xref: /openbmc/linux/fs/xfs/xfs_bmap_item.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_buf_item.h"
18 #include "xfs_bmap_item.h"
19 #include "xfs_log.h"
20 #include "xfs_bmap.h"
21 #include "xfs_icache.h"
22 #include "xfs_trace.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 
26 
27 kmem_zone_t	*xfs_bui_zone;
28 kmem_zone_t	*xfs_bud_zone;
29 
30 static inline struct xfs_bui_log_item *BUI_ITEM(struct xfs_log_item *lip)
31 {
32 	return container_of(lip, struct xfs_bui_log_item, bui_item);
33 }
34 
35 void
36 xfs_bui_item_free(
37 	struct xfs_bui_log_item	*buip)
38 {
39 	kmem_zone_free(xfs_bui_zone, buip);
40 }
41 
42 /*
43  * Freeing the BUI requires that we remove it from the AIL if it has already
44  * been placed there. However, the BUI may not yet have been placed in the AIL
45  * when called by xfs_bui_release() from BUD processing due to the ordering of
46  * committed vs unpin operations in bulk insert operations. Hence the reference
47  * count to ensure only the last caller frees the BUI.
48  */
49 void
50 xfs_bui_release(
51 	struct xfs_bui_log_item	*buip)
52 {
53 	ASSERT(atomic_read(&buip->bui_refcount) > 0);
54 	if (atomic_dec_and_test(&buip->bui_refcount)) {
55 		xfs_trans_ail_remove(&buip->bui_item, SHUTDOWN_LOG_IO_ERROR);
56 		xfs_bui_item_free(buip);
57 	}
58 }
59 
60 
61 STATIC void
62 xfs_bui_item_size(
63 	struct xfs_log_item	*lip,
64 	int			*nvecs,
65 	int			*nbytes)
66 {
67 	struct xfs_bui_log_item	*buip = BUI_ITEM(lip);
68 
69 	*nvecs += 1;
70 	*nbytes += xfs_bui_log_format_sizeof(buip->bui_format.bui_nextents);
71 }
72 
73 /*
74  * This is called to fill in the vector of log iovecs for the
75  * given bui log item. We use only 1 iovec, and we point that
76  * at the bui_log_format structure embedded in the bui item.
77  * It is at this point that we assert that all of the extent
78  * slots in the bui item have been filled.
79  */
80 STATIC void
81 xfs_bui_item_format(
82 	struct xfs_log_item	*lip,
83 	struct xfs_log_vec	*lv)
84 {
85 	struct xfs_bui_log_item	*buip = BUI_ITEM(lip);
86 	struct xfs_log_iovec	*vecp = NULL;
87 
88 	ASSERT(atomic_read(&buip->bui_next_extent) ==
89 			buip->bui_format.bui_nextents);
90 
91 	buip->bui_format.bui_type = XFS_LI_BUI;
92 	buip->bui_format.bui_size = 1;
93 
94 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_BUI_FORMAT, &buip->bui_format,
95 			xfs_bui_log_format_sizeof(buip->bui_format.bui_nextents));
96 }
97 
98 /*
99  * Pinning has no meaning for an bui item, so just return.
100  */
101 STATIC void
102 xfs_bui_item_pin(
103 	struct xfs_log_item	*lip)
104 {
105 }
106 
107 /*
108  * The unpin operation is the last place an BUI is manipulated in the log. It is
109  * either inserted in the AIL or aborted in the event of a log I/O error. In
110  * either case, the BUI transaction has been successfully committed to make it
111  * this far. Therefore, we expect whoever committed the BUI to either construct
112  * and commit the BUD or drop the BUD's reference in the event of error. Simply
113  * drop the log's BUI reference now that the log is done with it.
114  */
115 STATIC void
116 xfs_bui_item_unpin(
117 	struct xfs_log_item	*lip,
118 	int			remove)
119 {
120 	struct xfs_bui_log_item	*buip = BUI_ITEM(lip);
121 
122 	xfs_bui_release(buip);
123 }
124 
125 /*
126  * BUI items have no locking or pushing.  However, since BUIs are pulled from
127  * the AIL when their corresponding BUDs are committed to disk, their situation
128  * is very similar to being pinned.  Return XFS_ITEM_PINNED so that the caller
129  * will eventually flush the log.  This should help in getting the BUI out of
130  * the AIL.
131  */
132 STATIC uint
133 xfs_bui_item_push(
134 	struct xfs_log_item	*lip,
135 	struct list_head	*buffer_list)
136 {
137 	return XFS_ITEM_PINNED;
138 }
139 
140 /*
141  * The BUI has been either committed or aborted if the transaction has been
142  * cancelled. If the transaction was cancelled, an BUD isn't going to be
143  * constructed and thus we free the BUI here directly.
