xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision f3a8b664)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39 
40 /* flags for direct write completions */
41 #define XFS_DIO_FLAG_UNWRITTEN	(1 << 0)
42 #define XFS_DIO_FLAG_APPEND	(1 << 1)
43 #define XFS_DIO_FLAG_COW	(1 << 2)
44 
45 /*
46  * structure owned by writepages passed to individual writepage calls
47  */
48 struct xfs_writepage_ctx {
49 	struct xfs_bmbt_irec    imap;
50 	bool			imap_valid;
51 	unsigned int		io_type;
52 	struct xfs_ioend	*ioend;
53 	sector_t		last_block;
54 };
55 
56 void
57 xfs_count_page_state(
58 	struct page		*page,
59 	int			*delalloc,
60 	int			*unwritten)
61 {
62 	struct buffer_head	*bh, *head;
63 
64 	*delalloc = *unwritten = 0;
65 
66 	bh = head = page_buffers(page);
67 	do {
68 		if (buffer_unwritten(bh))
69 			(*unwritten) = 1;
70 		else if (buffer_delay(bh))
71 			(*delalloc) = 1;
72 	} while ((bh = bh->b_this_page) != head);
73 }
74 
75 struct block_device *
76 xfs_find_bdev_for_inode(
77 	struct inode		*inode)
78 {
79 	struct xfs_inode	*ip = XFS_I(inode);
80 	struct xfs_mount	*mp = ip->i_mount;
81 
82 	if (XFS_IS_REALTIME_INODE(ip))
83 		return mp->m_rtdev_targp->bt_bdev;
84 	else
85 		return mp->m_ddev_targp->bt_bdev;
86 }
87 
88 /*
89  * We're now finished for good with this page.  Update the page state via the
90  * associated buffer_heads, paying attention to the start and end offsets that
91  * we need to process on the page.
92  *
93  * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
94  * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
95  * the page at all, as we may be racing with memory reclaim and it can free both
96  * the bufferhead chain and the page as it will see the page as clean and
97  * unused.
98  */
99 static void
100 xfs_finish_page_writeback(
101 	struct inode		*inode,
102 	struct bio_vec		*bvec,
103 	int			error)
104 {
105 	unsigned int		end = bvec->bv_offset + bvec->bv_len - 1;
106 	struct buffer_head	*head, *bh, *next;
107 	unsigned int		off = 0;
108 	unsigned int		bsize;
109 
110 	ASSERT(bvec->bv_offset < PAGE_SIZE);
111 	ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
112 	ASSERT(end < PAGE_SIZE);
113 	ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
114 
115 	bh = head = page_buffers(bvec->bv_page);
116 
117 	bsize = bh->b_size;
118 	do {
119 		next = bh->b_this_page;
120 		if (off < bvec->bv_offset)
121 			goto next_bh;
122 		if (off > end)
123 			break;
124 		bh->b_end_io(bh, !error);
125 next_bh:
126 		off += bsize;
127 	} while ((bh = next) != head);
128 }
129 
130 /*
131  * We're now finished for good with this ioend structure.  Update the page
132  * state, release holds on bios, and finally free up memory.  Do not use the
133  * ioend after this.
134  */
135 STATIC void
136 xfs_destroy_ioend(
137 	struct xfs_ioend	*ioend,
138 	int			error)
139 {
140 	struct inode		*inode = ioend->io_inode;
141 	struct bio		*last = ioend->io_bio;
142 	struct bio		*bio, *next;
143 
144 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
145 		struct bio_vec	*bvec;
146 		int		i;
147 
148 		/*
149 		 * For the last bio, bi_private points to the ioend, so we
150 		 * need to explicitly end the iteration here.
151 		 */
152 		if (bio == last)
153 			next = NULL;
154 		else
155 			next = bio->bi_private;
156 
157 		/* walk each page on bio, ending page IO on them */
158 		bio_for_each_segment_all(bvec, bio, i)
159 			xfs_finish_page_writeback(inode, bvec, error);
160 
161 		bio_put(bio);
162 	}
163 }
164 
165 /*
166  * Fast and loose check if this write could update the on-disk inode size.
167  */
168 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
169 {
170 	return ioend->io_offset + ioend->io_size >
171 		XFS_I(ioend->io_inode)->i_d.di_size;
172 }
173 
174 STATIC int
175 xfs_setfilesize_trans_alloc(
176 	struct xfs_ioend	*ioend)
177 {
178 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
179 	struct xfs_trans	*tp;
180 	int			error;
181 
182 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
183 	if (error)
184 		return error;
185 
186 	ioend->io_append_trans = tp;
187 
188 	/*
189 	 * We may pass freeze protection with a transaction.  So tell lockdep
190 	 * we released it.
191 	 */
192 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
193 	/*
194 	 * We hand off the transaction to the completion thread now, so
195 	 * clear the flag here.
196 	 */
197 	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
198 	return 0;
199 }
200 
201 /*
202  * Update on-disk file size now that data has been written to disk.
203  */
204 STATIC int
205 __xfs_setfilesize(
206 	struct xfs_inode	*ip,
207 	struct xfs_trans	*tp,
208 	xfs_off_t		offset,
209 	size_t			size)
210 {
211 	xfs_fsize_t		isize;
212 
213 	xfs_ilock(ip, XFS_ILOCK_EXCL);
214 	isize = xfs_new_eof(ip, offset + size);
215 	if (!isize) {
216 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
217 		xfs_trans_cancel(tp);
218 		return 0;
219 	}
220 
221 	trace_xfs_setfilesize(ip, offset, size);
222 
223 	ip->i_d.di_size = isize;
224 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
225 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
226 
227 	return xfs_trans_commit(tp);
228 }
229 
230 int
231 xfs_setfilesize(
232 	struct xfs_inode	*ip,
233 	xfs_off_t		offset,
234 	size_t			size)
235 {
236 	struct xfs_mount	*mp = ip->i_mount;
237 	struct xfs_trans	*tp;
238 	int			error;
239 
240 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
241 	if (error)
242 		return error;
243 
244 	return __xfs_setfilesize(ip, tp, offset, size);
245 }
246 
247 STATIC int
248 xfs_setfilesize_ioend(
249 	struct xfs_ioend	*ioend,
250 	int			error)
251 {
252 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
253 	struct xfs_trans	*tp = ioend->io_append_trans;
254 
255 	/*
256 	 * The transaction may have been allocated in the I/O submission thread,
257 	 * thus we need to mark ourselves as being in a transaction manually.
258 	 * Similarly for freeze protection.
259 	 */
260 	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
261 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
262 
263 	/* we abort the update if there was an IO error */
264 	if (error) {
265 		xfs_trans_cancel(tp);
266 		return error;
267 	}
268 
269 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
270 }
271 
272 /*
273  * IO write completion.
