1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7 #include "xfs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_inode_item.h" 16 #include "xfs_alloc.h" 17 #include "xfs_error.h" 18 #include "xfs_iomap.h" 19 #include "xfs_trace.h" 20 #include "xfs_bmap.h" 21 #include "xfs_bmap_util.h" 22 #include "xfs_bmap_btree.h" 23 #include "xfs_reflink.h" 24 #include <linux/writeback.h> 25 26 /* 27 * structure owned by writepages passed to individual writepage calls 28 */ 29 struct xfs_writepage_ctx { 30 struct xfs_bmbt_irec imap; 31 int fork; 32 unsigned int data_seq; 33 unsigned int cow_seq; 34 struct xfs_ioend *ioend; 35 }; 36 37 struct block_device * 38 xfs_find_bdev_for_inode( 39 struct inode *inode) 40 { 41 struct xfs_inode *ip = XFS_I(inode); 42 struct xfs_mount *mp = ip->i_mount; 43 44 if (XFS_IS_REALTIME_INODE(ip)) 45 return mp->m_rtdev_targp->bt_bdev; 46 else 47 return mp->m_ddev_targp->bt_bdev; 48 } 49 50 struct dax_device * 51 xfs_find_daxdev_for_inode( 52 struct inode *inode) 53 { 54 struct xfs_inode *ip = XFS_I(inode); 55 struct xfs_mount *mp = ip->i_mount; 56 57 if (XFS_IS_REALTIME_INODE(ip)) 58 return mp->m_rtdev_targp->bt_daxdev; 59 else 60 return mp->m_ddev_targp->bt_daxdev; 61 } 62 63 static void 64 xfs_finish_page_writeback( 65 struct inode *inode, 66 struct bio_vec *bvec, 67 int error) 68 { 69 struct iomap_page *iop = to_iomap_page(bvec->bv_page); 70 71 if (error) { 72 SetPageError(bvec->bv_page); 73 mapping_set_error(inode->i_mapping, -EIO); 74 } 75 76 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE); 77 ASSERT(!iop || atomic_read(&iop->write_count) > 0); 78 79 if (!iop || atomic_dec_and_test(&iop->write_count)) 80 end_page_writeback(bvec->bv_page); 81 } 82 83 /* 84 * We're now finished for good with this ioend structure. Update the page 85 * state, release holds on bios, and finally free up memory. Do not use the 86 * ioend after this. 87 */ 88 STATIC void 89 xfs_destroy_ioend( 90 struct xfs_ioend *ioend, 91 int error) 92 { 93 struct inode *inode = ioend->io_inode; 94 struct bio *bio = &ioend->io_inline_bio; 95 struct bio *last = ioend->io_bio, *next; 96 u64 start = bio->bi_iter.bi_sector; 97 bool quiet = bio_flagged(bio, BIO_QUIET); 98 99 for (bio = &ioend->io_inline_bio; bio; bio = next) { 100 struct bio_vec *bvec; 101 int i; 102 struct bvec_iter_all iter_all; 103 104 /* 105 * For the last bio, bi_private points to the ioend, so we 106 * need to explicitly end the iteration here. 107 */ 108 if (bio == last) 109 next = NULL; 110 else 111 next = bio->bi_private; 112 113 /* walk each page on bio, ending page IO on them */ 114 bio_for_each_segment_all(bvec, bio, i, iter_all) 115 xfs_finish_page_writeback(inode, bvec, error); 116 bio_put(bio); 117 } 118 119 if (unlikely(error && !quiet)) { 120 xfs_err_ratelimited(XFS_I(inode)->i_mount, 121 "writeback error on sector %llu", start); 122 } 123 } 124 125 /* 126 * Fast and loose check if this write could update the on-disk inode size. 127 */ 128 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 129 { 130 return ioend->io_offset + ioend->io_size > 131 XFS_I(ioend->io_inode)->i_d.di_size; 132 } 133 134 STATIC int 135 xfs_setfilesize_trans_alloc( 136 struct xfs_ioend *ioend) 137 { 138 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 139 struct xfs_trans *tp; 140 int error; 141 142 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 143 XFS_TRANS_NOFS, &tp); 144 if (error) 145 return error; 146 147 ioend->io_append_trans = tp; 148 149 /* 150 * We may pass freeze protection with a transaction. So tell lockdep 151 * we released it. 152 */ 153 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS); 154 /* 155 * We hand off the transaction to the completion thread now, so 156 * clear the flag here. 157 */ 158 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 159 return 0; 160 } 161 162 /* 163 * Update on-disk file size now that data has been written to disk. 164 */ 165 STATIC int 166 __xfs_setfilesize( 167 struct xfs_inode *ip, 168 struct xfs_trans *tp, 169 xfs_off_t offset, 170 size_t size) 171 { 172 xfs_fsize_t isize; 173 174 xfs_ilock(ip, XFS_ILOCK_EXCL); 175 isize = xfs_new_eof(ip, offset + size); 176 if (!isize) { 177 xfs_iunlock(ip, XFS_ILOCK_EXCL); 178 xfs_trans_cancel(tp); 179 return 0; 180 } 181 182 