1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_log.h" 20 #include "xfs_sb.h" 21 #include "xfs_ag.h" 22 #include "xfs_trans.h" 23 #include "xfs_mount.h" 24 #include "xfs_bmap_btree.h" 25 #include "xfs_dinode.h" 26 #include "xfs_inode.h" 27 #include "xfs_inode_item.h" 28 #include "xfs_alloc.h" 29 #include "xfs_error.h" 30 #include "xfs_iomap.h" 31 #include "xfs_vnodeops.h" 32 #include "xfs_trace.h" 33 #include "xfs_bmap.h" 34 #include <linux/aio.h> 35 #include <linux/gfp.h> 36 #include <linux/mpage.h> 37 #include <linux/pagevec.h> 38 #include <linux/writeback.h> 39 40 void 41 xfs_count_page_state( 42 struct page *page, 43 int *delalloc, 44 int *unwritten) 45 { 46 struct buffer_head *bh, *head; 47 48 *delalloc = *unwritten = 0; 49 50 bh = head = page_buffers(page); 51 do { 52 if (buffer_unwritten(bh)) 53 (*unwritten) = 1; 54 else if (buffer_delay(bh)) 55 (*delalloc) = 1; 56 } while ((bh = bh->b_this_page) != head); 57 } 58 59 STATIC struct block_device * 60 xfs_find_bdev_for_inode( 61 struct inode *inode) 62 { 63 struct xfs_inode *ip = XFS_I(inode); 64 struct xfs_mount *mp = ip->i_mount; 65 66 if (XFS_IS_REALTIME_INODE(ip)) 67 return mp->m_rtdev_targp->bt_bdev; 68 else 69 return mp->m_ddev_targp->bt_bdev; 70 } 71 72 /* 73 * We're now finished for good with this ioend structure. 74 * Update the page state via the associated buffer_heads, 75 * release holds on the inode and bio, and finally free 76 * up memory. Do not use the ioend after this. 77 */ 78 STATIC void 79 xfs_destroy_ioend( 80 xfs_ioend_t *ioend) 81 { 82 struct buffer_head *bh, *next; 83 84 for (bh = ioend->io_buffer_head; bh; bh = next) { 85 next = bh->b_private; 86 bh->b_end_io(bh, !ioend->io_error); 87 } 88 89 if (ioend->io_iocb) { 90 inode_dio_done(ioend->io_inode); 91 if (ioend->io_isasync) { 92 aio_complete(ioend->io_iocb, ioend->io_error ? 93 ioend->io_error : ioend->io_result, 0); 94 } 95 } 96 97 mempool_free(ioend, xfs_ioend_pool); 98 } 99 100 /* 101 * Fast and loose check if this write could update the on-disk inode size. 102 */ 103 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) 104 { 105 return ioend->io_offset + ioend->io_size > 106 XFS_I(ioend->io_inode)->i_d.di_size; 107 } 108 109 STATIC int 110 xfs_setfilesize_trans_alloc( 111 struct xfs_ioend *ioend) 112 { 113 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 114 struct xfs_trans *tp; 115 int error; 116 117 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS); 118 119 error = xfs_trans_reserve(tp, 0, XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0); 120 if (error) { 121 xfs_trans_cancel(tp, 0); 122 return error; 123 } 124 125 ioend->io_append_trans = tp; 126 127 /* 128 * We may pass freeze protection with a transaction. So tell lockdep 129 * we released it. 130 */ 131 rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 132 1, _THIS_IP_); 133 /* 134 * We hand off the transaction to the completion thread now, so 135 * clear the flag here. 136 */ 137 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); 138 return 0; 139 } 140 141 /* 142 * Update on-disk file size now that data has been written to disk. 143 */ 144 STATIC int 145 xfs_setfilesize( 146 struct xfs_ioend *ioend) 147 { 148 struct xfs_inode *ip = XFS_I(ioend->io_inode); 149 struct xfs_trans *tp = ioend->io_append_trans; 150 xfs_fsize_t isize; 151 152 /* 153 * The transaction may have been allocated in the I/O submission thread, 154 * thus we need to mark ourselves as beeing in a transaction manually. 155 * Similarly for freeze protection. 156 */ 157 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); 158 rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1], 159 0, 1, _THIS_IP_); 160 161 xfs_ilock(ip, XFS_ILOCK_EXCL); 162 isize = xfs_new_eof(ip, ioend->io_offset + ioend->io_size); 163 if (!isize) { 164 xfs_iunlock(ip, XFS_ILOCK_EXCL); 165 xfs_trans_cancel(tp, 0); 166 return 0; 167 } 168 169 trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 170 171 ip->i_d.di_size = isize; 172 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 173 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 174 175 return xfs_trans_commit(tp, 0); 176 } 177 178 /* 179 * Schedule IO completion handling on the final put of an ioend. 180 * 181 * If there is no work to do we might as well call it a day and free the 182 * ioend right now. 183 */ 184 STATIC void 185 xfs_finish_ioend( 186 struct xfs_ioend *ioend) 187 { 188 if (atomic_dec_and_test(&ioend->io_remaining)) { 189 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount; 190 191 if (ioend->io_type == XFS_IO_UNWRITTEN) 192 queue_work(mp->m_unwritten_workqueue, &ioend->io_work); 193 else if (ioend->io_append_trans || 194 (ioend->io_isdirect && xfs_ioend_is_append(ioend))) 195 queue_work(mp->m_data_workqueue, &ioend->io_work); 196 else 197 xfs_destroy_ioend(ioend); 198 } 199 } 200 201 /* 202 * IO write completion. 203 */ 204 STATIC void 205 xfs_end_io( 206 struct work_struct *work) 207 { 208 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); 209 struct xfs_inode *ip = XFS_I(ioend->io_inode); 210 int error = 0; 211 212 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { 213 ioend->io_error = -EIO; 214 goto done; 215 } 216 if (ioend->io_error) 217 goto done; 218 219 /* 220 * For unwritten extents we need to issue transactions to convert a 221 * range to normal written extens after the data I/O has finished. 