274  */
275 STATIC void
276 xfs_end_io(
277 	struct work_struct *work)
278 {
279 	struct xfs_ioend	*ioend =
280 		container_of(work, struct xfs_ioend, io_work);
281 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
282 	int			error = ioend->io_bio->bi_error;
283 
284 	/*
285 	 * Set an error if the mount has shut down and proceed with end I/O
286 	 * processing so it can perform whatever cleanups are necessary.
287 	 */
288 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
289 		error = -EIO;
290 
291 	/*
292 	 * For a CoW extent, we need to move the mapping from the CoW fork
293 	 * to the data fork.  If instead an error happened, just dump the
294 	 * new blocks.
295 	 */
296 	if (ioend->io_type == XFS_IO_COW) {
297 		if (error)
298 			goto done;
299 		if (ioend->io_bio->bi_error) {
300 			error = xfs_reflink_cancel_cow_range(ip,
301 					ioend->io_offset, ioend->io_size);
302 			goto done;
303 		}
304 		error = xfs_reflink_end_cow(ip, ioend->io_offset,
305 				ioend->io_size);
306 		if (error)
307 			goto done;
308 	}
309 
310 	/*
311 	 * For unwritten extents we need to issue transactions to convert a
312 	 * range to normal written extens after the data I/O has finished.
313 	 * Detecting and handling completion IO errors is done individually
314 	 * for each case as different cleanup operations need to be performed
315 	 * on error.
316 	 */
317 	if (ioend->io_type == XFS_IO_UNWRITTEN) {
318 		if (error)
319 			goto done;
320 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
321 						  ioend->io_size);
322 	} else if (ioend->io_append_trans) {
323 		error = xfs_setfilesize_ioend(ioend, error);
324 	} else {
325 		ASSERT(!xfs_ioend_is_append(ioend) ||
326 		       ioend->io_type == XFS_IO_COW);
327 	}
328 
329 done:
330 	xfs_destroy_ioend(ioend, error);
331 }
332 
333 STATIC void
334 xfs_end_bio(
335 	struct bio		*bio)
336 {
337 	struct xfs_ioend	*ioend = bio->bi_private;
338 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
339 
340 	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
341 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
342 	else if (ioend->io_append_trans)
343 		queue_work(mp->m_data_workqueue, &ioend->io_work);
344 	else
345 		xfs_destroy_ioend(ioend, bio->bi_error);
346 }
347 
348 STATIC int
349 xfs_map_blocks(
350 	struct inode		*inode,
351 	loff_t			offset,
352 	struct xfs_bmbt_irec	*imap,
353 	int			type)
354 {
355 	struct xfs_inode	*ip = XFS_I(inode);
356 	struct xfs_mount	*mp = ip->i_mount;
357 	ssize_t			count = 1 << inode->i_blkbits;
358 	xfs_fileoff_t		offset_fsb, end_fsb;
359 	int			error = 0;
360 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
361 	int			nimaps = 1;
362 
363 	if (XFS_FORCED_SHUTDOWN(mp))
364 		return -EIO;
365 
366 	ASSERT(type != XFS_IO_COW);
367 	if (type == XFS_IO_UNWRITTEN)
368 		bmapi_flags |= XFS_BMAPI_IGSTATE;
369 
370 	xfs_ilock(ip, XFS_ILOCK_SHARED);
371 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
372 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
373 	ASSERT(offset <= mp->m_super->s_maxbytes);
374 
375 	if (offset + count > mp->m_super->s_maxbytes)
376 		count = mp->m_super->s_maxbytes - offset;
377 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
378 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
379 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
380 				imap, &nimaps, bmapi_flags);
381 	/*
382 	 * Truncate an overwrite extent if there's a pending CoW
383 	 * reservation before the end of this extent.  This forces us
384 	 * to come back to writepage to take care of the CoW.
385 	 */
386 	if (nimaps && type == XFS_IO_OVERWRITE)
387 		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
388 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
389 
390 	if (error)
391 		return error;
392 
393 	if (type == XFS_IO_DELALLOC &&
394 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
395 		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
396 				imap);
397 		if (!error)
398 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
399 		return error;
400 	}
401 
402 #ifdef DEBUG
403 	if (type == XFS_IO_UNWRITTEN) {
404 		ASSERT(nimaps);
405 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
406 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
407 	}
408 #endif
409 	if (nimaps)
410 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
411 	return 0;
412 }
413 
414 STATIC bool
415 xfs_imap_valid(
416 	struct inode		*inode,
417 	struct xfs_bmbt_irec	*imap,
418 	xfs_off_t		offset)
419 {
420 	offset >>= inode->i_blkbits;
421 
422 	return offset >= imap->br_startoff &&
423 		offset < imap->br_startoff + imap->br_blockcount;
424 }
425 
426 STATIC void
427 xfs_start_buffer_writeback(
428 	struct buffer_head	*bh)
429 {
430 	ASSERT(buffer_mapped(bh));
431 	ASSERT(buffer_locked(bh));
432 	ASSERT(!buffer_delay(bh));
433 	ASSERT(!buffer_unwritten(bh));
434 
435 	mark_buffer_async_write(bh);
436 	set_buffer_uptodate(bh);
437 	clear_buffer_dirty(bh);
438 }
439 
440 STATIC void
441 xfs_start_page_writeback(
442 	struct page		*page,
443 	int			clear_dirty)
444 {
445 	ASSERT(PageLocked(page));
446 	ASSERT(!PageWriteback(page));
447 
448 	/*
449 	 * if the page was not fully cleaned, we need to ensure that the higher
450 	 * layers come back to it correctly. That means we need to keep the page
451 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
452 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
453 	 * write this page in this writeback sweep will be made.
454 	 */
455 	if (clear_dirty) {
456 		clear_page_dirty_for_io(page);
457 		set_page_writeback(page);
458 	} else
459 		set_page_writeback_keepwrite(page);
460 
461 	unlock_page(page);
462 }
463 
464 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
465 {
466 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
467 }
468 
469 /*
470  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
471  * it, and we submit that bio. The ioend may be used for multiple bio
472  * submissions, so we only want to allocate an append transaction for the ioend
473  * once. In the case of multiple bio submission, each bio will take an IO
474  * reference to the ioend to ensure that the ioend completion is only done once
475  * all bios have been submitted and the ioend is really done.
476  *
477  * If @fail is non-zero, it means that we have a situation where some part of
478  * the submission process has failed after we have marked paged for writeback
479  * and unlocked them. In this situation, we need to fail the bio and ioend
480  * rather than submit it to IO. This typically only happens on a filesystem
481  * shutdown.
482  */
483 STATIC int
484 xfs_submit_ioend(
485 	struct writeback_control *wbc,
486 	struct xfs_ioend	*ioend,
487 	int			status)
488 {
489 	/* Reserve log space if we might write beyond the on-disk inode size. */
490 	if (!status &&
491 	    ioend->io_type != XFS_IO_UNWRITTEN &&
492 	    xfs_ioend_is_append(ioend) &&
493 	    !ioend->io_append_trans)
494 		status = xfs_setfilesize_trans_alloc(ioend);
495 
496 	ioend->io_bio->bi_private = ioend;
497 	ioend->io_bio->bi_end_io = xfs_end_bio;
498 	bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
499 			 (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
500 	/*
501 	 * If we are failing the IO now, just mark the ioend with an
502 	 * error and finish it. This will run IO completion immediately
503 	 * as there is only one reference to the ioend at this point in
504 	 * time.