trace_xfs_setfilesize(ip, offset, size); 183 184 ip->i_d.di_size = isize; 185 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 186 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 187 188 return xfs_trans_commit(tp); 189 } 190 191 int 192 xfs_setfilesize( 193 struct xfs_inode *ip, 194 xfs_off_t offset, 195 size_t size) 196 { 197 struct xfs_mount *mp = ip->i_mount; 198 struct xfs_trans *tp; 199 int error; 200 201 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 202 if (error) 203 return error; 204 205 return __xfs_setfilesize(ip, tp, offset, size); 206 } 207 208 STATIC int 209 xfs_setfilesize_ioend( 210 struct xfs_ioend *ioend, 211 int error) 212 { 213 struct xfs_inode *ip = XFS_I(ioend->io_inode); 214 struct xfs_trans *tp = ioend->io_append_trans; 215 216 /* 217 * The transaction may have been allocated in the I/O submission thread, 218 * thus we need to mark ourselves as being in a transaction manually. 219 * Similarly for freeze protection. 220 */ 221 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS); 222 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 223 224 /* we abort the update if there was an IO error */ 225 if (error) { 226 xfs_trans_cancel(tp); 227 return error; 228 } 229 230 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 231 } 232 233 /* 234 * IO write completion. 235 */ 236 STATIC void 237 xfs_end_io( 238 struct work_struct *work) 239 { 240 struct xfs_ioend *ioend = 241 container_of(work, struct xfs_ioend, io_work); 242 struct xfs_inode *ip = XFS_I(ioend->io_inode); 243 xfs_off_t offset = ioend->io_offset; 244 size_t size = ioend->io_size; 245 int error; 246 247 /* 248 * Just clean up the in-memory strutures if the fs has been shut down. 249 */ 250 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 251 error = -EIO; 252 goto done; 253 } 254 255 /* 256 * Clean up any COW blocks on an I/O error. 257 */ 258 error = blk_status_to_errno(ioend->io_bio->bi_status); 259 if (unlikely(error)) { 260 if (ioend->io_fork == XFS_COW_FORK) 261 xfs_reflink_cancel_cow_range(ip, offset, size, true); 262 goto done; 263 } 264 265 /* 266 * Success: commit the COW or unwritten blocks if needed. 267 */ 268 if (ioend->io_fork == XFS_COW_FORK) 269 error = xfs_reflink_end_cow(ip, offset, size); 270 else if (ioend->io_state == XFS_EXT_UNWRITTEN) 271 error = xfs_iomap_write_unwritten(ip, offset, size, false); 272 else 273 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans); 274 275 done: 276 if (ioend->io_append_trans) 277 error = xfs_setfilesize_ioend(ioend, error); 278 xfs_destroy_ioend(ioend, error); 279 } 280 281 STATIC void 282 xfs_end_bio( 283 struct bio *bio) 284 { 285 struct xfs_ioend *ioend = bio->bi_private; 286 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 287 288 if (ioend->io_fork == XFS_COW_FORK || 289 ioend->io_state == XFS_EXT_UNWRITTEN) 290 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 291 else if (ioend->io_append_trans) 292 queue_work(mp->m_data_workqueue, &ioend->io_work); 293 else 294 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status)); 295 } 296 297 /* 298 * Fast revalidation of the cached writeback mapping. Return true if the current 299 * mapping is valid, false otherwise. 300 */ 301 static bool 302 xfs_imap_valid( 303 struct xfs_writepage_ctx *wpc, 304 struct xfs_inode *ip, 305 xfs_fileoff_t offset_fsb) 306 { 307 if (offset_fsb < wpc->imap.br_startoff || 308 offset_fsb >= wpc->imap.br_startoff + wpc->imap.br_blockcount) 309 return false; 310 /* 311 * If this is a COW mapping, it is sufficient to check that the mapping 312 * covers the offset. Be careful to check this first because the caller 313 * can revalidate a COW mapping without updating the data seqno. 314 */ 315 if (wpc->fork == XFS_COW_FORK) 316 return true; 317 318 /* 319 * This is not a COW mapping. Check the sequence number of the data fork 320 * because concurrent changes could have invalidated the extent. Check 321 * the COW fork because concurrent changes since the last time we 322 * checked (and found nothing at this offset) could have added 323 * overlapping blocks. 