222 */ 223 if (ioend->io_type == XFS_IO_UNWRITTEN) { 224 error = xfs_iomap_write_unwritten(ip, ioend->io_offset, 225 ioend->io_size); 226 } else if (ioend->io_isdirect && xfs_ioend_is_append(ioend)) { 227 /* 228 * For direct I/O we do not know if we need to allocate blocks 229 * or not so we can't preallocate an append transaction as that 230 * results in nested reservations and log space deadlocks. Hence 231 * allocate the transaction here. While this is sub-optimal and 232 * can block IO completion for some time, we're stuck with doing 233 * it this way until we can pass the ioend to the direct IO 234 * allocation callbacks and avoid nesting that way. 235 */ 236 error = xfs_setfilesize_trans_alloc(ioend); 237 if (error) 238 goto done; 239 error = xfs_setfilesize(ioend); 240 } else if (ioend->io_append_trans) { 241 error = xfs_setfilesize(ioend); 242 } else { 243 ASSERT(!xfs_ioend_is_append(ioend)); 244 } 245 246 done: 247 if (error) 248 ioend->io_error = -error; 249 xfs_destroy_ioend(ioend); 250 } 251 252 /* 253 * Call IO completion handling in caller context on the final put of an ioend. 254 */ 255 STATIC void 256 xfs_finish_ioend_sync( 257 struct xfs_ioend *ioend) 258 { 259 if (atomic_dec_and_test(&ioend->io_remaining)) 260 xfs_end_io(&ioend->io_work); 261 } 262 263 /* 264 * Allocate and initialise an IO completion structure. 265 * We need to track unwritten extent write completion here initially. 266 * We'll need to extend this for updating the ondisk inode size later 267 * (vs. incore size). 268 */ 269 STATIC xfs_ioend_t * 270 xfs_alloc_ioend( 271 struct inode *inode, 272 unsigned int type) 273 { 274 xfs_ioend_t *ioend; 275 276 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); 277 278 /* 279 * Set the count to 1 initially, which will prevent an I/O 280 * completion callback from happening before we have started 281 * all the I/O from calling the completion routine too early. 282 */ 283 atomic_set(&ioend->io_remaining, 1); 284 ioend->io_isasync = 0; 285 ioend->io_isdirect = 0; 286 ioend->io_error = 0; 287 ioend->io_list = NULL; 288 ioend->io_type = type; 289 ioend->io_inode = inode; 290 ioend->io_buffer_head = NULL; 291 ioend->io_buffer_tail = NULL; 292 ioend->io_offset = 0; 293 ioend->io_size = 0; 294 ioend->io_iocb = NULL; 295 ioend->io_result = 0; 296 ioend->io_append_trans = NULL; 297 298 INIT_WORK(&ioend->io_work, xfs_end_io); 299 return ioend; 300 } 301 302 STATIC int 303 xfs_map_blocks( 304 struct inode *inode, 305 loff_t offset, 306 struct xfs_bmbt_irec *imap, 307 int type, 308 int nonblocking) 309 { 310 struct xfs_inode *ip = XFS_I(inode); 311 struct xfs_mount *mp = ip->i_mount; 312 ssize_t count = 1 << inode->i_blkbits; 313 xfs_fileoff_t offset_fsb, end_fsb; 314 int error = 0; 315 int bmapi_flags = XFS_BMAPI_ENTIRE; 316 int nimaps = 1; 317 318 if (XFS_FORCED_SHUTDOWN(mp)) 319 return -XFS_ERROR(EIO); 320 321 if (type == XFS_IO_UNWRITTEN) 322 bmapi_flags |= XFS_BMAPI_IGSTATE; 323 324 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { 325 if (nonblocking) 326 return -XFS_ERROR(EAGAIN); 327 xfs_ilock(ip, XFS_ILOCK_SHARED); 328 } 329 330 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || 331 (ip->i_df.if_flags & XFS_IFEXTENTS)); 332 ASSERT(offset <= mp->m_super->s_maxbytes); 333 334 if (offset + count > mp->m_super->s_maxbytes) 335 count = mp->m_super->s_maxbytes - offset; 336 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); 337 offset_fsb = XFS_B_TO_FSBT(mp, offset); 338 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 339 imap, &nimaps, bmapi_flags); 340 xfs_iunlock(ip, XFS_ILOCK_SHARED); 341 342 if (error) 343 return -XFS_ERROR(error); 344 345 if (type == XFS_IO_DELALLOC && 346 (!nimaps || isnullstartblock(imap->br_startblock))) { 347 error = xfs_iomap_write_allocate(ip, offset, count, imap); 348 if (!error) 349 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); 350 return -XFS_ERROR(error); 351 } 352 353 #ifdef DEBUG 354 if (type == XFS_IO_UNWRITTEN) { 355 ASSERT(nimaps); 356 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 357 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 358 } 359 #endif 360 if (nimaps) 361 trace_xfs_map_blocks_found(ip, offset, count, type, imap); 362 return 0; 363 } 364 365 STATIC int 366 xfs_imap_valid( 367 struct inode *inode, 368 struct xfs_bmbt_irec *imap, 369 xfs_off_t offset) 370 { 371 offset >>= inode->i_blkbits; 372 373 return offset >= imap->br_startoff && 374 offset < imap->br_startoff + imap->br_blockcount; 375 } 376 377 /* 378 * BIO completion handler for buffered IO. 379 */ 380 STATIC void 381 xfs_end_bio( 382 struct bio *bio, 383 int error) 384 { 385 xfs_ioend_t *ioend = bio->bi_private; 386 387 ASSERT(atomic_read(&bio->bi_cnt) >= 1); 388 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; 389 390 /* Toss bio and pass work off to an xfsdatad thread */ 391 bio->bi_private = NULL; 392 bio->bi_end_io = NULL; 393 bio_put(bio); 394 395 xfs_finish_ioend(ioend); 396 } 397 398 STATIC void 399 xfs_submit_ioend_bio( 400 struct writeback_control *wbc, 