505 	 */
506 	if (status) {
507 		ioend->io_bio->bi_error = status;
508 		bio_endio(ioend->io_bio);
509 		return status;
510 	}
511 
512 	submit_bio(ioend->io_bio);
513 	return 0;
514 }
515 
516 static void
517 xfs_init_bio_from_bh(
518 	struct bio		*bio,
519 	struct buffer_head	*bh)
520 {
521 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
522 	bio->bi_bdev = bh->b_bdev;
523 }
524 
525 static struct xfs_ioend *
526 xfs_alloc_ioend(
527 	struct inode		*inode,
528 	unsigned int		type,
529 	xfs_off_t		offset,
530 	struct buffer_head	*bh)
531 {
532 	struct xfs_ioend	*ioend;
533 	struct bio		*bio;
534 
535 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
536 	xfs_init_bio_from_bh(bio, bh);
537 
538 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
539 	INIT_LIST_HEAD(&ioend->io_list);
540 	ioend->io_type = type;
541 	ioend->io_inode = inode;
542 	ioend->io_size = 0;
543 	ioend->io_offset = offset;
544 	INIT_WORK(&ioend->io_work, xfs_end_io);
545 	ioend->io_append_trans = NULL;
546 	ioend->io_bio = bio;
547 	return ioend;
548 }
549 
550 /*
551  * Allocate a new bio, and chain the old bio to the new one.
552  *
553  * Note that we have to do perform the chaining in this unintuitive order
554  * so that the bi_private linkage is set up in the right direction for the
555  * traversal in xfs_destroy_ioend().
556  */
557 static void
558 xfs_chain_bio(
559 	struct xfs_ioend	*ioend,
560 	struct writeback_control *wbc,
561 	struct buffer_head	*bh)
562 {
563 	struct bio *new;
564 
565 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
566 	xfs_init_bio_from_bh(new, bh);
567 
568 	bio_chain(ioend->io_bio, new);
569 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
570 	bio_set_op_attrs(ioend->io_bio, REQ_OP_WRITE,
571 			  (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0);
572 	submit_bio(ioend->io_bio);
573 	ioend->io_bio = new;
574 }
575 
576 /*
577  * Test to see if we've been building up a completion structure for
578  * earlier buffers -- if so, we try to append to this ioend if we
579  * can, otherwise we finish off any current ioend and start another.
580  * Return the ioend we finished off so that the caller can submit it
581  * once it has finished processing the dirty page.
582  */
583 STATIC void
584 xfs_add_to_ioend(
585 	struct inode		*inode,
586 	struct buffer_head	*bh,
587 	xfs_off_t		offset,
588 	struct xfs_writepage_ctx *wpc,
589 	struct writeback_control *wbc,
590 	struct list_head	*iolist)
591 {
592 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
593 	    bh->b_blocknr != wpc->last_block + 1 ||
594 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
595 		if (wpc->ioend)
596 			list_add(&wpc->ioend->io_list, iolist);
597 		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
598 	}
599 
600 	/*
601 	 * If the buffer doesn't fit into the bio we need to allocate a new
602 	 * one.  This shouldn't happen more than once for a given buffer.
603 	 */
604 	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
605 		xfs_chain_bio(wpc->ioend, wbc, bh);
606 
607 	wpc->ioend->io_size += bh->b_size;
608 	wpc->last_block = bh->b_blocknr;
609 	xfs_start_buffer_writeback(bh);
610 }
611 
612 STATIC void
613 xfs_map_buffer(
614 	struct inode		*inode,
615 	struct buffer_head	*bh,
616 	struct xfs_bmbt_irec	*imap,
617 	xfs_off_t		offset)
618 {
619 	sector_t		bn;
620 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
621 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
622 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
623 
624 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
625 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
626 
627 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
628 	      ((offset - iomap_offset) >> inode->i_blkbits);
629 
630 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
631 
632 	bh->b_blocknr = bn;
633 	set_buffer_mapped(bh);
634 }
635 
636 STATIC void
637 xfs_map_at_offset(
638 	struct inode		*inode,
639 	struct buffer_head	*bh,
640 	struct xfs_bmbt_irec	*imap,
641 	xfs_off_t		offset)
642 {
643 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
644 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
645 
646 	xfs_map_buffer(inode, bh, imap, offset);
647 	set_buffer_mapped(bh);
648 	clear_buffer_delay(bh);
649 	clear_buffer_unwritten(bh);
650 }
651 
652 /*
653  * Test if a given page contains at least one buffer of a given @type.
654  * If @check_all_buffers is true, then we walk all the buffers in the page to
655  * try to find one of the type passed in. If it is not set, then the caller only
656  * needs to check the first buffer on the page for a match.
657  */
658 STATIC bool
659 xfs_check_page_type(
660 	struct page		*page,
661 	unsigned int		type,
662 	bool			check_all_buffers)
663 {
664 	struct buffer_head	*bh;
665 	struct buffer_head	*head;
666 
667 	if (PageWriteback(page))
668 		return false;
669 	if (!page->mapping)
670 		return false;
671 	if (!page_has_buffers(page))
672 		return false;
673 
674 	bh = head = page_buffers(page);
675 	do {
676 		if (buffer_unwritten(bh)) {
677 			if (type == XFS_IO_UNWRITTEN)
678 				return true;
679 		} else if (buffer_delay(bh)) {
680 			if (type == XFS_IO_DELALLOC)
681 				return true;
682 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
683 			if (type == XFS_IO_OVERWRITE)
684 				return true;
685 		}
686 
687 		/* If we are only checking the first buffer, we are done now. */
688 		if (!check_all_buffers)
689 			break;
690 	} while ((bh = bh->b_this_page) != head);
691 
692 	return false;
693 }
694 
695 STATIC void
696 xfs_vm_invalidatepage(
697 	struct page		*page,
698 	unsigned int		offset,
699 	unsigned int		length)
700 {
701 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
702 				 length);
703 	block_invalidatepage(page, offset, length);
704 }
705 
706 /*
707  * If the page has delalloc buffers on it, we need to punch them out before we
708  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
709  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
710  * is done on that same region - the delalloc extent is returned when none is
711  * supposed to be there.
712  *
713  * We prevent this by truncating away the delalloc regions on the page before
714  * invalidating it. Because they are delalloc, we can do this without needing a
715  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
716  * truncation without a transaction as there is no space left for block
717  * reservation (typically why we see a ENOSPC in writeback).
718  *
719  * This is not a performance critical path, so for now just do the punching a
720  * buffer head at a time.