324 */ 325 if (wpc->data_seq != READ_ONCE(ip->i_df.if_seq)) 326 return false; 327 if (xfs_inode_has_cow_data(ip) && 328 wpc->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) 329 return false; 330 return true; 331 } 332 333 /* 334 * Pass in a dellalloc extent and convert it to real extents, return the real 335 * extent that maps offset_fsb in wpc->imap. 336 * 337 * The current page is held locked so nothing could have removed the block 338 * backing offset_fsb, although it could have moved from the COW to the data 339 * fork by another thread. 340 */ 341 static int 342 xfs_convert_blocks( 343 struct xfs_writepage_ctx *wpc, 344 struct xfs_inode *ip, 345 xfs_fileoff_t offset_fsb) 346 { 347 int error; 348 349 /* 350 * Attempt to allocate whatever delalloc extent currently backs 351 * offset_fsb and put the result into wpc->imap. Allocate in a loop 352 * because it may take several attempts to allocate real blocks for a 353 * contiguous delalloc extent if free space is sufficiently fragmented. 354 */ 355 do { 356 error = xfs_bmapi_convert_delalloc(ip, wpc->fork, offset_fsb, 357 &wpc->imap, wpc->fork == XFS_COW_FORK ? 358 &wpc->cow_seq : &wpc->data_seq); 359 if (error) 360 return error; 361 } while (wpc->imap.br_startoff + wpc->imap.br_blockcount <= offset_fsb); 362 363 return 0; 364 } 365 366 STATIC int 367 xfs_map_blocks( 368 struct xfs_writepage_ctx *wpc, 369 struct inode *inode, 370 loff_t offset) 371 { 372 struct xfs_inode *ip = XFS_I(inode); 373 struct xfs_mount *mp = ip->i_mount; 374 ssize_t count = i_blocksize(inode); 375 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 376 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 377 xfs_fileoff_t cow_fsb = NULLFILEOFF; 378 struct xfs_bmbt_irec imap; 379 struct xfs_iext_cursor icur; 380 int retries = 0; 381 int error = 0; 382 383 if (XFS_FORCED_SHUTDOWN(mp)) 384 return -EIO; 385 386 /* 387 * COW fork blocks can overlap data fork blocks even if the blocks 388 * aren't shared. COW I/O always takes precedent, so we must always 389 * check for overlap on reflink inodes unless the mapping is already a 390 * COW one, or the COW fork hasn't changed from the last time we looked 391 * at it. 392 * 393 * It's safe to check the COW fork if_seq here without the ILOCK because 394 * we've indirectly protected against concurrent updates: writeback has 395 * the page locked, which prevents concurrent invalidations by reflink 396 * and directio and prevents concurrent buffered writes to the same 397 * page. Changes to if_seq always happen under i_lock, which protects 398 * against concurrent updates and provides a memory barrier on the way 399 * out that ensures that we always see the current value. 400 */ 401 if (xfs_imap_valid(wpc, ip, offset_fsb)) 402 return 0; 403 404 /* 405 * If we don't have a valid map, now it's time to get a new one for this 406 * offset. This will convert delayed allocations (including COW ones) 407 * into real extents. If we return without a valid map, it means we 408 * landed in a hole and we skip the block. 409 */ 410 retry: 411 xfs_ilock(ip, XFS_ILOCK_SHARED); 412 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 413 (ip->i_df.if_flags & XFS_IFEXTENTS)); 414 415 /* 416 * Check if this is offset is covered by a COW extents, and if yes use 417 * it directly instead of looking up anything in the data fork. 418 */ 419 if (xfs_inode_has_cow_data(ip) && 420 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 421 cow_fsb = imap.br_startoff; 422 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 423 wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 424 xfs_iunlock(ip, XFS_ILOCK_SHARED); 425 426 wpc->fork = XFS_COW_FORK; 427 goto allocate_blocks; 428 } 429 430 /* 431 * No COW extent overlap. Revalidate now that we may have updated 432 * ->cow_seq. If the data mapping is still valid, we're done. 433 */ 434 if (xfs_imap_valid(wpc, ip, offset_fsb)) { 435 xfs_iunlock(ip, XFS_ILOCK_SHARED); 436 return 0; 437 } 438 439 /* 440 * If we don't have a valid map, now it's time to get a new one for this 441 * offset. This will convert delayed allocations (including COW ones) 442 * into real extents. 