xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision f9a82c48)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  * All Rights Reserved.
6  */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_alloc.h"
17 #include "xfs_error.h"
18 #include "xfs_iomap.h"
19 #include "xfs_trace.h"
20 #include "xfs_bmap.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_bmap_btree.h"
23 #include "xfs_reflink.h"
24 #include <linux/writeback.h>
25 
26 /*
27  * structure owned by writepages passed to individual writepage calls
28  */
29 struct xfs_writepage_ctx {
30 	struct xfs_bmbt_irec    imap;
31 	int			fork;
32 	unsigned int		data_seq;
33 	unsigned int		cow_seq;
34 	struct xfs_ioend	*ioend;
35 };
36 
37 struct block_device *
38 xfs_find_bdev_for_inode(
39 	struct inode		*inode)
40 {
41 	struct xfs_inode	*ip = XFS_I(inode);
42 	struct xfs_mount	*mp = ip->i_mount;
43 
44 	if (XFS_IS_REALTIME_INODE(ip))
45 		return mp->m_rtdev_targp->bt_bdev;
46 	else
47 		return mp->m_ddev_targp->bt_bdev;
48 }
49 
50 struct dax_device *
51 xfs_find_daxdev_for_inode(
52 	struct inode		*inode)
53 {
54 	struct xfs_inode	*ip = XFS_I(inode);
55 	struct xfs_mount	*mp = ip->i_mount;
56 
57 	if (XFS_IS_REALTIME_INODE(ip))
58 		return mp->m_rtdev_targp->bt_daxdev;
59 	else
60 		return mp->m_ddev_targp->bt_daxdev;
61 }
62 
63 static void
64 xfs_finish_page_writeback(
65 	struct inode		*inode,
66 	struct bio_vec	*bvec,
67 	int			error)
68 {
69 	struct iomap_page	*iop = to_iomap_page(bvec->bv_page);
70 
71 	if (error) {
72 		SetPageError(bvec->bv_page);
73 		mapping_set_error(inode->i_mapping, -EIO);
74 	}
75 
76 	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
77 	ASSERT(!iop || atomic_read(&iop->write_count) > 0);
78 
79 	if (!iop || atomic_dec_and_test(&iop->write_count))
80 		end_page_writeback(bvec->bv_page);
81 }
82 
83 /*
84  * We're now finished for good with this ioend structure.  Update the page
85  * state, release holds on bios, and finally free up memory.  Do not use the
86  * ioend after this.
87  */
88 STATIC void
89 xfs_destroy_ioend(
90 	struct xfs_ioend	*ioend,
91 	int			error)
92 {
93 	struct inode		*inode = ioend->io_inode;
94 	struct bio		*bio = &ioend->io_inline_bio;
95 	struct bio		*last = ioend->io_bio, *next;
96 	u64			start = bio->bi_iter.bi_sector;
97 	bool			quiet = bio_flagged(bio, BIO_QUIET);
98 
99 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
100 		struct bio_vec	*bvec;
101 		int		i;
102 		struct bvec_iter_all iter_all;
103 
104 		/*
105 		 * For the last bio, bi_private points to the ioend, so we
106 		 * need to explicitly end the iteration here.
107 		 */
108 		if (bio == last)
109 			next = NULL;
110 		else
111 			next = bio->bi_private;
112 
113 		/* walk each page on bio, ending page IO on them */
114 		bio_for_each_segment_all(bvec, bio, i, iter_all)
115 			xfs_finish_page_writeback(inode, bvec, error);
116 		bio_put(bio);
117 	}
118 
119 	if (unlikely(error && !quiet)) {
120 		xfs_err_ratelimited(XFS_I(inode)->i_mount,
121 			"writeback error on sector %llu", start);
122 	}
123 }
124 
125 /*
126  * Fast and loose check if this write could update the on-disk inode size.
127  */
128 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
129 {
130 	return ioend->io_offset + ioend->io_size >
131 		XFS_I(ioend->io_inode)->i_d.di_size;
132 }
133 
134 STATIC int
135 xfs_setfilesize_trans_alloc(
136 	struct xfs_ioend	*ioend)
137 {
138 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
139 	struct xfs_trans	*tp;
140 	int			error;
141 
142 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
143 				XFS_TRANS_NOFS, &tp);
144 	if (error)
145 		return error;
146 
147 	ioend->io_append_trans = tp;
148 
149 	/*
150 	 * We may pass freeze protection with a transaction.  So tell lockdep
151 	 * we released it.
152 	 */
153 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
154 	/*
155 	 * We hand off the transaction to the completion thread now, so
156 	 * clear the flag here.