721  */
722 STATIC void
723 xfs_aops_discard_page(
724 	struct page		*page)
725 {
726 	struct inode		*inode = page->mapping->host;
727 	struct xfs_inode	*ip = XFS_I(inode);
728 	struct buffer_head	*bh, *head;
729 	loff_t			offset = page_offset(page);
730 
731 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
732 		goto out_invalidate;
733 
734 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
735 		goto out_invalidate;
736 
737 	xfs_alert(ip->i_mount,
738 		"page discard on page %p, inode 0x%llx, offset %llu.",
739 			page, ip->i_ino, offset);
740 
741 	xfs_ilock(ip, XFS_ILOCK_EXCL);
742 	bh = head = page_buffers(page);
743 	do {
744 		int		error;
745 		xfs_fileoff_t	start_fsb;
746 
747 		if (!buffer_delay(bh))
748 			goto next_buffer;
749 
750 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
751 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
752 		if (error) {
753 			/* something screwed, just bail */
754 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
755 				xfs_alert(ip->i_mount,
756 			"page discard unable to remove delalloc mapping.");
757 			}
758 			break;
759 		}
760 next_buffer:
761 		offset += 1 << inode->i_blkbits;
762 
763 	} while ((bh = bh->b_this_page) != head);
764 
765 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
766 out_invalidate:
767 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
768 	return;
769 }
770 
771 static int
772 xfs_map_cow(
773 	struct xfs_writepage_ctx *wpc,
774 	struct inode		*inode,
775 	loff_t			offset,
776 	unsigned int		*new_type)
777 {
778 	struct xfs_inode	*ip = XFS_I(inode);
779 	struct xfs_bmbt_irec	imap;
780 	bool			is_cow = false, need_alloc = false;
781 	int			error;
782 
783 	/*
784 	 * If we already have a valid COW mapping keep using it.
785 	 */
786 	if (wpc->io_type == XFS_IO_COW) {
787 		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
788 		if (wpc->imap_valid) {
789 			*new_type = XFS_IO_COW;
790 			return 0;
791 		}
792 	}
793 
794 	/*
795 	 * Else we need to check if there is a COW mapping at this offset.
796 	 */
797 	xfs_ilock(ip, XFS_ILOCK_SHARED);
798 	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap, &need_alloc);
799 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
800 
801 	if (!is_cow)
802 		return 0;
803 
804 	/*
805 	 * And if the COW mapping has a delayed extent here we need to
806 	 * allocate real space for it now.
807 	 */
808 	if (need_alloc) {
809 		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
810 				&imap);
811 		if (error)
812 			return error;
813 	}
814 
815 	wpc->io_type = *new_type = XFS_IO_COW;
816 	wpc->imap_valid = true;
817 	wpc->imap = imap;
818 	return 0;
819 }
820 
821 /*
822  * We implement an immediate ioend submission policy here to avoid needing to
823  * chain multiple ioends and hence nest mempool allocations which can violate
824  * forward progress guarantees we need to provide. The current ioend we are
825  * adding buffers to is cached on the writepage context, and if the new buffer
826  * does not append to the cached ioend it will create a new ioend and cache that
827  * instead.
828  *
829  * If a new ioend is created and cached, the old ioend is returned and queued
830  * locally for submission once the entire page is processed or an error has been
831  * detected.  While ioends are submitted immediately after they are completed,
832  * batching optimisations are provided by higher level block plugging.
833  *
834  * At the end of a writeback pass, there will be a cached ioend remaining on the
835  * writepage context that the caller will need to submit.
836  */
837 static int
838 xfs_writepage_map(
839 	struct xfs_writepage_ctx *wpc,
840 	struct writeback_control *wbc,
841 	struct inode		*inode,
842 	struct page		*page,
843 	loff_t			offset,
844 	__uint64_t              end_offset)
845 {
846 	LIST_HEAD(submit_list);
847 	struct xfs_ioend	*ioend, *next;
848 	struct buffer_head	*bh, *head;
849 	ssize_t			len = 1 << inode->i_blkbits;
850 	int			error = 0;
851 	int			count = 0;
852 	int			uptodate = 1;
853 	unsigned int		new_type;
854 
855 	bh = head = page_buffers(page);
856 	offset = page_offset(page);
857 	do {
858 		if (offset >= end_offset)
859 			break;
860 		if (!buffer_uptodate(bh))
861 			uptodate = 0;
862 
863 		/*
864 		 * set_page_dirty dirties all buffers in a page, independent
865 		 * of their state.  The dirty state however is entirely
866 		 * meaningless for holes (!mapped && uptodate), so skip
867 		 * buffers covering holes here.
868 		 */
869 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
870 			wpc->imap_valid = false;
871 			continue;
872 		}
873 
874 		if (buffer_unwritten(bh))
875 			new_type = XFS_IO_UNWRITTEN;
876 		else if (buffer_delay(bh))
877 			new_type = XFS_IO_DELALLOC;
878 		else if (buffer_uptodate(bh))
879 			new_type = XFS_IO_OVERWRITE;
880 		else {
881 			if (PageUptodate(page))
882 				ASSERT(buffer_mapped(bh));
883 			/*
884 			 * This buffer is not uptodate and will not be
885 			 * written to disk.  Ensure that we will put any
886 			 * subsequent writeable buffers into a new
887 			 * ioend.
888 			 */
889 			wpc->imap_valid = false;
890 			continue;
891 		}
892 
893 		if (xfs_is_reflink_inode(XFS_I(inode))) {
894 			error = xfs_map_cow(wpc, inode, offset, &new_type);
895 			if (error)
896 				goto out;
897 		}
898 
899 		if (wpc->io_type != new_type) {
900 			wpc->io_type = new_type;
901 			wpc->imap_valid = false;
902 		}
903 
904 		if (wpc->imap_valid)
905 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
906 							 offset);
907 		if (!wpc->imap_valid) {
908 			error = xfs_map_blocks(inode, offset, &wpc->imap,
909 					     wpc->io_type);
910 			if (error)
911 				goto out;
912 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
913 							 offset);
914 		}
915 		if (wpc->imap_valid) {
916 			lock_buffer(bh);
917 			if (wpc->io_type != XFS_IO_OVERWRITE)
918 				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
919 			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
920 			count++;
921 		}
922 
923 	} while (offset += len, ((bh = bh->b_this_page) != head));
924 
925 	if (uptodate && bh == head)
926 		SetPageUptodate(page);
927 
928 	ASSERT(wpc->ioend || list_empty(&submit_list));
929 
930 out:
931 	/*
932 	 * On error, we have to fail the ioend here because we have locked
933 	 * buffers in the ioend. If we don't do this, we'll deadlock
934 	 * invalidating the page as that tries to lock the buffers on the page.
935 	 * Also, because we may have set pages under writeback, we have to make
936 	 * sure we run IO completion to mark the error state of the IO
937 	 * appropriately, so we can't cancel the ioend directly here. That means
938 	 * we have to mark this page as under writeback if we included any
939 	 * buffers from it in the ioend chain so that completion treats it
940 	 * correctly.