401 xfs_ioend_t *ioend, 402 struct bio *bio) 403 { 404 atomic_inc(&ioend->io_remaining); 405 bio->bi_private = ioend; 406 bio->bi_end_io = xfs_end_bio; 407 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); 408 } 409 410 STATIC struct bio * 411 xfs_alloc_ioend_bio( 412 struct buffer_head *bh) 413 { 414 int nvecs = bio_get_nr_vecs(bh->b_bdev); 415 struct bio *bio = bio_alloc(GFP_NOIO, nvecs); 416 417 ASSERT(bio->bi_private == NULL); 418 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 419 bio->bi_bdev = bh->b_bdev; 420 return bio; 421 } 422 423 STATIC void 424 xfs_start_buffer_writeback( 425 struct buffer_head *bh) 426 { 427 ASSERT(buffer_mapped(bh)); 428 ASSERT(buffer_locked(bh)); 429 ASSERT(!buffer_delay(bh)); 430 ASSERT(!buffer_unwritten(bh)); 431 432 mark_buffer_async_write(bh); 433 set_buffer_uptodate(bh); 434 clear_buffer_dirty(bh); 435 } 436 437 STATIC void 438 xfs_start_page_writeback( 439 struct page *page, 440 int clear_dirty, 441 int buffers) 442 { 443 ASSERT(PageLocked(page)); 444 ASSERT(!PageWriteback(page)); 445 if (clear_dirty) 446 clear_page_dirty_for_io(page); 447 set_page_writeback(page); 448 unlock_page(page); 449 /* If no buffers on the page are to be written, finish it here */ 450 if (!buffers) 451 end_page_writeback(page); 452 } 453 454 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh) 455 { 456 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 457 } 458 459 /* 460 * Submit all of the bios for all of the ioends we have saved up, covering the 461 * initial writepage page and also any probed pages. 462 * 463 * Because we may have multiple ioends spanning a page, we need to start 464 * writeback on all the buffers before we submit them for I/O. If we mark the 465 * buffers as we got, then we can end up with a page that only has buffers 466 * marked async write and I/O complete on can occur before we mark the other 467 * buffers async write. 468 * 469 * The end result of this is that we trip a bug in end_page_writeback() because 470 * we call it twice for the one page as the code in end_buffer_async_write() 471 * assumes that all buffers on the page are started at the same time. 472 * 473 * The fix is two passes across the ioend list - one to start writeback on the 474 * buffer_heads, and then submit them for I/O on the second pass. 475 * 476 * If @fail is non-zero, it means that we have a situation where some part of 477 * the submission process has failed after we have marked paged for writeback 478 * and unlocked them. In this situation, we need to fail the ioend chain rather 479 * than submit it to IO. This typically only happens on a filesystem shutdown. 480 */ 481 STATIC void 482 xfs_submit_ioend( 483 struct writeback_control *wbc, 484 xfs_ioend_t *ioend, 485 int fail) 486 { 487 xfs_ioend_t *head = ioend; 488 xfs_ioend_t *next; 489 struct buffer_head *bh; 490 struct bio *bio; 491 sector_t lastblock = 0; 492 493 /* Pass 1 - start writeback */ 494 do { 495 next = ioend->io_list; 496 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) 497 xfs_start_buffer_writeback(bh); 498 } while ((ioend = next) != NULL); 499 500 /* Pass 2 - submit I/O */ 501 ioend = head; 502 do { 503 next = ioend->io_list; 504 bio = NULL; 505 506 /* 507 * If we are failing the IO now, just mark the ioend with an 508 * error and finish it. This will run IO completion immediately 509 * as there is only one reference to the ioend at this point in 510 * time. 511 */ 512 if (fail) { 513 ioend->io_error = -fail; 514 xfs_finish_ioend(ioend); 515 continue; 516 } 517 518 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { 519 520 if (!bio) { 521 retry: 522 bio = xfs_alloc_ioend_bio(bh); 523 } else if (bh->b_blocknr != lastblock + 1) { 524 xfs_submit_ioend_bio(wbc, ioend, bio); 525 goto retry; 526 } 527 528 if (bio_add_buffer(bio, bh) != bh->b_size) { 529 xfs_submit_ioend_bio(wbc, ioend, bio); 530 goto retry; 531 } 532 533 lastblock = bh->b_blocknr; 534 } 535 if (bio) 536 xfs_submit_ioend_bio(wbc, ioend, bio); 537 xfs_finish_ioend(ioend); 538 } while ((ioend = next) != NULL); 539 } 540 541 /* 542 * Cancel submission of all buffer_heads so far in this endio. 543 * Toss the endio too. Only ever called for the initial page 544 * in a writepage request, so only ever one page. 545 */ 546 STATIC void 547 xfs_cancel_ioend( 548 xfs_ioend_t *ioend) 549 { 550 xfs_ioend_t *next; 551 struct buffer_head *bh, *next_bh; 552 553 do { 554 next = ioend->io_list; 555 bh = ioend->io_buffer_head; 556 do { 557 next_bh = bh->b_private; 558 clear_buffer_async_write(bh); 559 unlock_buffer(bh); 560 } while ((bh = next_bh) != NULL); 561 562 mempool_free(ioend, xfs_ioend_pool); 563 } while ((ioend = next) != NULL); 564 } 565 566 /* 567 * Test to see if we've been building up a completion structure for 568 * earlier buffers -- if so, we try to append to this ioend if we 569 * can, otherwise we finish off any current ioend and start another. 570 * Return true if we've finished the given ioend. 