157 	 */
158 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
159 	return 0;
160 }
161 
162 /*
163  * Update on-disk file size now that data has been written to disk.
164  */
165 STATIC int
166 __xfs_setfilesize(
167 	struct xfs_inode	*ip,
168 	struct xfs_trans	*tp,
169 	xfs_off_t		offset,
170 	size_t			size)
171 {
172 	xfs_fsize_t		isize;
173 
174 	xfs_ilock(ip, XFS_ILOCK_EXCL);
175 	isize = xfs_new_eof(ip, offset + size);
176 	if (!isize) {
177 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
178 		xfs_trans_cancel(tp);
179 		return 0;
180 	}
181 
182 	trace_xfs_setfilesize(ip, offset, size);
183 
184 	ip->i_d.di_size = isize;
185 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
186 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
187 
188 	return xfs_trans_commit(tp);
189 }
190 
191 int
192 xfs_setfilesize(
193 	struct xfs_inode	*ip,
194 	xfs_off_t		offset,
195 	size_t			size)
196 {
197 	struct xfs_mount	*mp = ip->i_mount;
198 	struct xfs_trans	*tp;
199 	int			error;
200 
201 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
202 	if (error)
203 		return error;
204 
205 	return __xfs_setfilesize(ip, tp, offset, size);
206 }
207 
208 STATIC int
209 xfs_setfilesize_ioend(
210 	struct xfs_ioend	*ioend,
211 	int			error)
212 {
213 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
214 	struct xfs_trans	*tp = ioend->io_append_trans;
215 
216 	/*
217 	 * The transaction may have been allocated in the I/O submission thread,
218 	 * thus we need to mark ourselves as being in a transaction manually.
219 	 * Similarly for freeze protection.
220 	 */
221 	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
222 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
223 
224 	/* we abort the update if there was an IO error */
225 	if (error) {
226 		xfs_trans_cancel(tp);
227 		return error;
228 	}
229 
230 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
231 }
232 
233 /*
234  * IO write completion.
235  */
236 STATIC void
237 xfs_end_io(
238 	struct work_struct *work)
239 {
240 	struct xfs_ioend	*ioend =
241 		container_of(work, struct xfs_ioend, io_work);
242 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
243 	xfs_off_t		offset = ioend->io_offset;
244 	size_t			size = ioend->io_size;
245 	int			error;
246 
247 	/*
248 	 * Just clean up the in-memory strutures if the fs has been shut down.
249 	 */
250 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
251 		error = -EIO;
252 		goto done;
253 	}
254 
255 	/*
256 	 * Clean up any COW blocks on an I/O error.
257 	 */
258 	error = blk_status_to_errno(ioend->io_bio->bi_status);
259 	if (unlikely(error)) {
260 		if (ioend->io_fork == XFS_COW_FORK)
261 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
262 		goto done;
263 	}
264 
265 	/*
266 	 * Success: commit the COW or unwritten blocks if needed.
267 	 */
268 	if (ioend->io_fork == XFS_COW_FORK)
269 		error = xfs_reflink_end_cow(ip, offset, size);
270 	else if (ioend->io_state == XFS_EXT_UNWRITTEN)
271 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
272 	else
273 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
274 
275 done:
276 	if (ioend->io_append_trans)
277 		error = xfs_setfilesize_ioend(ioend, error);
278 	xfs_destroy_ioend(ioend, error);
279 }
280 
281 STATIC void
282 xfs_end_bio(
283 	struct bio		*bio)
284 {
285 	struct xfs_ioend	*ioend = bio->bi_private;
286 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
287 
288 	if (ioend->io_fork == XFS_COW_FORK ||
289 	    ioend->io_state == XFS_EXT_UNWRITTEN)
290 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
291 	else if (ioend->io_append_trans)
292 		queue_work(mp->m_data_workqueue, &ioend->io_work);
293 	else
294 		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
295 }
296 
297 /*
298  * Fast revalidation of the cached writeback mapping. Return true if the current
299  * mapping is valid, false otherwise.
300  */
301 static bool
302 xfs_imap_valid(
303 	struct xfs_writepage_ctx	*wpc,
304 	struct xfs_inode		*ip,
305 	xfs_fileoff_t			offset_fsb)
306 {
307 	if (offset_fsb < wpc->imap.br_startoff ||
308 	    offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount)
309 		return false;
310 	/*
311 	 * If this is a COW mapping, it is sufficient to check that the mapping
312 	 * covers the offset. Be careful to check this first because the caller
313 	 * can revalidate a COW mapping without updating the data seqno.