443 */ 444 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 445 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 446 wpc->data_seq = READ_ONCE(ip->i_df.if_seq); 447 xfs_iunlock(ip, XFS_ILOCK_SHARED); 448 449 wpc->fork = XFS_DATA_FORK; 450 451 /* landed in a hole or beyond EOF? */ 452 if (imap.br_startoff > offset_fsb) { 453 imap.br_blockcount = imap.br_startoff - offset_fsb; 454 imap.br_startoff = offset_fsb; 455 imap.br_startblock = HOLESTARTBLOCK; 456 imap.br_state = XFS_EXT_NORM; 457 } 458 459 /* 460 * Truncate to the next COW extent if there is one. This is the only 461 * opportunity to do this because we can skip COW fork lookups for the 462 * subsequent blocks in the mapping; however, the requirement to treat 463 * the COW range separately remains. 464 */ 465 if (cow_fsb != NULLFILEOFF && 466 cow_fsb < imap.br_startoff + imap.br_blockcount) 467 imap.br_blockcount = cow_fsb - imap.br_startoff; 468 469 /* got a delalloc extent? */ 470 if (imap.br_startblock != HOLESTARTBLOCK && 471 isnullstartblock(imap.br_startblock)) 472 goto allocate_blocks; 473 474 wpc->imap = imap; 475 trace_xfs_map_blocks_found(ip, offset, count, wpc->fork, &imap); 476 return 0; 477 allocate_blocks: 478 error = xfs_convert_blocks(wpc, ip, offset_fsb); 479 if (error) { 480 /* 481 * If we failed to find the extent in the COW fork we might have 482 * raced with a COW to data fork conversion or truncate. 483 * Restart the lookup to catch the extent in the data fork for 484 * the former case, but prevent additional retries to avoid 485 * looping forever for the latter case. 486 */ 487 if (error == -EAGAIN && wpc->fork == XFS_COW_FORK && !retries++) 488 goto retry; 489 ASSERT(error != -EAGAIN); 490 return error; 491 } 492 493 /* 494 * Due to merging the return real extent might be larger than the 495 * original delalloc one. Trim the return extent to the next COW 496 * boundary again to force a re-lookup. 497 */ 498 if (wpc->fork != XFS_COW_FORK && cow_fsb != NULLFILEOFF && 499 cow_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount) 500 wpc->imap.br_blockcount = cow_fsb - wpc->imap.br_startoff; 501 502 ASSERT(wpc->imap.br_startoff <= offset_fsb); 503 ASSERT(wpc->imap.br_startoff + wpc->imap.br_blockcount > offset_fsb); 504 trace_xfs_map_blocks_alloc(ip, offset, count, wpc->fork, &imap); 505 return 0; 506 } 507 508 /* 509 * Submit the bio for an ioend. We are passed an ioend with a bio attached to 510 * it, and we submit that bio. The ioend may be used for multiple bio 511 * submissions, so we only want to allocate an append transaction for the ioend 512 * once. In the case of multiple bio submission, each bio will take an IO 513 * reference to the ioend to ensure that the ioend completion is only done once 514 * all bios have been submitted and the ioend is really done. 515 * 516 * If @fail is non-zero, it means that we have a situation where some part of 517 * the submission process has failed after we have marked paged for writeback 518 * and unlocked them. In this situation, we need to fail the bio and ioend 519 * rather than submit it to IO. This typically only happens on a filesystem 520 * shutdown. 521 */ 522 STATIC int 523 xfs_submit_ioend( 524 struct writeback_control *wbc, 525 struct xfs_ioend *ioend, 526 int status) 527 { 528 /* Convert CoW extents to regular */ 529 if (!status && ioend->io_fork == XFS_COW_FORK) { 530 /* 531 * Yuk. This can do memory allocation, but is not a 532 * transactional operation so everything is done in GFP_KERNEL 533 * context. That can deadlock, because we hold pages in 534 * writeback state and GFP_KERNEL allocations can block on them. 535 * Hence we must operate in nofs conditions here. 536 */ 537 unsigned nofs_flag; 538 539 nofs_flag = memalloc_nofs_save(); 540 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 541 ioend->io_offset, ioend->io_size); 542 memalloc_nofs_restore(nofs_flag); 543 } 544 545 /* Reserve log space if we might write beyond the on-disk inode size. */ 546 if (!status && 547 (ioend->io_fork == XFS_COW_FORK || 548 ioend->io_state != XFS_EXT_UNWRITTEN) && 549 xfs_ioend_is_append(ioend) && 550 !ioend->io_append_trans) 551 status = xfs_setfilesize_trans_alloc(ioend); 552 553 ioend->io_bio->bi_private = ioend; 554 ioend->io_bio->bi_end_io = xfs_end_bio; 555 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 556 557 /* 558 * If we are failing the IO now, just mark the ioend with an 559 * error and finish it. This will run IO completion immediately 560 * as there is only one reference to the ioend at this point in 561 * time. 562 */ 563 if (status) { 564 ioend->io_bio->bi_status = errno_to_blk_status(status); 