571 */ 572 STATIC void 573 xfs_add_to_ioend( 574 struct inode *inode, 575 struct buffer_head *bh, 576 xfs_off_t offset, 577 unsigned int type, 578 xfs_ioend_t **result, 579 int need_ioend) 580 { 581 xfs_ioend_t *ioend = *result; 582 583 if (!ioend || need_ioend || type != ioend->io_type) { 584 xfs_ioend_t *previous = *result; 585 586 ioend = xfs_alloc_ioend(inode, type); 587 ioend->io_offset = offset; 588 ioend->io_buffer_head = bh; 589 ioend->io_buffer_tail = bh; 590 if (previous) 591 previous->io_list = ioend; 592 *result = ioend; 593 } else { 594 ioend->io_buffer_tail->b_private = bh; 595 ioend->io_buffer_tail = bh; 596 } 597 598 bh->b_private = NULL; 599 ioend->io_size += bh->b_size; 600 } 601 602 STATIC void 603 xfs_map_buffer( 604 struct inode *inode, 605 struct buffer_head *bh, 606 struct xfs_bmbt_irec *imap, 607 xfs_off_t offset) 608 { 609 sector_t bn; 610 struct xfs_mount *m = XFS_I(inode)->i_mount; 611 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); 612 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); 613 614 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 615 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 616 617 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + 618 ((offset - iomap_offset) >> inode->i_blkbits); 619 620 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); 621 622 bh->b_blocknr = bn; 623 set_buffer_mapped(bh); 624 } 625 626 STATIC void 627 xfs_map_at_offset( 628 struct inode *inode, 629 struct buffer_head *bh, 630 struct xfs_bmbt_irec *imap, 631 xfs_off_t offset) 632 { 633 ASSERT(imap->br_startblock != HOLESTARTBLOCK); 634 ASSERT(imap->br_startblock != DELAYSTARTBLOCK); 635 636 xfs_map_buffer(inode, bh, imap, offset); 637 set_buffer_mapped(bh); 638 clear_buffer_delay(bh); 639 clear_buffer_unwritten(bh); 640 } 641 642 /* 643 * Test if a given page is suitable for writing as part of an unwritten 644 * or delayed allocate extent. 645 */ 646 STATIC int 647 xfs_check_page_type( 648 struct page *page, 649 unsigned int type) 650 { 651 if (PageWriteback(page)) 652 return 0; 653 654 if (page->mapping && page_has_buffers(page)) { 655 struct buffer_head *bh, *head; 656 int acceptable = 0; 657 658 bh = head = page_buffers(page); 659 do { 660 if (buffer_unwritten(bh)) 661 acceptable += (type == XFS_IO_UNWRITTEN); 662 else if (buffer_delay(bh)) 663 acceptable += (type == XFS_IO_DELALLOC); 664 else if (buffer_dirty(bh) && buffer_mapped(bh)) 665 acceptable += (type == XFS_IO_OVERWRITE); 666 else 667 break; 668 } while ((bh = bh->b_this_page) != head); 669 670 if (acceptable) 671 return 1; 672 } 673 674 return 0; 675 } 676 677 /* 678 * Allocate & map buffers for page given the extent map. Write it out. 679 * except for the original page of a writepage, this is called on 680 * delalloc/unwritten pages only, for the original page it is possible 681 * that the page has no mapping at all. 682 */ 683 STATIC int 684 xfs_convert_page( 685 struct inode *inode, 686 struct page *page, 687 loff_t tindex, 688 struct xfs_bmbt_irec *imap, 689 xfs_ioend_t **ioendp, 690 struct writeback_control *wbc) 691 { 692 struct buffer_head *bh, *head; 693 xfs_off_t end_offset; 694 unsigned long p_offset; 695 unsigned int type; 696 int len, page_dirty; 697 int count = 0, done = 0, uptodate = 1; 698 xfs_off_t offset = page_offset(page); 699 700 if (page->index != tindex) 701 goto fail; 702 if (!trylock_page(page)) 703 goto fail; 704 if (PageWriteback(page)) 705 goto fail_unlock_page; 706 if (page->mapping != inode->i_mapping) 707 goto fail_unlock_page; 708 if (!xfs_check_page_type(page, (*ioendp)->io_type)) 709 goto fail_unlock_page; 710 711 /* 712 * page_dirty is initially a count of buffers on the page before 713 * EOF and is decremented as we move each into a cleanable state. 714 * 715 * Derivation: 716 * 717 * End offset is the highest offset that this page should represent. 718 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) 719 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and 720 * hence give us the correct page_dirty count. On any other page, 721 * it will be zero and in that case we need page_dirty to be the 722 * count of buffers on the page. 723 */ 724 end_offset = min_t(unsigned long long, 725 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 726 i_size_read(inode)); 727 728 len = 1 << inode->i_blkbits; 729 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), 730 PAGE_CACHE_SIZE); 731 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; 732 page_dirty = p_offset / len; 733 734 bh = head = page_buffers(page); 735 do { 736 if (offset >= end_offset) 737 break; 738 if (!buffer_uptodate(bh)) 739 uptodate = 0; 740 if (!(PageUptodate(page) || buffer_uptodate(bh))) { 741 done = 1; 742 continue; 743 } 744 745 if (buffer_unwritten(bh) || buffer_delay(bh) || 746 buffer_mapped(bh)) { 747 if (buffer_unwritten(bh)) 748 type = XFS_IO_UNWRITTEN; 749 else if (buffer_delay(bh)) 750 type = XFS_IO_DELALLOC; 751 else 752 type = XFS_IO_OVERWRITE; 753 754 if (!xfs_imap_valid(inode, imap, offset)) { 755 done = 1; 756 continue; 757 } 758 759 lock_buffer(bh); 760 if (type != XFS_IO_OVERWRITE) 761 xfs_map_at_offset(inode, bh, imap, offset); 762 xfs_add_to_ioend(inode, bh, offset, type, 763 ioendp, done); 764 765 page_dirty--; 766 count++; 767 } else { 768 done = 1; 769 } 770 } while (offset += len, (bh = bh->b_this_page) != head); 771 772 if (uptodate && bh == head) 773 SetPageUptodate(page); 774 775 if (count) { 