314 	 */
315 	if (wpc->fork == XFS_COW_FORK)
316 		return true;
317 
318 	/*
319 	 * This is not a COW mapping. Check the sequence number of the data fork
320 	 * because concurrent changes could have invalidated the extent. Check
321 	 * the COW fork because concurrent changes since the last time we
322 	 * checked (and found nothing at this offset) could have added
323 	 * overlapping blocks.
324 	 */
325 	if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq))
326 		return false;
327 	if (xfs_inode_has_cow_data(ip) &&
328 	    wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
329 		return false;
330 	return true;
331 }
332 
333 /*
334  * Pass in a dellalloc extent and convert it to real extents, return the real
335  * extent that maps offset_fsb in wpc->imap.
336  *
337  * The current page is held locked so nothing could have removed the block
338  * backing offset_fsb, although it could have moved from the COW to the data
339  * fork by another thread.
340  */
341 static int
342 xfs_convert_blocks(
343 	struct xfs_writepage_ctx *wpc,
344 	struct xfs_inode	*ip,
345 	xfs_fileoff_t		offset_fsb)
346 {
347 	int			error;
348 
349 	/*
350 	 * Attempt to allocate whatever delalloc extent currently backs
351 	 * offset_fsb and put the result into wpc->imap.  Allocate in a loop
352 	 * because it may take several attempts to allocate real blocks for a
353 	 * contiguous delalloc extent if free space is sufficiently fragmented.
354 	 */
355 	do {
356 		error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb,
357 				&wpc->imap, wpc->fork == XFS_COW_FORK ?
358 					&wpc->cow_seq : &wpc->data_seq);
359 		if (error)
360 			return error;
361 	} while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb);
362 
363 	return 0;
364 }
365 
366 STATIC int
367 xfs_map_blocks(
368 	struct xfs_writepage_ctx *wpc,
369 	struct inode		*inode,
370 	loff_t			offset)
371 {
372 	struct xfs_inode	*ip = XFS_I(inode);
373 	struct xfs_mount	*mp = ip->i_mount;
374 	ssize_t			count = i_blocksize(inode);
375 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
376 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
377 	xfs_fileoff_t		cow_fsb = NULLFILEOFF;
378 	struct xfs_bmbt_irec	imap;
379 	struct xfs_iext_cursor	icur;
380 	int			retries = 0;
381 	int			error = 0;
382 
383 	if (XFS_FORCED_SHUTDOWN(mp))
384 		return -EIO;
385 
386 	/*
387 	 * COW fork blocks can overlap data fork blocks even if the blocks
388 	 * aren't shared.  COW I/O always takes precedent, so we must always
389 	 * check for overlap on reflink inodes unless the mapping is already a
390 	 * COW one, or the COW fork hasn't changed from the last time we looked
391 	 * at it.
392 	 *
393 	 * It's safe to check the COW fork if_seq here without the ILOCK because
394 	 * we've indirectly protected against concurrent updates: writeback has
395 	 * the page locked, which prevents concurrent invalidations by reflink
396 	 * and directio and prevents concurrent buffered writes to the same
397 	 * page.  Changes to if_seq always happen under i_lock, which protects
398 	 * against concurrent updates and provides a memory barrier on the way
399 	 * out that ensures that we always see the current value.
400 	 */
401 	if (xfs_imap_valid(wpc, ip, offset_fsb))
402 		return 0;
403 
404 	/*
405 	 * If we don't have a valid map, now it's time to get a new one for this
406 	 * offset.  This will convert delayed allocations (including COW ones)
407 	 * into real extents.  If we return without a valid map, it means we
408 	 * landed in a hole and we skip the block.
409 	 */
410 retry:
411 	xfs_ilock(ip, XFS_ILOCK_SHARED);
412 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
413 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
414 
415 	/*
416 	 * Check if this is offset is covered by a COW extents, and if yes use
417 	 * it directly instead of looking up anything in the data fork.
418 	 */
419 	if (xfs_inode_has_cow_data(ip) &&
420 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
421 		cow_fsb = imap.br_startoff;
422 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
423 		wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
424 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
425 
426 		wpc->fork = XFS_COW_FORK;
427 		goto allocate_blocks;
428 	}
429 
430 	/*
431 	 * No COW extent overlap. Revalidate now that we may have updated
432 	 * ->cow_seq. If the data mapping is still valid, we're done.
433 	 */
434 	if (xfs_imap_valid(wpc, ip, offset_fsb)) {
435 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
436 		return 0;
437 	}
438 
439 	/*
440 	 * If we don't have a valid map, now it's time to get a new one for this
441 	 * offset.  This will convert delayed allocations (including COW ones)
442 	 * into real extents.
