2109 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip)); 2110 return error; 2111 2112 out_trans_cancel: 2113 xfs_trans_cancel(tp); 2114 goto out_unlock; 2115 } 2116