565 bio_endio(ioend->io_bio); 566 return status; 567 } 568 569 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 570 submit_bio(ioend->io_bio); 571 return 0; 572 } 573 574 static struct xfs_ioend * 575 xfs_alloc_ioend( 576 struct inode *inode, 577 int fork, 578 xfs_exntst_t state, 579 xfs_off_t offset, 580 struct block_device *bdev, 581 sector_t sector) 582 { 583 struct xfs_ioend *ioend; 584 struct bio *bio; 585 586 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset); 587 bio_set_dev(bio, bdev); 588 bio->bi_iter.bi_sector = sector; 589 590 ioend = container_of(bio, struct xfs_ioend, io_inline_bio); 591 INIT_LIST_HEAD(&ioend->io_list); 592 ioend->io_fork = fork; 593 ioend->io_state = state; 594 ioend->io_inode = inode; 595 ioend->io_size = 0; 596 ioend->io_offset = offset; 597 INIT_WORK(&ioend->io_work, xfs_end_io); 598 ioend->io_append_trans = NULL; 599 ioend->io_bio = bio; 600 return ioend; 601 } 602 603 /* 604 * Allocate a new bio, and chain the old bio to the new one. 605 * 606 * Note that we have to do perform the chaining in this unintuitive order 607 * so that the bi_private linkage is set up in the right direction for the 608 * traversal in xfs_destroy_ioend(). 609 */ 610 static void 611 xfs_chain_bio( 612 struct xfs_ioend *ioend, 613 struct writeback_control *wbc, 614 struct block_device *bdev, 615 sector_t sector) 616 { 617 struct bio *new; 618 619 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES); 620 bio_set_dev(new, bdev); 621 new->bi_iter.bi_sector = sector; 622 bio_chain(ioend->io_bio, new); 623 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */ 624 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc); 625 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint; 626 submit_bio(ioend->io_bio); 627 ioend->io_bio = new; 628 } 629 630 /* 631 * Test to see if we have an existing ioend structure that we could append to 632 * first, otherwise finish off the current ioend and start another. 633 */ 634 STATIC void 635 xfs_add_to_ioend( 636 struct inode *inode, 637 xfs_off_t offset, 638 struct page *page, 639 struct iomap_page *iop, 640 struct xfs_writepage_ctx *wpc, 641 struct writeback_control *wbc, 642 struct list_head *iolist) 643 { 644 struct xfs_inode *ip = XFS_I(inode); 645 struct xfs_mount *mp = ip->i_mount; 646 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 647 unsigned len = i_blocksize(inode); 648 unsigned poff = offset & (PAGE_SIZE - 1); 649 sector_t sector; 650 651 sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) + 652 ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9); 653 654 if (!wpc->ioend || 655 wpc->fork != wpc->ioend->io_fork || 656 wpc->imap.br_state != wpc->ioend->io_state || 657 sector != bio_end_sector(wpc->ioend->io_bio) || 658 offset != wpc->ioend->io_offset + wpc->ioend->io_size) { 659 if (wpc->ioend) 660 list_add(&wpc->ioend->io_list, iolist); 661 wpc->ioend = xfs_alloc_ioend(inode, wpc->fork, 662 wpc->imap.br_state, offset, bdev, sector); 663 } 664 665 if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, true)) { 666 if (iop) 667 atomic_inc(&iop->write_count); 668 if (bio_full(wpc->ioend->io_bio)) 669 xfs_chain_bio(wpc->ioend, wbc, bdev, sector); 670 bio_add_page(wpc->ioend->io_bio, page, len, poff); 671 } 672 673 wpc->ioend->io_size += len; 674 } 675 676 STATIC void 677 xfs_vm_invalidatepage( 678 struct page *page, 679 unsigned int offset, 680 unsigned int length) 681 { 682 trace_xfs_invalidatepage(page->mapping->host, page, offset, length); 683 iomap_invalidatepage(page, offset, length); 684 } 685 686 /* 687 * If the page has delalloc blocks on it, we need to punch them out before we 688 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 689 * inode that can trip up a later direct I/O read operation on the same region. 690 * 691 * We prevent this by truncating away the delalloc regions on the page. Because 692 * they are delalloc, we can do this without needing a transaction. Indeed - if 693 * we get ENOSPC errors, we have to be able to do this truncation without a 694 * transaction as there is no space left for block reservation (typically why we 695 * see a ENOSPC in writeback). 