443 	 */
444 	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
445 		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
446 	wpc->data_seq = READ_ONCE(ip->i_df.if_seq);
447 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
448 
449 	wpc->fork = XFS_DATA_FORK;
450 
451 	/* landed in a hole or beyond EOF? */
452 	if (imap.br_startoff > offset_fsb) {
453 		imap.br_blockcount = imap.br_startoff - offset_fsb;
454 		imap.br_startoff = offset_fsb;
455 		imap.br_startblock = HOLESTARTBLOCK;
456 		imap.br_state = XFS_EXT_NORM;
457 	}
458 
459 	/*
460 	 * Truncate to the next COW extent if there is one.  This is the only
461 	 * opportunity to do this because we can skip COW fork lookups for the
462 	 * subsequent blocks in the mapping; however, the requirement to treat
463 	 * the COW range separately remains.
464 	 */
465 	if (cow_fsb != NULLFILEOFF &&
466 	    cow_fsb < imap.br_startoff + imap.br_blockcount)
467 		imap.br_blockcount = cow_fsb - imap.br_startoff;
468 
469 	/* got a delalloc extent? */
470 	if (imap.br_startblock != HOLESTARTBLOCK &&
471 	    isnullstartblock(imap.br_startblock))
472 		goto allocate_blocks;
473 
474 	wpc->imap = imap;
475 	trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap);
476 	return 0;
477 allocate_blocks:
478 	error = xfs_convert_blocks(wpc, ip, offset_fsb);
479 	if (error) {
480 		/*
481 		 * If we failed to find the extent in the COW fork we might have
482 		 * raced with a COW to data fork conversion or truncate.
483 		 * Restart the lookup to catch the extent in the data fork for
484 		 * the former case, but prevent additional retries to avoid
485 		 * looping forever for the latter case.
486 		 */
487 		if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++)
488 			goto retry;
489 		ASSERT(error != -EAGAIN);
490 		return error;
491 	}
492 
493 	/*
494 	 * Due to merging the return real extent might be larger than the
495 	 * original delalloc one.  Trim the return extent to the next COW
496 	 * boundary again to force a re-lookup.
497 	 */
498 	if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF &&
499 	    cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount)
500 		wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff;
501 
502 	ASSERT(wpc->imap.br_startoff <= offset_fsb);
503 	ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb);
504 	trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap);
505 	return 0;
506 }
507 
508 /*
509  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
510  * it, and we submit that bio. The ioend may be used for multiple bio
511  * submissions, so we only want to allocate an append transaction for the ioend
512  * once. In the case of multiple bio submission, each bio will take an IO
513  * reference to the ioend to ensure that the ioend completion is only done once
514  * all bios have been submitted and the ioend is really done.
515  *
516  * If @fail is non-zero, it means that we have a situation where some part of
517  * the submission process has failed after we have marked paged for writeback
518  * and unlocked them. In this situation, we need to fail the bio and ioend
519  * rather than submit it to IO. This typically only happens on a filesystem
520  * shutdown.
521  */
522 STATIC int
523 xfs_submit_ioend(
524 	struct writeback_control *wbc,
525 	struct xfs_ioend	*ioend,
526 	int			status)
527 {
528 	/* Convert CoW extents to regular */
529 	if (!status && ioend->io_fork == XFS_COW_FORK) {
530 		/*
531 		 * Yuk. This can do memory allocation, but is not a
532 		 * transactional operation so everything is done in GFP_KERNEL
533 		 * context. That can deadlock, because we hold pages in
534 		 * writeback state and GFP_KERNEL allocations can block on them.
535 		 * Hence we must operate in nofs conditions here.
536 		 */
537 		unsigned nofs_flag;
538 
539 		nofs_flag = memalloc_nofs_save();
540 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
541 				ioend->io_offset, ioend->io_size);
542 		memalloc_nofs_restore(nofs_flag);
543 	}
544 
545 	/* Reserve log space if we might write beyond the on-disk inode size. */
546 	if (!status &&
547 	    (ioend->io_fork == XFS_COW_FORK ||
548 	     ioend->io_state != XFS_EXT_UNWRITTEN) &&
549 	    xfs_ioend_is_append(ioend) &&
550 	    !ioend->io_append_trans)
551 		status = xfs_setfilesize_trans_alloc(ioend);
552 
553 	ioend->io_bio->bi_private = ioend;
554 	ioend->io_bio->bi_end_io = xfs_end_bio;
555 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
556 
557 	/*
558 	 * If we are failing the IO now, just mark the ioend with an
559 	 * error and finish it. This will run IO completion immediately
560 	 * as there is only one reference to the ioend at this point in
561 	 * time.