941 	 *
942 	 * If we didn't include the page in the ioend, the on error we can
943 	 * simply discard and unlock it as there are no other users of the page
944 	 * or it's buffers right now. The caller will still need to trigger
945 	 * submission of outstanding ioends on the writepage context so they are
946 	 * treated correctly on error.
947 	 */
948 	if (count) {
949 		xfs_start_page_writeback(page, !error);
950 
951 		/*
952 		 * Preserve the original error if there was one, otherwise catch
953 		 * submission errors here and propagate into subsequent ioend
954 		 * submissions.
955 		 */
956 		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
957 			int error2;
958 
959 			list_del_init(&ioend->io_list);
960 			error2 = xfs_submit_ioend(wbc, ioend, error);
961 			if (error2 && !error)
962 				error = error2;
963 		}
964 	} else if (error) {
965 		xfs_aops_discard_page(page);
966 		ClearPageUptodate(page);
967 		unlock_page(page);
968 	} else {
969 		/*
970 		 * We can end up here with no error and nothing to write if we
971 		 * race with a partial page truncate on a sub-page block sized
972 		 * filesystem. In that case we need to mark the page clean.
973 		 */
974 		xfs_start_page_writeback(page, 1);
975 		end_page_writeback(page);
976 	}
977 
978 	mapping_set_error(page->mapping, error);
979 	return error;
980 }
981 
982 /*
983  * Write out a dirty page.
984  *
985  * For delalloc space on the page we need to allocate space and flush it.
986  * For unwritten space on the page we need to start the conversion to
987  * regular allocated space.
988  * For any other dirty buffer heads on the page we should flush them.
989  */
990 STATIC int
991 xfs_do_writepage(
992 	struct page		*page,
993 	struct writeback_control *wbc,
994 	void			*data)
995 {
996 	struct xfs_writepage_ctx *wpc = data;
997 	struct inode		*inode = page->mapping->host;
998 	loff_t			offset;
999 	__uint64_t              end_offset;
1000 	pgoff_t                 end_index;
1001 
1002 	trace_xfs_writepage(inode, page, 0, 0);
1003 
1004 	ASSERT(page_has_buffers(page));
1005 
1006 	/*
1007 	 * Refuse to write the page out if we are called from reclaim context.
1008 	 *
1009 	 * This avoids stack overflows when called from deeply used stacks in
1010 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1011 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1012 	 *
1013 	 * This should never happen except in the case of a VM regression so
1014 	 * warn about it.
1015 	 */
1016 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1017 			PF_MEMALLOC))
1018 		goto redirty;
1019 
1020 	/*
1021 	 * Given that we do not allow direct reclaim to call us, we should
1022 	 * never be called while in a filesystem transaction.
1023 	 */
1024 	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
1025 		goto redirty;
1026 
1027 	/*
1028 	 * Is this page beyond the end of the file?
1029 	 *
1030 	 * The page index is less than the end_index, adjust the end_offset
1031 	 * to the highest offset that this page should represent.
1032 	 * -----------------------------------------------------
1033 	 * |			file mapping	       | <EOF> |
1034 	 * -----------------------------------------------------
1035 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1036 	 * ^--------------------------------^----------|--------
1037 	 * |     desired writeback range    |      see else    |
1038 	 * ---------------------------------^------------------|
1039 	 */
1040 	offset = i_size_read(inode);
1041 	end_index = offset >> PAGE_SHIFT;
1042 	if (page->index < end_index)
1043 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1044 	else {
1045 		/*
1046 		 * Check whether the page to write out is beyond or straddles
1047 		 * i_size or not.
1048 		 * -------------------------------------------------------
1049 		 * |		file mapping		        | <EOF>  |
1050 		 * -------------------------------------------------------
1051 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1052 		 * ^--------------------------------^-----------|---------
1053 		 * |				    |      Straddles     |
1054 		 * ---------------------------------^-----------|--------|
1055 		 */
1056 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1057 
1058 		/*
1059 		 * Skip the page if it is fully outside i_size, e.g. due to a
1060 		 * truncate operation that is in progress. We must redirty the
1061 		 * page so that reclaim stops reclaiming it. Otherwise
1062 		 * xfs_vm_releasepage() is called on it and gets confused.
1063 		 *
1064 		 * Note that the end_index is unsigned long, it would overflow
1065 		 * if the given offset is greater than 16TB on 32-bit system
1066 		 * and if we do check the page is fully outside i_size or not
1067 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1068 		 * will be evaluated to 0.  Hence this page will be redirtied
1069 		 * and be written out repeatedly which would result in an
1070 		 * infinite loop, the user program that perform this operation
1071 		 * will hang.  Instead, we can verify this situation by checking
1072 		 * if the page to write is totally beyond the i_size or if it's
1073 		 * offset is just equal to the EOF.
1074 		 */
1075 		if (page->index > end_index ||
1076 		    (page->index == end_index && offset_into_page == 0))
1077 			goto redirty;
1078 
1079 		/*
1080 		 * The page straddles i_size.  It must be zeroed out on each
1081 		 * and every writepage invocation because it may be mmapped.
1082 		 * "A file is mapped in multiples of the page size.  For a file
1083 		 * that is not a multiple of the page size, the remaining
1084 		 * memory is zeroed when mapped, and writes to that region are
1085 		 * not written out to the file."
1086 		 */
1087 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1088 
1089 		/* Adjust the end_offset to the end of file */
1090 		end_offset = offset;
1091 	}
1092 
1093 	return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
1094 
1095 redirty:
1096 	redirty_page_for_writepage(wbc, page);
1097 	unlock_page(page);
1098 	return 0;
1099 }
1100 
1101 STATIC int
1102 xfs_vm_writepage(
1103 	struct page		*page,
1104 	struct writeback_control *wbc)
1105 {
1106 	struct xfs_writepage_ctx wpc = {
1107 		.io_type = XFS_IO_INVALID,
1108 	};
1109 	int			ret;
1110 
1111 	ret = xfs_do_writepage(page, wbc, &wpc);
1112 	if (wpc.ioend)
1113 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1114 	return ret;
1115 }
1116 
1117 STATIC int
1118 xfs_vm_writepages(
1119 	struct address_space	*mapping,
1120 	struct writeback_control *wbc)
1121 {
1122 	struct xfs_writepage_ctx wpc = {
1123 		.io_type = XFS_IO_INVALID,
1124 	};
1125 	int			ret;
1126 
1127 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1128 	if (dax_mapping(mapping))
1129 		return dax_writeback_mapping_range(mapping,
1130 				xfs_find_bdev_for_inode(mapping->host), wbc);
1131 
1132 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1133 	if (wpc.ioend)
1134 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1135 	return ret;
1136 }
1137 
1138 /*
1139  * Called to move a page into cleanable state - and from there
1140  * to be released. The page should already be clean. We always
1141  * have buffer heads in this call.