776 if (--wbc->nr_to_write <= 0 && 777 wbc->sync_mode == WB_SYNC_NONE) 778 done = 1; 779 } 780 xfs_start_page_writeback(page, !page_dirty, count); 781 782 return done; 783 fail_unlock_page: 784 unlock_page(page); 785 fail: 786 return 1; 787 } 788 789 /* 790 * Convert & write out a cluster of pages in the same extent as defined 791 * by mp and following the start page. 792 */ 793 STATIC void 794 xfs_cluster_write( 795 struct inode *inode, 796 pgoff_t tindex, 797 struct xfs_bmbt_irec *imap, 798 xfs_ioend_t **ioendp, 799 struct writeback_control *wbc, 800 pgoff_t tlast) 801 { 802 struct pagevec pvec; 803 int done = 0, i; 804 805 pagevec_init(&pvec, 0); 806 while (!done && tindex <= tlast) { 807 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); 808 809 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) 810 break; 811 812 for (i = 0; i < pagevec_count(&pvec); i++) { 813 done = xfs_convert_page(inode, pvec.pages[i], tindex++, 814 imap, ioendp, wbc); 815 if (done) 816 break; 817 } 818 819 pagevec_release(&pvec); 820 cond_resched(); 821 } 822 } 823 824 STATIC void 825 xfs_vm_invalidatepage( 826 struct page *page, 827 unsigned long offset) 828 { 829 trace_xfs_invalidatepage(page->mapping->host, page, offset); 830 block_invalidatepage(page, offset); 831 } 832 833 /* 834 * If the page has delalloc buffers on it, we need to punch them out before we 835 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 836 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read 837 * is done on that same region - the delalloc extent is returned when none is 838 * supposed to be there. 839 * 840 * We prevent this by truncating away the delalloc regions on the page before 841 * invalidating it. Because they are delalloc, we can do this without needing a 842 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this 843 * truncation without a transaction as there is no space left for block 844 * reservation (typically why we see a ENOSPC in writeback). 845 * 846 * This is not a performance critical path, so for now just do the punching a 847 * buffer head at a time. 848 */ 849 STATIC void 850 xfs_aops_discard_page( 851 struct page *page) 852 { 853 struct inode *inode = page->mapping->host; 854 struct xfs_inode *ip = XFS_I(inode); 855 struct buffer_head *bh, *head; 856 loff_t offset = page_offset(page); 857 858 if (!xfs_check_page_type(page, XFS_IO_DELALLOC)) 859 goto out_invalidate; 860 861 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) 862 goto out_invalidate; 863 864 xfs_alert(ip->i_mount, 865 "page discard on page %p, inode 0x%llx, offset %llu.", 866 page, ip->i_ino, offset); 867 868 xfs_ilock(ip, XFS_ILOCK_EXCL); 869 bh = head = page_buffers(page); 870 do { 871 int error; 872 xfs_fileoff_t start_fsb; 873 874 if (!buffer_delay(bh)) 875 goto next_buffer; 876 877 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); 878 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); 879 if (error) { 880 /* something screwed, just bail */ 881 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 882 xfs_alert(ip->i_mount, 883 "page discard unable to remove delalloc mapping."); 884 } 885 break; 886 } 887 next_buffer: 888 offset += 1 << inode->i_blkbits; 889 890 } while ((bh = bh->b_this_page) != head); 891 892 xfs_iunlock(ip, XFS_ILOCK_EXCL); 893 out_invalidate: 894 xfs_vm_invalidatepage(page, 0); 895 return; 896 } 897 898 /* 899 * Write out a dirty page. 900 * 901 * For delalloc space on the page we need to allocate space and flush it. 902 * For unwritten space on the page we need to start the conversion to 903 * regular allocated space. 904 * For any other dirty buffer heads on the page we should flush them. 905 */ 906 STATIC int 907 xfs_vm_writepage( 908 struct page *page, 909 struct writeback_control *wbc) 910 { 911 struct inode *inode = page->mapping->host; 912 struct buffer_head *bh, *head; 913 struct xfs_bmbt_irec imap; 914 xfs_ioend_t *ioend = NULL, *iohead = NULL; 915 loff_t offset; 916 unsigned int type; 917 __uint64_t end_offset; 918 pgoff_t end_index, last_index; 919 ssize_t len; 920 int err, imap_valid = 0, uptodate = 1; 921 int count = 0; 922 int nonblocking = 0; 923 924 trace_xfs_writepage(inode, page, 0); 925 926 ASSERT(page_has_buffers(page)); 927 928 /* 929 * Refuse to write the page out if we are called from reclaim context. 930 * 931 * This avoids stack overflows when called from deeply used stacks in 932 * random callers for direct reclaim or memcg reclaim. We explicitly 933 * allow reclaim from kswapd as the stack usage there is relatively low. 934 * 935 * This should never happen except in the case of a VM regression so 936 * warn about it. 937 */ 938 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == 939 PF_MEMALLOC)) 940 goto redirty; 941 942 /* 943 * Given that we do not allow direct reclaim to call us, we should 944 * never be called while in a filesystem transaction. 945 */ 946 if (WARN_ON(current->flags & PF_FSTRANS)) 947 goto redirty; 948 949 /* Is this page beyond the end of the file? */ 950 offset = i_size_read(inode); 951 end_index = offset >> PAGE_CACHE_SHIFT; 952 last_index = (offset - 1) >> PAGE_CACHE_SHIFT; 953 if (page->index >= end_index) { 954 unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1); 955 956 /* 957 * Skip the page if it is fully outside i_size, e.g. due to a 958 * truncate operation that is in progress. We must redirty the 959 * page so that reclaim stops reclaiming it. Otherwise 960 * xfs_vm_releasepage() is called on it and gets confused. 