562 	 */
563 	if (status) {
564 		ioend->io_bio->bi_status = errno_to_blk_status(status);
565 		bio_endio(ioend->io_bio);
566 		return status;
567 	}
568 
569 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
570 	submit_bio(ioend->io_bio);
571 	return 0;
572 }
573 
574 static struct xfs_ioend *
575 xfs_alloc_ioend(
576 	struct inode		*inode,
577 	int			fork,
578 	xfs_exntst_t		state,
579 	xfs_off_t		offset,
580 	struct block_device	*bdev,
581 	sector_t		sector)
582 {
583 	struct xfs_ioend	*ioend;
584 	struct bio		*bio;
585 
586 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
587 	bio_set_dev(bio, bdev);
588 	bio->bi_iter.bi_sector = sector;
589 
590 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
591 	INIT_LIST_HEAD(&ioend->io_list);
592 	ioend->io_fork = fork;
593 	ioend->io_state = state;
594 	ioend->io_inode = inode;
595 	ioend->io_size = 0;
596 	ioend->io_offset = offset;
597 	INIT_WORK(&ioend->io_work, xfs_end_io);
598 	ioend->io_append_trans = NULL;
599 	ioend->io_bio = bio;
600 	return ioend;
601 }
602 
603 /*
604  * Allocate a new bio, and chain the old bio to the new one.
605  *
606  * Note that we have to do perform the chaining in this unintuitive order
607  * so that the bi_private linkage is set up in the right direction for the
608  * traversal in xfs_destroy_ioend().
609  */
610 static void
611 xfs_chain_bio(
612 	struct xfs_ioend	*ioend,
613 	struct writeback_control *wbc,
614 	struct block_device	*bdev,
615 	sector_t		sector)
616 {
617 	struct bio *new;
618 
619 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
620 	bio_set_dev(new, bdev);
621 	new->bi_iter.bi_sector = sector;
622 	bio_chain(ioend->io_bio, new);
623 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
624 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
625 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
626 	submit_bio(ioend->io_bio);
627 	ioend->io_bio = new;
628 }
629 
630 /*
631  * Test to see if we have an existing ioend structure that we could append to
632  * first, otherwise finish off the current ioend and start another.
633  */
634 STATIC void
635 xfs_add_to_ioend(
636 	struct inode		*inode,
637 	xfs_off_t		offset,
638 	struct page		*page,
639 	struct iomap_page	*iop,
640 	struct xfs_writepage_ctx *wpc,
641 	struct writeback_control *wbc,
642 	struct list_head	*iolist)
643 {
644 	struct xfs_inode	*ip = XFS_I(inode);
645 	struct xfs_mount	*mp = ip->i_mount;
646 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
647 	unsigned		len = i_blocksize(inode);
648 	unsigned		poff = offset & (PAGE_SIZE - 1);
649 	sector_t		sector;
650 
651 	sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
652 		((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
653 
654 	if (!wpc->ioend ||
655 	    wpc->fork != wpc->ioend->io_fork ||
656 	    wpc->imap.br_state != wpc->ioend->io_state ||
657 	    sector != bio_end_sector(wpc->ioend->io_bio) ||
658 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
659 		if (wpc->ioend)
660 			list_add(&wpc->ioend->io_list, iolist);
661 		wpc->ioend = xfs_alloc_ioend(inode, wpc->fork,
662 				wpc->imap.br_state, offset, bdev, sector);
663 	}
664 
665 	if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, true)) {
666 		if (iop)
667 			atomic_inc(&iop->write_count);
668 		if (bio_full(wpc->ioend->io_bio))
669 			xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
670 		bio_add_page(wpc->ioend->io_bio, page, len, poff);
671 	}
672 
673 	wpc->ioend->io_size += len;
674 }
675 
676 STATIC void
677 xfs_vm_invalidatepage(
678 	struct page		*page,
679 	unsigned int		offset,
680 	unsigned int		length)
681 {
682 	trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
683 	iomap_invalidatepage(page, offset, length);
684 }
685 
686 /*
687  * If the page has delalloc blocks on it, we need to punch them out before we
688  * invalidate the page.  If we don't, we leave a stale delalloc mapping on the
689  * inode that can trip up a later direct I/O read operation on the same region.