1142  *
1143  * Returns 1 if the page is ok to release, 0 otherwise.
1144  */
1145 STATIC int
1146 xfs_vm_releasepage(
1147 	struct page		*page,
1148 	gfp_t			gfp_mask)
1149 {
1150 	int			delalloc, unwritten;
1151 
1152 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1153 
1154 	/*
1155 	 * mm accommodates an old ext3 case where clean pages might not have had
1156 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
1157 	 * ->releasepage() via shrink_active_list(). Conversely,
1158 	 * block_invalidatepage() can send pages that are still marked dirty
1159 	 * but otherwise have invalidated buffers.
1160 	 *
1161 	 * We've historically freed buffers on the latter. Instead, quietly
1162 	 * filter out all dirty pages to avoid spurious buffer state warnings.
1163 	 * This can likely be removed once shrink_active_list() is fixed.
1164 	 */
1165 	if (PageDirty(page))
1166 		return 0;
1167 
1168 	xfs_count_page_state(page, &delalloc, &unwritten);
1169 
1170 	if (WARN_ON_ONCE(delalloc))
1171 		return 0;
1172 	if (WARN_ON_ONCE(unwritten))
1173 		return 0;
1174 
1175 	return try_to_free_buffers(page);
1176 }
1177 
1178 /*
1179  * When we map a DIO buffer, we may need to pass flags to
1180  * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1181  *
1182  * Note that for DIO, an IO to the highest supported file block offset (i.e.
1183  * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1184  * bit variable. Hence if we see this overflow, we have to assume that the IO is
1185  * extending the file size. We won't know for sure until IO completion is run
1186  * and the actual max write offset is communicated to the IO completion
1187  * routine.
1188  */
1189 static void
1190 xfs_map_direct(
1191 	struct inode		*inode,
1192 	struct buffer_head	*bh_result,
1193 	struct xfs_bmbt_irec	*imap,
1194 	xfs_off_t		offset,
1195 	bool			is_cow)
1196 {
1197 	uintptr_t		*flags = (uintptr_t *)&bh_result->b_private;
1198 	xfs_off_t		size = bh_result->b_size;
1199 
1200 	trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1201 		ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : is_cow ? XFS_IO_COW :
1202 		XFS_IO_OVERWRITE, imap);
1203 
1204 	if (ISUNWRITTEN(imap)) {
1205 		*flags |= XFS_DIO_FLAG_UNWRITTEN;
1206 		set_buffer_defer_completion(bh_result);
1207 	} else if (is_cow) {
1208 		*flags |= XFS_DIO_FLAG_COW;
1209 		set_buffer_defer_completion(bh_result);
1210 	}
1211 	if (offset + size > i_size_read(inode) || offset + size < 0) {
1212 		*flags |= XFS_DIO_FLAG_APPEND;
1213 		set_buffer_defer_completion(bh_result);
1214 	}
1215 }
1216 
1217 /*
1218  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1219  * is, so that we can avoid repeated get_blocks calls.
1220  *
1221  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1222  * for blocks beyond EOF must be marked new so that sub block regions can be
1223  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1224  * was just allocated or is unwritten, otherwise the callers would overwrite
1225  * existing data with zeros. Hence we have to split the mapping into a range up
1226  * to and including EOF, and a second mapping for beyond EOF.
1227  */
1228 static void
1229 xfs_map_trim_size(
1230 	struct inode		*inode,
1231 	sector_t		iblock,
1232 	struct buffer_head	*bh_result,
1233 	struct xfs_bmbt_irec	*imap,
1234 	xfs_off_t		offset,
1235 	ssize_t			size)
1236 {
1237 	xfs_off_t		mapping_size;
1238 
1239 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1240 	mapping_size <<= inode->i_blkbits;
1241 
1242 	ASSERT(mapping_size > 0);
1243 	if (mapping_size > size)
1244 		mapping_size = size;
1245 	if (offset < i_size_read(inode) &&
1246 	    offset + mapping_size >= i_size_read(inode)) {
1247 		/* limit mapping to block that spans EOF */
1248 		mapping_size = roundup_64(i_size_read(inode) - offset,
1249 					  1 << inode->i_blkbits);
1250 	}
1251 	if (mapping_size > LONG_MAX)
1252 		mapping_size = LONG_MAX;
1253 
1254 	bh_result->b_size = mapping_size;
1255 }
1256 
1257 /* Bounce unaligned directio writes to the page cache. */
1258 static int
1259 xfs_bounce_unaligned_dio_write(
1260 	struct xfs_inode	*ip,
1261 	xfs_fileoff_t		offset_fsb,
1262 	struct xfs_bmbt_irec	*imap)
1263 {
1264 	struct xfs_bmbt_irec	irec;
1265 	xfs_fileoff_t		delta;
1266 	bool			shared;
1267 	bool			x;
1268 	int			error;
1269 
1270 	irec = *imap;
1271 	if (offset_fsb > irec.br_startoff) {
1272 		delta = offset_fsb - irec.br_startoff;
1273 		irec.br_blockcount -= delta;
1274 		irec.br_startblock += delta;
1275 		irec.br_startoff = offset_fsb;
1276 	}
1277 	error = xfs_reflink_trim_around_shared(ip, &irec, &shared, &x);
1278 	if (error)
1279 		return error;
1280 
1281 	/*
1282 	 * We're here because we're trying to do a directio write to a
1283 	 * region that isn't aligned to a filesystem block.  If any part
1284 	 * of the extent is shared, fall back to buffered mode to handle
1285 	 * the RMW.  This is done by returning -EREMCHG ("remote addr
1286 	 * changed"), which is caught further up the call stack.
1287 	 */
1288 	if (shared) {
1289 		trace_xfs_reflink_bounce_dio_write(ip, imap);
1290 		return -EREMCHG;
1291 	}
1292 	return 0;
1293 }
1294 
1295 STATIC int
1296 __xfs_get_blocks(
1297 	struct inode		*inode,
1298 	sector_t		iblock,
1299 	struct buffer_head	*bh_result,
1300 	int			create,
1301 	bool			direct,
1302 	bool			dax_fault)
1303 {
1304 	struct xfs_inode	*ip = XFS_I(inode);
1305 	struct xfs_mount	*mp = ip->i_mount;
1306 	xfs_fileoff_t		offset_fsb, end_fsb;
1307 	int			error = 0;
1308 	int			lockmode = 0;
1309 	struct xfs_bmbt_irec	imap;
1310 	int			nimaps = 1;
1311 	xfs_off_t		offset;
1312 	ssize_t			size;
1313 	int			new = 0;
1314 	bool			is_cow = false;
1315 	bool			need_alloc = false;
1316 
1317 	BUG_ON(create && !direct);
1318 
1319 	if (XFS_FORCED_SHUTDOWN(mp))
1320 		return -EIO;
1321 
1322 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1323 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1324 	size = bh_result->b_size;
1325 
1326 	if (!create && offset >= i_size_read(inode))
1327 		return 0;
1328 
1329 	/*
1330 	 * Direct I/O is usually done on preallocated files, so try getting
1331 	 * a block mapping without an exclusive lock first.