961 */ 962 if (page->index >= end_index + 1 || offset_into_page == 0) 963 goto redirty; 964 965 /* 966 * The page straddles i_size. It must be zeroed out on each 967 * and every writepage invocation because it may be mmapped. 968 * "A file is mapped in multiples of the page size. For a file 969 * that is not a multiple of the page size, the remaining 970 * memory is zeroed when mapped, and writes to that region are 971 * not written out to the file." 972 */ 973 zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE); 974 } 975 976 end_offset = min_t(unsigned long long, 977 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, 978 offset); 979 len = 1 << inode->i_blkbits; 980 981 bh = head = page_buffers(page); 982 offset = page_offset(page); 983 type = XFS_IO_OVERWRITE; 984 985 if (wbc->sync_mode == WB_SYNC_NONE) 986 nonblocking = 1; 987 988 do { 989 int new_ioend = 0; 990 991 if (offset >= end_offset) 992 break; 993 if (!buffer_uptodate(bh)) 994 uptodate = 0; 995 996 /* 997 * set_page_dirty dirties all buffers in a page, independent 998 * of their state. The dirty state however is entirely 999 * meaningless for holes (!mapped && uptodate), so skip 1000 * buffers covering holes here. 1001 */ 1002 if (!buffer_mapped(bh) && buffer_uptodate(bh)) { 1003 imap_valid = 0; 1004 continue; 1005 } 1006 1007 if (buffer_unwritten(bh)) { 1008 if (type != XFS_IO_UNWRITTEN) { 1009 type = XFS_IO_UNWRITTEN; 1010 imap_valid = 0; 1011 } 1012 } else if (buffer_delay(bh)) { 1013 if (type != XFS_IO_DELALLOC) { 1014 type = XFS_IO_DELALLOC; 1015 imap_valid = 0; 1016 } 1017 } else if (buffer_uptodate(bh)) { 1018 if (type != XFS_IO_OVERWRITE) { 1019 type = XFS_IO_OVERWRITE; 1020 imap_valid = 0; 1021 } 1022 } else { 1023 if (PageUptodate(page)) 1024 ASSERT(buffer_mapped(bh)); 1025 /* 1026 * This buffer is not uptodate and will not be 1027 * written to disk. Ensure that we will put any 1028 * subsequent writeable buffers into a new 1029 * ioend. 1030 */ 1031 imap_valid = 0; 1032 continue; 1033 } 1034 1035 if (imap_valid) 1036 imap_valid = xfs_imap_valid(inode, &imap, offset); 1037 if (!imap_valid) { 1038 /* 1039 * If we didn't have a valid mapping then we need to 1040 * put the new mapping into a separate ioend structure. 1041 * This ensures non-contiguous extents always have 1042 * separate ioends, which is particularly important 1043 * for unwritten extent conversion at I/O completion 1044 * time. 1045 */ 1046 new_ioend = 1; 1047 err = xfs_map_blocks(inode, offset, &imap, type, 1048 nonblocking); 1049 if (err) 1050 goto error; 1051 imap_valid = xfs_imap_valid(inode, &imap, offset); 1052 } 1053 if (imap_valid) { 1054 lock_buffer(bh); 1055 if (type != XFS_IO_OVERWRITE) 1056 xfs_map_at_offset(inode, bh, &imap, offset); 1057 xfs_add_to_ioend(inode, bh, offset, type, &ioend, 1058 new_ioend); 1059 count++; 1060 } 1061 1062 if (!iohead) 1063 iohead = ioend; 1064 1065 } while (offset += len, ((bh = bh->b_this_page) != head)); 1066 1067 if (uptodate && bh == head) 1068 SetPageUptodate(page); 1069 1070 xfs_start_page_writeback(page, 1, count); 1071 1072 /* if there is no IO to be submitted for this page, we are done */ 1073 if (!ioend) 1074 return 0; 1075 1076 ASSERT(iohead); 1077 1078 /* 1079 * Any errors from this point onwards need tobe reported through the IO 1080 * completion path as we have marked the initial page as under writeback 1081 * and unlocked it. 1082 */ 1083 if (imap_valid) { 1084 xfs_off_t end_index; 1085 1086 end_index = imap.br_startoff + imap.br_blockcount; 1087 1088 /* to bytes */ 1089 end_index <<= inode->i_blkbits; 1090 1091 /* to pages */ 1092 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; 1093 1094 /* check against file size */ 1095 if (end_index > last_index) 1096 end_index = last_index; 1097 1098 xfs_cluster_write(inode, page->index + 1, &imap, &ioend, 1099 wbc, end_index); 1100 } 1101 1102 1103 /* 1104 * Reserve log space if we might write beyond the on-disk inode size. 1105 */ 1106 err = 0; 1107 if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend)) 1108 err = xfs_setfilesize_trans_alloc(ioend); 1109 1110 xfs_submit_ioend(wbc, iohead, err); 1111 1112 return 0; 1113 1114 error: 1115 if (iohead) 1116 xfs_cancel_ioend(iohead); 1117 1118 if (err == -EAGAIN) 1119 goto redirty; 1120 1121 xfs_aops_discard_page(page); 1122 ClearPageUptodate(page); 1123 unlock_page(page); 1124 return err; 1125 1126 redirty: 1127 redirty_page_for_writepage(wbc, page); 1128 unlock_page(page); 1129 return 0; 1130 } 1131 1132 STATIC int 1133 xfs_vm_writepages( 1134 struct address_space *mapping, 1135 struct writeback_control *wbc) 1136 { 1137 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 1138 return generic_writepages(mapping, wbc); 1139 } 1140 1141 /* 1142 * Called to move a page into cleanable state - and from there 1143 * to be released. The page should already be clean. We always 1144 * have buffer heads in this call. 1145 * 1146 * Returns 1 if the page is ok to release, 0 otherwise. 