696 */ 697 STATIC void 698 xfs_aops_discard_page( 699 struct page *page) 700 { 701 struct inode *inode = page->mapping->host; 702 struct xfs_inode *ip = XFS_I(inode); 703 struct xfs_mount *mp = ip->i_mount; 704 loff_t offset = page_offset(page); 705 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset); 706 int error; 707 708 if (XFS_FORCED_SHUTDOWN(mp)) 709 goto out_invalidate; 710 711 xfs_alert(mp, 712 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", 713 page, ip->i_ino, offset); 714 715 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 716 PAGE_SIZE / i_blocksize(inode)); 717 if (error && !XFS_FORCED_SHUTDOWN(mp)) 718 xfs_alert(mp, "page discard unable to remove delalloc mapping."); 719 out_invalidate: 720 xfs_vm_invalidatepage(page, 0, PAGE_SIZE); 721 } 722 723 /* 724 * We implement an immediate ioend submission policy here to avoid needing to 725 * chain multiple ioends and hence nest mempool allocations which can violate 726 * forward progress guarantees we need to provide. The current ioend we are 727 * adding blocks to is cached on the writepage context, and if the new block 728 * does not append to the cached ioend it will create a new ioend and cache that 729 * instead. 730 * 731 * If a new ioend is created and cached, the old ioend is returned and queued 732 * locally for submission once the entire page is processed or an error has been 733 * detected. While ioends are submitted immediately after they are completed, 734 * batching optimisations are provided by higher level block plugging. 735 * 736 * At the end of a writeback pass, there will be a cached ioend remaining on the 737 * writepage context that the caller will need to submit. 738 */ 739 static int 740 xfs_writepage_map( 741 struct xfs_writepage_ctx *wpc, 742 struct writeback_control *wbc, 743 struct inode *inode, 744 struct page *page, 745 uint64_t end_offset) 746 { 747 LIST_HEAD(submit_list); 748 struct iomap_page *iop = to_iomap_page(page); 749 unsigned len = i_blocksize(inode); 750 struct xfs_ioend *ioend, *next; 751 uint64_t file_offset; /* file offset of page */ 752 int error = 0, count = 0, i; 753 754 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE); 755 ASSERT(!iop || atomic_read(&iop->write_count) == 0); 756 757 /* 758 * Walk through the page to find areas to write back. If we run off the 759 * end of the current map or find the current map invalid, grab a new 760 * one. 761 */ 762 for (i = 0, file_offset = page_offset(page); 763 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset; 764 i++, file_offset += len) { 765 if (iop && !test_bit(i, iop->uptodate)) 766 continue; 767 768 error = xfs_map_blocks(wpc, inode, file_offset); 769 if (error) 770 break; 771 if (wpc->imap.br_startblock == HOLESTARTBLOCK) 772 continue; 773 xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc, 774 &submit_list); 775 count++; 776 } 777 778 ASSERT(wpc->ioend || list_empty(&submit_list)); 779 ASSERT(PageLocked(page)); 780 ASSERT(!PageWriteback(page)); 781 782 /* 783 * On error, we have to fail the ioend here because we may have set 784 * pages under writeback, we have to make sure we run IO completion to 785 * mark the error state of the IO appropriately, so we can't cancel the 786 * ioend directly here. That means we have to mark this page as under 787 * writeback if we included any blocks from it in the ioend chain so 788 * that completion treats it correctly. 789 * 790 * If we didn't include the page in the ioend, the on error we can 791 * simply discard and unlock it as there are no other users of the page 792 * now. The caller will still need to trigger submission of outstanding 793 * ioends on the writepage context so they are treated correctly on 794 * error. 795 */ 796 if (unlikely(error)) { 797 if (!count) { 798 xfs_aops_discard_page(page); 799 ClearPageUptodate(page); 800 unlock_page(page); 801 goto done; 802 } 803 804 /* 805 * If the page was not fully cleaned, we need to ensure that the 806 * higher layers come back to it correctly. That means we need 807 * to keep the page dirty, and for WB_SYNC_ALL writeback we need 808 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed 809 * so another attempt to write this page in this writeback sweep 810 * will be made. 811 */ 812 set_page_writeback_keepwrite(page); 813 } else { 814 clear_page_dirty_for_io(page); 815 set_page_writeback(page); 816 } 817 818 unlock_page(page); 819 820 /* 821 * Preserve the original error if there was one, otherwise catch 822 * submission errors here and propagate into subsequent ioend 823 * submissions. 