144  */
145 STATIC void
146 xfs_bui_item_unlock(
147 	struct xfs_log_item	*lip)
148 {
149 	if (test_bit(XFS_LI_ABORTED, &lip->li_flags))
150 		xfs_bui_release(BUI_ITEM(lip));
151 }
152 
153 /*
154  * The BUI is logged only once and cannot be moved in the log, so simply return
155  * the lsn at which it's been logged.
156  */
157 STATIC xfs_lsn_t
158 xfs_bui_item_committed(
159 	struct xfs_log_item	*lip,
160 	xfs_lsn_t		lsn)
161 {
162 	return lsn;
163 }
164 
165 /*
166  * The BUI dependency tracking op doesn't do squat.  It can't because
167  * it doesn't know where the free extent is coming from.  The dependency
168  * tracking has to be handled by the "enclosing" metadata object.  For
169  * example, for inodes, the inode is locked throughout the extent freeing
170  * so the dependency should be recorded there.
171  */
172 STATIC void
173 xfs_bui_item_committing(
174 	struct xfs_log_item	*lip,
175 	xfs_lsn_t		lsn)
176 {
177 }
178 
179 /*
180  * This is the ops vector shared by all bui log items.
181  */
182 static const struct xfs_item_ops xfs_bui_item_ops = {
183 	.iop_size	= xfs_bui_item_size,
184 	.iop_format	= xfs_bui_item_format,
185 	.iop_pin	= xfs_bui_item_pin,
186 	.iop_unpin	= xfs_bui_item_unpin,
187 	.iop_unlock	= xfs_bui_item_unlock,
188 	.iop_committed	= xfs_bui_item_committed,
189 	.iop_push	= xfs_bui_item_push,
190 	.iop_committing = xfs_bui_item_committing,
191 };
192 
193 /*
194  * Allocate and initialize an bui item with the given number of extents.
195  */
196 struct xfs_bui_log_item *
197 xfs_bui_init(
198 	struct xfs_mount		*mp)
199 
200 {
201 	struct xfs_bui_log_item		*buip;
202 
203 	buip = kmem_zone_zalloc(xfs_bui_zone, KM_SLEEP);
204 
205 	xfs_log_item_init(mp, &buip->bui_item, XFS_LI_BUI, &xfs_bui_item_ops);
206 	buip->bui_format.bui_nextents = XFS_BUI_MAX_FAST_EXTENTS;
207 	buip->bui_format.bui_id = (uintptr_t)(void *)buip;
208 	atomic_set(&buip->bui_next_extent, 0);
209 	atomic_set(&buip->bui_refcount, 2);
210 
211 	return buip;
212 }
213 
214 static inline struct xfs_bud_log_item *BUD_ITEM(struct xfs_log_item *lip)
215 {
216 	return container_of(lip, struct xfs_bud_log_item, bud_item);
217 }
218 
219 STATIC void
220 xfs_bud_item_size(
221 	struct xfs_log_item	*lip,
222 	int			*nvecs,
223 	int			*nbytes)
224 {
225 	*nvecs += 1;
226 	*nbytes += sizeof(struct xfs_bud_log_format);
227 }
228 
229 /*
230  * This is called to fill in the vector of log iovecs for the
231  * given bud log item. We use only 1 iovec, and we point that
232  * at the bud_log_format structure embedded in the bud item.
233  * It is at this point that we assert that all of the extent
234  * slots in the bud item have been filled.
235  */
236 STATIC void
237 xfs_bud_item_format(
238 	struct xfs_log_item	*lip,
239 	struct xfs_log_vec	*lv)
240 {
241 	struct xfs_bud_log_item	*budp = BUD_ITEM(lip);
242 	struct xfs_log_iovec	*vecp = NULL;
243 
244 	budp->bud_format.bud_type = XFS_LI_BUD;
245 	budp->bud_format.bud_size = 1;
246 
247 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_BUD_FORMAT, &budp->bud_format,
248 			sizeof(struct xfs_bud_log_format));
249 }
250 
251 /*
252  * Pinning has no meaning for an bud item, so just return.
253  */
254 STATIC void
255 xfs_bud_item_pin(
256 	struct xfs_log_item	*lip)
257 {
258 }
259 
260 /*
261  * Since pinning has no meaning for an bud item, unpinning does
262  * not either.
263  */
264 STATIC void
265 xfs_bud_item_unpin(
266 	struct xfs_log_item	*lip,
267 	int			remove)
268 {
269 }
270 
271 /*
272  * There isn't much you can do to push on an bud item.  It is simply stuck
273  * waiting for the log to be flushed to disk.