1147 */ 1148 STATIC int 1149 xfs_vm_releasepage( 1150 struct page *page, 1151 gfp_t gfp_mask) 1152 { 1153 int delalloc, unwritten; 1154 1155 trace_xfs_releasepage(page->mapping->host, page, 0); 1156 1157 xfs_count_page_state(page, &delalloc, &unwritten); 1158 1159 if (WARN_ON(delalloc)) 1160 return 0; 1161 if (WARN_ON(unwritten)) 1162 return 0; 1163 1164 return try_to_free_buffers(page); 1165 } 1166 1167 STATIC int 1168 __xfs_get_blocks( 1169 struct inode *inode, 1170 sector_t iblock, 1171 struct buffer_head *bh_result, 1172 int create, 1173 int direct) 1174 { 1175 struct xfs_inode *ip = XFS_I(inode); 1176 struct xfs_mount *mp = ip->i_mount; 1177 xfs_fileoff_t offset_fsb, end_fsb; 1178 int error = 0; 1179 int lockmode = 0; 1180 struct xfs_bmbt_irec imap; 1181 int nimaps = 1; 1182 xfs_off_t offset; 1183 ssize_t size; 1184 int new = 0; 1185 1186 if (XFS_FORCED_SHUTDOWN(mp)) 1187 return -XFS_ERROR(EIO); 1188 1189 offset = (xfs_off_t)iblock << inode->i_blkbits; 1190 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); 1191 size = bh_result->b_size; 1192 1193 if (!create && direct && offset >= i_size_read(inode)) 1194 return 0; 1195 1196 /* 1197 * Direct I/O is usually done on preallocated files, so try getting 1198 * a block mapping without an exclusive lock first. For buffered 1199 * writes we already have the exclusive iolock anyway, so avoiding 1200 * a lock roundtrip here by taking the ilock exclusive from the 1201 * beginning is a useful micro optimization. 1202 */ 1203 if (create && !direct) { 1204 lockmode = XFS_ILOCK_EXCL; 1205 xfs_ilock(ip, lockmode); 1206 } else { 1207 lockmode = xfs_ilock_map_shared(ip); 1208 } 1209 1210 ASSERT(offset <= mp->m_super->s_maxbytes); 1211 if (offset + size > mp->m_super->s_maxbytes) 1212 size = mp->m_super->s_maxbytes - offset; 1213 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); 1214 offset_fsb = XFS_B_TO_FSBT(mp, offset); 1215 1216 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, 1217 &imap, &nimaps, XFS_BMAPI_ENTIRE); 1218 if (error) 1219 goto out_unlock; 1220 1221 if (create && 1222 (!nimaps || 1223 (imap.br_startblock == HOLESTARTBLOCK || 1224 imap.br_startblock == DELAYSTARTBLOCK))) { 1225 if (direct || xfs_get_extsz_hint(ip)) { 1226 /* 1227 * Drop the ilock in preparation for starting the block 1228 * allocation transaction. It will be retaken 1229 * exclusively inside xfs_iomap_write_direct for the 1230 * actual allocation. 1231 */ 1232 xfs_iunlock(ip, lockmode); 1233 error = xfs_iomap_write_direct(ip, offset, size, 1234 &imap, nimaps); 1235 if (error) 1236 return -error; 1237 new = 1; 1238 } else { 1239 /* 1240 * Delalloc reservations do not require a transaction, 1241 * we can go on without dropping the lock here. If we 1242 * are allocating a new delalloc block, make sure that 1243 * we set the new flag so that we mark the buffer new so 1244 * that we know that it is newly allocated if the write 1245 * fails. 1246 */ 1247 if (nimaps && imap.br_startblock == HOLESTARTBLOCK) 1248 new = 1; 1249 error = xfs_iomap_write_delay(ip, offset, size, &imap); 1250 if (error) 1251 goto out_unlock; 1252 1253 xfs_iunlock(ip, lockmode); 1254 } 1255 1256 trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); 1257 } else if (nimaps) { 1258 trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); 1259 xfs_iunlock(ip, lockmode); 1260 } else { 1261 trace_xfs_get_blocks_notfound(ip, offset, size); 1262 goto out_unlock; 1263 } 1264 1265 if (imap.br_startblock != HOLESTARTBLOCK && 1266 imap.br_startblock != DELAYSTARTBLOCK) { 1267 /* 1268 * For unwritten extents do not report a disk address on 1269 * the read case (treat as if we're reading into a hole). 1270 */ 1271 if (create || !ISUNWRITTEN(&imap)) 1272 xfs_map_buffer(inode, bh_result, &imap, offset); 1273 if (create && ISUNWRITTEN(&imap)) { 1274 if (direct) 1275 bh_result->b_private = inode; 1276 set_buffer_unwritten(bh_result); 1277 } 1278 } 1279 1280 /* 1281 * If this is a realtime file, data may be on a different device. 1282 * to that pointed to from the buffer_head b_bdev currently. 1283 */ 1284 bh_result->b_bdev = xfs_find_bdev_for_inode(inode); 1285 1286 /* 1287 * If we previously allocated a block out beyond eof and we are now 1288 * coming back to use it then we will need to flag it as new even if it 1289 * has a disk address. 1290 * 1291 * With sub-block writes into unwritten extents we also need to mark 1292 * the buffer as new so that the unwritten parts of the buffer gets 1293 * correctly zeroed. 1294 */ 1295 if (create && 1296 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || 1297 (offset >= i_size_read(inode)) || 1298 (new || ISUNWRITTEN(&imap)))) 1299 set_buffer_new(bh_result); 1300 1301 if (imap.br_startblock == DELAYSTARTBLOCK) { 1302 BUG_ON(direct); 1303 if (create) { 1304 set_buffer_uptodate(bh_result); 1305 set_buffer_mapped(bh_result); 1306 set_buffer_delay(bh_result); 1307 } 1308 } 1309 1310 /* 1311 * If this is O_DIRECT or the mpage code calling tell them how large 1312 * the mapping is, so that we can avoid repeated get_blocks calls. 