824 */ 825 list_for_each_entry_safe(ioend, next, &submit_list, io_list) { 826 int error2; 827 828 list_del_init(&ioend->io_list); 829 error2 = xfs_submit_ioend(wbc, ioend, error); 830 if (error2 && !error) 831 error = error2; 832 } 833 834 /* 835 * We can end up here with no error and nothing to write only if we race 836 * with a partial page truncate on a sub-page block sized filesystem. 837 */ 838 if (!count) 839 end_page_writeback(page); 840 done: 841 mapping_set_error(page->mapping, error); 842 return error; 843 } 844 845 /* 846 * Write out a dirty page. 847 * 848 * For delalloc space on the page we need to allocate space and flush it. 849 * For unwritten space on the page we need to start the conversion to 850 * regular allocated space. 851 */ 852 STATIC int 853 xfs_do_writepage( 854 struct page *page, 855 struct writeback_control *wbc, 856 void *data) 857 { 858 struct xfs_writepage_ctx *wpc = data; 859 struct inode *inode = page->mapping->host; 860 loff_t offset; 861 uint64_t end_offset; 862 pgoff_t end_index; 863 864 trace_xfs_writepage(inode, page, 0, 0); 865 866 /* 867 * Refuse to write the page out if we are called from reclaim context. 868 * 869 * This avoids stack overflows when called from deeply used stacks in 870 * random callers for direct reclaim or memcg reclaim. We explicitly 871 * allow reclaim from kswapd as the stack usage there is relatively low. 872 * 873 * This should never happen except in the case of a VM regression so 874 * warn about it. 875 */ 876 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 877 PF_MEMALLOC)) 878 goto redirty; 879 880 /* 881 * Given that we do not allow direct reclaim to call us, we should 882 * never be called while in a filesystem transaction. 883 */ 884 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS)) 885 goto redirty; 886 887 /* 888 * Is this page beyond the end of the file? 889 * 890 * The page index is less than the end_index, adjust the end_offset 891 * to the highest offset that this page should represent. 892 * ----------------------------------------------------- 893 * | file mapping | <EOF> | 894 * ----------------------------------------------------- 895 * | Page ... | Page N-2 | Page N-1 | Page N | | 896 * ^--------------------------------^----------|-------- 897 * | desired writeback range | see else | 898 * ---------------------------------^------------------| 899 */ 900 offset = i_size_read(inode); 901 end_index = offset >> PAGE_SHIFT; 902 if (page->index < end_index) 903 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT; 904 else { 905 /* 906 * Check whether the page to write out is beyond or straddles 907 * i_size or not. 908 * ------------------------------------------------------- 909 * | file mapping | <EOF> | 910 * ------------------------------------------------------- 911 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond | 912 * ^--------------------------------^-----------|--------- 913 * | | Straddles | 914 * ---------------------------------^-----------|--------| 915 */ 916 unsigned offset_into_page = offset & (PAGE_SIZE - 1); 917 918 /* 919 * Skip the page if it is fully outside i_size, e.g. due to a 920 * truncate operation that is in progress. We must redirty the 921 * page so that reclaim stops reclaiming it. Otherwise 922 * xfs_vm_releasepage() is called on it and gets confused. 923 * 924 * Note that the end_index is unsigned long, it would overflow 925 * if the given offset is greater than 16TB on 32-bit system 926 * and if we do check the page is fully outside i_size or not 927 * via "if (page->index >= end_index + 1)" as "end_index + 1" 928 * will be evaluated to 0. Hence this page will be redirtied 929 * and be written out repeatedly which would result in an 930 * infinite loop, the user program that perform this operation 931 * will hang. Instead, we can verify this situation by checking 932 * if the page to write is totally beyond the i_size or if it's 933 * offset is just equal to the EOF. 934 */ 935 if (page->index > end_index || 936 (page->index == end_index && offset_into_page == 0)) 937 goto redirty; 938 939 /* 940 * The page straddles i_size. It must be zeroed out on each 941 * and every writepage invocation because it may be mmapped. 