690  *
691  * We prevent this by truncating away the delalloc regions on the page.  Because
692  * they are delalloc, we can do this without needing a transaction. Indeed - if
693  * we get ENOSPC errors, we have to be able to do this truncation without a
694  * transaction as there is no space left for block reservation (typically why we
695  * see a ENOSPC in writeback).
696  */
697 STATIC void
698 xfs_aops_discard_page(
699 	struct page		*page)
700 {
701 	struct inode		*inode = page->mapping->host;
702 	struct xfs_inode	*ip = XFS_I(inode);
703 	struct xfs_mount	*mp = ip->i_mount;
704 	loff_t			offset = page_offset(page);
705 	xfs_fileoff_t		start_fsb = XFS_B_TO_FSBT(mp, offset);
706 	int			error;
707 
708 	if (XFS_FORCED_SHUTDOWN(mp))
709 		goto out_invalidate;
710 
711 	xfs_alert(mp,
712 		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
713 			page, ip->i_ino, offset);
714 
715 	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
716 			PAGE_SIZE / i_blocksize(inode));
717 	if (error && !XFS_FORCED_SHUTDOWN(mp))
718 		xfs_alert(mp, "page discard unable to remove delalloc mapping.");
719 out_invalidate:
720 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
721 }
722 
723 /*
724  * We implement an immediate ioend submission policy here to avoid needing to
725  * chain multiple ioends and hence nest mempool allocations which can violate
726  * forward progress guarantees we need to provide. The current ioend we are
727  * adding blocks to is cached on the writepage context, and if the new block
728  * does not append to the cached ioend it will create a new ioend and cache that
729  * instead.
730  *
731  * If a new ioend is created and cached, the old ioend is returned and queued
732  * locally for submission once the entire page is processed or an error has been
733  * detected.  While ioends are submitted immediately after they are completed,
734  * batching optimisations are provided by higher level block plugging.
735  *
736  * At the end of a writeback pass, there will be a cached ioend remaining on the
737  * writepage context that the caller will need to submit.
738  */
739 static int
740 xfs_writepage_map(
741 	struct xfs_writepage_ctx *wpc,
742 	struct writeback_control *wbc,
743 	struct inode		*inode,
744 	struct page		*page,
745 	uint64_t		end_offset)
746 {
747 	LIST_HEAD(submit_list);
748 	struct iomap_page	*iop = to_iomap_page(page);
749 	unsigned		len = i_blocksize(inode);
750 	struct xfs_ioend	*ioend, *next;
751 	uint64_t		file_offset;	/* file offset of page */
752 	int			error = 0, count = 0, i;
753 
754 	ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
755 	ASSERT(!iop || atomic_read(&iop->write_count) == 0);
756 
757 	/*
758 	 * Walk through the page to find areas to write back. If we run off the
759 	 * end of the current map or find the current map invalid, grab a new
760 	 * one.
761 	 */
762 	for (i = 0, file_offset = page_offset(page);
763 	     i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
764 	     i++, file_offset += len) {
765 		if (iop && !test_bit(i, iop->uptodate))
766 			continue;
767 
768 		error = xfs_map_blocks(wpc, inode, file_offset);
769 		if (error)
770 			break;
771 		if (wpc->imap.br_startblock == HOLESTARTBLOCK)
772 			continue;
773 		xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
774 				 &submit_list);
775 		count++;
776 	}
777 
778 	ASSERT(wpc->ioend || list_empty(&submit_list));
779 	ASSERT(PageLocked(page));
780 	ASSERT(!PageWriteback(page));
781 
782 	/*
783 	 * On error, we have to fail the ioend here because we may have set
784 	 * pages under writeback, we have to make sure we run IO completion to
785 	 * mark the error state of the IO appropriately, so we can't cancel the
786 	 * ioend directly here.  That means we have to mark this page as under
787 	 * writeback if we included any blocks from it in the ioend chain so
788 	 * that completion treats it correctly.
789 	 *
790 	 * If we didn't include the page in the ioend, the on error we can
791 	 * simply discard and unlock it as there are no other users of the page
792 	 * now.  The caller will still need to trigger submission of outstanding
793 	 * ioends on the writepage context so they are treated correctly on
794 	 * error.
795 	 */
796 	if (unlikely(error)) {
797 		if (!count) {
798 			xfs_aops_discard_page(page);
799 			ClearPageUptodate(page);
800 			unlock_page(page);
801 			goto done;
802 		}
803 
804 		/*
805 		 * If the page was not fully cleaned, we need to ensure that the
806 		 * higher layers come back to it correctly.  That means we need
807 		 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
808 		 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
809 		 * so another attempt to write this page in this writeback sweep
810 		 * will be made.