274  */
275 STATIC uint
276 xfs_bud_item_push(
277 	struct xfs_log_item	*lip,
278 	struct list_head	*buffer_list)
279 {
280 	return XFS_ITEM_PINNED;
281 }
282 
283 /*
284  * The BUD is either committed or aborted if the transaction is cancelled. If
285  * the transaction is cancelled, drop our reference to the BUI and free the
286  * BUD.
287  */
288 STATIC void
289 xfs_bud_item_unlock(
290 	struct xfs_log_item	*lip)
291 {
292 	struct xfs_bud_log_item	*budp = BUD_ITEM(lip);
293 
294 	if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) {
295 		xfs_bui_release(budp->bud_buip);
296 		kmem_zone_free(xfs_bud_zone, budp);
297 	}
298 }
299 
300 /*
301  * When the bud item is committed to disk, all we need to do is delete our
302  * reference to our partner bui item and then free ourselves. Since we're
303  * freeing ourselves we must return -1 to keep the transaction code from
304  * further referencing this item.
305  */
306 STATIC xfs_lsn_t
307 xfs_bud_item_committed(
308 	struct xfs_log_item	*lip,
309 	xfs_lsn_t		lsn)
310 {
311 	struct xfs_bud_log_item	*budp = BUD_ITEM(lip);
312 
313 	/*
314 	 * Drop the BUI reference regardless of whether the BUD has been
315 	 * aborted. Once the BUD transaction is constructed, it is the sole
316 	 * responsibility of the BUD to release the BUI (even if the BUI is
317 	 * aborted due to log I/O error).
318 	 */
319 	xfs_bui_release(budp->bud_buip);
320 	kmem_zone_free(xfs_bud_zone, budp);
321 
322 	return (xfs_lsn_t)-1;
323 }
324 
325 /*
326  * The BUD dependency tracking op doesn't do squat.  It can't because
327  * it doesn't know where the free extent is coming from.  The dependency
328  * tracking has to be handled by the "enclosing" metadata object.  For
329  * example, for inodes, the inode is locked throughout the extent freeing
330  * so the dependency should be recorded there.
331  */
332 STATIC void
333 xfs_bud_item_committing(
334 	struct xfs_log_item	*lip,
335 	xfs_lsn_t		lsn)
336 {
337 }
338 
339 /*
340  * This is the ops vector shared by all bud log items.
341  */
342 static const struct xfs_item_ops xfs_bud_item_ops = {
343 	.iop_size	= xfs_bud_item_size,
344 	.iop_format	= xfs_bud_item_format,
345 	.iop_pin	= xfs_bud_item_pin,
346 	.iop_unpin	= xfs_bud_item_unpin,
347 	.iop_unlock	= xfs_bud_item_unlock,
348 	.iop_committed	= xfs_bud_item_committed,
349 	.iop_push	= xfs_bud_item_push,
350 	.iop_committing = xfs_bud_item_committing,
351 };
352 
353 /*
354  * Allocate and initialize an bud item with the given number of extents.
355  */
356 struct xfs_bud_log_item *
357 xfs_bud_init(
358 	struct xfs_mount		*mp,
359 	struct xfs_bui_log_item		*buip)
360 
361 {
362 	struct xfs_bud_log_item	*budp;
363 
364 	budp = kmem_zone_zalloc(xfs_bud_zone, KM_SLEEP);
365 	xfs_log_item_init(mp, &budp->bud_item, XFS_LI_BUD, &xfs_bud_item_ops);
366 	budp->bud_buip = buip;
367 	budp->bud_format.bud_bui_id = buip->bui_format.bui_id;
368 
369 	return budp;
370 }
371 
372 /*
373  * Process a bmap update intent item that was recovered from the log.
374  * We need to update some inode's bmbt.
375  */
376 int
377 xfs_bui_recover(
378 	struct xfs_trans		*parent_tp,
379 	struct xfs_bui_log_item		*buip)
380 {
381 	int				error = 0;
382 	unsigned int			bui_type;
383 	struct xfs_map_extent		*bmap;
384 	xfs_fsblock_t			startblock_fsb;
385 	xfs_fsblock_t			inode_fsb;
386 	xfs_filblks_t			count;
387 	bool				op_ok;
388 	struct xfs_bud_log_item		*budp;
389 	enum xfs_bmap_intent_type	type;
390 	int				whichfork;
391 	xfs_exntst_t			state;
392 	struct xfs_trans		*tp;
393 	struct xfs_inode		*ip = NULL;
394 	struct xfs_bmbt_irec		irec;
395 	struct xfs_mount		*mp = parent_tp->t_mountp;
396 
397 	ASSERT(!test_bit(XFS_BUI_RECOVERED, &buip->bui_flags));
398 
399 	/* Only one mapping operation per BUI... */
400 	if (buip->bui_format.bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) {
401 		set_bit(XFS_BUI_RECOVERED, &buip->bui_flags);
402 		xfs_bui_release(buip);
403 		return -EIO;
404 	}
405 
406 	/*
407 	 * First check the validity of the extent described by the
408 	 * BUI.  If anything is bad, then toss the BUI.