942 * "A file is mapped in multiples of the page size. For a file 943 * that is not a multiple of the page size, the remaining 944 * memory is zeroed when mapped, and writes to that region are 945 * not written out to the file." 946 */ 947 zero_user_segment(page, offset_into_page, PAGE_SIZE); 948 949 /* Adjust the end_offset to the end of file */ 950 end_offset = offset; 951 } 952 953 return xfs_writepage_map(wpc, wbc, inode, page, end_offset); 954 955 redirty: 956 redirty_page_for_writepage(wbc, page); 957 unlock_page(page); 958 return 0; 959 } 960 961 STATIC int 962 xfs_vm_writepage( 963 struct page *page, 964 struct writeback_control *wbc) 965 { 966 struct xfs_writepage_ctx wpc = { }; 967 int ret; 968 969 ret = xfs_do_writepage(page, wbc, &wpc); 970 if (wpc.ioend) 971 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 972 return ret; 973 } 974 975 STATIC int 976 xfs_vm_writepages( 977 struct address_space *mapping, 978 struct writeback_control *wbc) 979 { 980 struct xfs_writepage_ctx wpc = { }; 981 int ret; 982 983 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 984 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc); 985 if (wpc.ioend) 986 ret = xfs_submit_ioend(wbc, wpc.ioend, ret); 987 return ret; 988 } 989 990 STATIC int 991 xfs_dax_writepages( 992 struct address_space *mapping, 993 struct writeback_control *wbc) 994 { 995 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 996 return dax_writeback_mapping_range(mapping, 997 xfs_find_bdev_for_inode(mapping->host), wbc); 998 } 999 1000 STATIC int 1001 xfs_vm_releasepage( 1002 struct page *page, 1003 gfp_t gfp_mask) 1004 { 1005 trace_xfs_releasepage(page->mapping->host, page, 0, 0); 1006 return iomap_releasepage(page, gfp_mask); 1007 } 1008 1009 STATIC sector_t 1010 xfs_vm_bmap( 1011 struct address_space *mapping, 1012 sector_t block) 1013 { 1014 struct xfs_inode *ip = XFS_I(mapping->host); 1015 1016 trace_xfs_vm_bmap(ip); 1017 1018 /* 1019 * The swap code (ab-)uses ->bmap to get a block mapping and then 1020 * bypasses the file system for actual I/O. We really can't allow 1021 * that on reflinks inodes, so we have to skip out here. And yes, 1022 * 0 is the magic code for a bmap error. 1023 * 1024 * Since we don't pass back blockdev info, we can't return bmap 1025 * information for rt files either. 1026 */ 1027 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 1028 return 0; 1029 return iomap_bmap(mapping, block, &xfs_iomap_ops); 1030 } 1031 1032 STATIC int 1033 xfs_vm_readpage( 1034 struct file *unused, 1035 struct page *page) 1036 { 1037 trace_xfs_vm_readpage(page->mapping->host, 1); 1038 return iomap_readpage(page, &xfs_iomap_ops); 1039 } 1040 1041 STATIC int 1042 xfs_vm_readpages( 1043 struct file *unused, 1044 struct address_space *mapping, 1045 struct list_head *pages, 1046 unsigned nr_pages) 1047 { 1048 trace_xfs_vm_readpages(mapping->host, nr_pages); 1049 return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops); 1050 } 1051 1052 static int 1053 xfs_iomap_swapfile_activate( 1054 struct swap_info_struct *sis, 1055 struct file *swap_file, 1056 sector_t *span) 1057 { 1058 sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file)); 1059 return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops); 1060 } 1061 1062 const struct address_space_operations xfs_address_space_operations = { 1063 .readpage = xfs_vm_readpage, 1064 .readpages = xfs_vm_readpages, 1065 .writepage = xfs_vm_writepage, 1066 .writepages = xfs_vm_writepages, 1067 .set_page_dirty = iomap_set_page_dirty, 1068 .releasepage = xfs_vm_releasepage, 1069 .invalidatepage = xfs_vm_invalidatepage, 1070 .bmap = xfs_vm_bmap, 1071 .direct_IO = noop_direct_IO, 1072 .migratepage = iomap_migrate_page, 1073 .is_partially_uptodate = iomap_is_partially_uptodate, 1074 .error_remove_page = generic_error_remove_page, 1075 .swap_activate = xfs_iomap_swapfile_activate, 1076 }; 1077 1078 const struct address_space_operations xfs_dax_aops = { 1079 .writepages = xfs_dax_writepages, 1080 .direct_IO = noop_direct_IO, 1081 .set_page_dirty = noop_set_page_dirty, 1082 .invalidatepage = noop_invalidatepage, 1083 .swap_activate = xfs_iomap_swapfile_activate, 1084 }; 1085