811 		 */
812 		set_page_writeback_keepwrite(page);
813 	} else {
814 		clear_page_dirty_for_io(page);
815 		set_page_writeback(page);
816 	}
817 
818 	unlock_page(page);
819 
820 	/*
821 	 * Preserve the original error if there was one, otherwise catch
822 	 * submission errors here and propagate into subsequent ioend
823 	 * submissions.
824 	 */
825 	list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
826 		int error2;
827 
828 		list_del_init(&ioend->io_list);
829 		error2 = xfs_submit_ioend(wbc, ioend, error);
830 		if (error2 && !error)
831 			error = error2;
832 	}
833 
834 	/*
835 	 * We can end up here with no error and nothing to write only if we race
836 	 * with a partial page truncate on a sub-page block sized filesystem.
837 	 */
838 	if (!count)
839 		end_page_writeback(page);
840 done:
841 	mapping_set_error(page->mapping, error);
842 	return error;
843 }
844 
845 /*
846  * Write out a dirty page.
847  *
848  * For delalloc space on the page we need to allocate space and flush it.
849  * For unwritten space on the page we need to start the conversion to
850  * regular allocated space.
851  */
852 STATIC int
853 xfs_do_writepage(
854 	struct page		*page,
855 	struct writeback_control *wbc,
856 	void			*data)
857 {
858 	struct xfs_writepage_ctx *wpc = data;
859 	struct inode		*inode = page->mapping->host;
860 	loff_t			offset;
861 	uint64_t              end_offset;
862 	pgoff_t                 end_index;
863 
864 	trace_xfs_writepage(inode, page, 0, 0);
865 
866 	/*
867 	 * Refuse to write the page out if we are called from reclaim context.
868 	 *
869 	 * This avoids stack overflows when called from deeply used stacks in
870 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
871 	 * allow reclaim from kswapd as the stack usage there is relatively low.
872 	 *
873 	 * This should never happen except in the case of a VM regression so
874 	 * warn about it.
875 	 */
876 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
877 			PF_MEMALLOC))
878 		goto redirty;
879 
880 	/*
881 	 * Given that we do not allow direct reclaim to call us, we should
882 	 * never be called while in a filesystem transaction.
883 	 */
884 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
885 		goto redirty;
886 
887 	/*
888 	 * Is this page beyond the end of the file?
889 	 *
890 	 * The page index is less than the end_index, adjust the end_offset
891 	 * to the highest offset that this page should represent.
892 	 * -----------------------------------------------------
893 	 * |			file mapping	       | <EOF> |
894 	 * -----------------------------------------------------
895 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
896 	 * ^--------------------------------^----------|--------
897 	 * |     desired writeback range    |      see else    |
898 	 * ---------------------------------^------------------|
899 	 */
900 	offset = i_size_read(inode);
901 	end_index = offset >> PAGE_SHIFT;
902 	if (page->index < end_index)
903 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
904 	else {
905 		/*
906 		 * Check whether the page to write out is beyond or straddles
907 		 * i_size or not.
908 		 * -------------------------------------------------------
909 		 * |		file mapping		        | <EOF>  |
910 		 * -------------------------------------------------------
911 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
912 		 * ^--------------------------------^-----------|---------
913 		 * |				    |      Straddles     |
914 		 * ---------------------------------^-----------|--------|
915 		 */
916 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
917 
918 		/*
919 		 * Skip the page if it is fully outside i_size, e.g. due to a
920 		 * truncate operation that is in progress. We must redirty the
921 		 * page so that reclaim stops reclaiming it. Otherwise
922 		 * xfs_vm_releasepage() is called on it and gets confused.
923 		 *
924 		 * Note that the end_index is unsigned long, it would overflow
925 		 * if the given offset is greater than 16TB on 32-bit system
926 		 * and if we do check the page is fully outside i_size or not
927 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
928 		 * will be evaluated to 0.  Hence this page will be redirtied
929 		 * and be written out repeatedly which would result in an
930 		 * infinite loop, the user program that perform this operation
931 		 * will hang.  Instead, we can verify this situation by checking
932 		 * if the page to write is totally beyond the i_size or if it's
933 		 * offset is just equal to the EOF.
934 		 */
935 		if (page->index > end_index ||
936 		    (page->index == end_index && offset_into_page == 0))
937 			goto redirty;
938 
939 		/*
940 		 * The page straddles i_size.  It must be zeroed out on each
941 		 * and every writepage invocation because it may be mmapped.