409 	 */
410 	bmap = &buip->bui_format.bui_extents[0];
411 	startblock_fsb = XFS_BB_TO_FSB(mp,
412 			   XFS_FSB_TO_DADDR(mp, bmap->me_startblock));
413 	inode_fsb = XFS_BB_TO_FSB(mp, XFS_FSB_TO_DADDR(mp,
414 			XFS_INO_TO_FSB(mp, bmap->me_owner)));
415 	switch (bmap->me_flags & XFS_BMAP_EXTENT_TYPE_MASK) {
416 	case XFS_BMAP_MAP:
417 	case XFS_BMAP_UNMAP:
418 		op_ok = true;
419 		break;
420 	default:
421 		op_ok = false;
422 		break;
423 	}
424 	if (!op_ok || startblock_fsb == 0 ||
425 	    bmap->me_len == 0 ||
426 	    inode_fsb == 0 ||
427 	    startblock_fsb >= mp->m_sb.sb_dblocks ||
428 	    bmap->me_len >= mp->m_sb.sb_agblocks ||
429 	    inode_fsb >= mp->m_sb.sb_dblocks ||
430 	    (bmap->me_flags & ~XFS_BMAP_EXTENT_FLAGS)) {
431 		/*
432 		 * This will pull the BUI from the AIL and
433 		 * free the memory associated with it.
434 		 */
435 		set_bit(XFS_BUI_RECOVERED, &buip->bui_flags);
436 		xfs_bui_release(buip);
437 		return -EIO;
438 	}
439 
440 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
441 			XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK), 0, 0, &tp);
442 	if (error)
443 		return error;
444 	/*
445 	 * Recovery stashes all deferred ops during intent processing and
446 	 * finishes them on completion. Transfer current dfops state to this
447 	 * transaction and transfer the result back before we return.
448 	 */
449 	xfs_defer_move(tp, parent_tp);
450 	budp = xfs_trans_get_bud(tp, buip);
451 
452 	/* Grab the inode. */
453 	error = xfs_iget(mp, tp, bmap->me_owner, 0, XFS_ILOCK_EXCL, &ip);
454 	if (error)
455 		goto err_inode;
456 
457 	if (VFS_I(ip)->i_nlink == 0)
458 		xfs_iflags_set(ip, XFS_IRECOVERY);
459 
460 	/* Process deferred bmap item. */
461 	state = (bmap->me_flags & XFS_BMAP_EXTENT_UNWRITTEN) ?
462 			XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
463 	whichfork = (bmap->me_flags & XFS_BMAP_EXTENT_ATTR_FORK) ?
464 			XFS_ATTR_FORK : XFS_DATA_FORK;
465 	bui_type = bmap->me_flags & XFS_BMAP_EXTENT_TYPE_MASK;
466 	switch (bui_type) {
467 	case XFS_BMAP_MAP:
468 	case XFS_BMAP_UNMAP:
469 		type = bui_type;
470 		break;
471 	default:
472 		error = -EFSCORRUPTED;
473 		goto err_inode;
474 	}
475 	xfs_trans_ijoin(tp, ip, 0);
476 
477 	count = bmap->me_len;
478 	error = xfs_trans_log_finish_bmap_update(tp, budp, type, ip, whichfork,
479 			bmap->me_startoff, bmap->me_startblock, &count, state);
480 	if (error)
481 		goto err_inode;
482 
483 	if (count > 0) {
484 		ASSERT(type == XFS_BMAP_UNMAP);
485 		irec.br_startblock = bmap->me_startblock;
486 		irec.br_blockcount = count;
487 		irec.br_startoff = bmap->me_startoff;
488 		irec.br_state = state;
489 		error = xfs_bmap_unmap_extent(tp, ip, &irec);
490 		if (error)
491 			goto err_inode;
492 	}
493 
494 	set_bit(XFS_BUI_RECOVERED, &buip->bui_flags);
495 	xfs_defer_move(parent_tp, tp);
496 	error = xfs_trans_commit(tp);
497 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
498 	xfs_irele(ip);
499 
500 	return error;
501 
502 err_inode:
503 	xfs_defer_move(parent_tp, tp);
504 	xfs_trans_cancel(tp);
505 	if (ip) {
506 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
507 		xfs_irele(ip);
508 	}
509 	return error;
510 }
511