1332 	 */
1333 	lockmode = xfs_ilock_data_map_shared(ip);
1334 
1335 	ASSERT(offset <= mp->m_super->s_maxbytes);
1336 	if (offset + size > mp->m_super->s_maxbytes)
1337 		size = mp->m_super->s_maxbytes - offset;
1338 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1339 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1340 
1341 	if (create && direct && xfs_is_reflink_inode(ip))
1342 		is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap,
1343 					&need_alloc);
1344 	if (!is_cow) {
1345 		error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1346 					&imap, &nimaps, XFS_BMAPI_ENTIRE);
1347 		/*
1348 		 * Truncate an overwrite extent if there's a pending CoW
1349 		 * reservation before the end of this extent.  This
1350 		 * forces us to come back to get_blocks to take care of
1351 		 * the CoW.
1352 		 */
1353 		if (create && direct && nimaps &&
1354 		    imap.br_startblock != HOLESTARTBLOCK &&
1355 		    imap.br_startblock != DELAYSTARTBLOCK &&
1356 		    !ISUNWRITTEN(&imap))
1357 			xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb,
1358 					&imap);
1359 	}
1360 	ASSERT(!need_alloc);
1361 	if (error)
1362 		goto out_unlock;
1363 
1364 	/* for DAX, we convert unwritten extents directly */
1365 	if (create &&
1366 	    (!nimaps ||
1367 	     (imap.br_startblock == HOLESTARTBLOCK ||
1368 	      imap.br_startblock == DELAYSTARTBLOCK) ||
1369 	     (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1370 		/*
1371 		 * xfs_iomap_write_direct() expects the shared lock. It
1372 		 * is unlocked on return.
1373 		 */
1374 		if (lockmode == XFS_ILOCK_EXCL)
1375 			xfs_ilock_demote(ip, lockmode);
1376 
1377 		error = xfs_iomap_write_direct(ip, offset, size,
1378 					       &imap, nimaps);
1379 		if (error)
1380 			return error;
1381 		new = 1;
1382 
1383 		trace_xfs_get_blocks_alloc(ip, offset, size,
1384 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1385 						   : XFS_IO_DELALLOC, &imap);
1386 	} else if (nimaps) {
1387 		trace_xfs_get_blocks_found(ip, offset, size,
1388 				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1389 						   : XFS_IO_OVERWRITE, &imap);
1390 		xfs_iunlock(ip, lockmode);
1391 	} else {
1392 		trace_xfs_get_blocks_notfound(ip, offset, size);
1393 		goto out_unlock;
1394 	}
1395 
1396 	if (IS_DAX(inode) && create) {
1397 		ASSERT(!ISUNWRITTEN(&imap));
1398 		/* zeroing is not needed at a higher layer */
1399 		new = 0;
1400 	}
1401 
1402 	/* trim mapping down to size requested */
1403 	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1404 
1405 	/*
1406 	 * For unwritten extents do not report a disk address in the buffered
1407 	 * read case (treat as if we're reading into a hole).
1408 	 */
1409 	if (imap.br_startblock != HOLESTARTBLOCK &&
1410 	    imap.br_startblock != DELAYSTARTBLOCK &&
1411 	    (create || !ISUNWRITTEN(&imap))) {
1412 		if (create && direct && !is_cow) {
1413 			error = xfs_bounce_unaligned_dio_write(ip, offset_fsb,
1414 					&imap);
1415 			if (error)
1416 				return error;
1417 		}
1418 
1419 		xfs_map_buffer(inode, bh_result, &imap, offset);
1420 		if (ISUNWRITTEN(&imap))
1421 			set_buffer_unwritten(bh_result);
1422 		/* direct IO needs special help */
1423 		if (create) {
1424 			if (dax_fault)
1425 				ASSERT(!ISUNWRITTEN(&imap));
1426 			else
1427 				xfs_map_direct(inode, bh_result, &imap, offset,
1428 						is_cow);
1429 		}
1430 	}
1431 
1432 	/*
1433 	 * If this is a realtime file, data may be on a different device.
1434 	 * to that pointed to from the buffer_head b_bdev currently.
1435 	 */
1436 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1437 
1438 	/*
1439 	 * If we previously allocated a block out beyond eof and we are now
1440 	 * coming back to use it then we will need to flag it as new even if it
1441 	 * has a disk address.
1442 	 *
1443 	 * With sub-block writes into unwritten extents we also need to mark
1444 	 * the buffer as new so that the unwritten parts of the buffer gets
1445 	 * correctly zeroed.
1446 	 */
1447 	if (create &&
1448 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1449 	     (offset >= i_size_read(inode)) ||
1450 	     (new || ISUNWRITTEN(&imap))))
1451 		set_buffer_new(bh_result);
1452 
1453 	BUG_ON(direct && imap.br_startblock == DELAYSTARTBLOCK);
1454 
1455 	return 0;
1456 
1457 out_unlock:
1458 	xfs_iunlock(ip, lockmode);
1459 	return error;
1460 }
1461 
1462 int
1463 xfs_get_blocks(
1464 	struct inode		*inode,
1465 	sector_t		iblock,
1466 	struct buffer_head	*bh_result,
1467 	int			create)
1468 {
1469 	return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1470 }
1471 
1472 int
1473 xfs_get_blocks_direct(
1474 	struct inode		*inode,
1475 	sector_t		iblock,
1476 	struct buffer_head	*bh_result,
1477 	int			create)
1478 {
1479 	return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1480 }
1481 
1482 int
1483 xfs_get_blocks_dax_fault(
1484 	struct inode		*inode,
1485 	sector_t		iblock,
1486 	struct buffer_head	*bh_result,
1487 	int			create)
1488 {
1489 	return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1490 }
1491 
1492 /*
1493  * Complete a direct I/O write request.
1494  *
1495  * xfs_map_direct passes us some flags in the private data to tell us what to
1496  * do.  If no flags are set, then the write IO is an overwrite wholly within
1497  * the existing allocated file size and so there is nothing for us to do.
1498  *
1499  * Note that in this case the completion can be called in interrupt context,
1500  * whereas if we have flags set we will always be called in task context
1501  * (i.e. from a workqueue).
1502  */
1503 int
1504 xfs_end_io_direct_write(
1505 	struct kiocb		*iocb,
1506 	loff_t			offset,
1507 	ssize_t			size,
1508 	void			*private)
1509 {
1510 	struct inode		*inode = file_inode(iocb->ki_filp);
1511 	struct xfs_inode	*ip = XFS_I(inode);
1512 	uintptr_t		flags = (uintptr_t)private;
1513 	int			error = 0;
1514 
1515 	trace_xfs_end_io_direct_write(ip, offset, size);
1516 
1517 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
1518 		return -EIO;
1519 
1520 	if (size <= 0)
1521 		return size;
1522 
1523 	/*
1524 	 * The flags tell us whether we are doing unwritten extent conversions
1525 	 * or an append transaction that updates the on-disk file size. These
1526 	 * cases are the only cases where we should *potentially* be needing
1527 	 * to update the VFS inode size.