942 		 * "A file is mapped in multiples of the page size.  For a file
943 		 * that is not a multiple of the page size, the remaining
944 		 * memory is zeroed when mapped, and writes to that region are
945 		 * not written out to the file."
946 		 */
947 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
948 
949 		/* Adjust the end_offset to the end of file */
950 		end_offset = offset;
951 	}
952 
953 	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
954 
955 redirty:
956 	redirty_page_for_writepage(wbc, page);
957 	unlock_page(page);
958 	return 0;
959 }
960 
961 STATIC int
962 xfs_vm_writepage(
963 	struct page		*page,
964 	struct writeback_control *wbc)
965 {
966 	struct xfs_writepage_ctx wpc = { };
967 	int			ret;
968 
969 	ret = xfs_do_writepage(page, wbc, &wpc);
970 	if (wpc.ioend)
971 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
972 	return ret;
973 }
974 
975 STATIC int
976 xfs_vm_writepages(
977 	struct address_space	*mapping,
978 	struct writeback_control *wbc)
979 {
980 	struct xfs_writepage_ctx wpc = { };
981 	int			ret;
982 
983 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
984 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
985 	if (wpc.ioend)
986 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
987 	return ret;
988 }
989 
990 STATIC int
991 xfs_dax_writepages(
992 	struct address_space	*mapping,
993 	struct writeback_control *wbc)
994 {
995 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
996 	return dax_writeback_mapping_range(mapping,
997 			xfs_find_bdev_for_inode(mapping->host), wbc);
998 }
999 
1000 STATIC int
1001 xfs_vm_releasepage(
1002 	struct page		*page,
1003 	gfp_t			gfp_mask)
1004 {
1005 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1006 	return iomap_releasepage(page, gfp_mask);
1007 }
1008 
1009 STATIC sector_t
1010 xfs_vm_bmap(
1011 	struct address_space	*mapping,
1012 	sector_t		block)
1013 {
1014 	struct xfs_inode	*ip = XFS_I(mapping->host);
1015 
1016 	trace_xfs_vm_bmap(ip);
1017 
1018 	/*
1019 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1020 	 * bypasses the file system for actual I/O.  We really can't allow
1021 	 * that on reflinks inodes, so we have to skip out here.  And yes,
1022 	 * 0 is the magic code for a bmap error.
1023 	 *
1024 	 * Since we don't pass back blockdev info, we can't return bmap
1025 	 * information for rt files either.
1026 	 */
1027 	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1028 		return 0;
1029 	return iomap_bmap(mapping, block, &xfs_iomap_ops);
1030 }
1031 
1032 STATIC int
1033 xfs_vm_readpage(
1034 	struct file		*unused,
1035 	struct page		*page)
1036 {
1037 	trace_xfs_vm_readpage(page->mapping->host, 1);
1038 	return iomap_readpage(page, &xfs_iomap_ops);
1039 }
1040 
1041 STATIC int
1042 xfs_vm_readpages(
1043 	struct file		*unused,
1044 	struct address_space	*mapping,
1045 	struct list_head	*pages,
1046 	unsigned		nr_pages)
1047 {
1048 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1049 	return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1050 }
1051 
1052 static int
1053 xfs_iomap_swapfile_activate(
1054 	struct swap_info_struct		*sis,
1055 	struct file			*swap_file,
1056 	sector_t			*span)
1057 {
1058 	sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1059 	return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
1060 }
1061 
1062 const struct address_space_operations xfs_address_space_operations = {
1063 	.readpage		= xfs_vm_readpage,
1064 	.readpages		= xfs_vm_readpages,
1065 	.writepage		= xfs_vm_writepage,
1066 	.writepages		= xfs_vm_writepages,
1067 	.set_page_dirty		= iomap_set_page_dirty,
1068 	.releasepage		= xfs_vm_releasepage,
1069 	.invalidatepage		= xfs_vm_invalidatepage,
1070 	.bmap			= xfs_vm_bmap,
1071 	.direct_IO		= noop_direct_IO,
1072 	.migratepage		= iomap_migrate_page,
1073 	.is_partially_uptodate  = iomap_is_partially_uptodate,
1074 	.error_remove_page	= generic_error_remove_page,
1075 	.swap_activate		= xfs_iomap_swapfile_activate,
1076 };
1077 
1078 const struct address_space_operations xfs_dax_aops = {
1079 	.writepages		= xfs_dax_writepages,
1080 	.direct_IO		= noop_direct_IO,
1081 	.set_page_dirty		= noop_set_page_dirty,
1082 	.invalidatepage		= noop_invalidatepage,
1083 	.swap_activate		= xfs_iomap_swapfile_activate,
1084 };
1085