1528 	 */
1529 	if (flags == 0) {
1530 		ASSERT(offset + size <= i_size_read(inode));
1531 		return 0;
1532 	}
1533 
1534 	/*
1535 	 * We need to update the in-core inode size here so that we don't end up
1536 	 * with the on-disk inode size being outside the in-core inode size. We
1537 	 * have no other method of updating EOF for AIO, so always do it here
1538 	 * if necessary.
1539 	 *
1540 	 * We need to lock the test/set EOF update as we can be racing with
1541 	 * other IO completions here to update the EOF. Failing to serialise
1542 	 * here can result in EOF moving backwards and Bad Things Happen when
1543 	 * that occurs.
1544 	 */
1545 	spin_lock(&ip->i_flags_lock);
1546 	if (offset + size > i_size_read(inode))
1547 		i_size_write(inode, offset + size);
1548 	spin_unlock(&ip->i_flags_lock);
1549 
1550 	if (flags & XFS_DIO_FLAG_COW)
1551 		error = xfs_reflink_end_cow(ip, offset, size);
1552 	if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1553 		trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1554 
1555 		error = xfs_iomap_write_unwritten(ip, offset, size);
1556 	}
1557 	if (flags & XFS_DIO_FLAG_APPEND) {
1558 		trace_xfs_end_io_direct_write_append(ip, offset, size);
1559 
1560 		error = xfs_setfilesize(ip, offset, size);
1561 	}
1562 
1563 	return error;
1564 }
1565 
1566 STATIC ssize_t
1567 xfs_vm_direct_IO(
1568 	struct kiocb		*iocb,
1569 	struct iov_iter		*iter)
1570 {
1571 	/*
1572 	 * We just need the method present so that open/fcntl allow direct I/O.
1573 	 */
1574 	return -EINVAL;
1575 }
1576 
1577 STATIC sector_t
1578 xfs_vm_bmap(
1579 	struct address_space	*mapping,
1580 	sector_t		block)
1581 {
1582 	struct inode		*inode = (struct inode *)mapping->host;
1583 	struct xfs_inode	*ip = XFS_I(inode);
1584 
1585 	trace_xfs_vm_bmap(XFS_I(inode));
1586 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1587 
1588 	/*
1589 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1590 	 * bypasseѕ the file system for actual I/O.  We really can't allow
1591 	 * that on reflinks inodes, so we have to skip out here.  And yes,
1592 	 * 0 is the magic code for a bmap error..
1593 	 */
1594 	if (xfs_is_reflink_inode(ip)) {
1595 		xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1596 		return 0;
1597 	}
1598 	filemap_write_and_wait(mapping);
1599 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1600 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1601 }
1602 
1603 STATIC int
1604 xfs_vm_readpage(
1605 	struct file		*unused,
1606 	struct page		*page)
1607 {
1608 	trace_xfs_vm_readpage(page->mapping->host, 1);
1609 	return mpage_readpage(page, xfs_get_blocks);
1610 }
1611 
1612 STATIC int
1613 xfs_vm_readpages(
1614 	struct file		*unused,
1615 	struct address_space	*mapping,
1616 	struct list_head	*pages,
1617 	unsigned		nr_pages)
1618 {
1619 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1620 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1621 }
1622 
1623 /*
1624  * This is basically a copy of __set_page_dirty_buffers() with one
1625  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1626  * dirty, we'll never be able to clean them because we don't write buffers
1627  * beyond EOF, and that means we can't invalidate pages that span EOF
1628  * that have been marked dirty. Further, the dirty state can leak into
1629  * the file interior if the file is extended, resulting in all sorts of
1630  * bad things happening as the state does not match the underlying data.
1631  *
1632  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1633  * this only exist because of bufferheads and how the generic code manages them.
1634  */
1635 STATIC int
1636 xfs_vm_set_page_dirty(
1637 	struct page		*page)
1638 {
1639 	struct address_space	*mapping = page->mapping;
1640 	struct inode		*inode = mapping->host;
1641 	loff_t			end_offset;
1642 	loff_t			offset;
1643 	int			newly_dirty;
1644 
1645 	if (unlikely(!mapping))
1646 		return !TestSetPageDirty(page);
1647 
1648 	end_offset = i_size_read(inode);
1649 	offset = page_offset(page);
1650 
1651 	spin_lock(&mapping->private_lock);
1652 	if (page_has_buffers(page)) {
1653 		struct buffer_head *head = page_buffers(page);
1654 		struct buffer_head *bh = head;
1655 
1656 		do {
1657 			if (offset < end_offset)
1658 				set_buffer_dirty(bh);
1659 			bh = bh->b_this_page;
1660 			offset += 1 << inode->i_blkbits;
1661 		} while (bh != head);
1662 	}
1663 	/*
1664 	 * Lock out page->mem_cgroup migration to keep PageDirty
1665 	 * synchronized with per-memcg dirty page counters.
1666 	 */
1667 	lock_page_memcg(page);
1668 	newly_dirty = !TestSetPageDirty(page);
1669 	spin_unlock(&mapping->private_lock);
1670 
1671 	if (newly_dirty) {
1672 		/* sigh - __set_page_dirty() is static, so copy it here, too */
1673 		unsigned long flags;
1674 
1675 		spin_lock_irqsave(&mapping->tree_lock, flags);
1676 		if (page->mapping) {	/* Race with truncate? */
1677 			WARN_ON_ONCE(!PageUptodate(page));
1678 			account_page_dirtied(page, mapping);
1679 			radix_tree_tag_set(&mapping->page_tree,
1680 					page_index(page), PAGECACHE_TAG_DIRTY);
1681 		}
1682 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1683 	}
1684 	unlock_page_memcg(page);
1685 	if (newly_dirty)
1686 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1687 	return newly_dirty;
1688 }
1689 
1690 const struct address_space_operations xfs_address_space_operations = {
1691 	.readpage		= xfs_vm_readpage,
1692 	.readpages		= xfs_vm_readpages,
1693 	.writepage		= xfs_vm_writepage,
1694 	.writepages		= xfs_vm_writepages,
1695 	.set_page_dirty		= xfs_vm_set_page_dirty,
1696 	.releasepage		= xfs_vm_releasepage,
1697 	.invalidatepage		= xfs_vm_invalidatepage,
1698 	.bmap			= xfs_vm_bmap,
1699 	.direct_IO		= xfs_vm_direct_IO,
1700 	.migratepage		= buffer_migrate_page,
1701 	.is_partially_uptodate  = block_is_partially_uptodate,
1702 	.error_remove_page	= generic_error_remove_page,
1703 };
1704