1313 */ 1314 if (direct || size > (1 << inode->i_blkbits)) { 1315 xfs_off_t mapping_size; 1316 1317 mapping_size = imap.br_startoff + imap.br_blockcount - iblock; 1318 mapping_size <<= inode->i_blkbits; 1319 1320 ASSERT(mapping_size > 0); 1321 if (mapping_size > size) 1322 mapping_size = size; 1323 if (mapping_size > LONG_MAX) 1324 mapping_size = LONG_MAX; 1325 1326 bh_result->b_size = mapping_size; 1327 } 1328 1329 return 0; 1330 1331 out_unlock: 1332 xfs_iunlock(ip, lockmode); 1333 return -error; 1334 } 1335 1336 int 1337 xfs_get_blocks( 1338 struct inode *inode, 1339 sector_t iblock, 1340 struct buffer_head *bh_result, 1341 int create) 1342 { 1343 return __xfs_get_blocks(inode, iblock, bh_result, create, 0); 1344 } 1345 1346 STATIC int 1347 xfs_get_blocks_direct( 1348 struct inode *inode, 1349 sector_t iblock, 1350 struct buffer_head *bh_result, 1351 int create) 1352 { 1353 return __xfs_get_blocks(inode, iblock, bh_result, create, 1); 1354 } 1355 1356 /* 1357 * Complete a direct I/O write request. 1358 * 1359 * If the private argument is non-NULL __xfs_get_blocks signals us that we 1360 * need to issue a transaction to convert the range from unwritten to written 1361 * extents. In case this is regular synchronous I/O we just call xfs_end_io 1362 * to do this and we are done. But in case this was a successful AIO 1363 * request this handler is called from interrupt context, from which we 1364 * can't start transactions. In that case offload the I/O completion to 1365 * the workqueues we also use for buffered I/O completion. 1366 */ 1367 STATIC void 1368 xfs_end_io_direct_write( 1369 struct kiocb *iocb, 1370 loff_t offset, 1371 ssize_t size, 1372 void *private, 1373 int ret, 1374 bool is_async) 1375 { 1376 struct xfs_ioend *ioend = iocb->private; 1377 1378 /* 1379 * While the generic direct I/O code updates the inode size, it does 1380 * so only after the end_io handler is called, which means our 1381 * end_io handler thinks the on-disk size is outside the in-core 1382 * size. To prevent this just update it a little bit earlier here. 1383 */ 1384 if (offset + size > i_size_read(ioend->io_inode)) 1385 i_size_write(ioend->io_inode, offset + size); 1386 1387 /* 1388 * blockdev_direct_IO can return an error even after the I/O 1389 * completion handler was called. Thus we need to protect 1390 * against double-freeing. 1391 */ 1392 iocb->private = NULL; 1393 1394 ioend->io_offset = offset; 1395 ioend->io_size = size; 1396 ioend->io_iocb = iocb; 1397 ioend->io_result = ret; 1398 if (private && size > 0) 1399 ioend->io_type = XFS_IO_UNWRITTEN; 1400 1401 if (is_async) { 1402 ioend->io_isasync = 1; 1403 xfs_finish_ioend(ioend); 1404 } else { 1405 xfs_finish_ioend_sync(ioend); 1406 } 1407 } 1408 1409 STATIC ssize_t 1410 xfs_vm_direct_IO( 1411 int rw, 1412 struct kiocb *iocb, 1413 const struct iovec *iov, 1414 loff_t offset, 1415 unsigned long nr_segs) 1416 { 1417 struct inode *inode = iocb->ki_filp->f_mapping->host; 1418 struct block_device *bdev = xfs_find_bdev_for_inode(inode); 1419 struct xfs_ioend *ioend = NULL; 1420 ssize_t ret; 1421 1422 if (rw & WRITE) { 1423 size_t size = iov_length(iov, nr_segs); 1424 1425 /* 1426 * We cannot preallocate a size update transaction here as we 1427 * don't know whether allocation is necessary or not. Hence we 1428 * can only tell IO completion that one is necessary if we are 1429 * not doing unwritten extent conversion. 1430 */ 1431 iocb->private = ioend = xfs_alloc_ioend(inode, XFS_IO_DIRECT); 1432 if (offset + size > XFS_I(inode)->i_d.di_size) 1433 ioend->io_isdirect = 1; 1434 1435 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1436 offset, nr_segs, 1437 xfs_get_blocks_direct, 1438 xfs_end_io_direct_write, NULL, 0); 1439 if (ret != -EIOCBQUEUED && iocb->private) 1440 goto out_destroy_ioend; 1441 } else { 1442 ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, 1443 offset, nr_segs, 1444 xfs_get_blocks_direct, 1445 NULL, NULL, 0); 1446 } 1447 1448 return ret; 1449 1450 out_destroy_ioend: 1451 xfs_destroy_ioend(ioend); 1452 return ret; 1453 } 1454 1455 /* 1456 * Punch out the delalloc blocks we have already allocated. 1457 * 1458 * Don't bother with xfs_setattr given that nothing can have made it to disk yet 1459 * as the page is still locked at this point. 1460 */ 1461 STATIC void 1462 xfs_vm_kill_delalloc_range( 1463 struct inode *inode, 1464 loff_t start, 1465 loff_t end) 1466 { 1467 struct xfs_inode *ip = XFS_I(inode); 1468 xfs_fileoff_t start_fsb; 1469 xfs_fileoff_t end_fsb; 1470 int error; 1471 1472 start_fsb = XFS_B_TO_FSB(ip->i_mount, start); 1473 end_fsb = XFS_B_TO_FSB(ip->i_mount, end); 1474 if (end_fsb <= start_fsb) 1475 return; 1476 1477 xfs_ilock(ip, XFS_ILOCK_EXCL); 1478 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1479 end_fsb - start_fsb); 1480 if (error) { 1481 /* something screwed, just bail */ 1482 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { 1483 xfs_alert(ip->i_mount, 1484 "xfs_vm_write_failed: unable to clean up ino %lld", 1485 ip->i_ino); 1486 } 1487 } 1488 xfs_iunlock(ip, XFS_ILOCK_EXCL); 1489 } 1490 1491 STATIC void 1492 xfs_vm_write_failed( 1493 struct inode *inode, 1494 struct page *page, 1495 loff_t pos, 1496 unsigned len) 1497 { 1498 loff_t block_offset = pos & PAGE_MASK; 1499 loff_t block_start; 1500 loff_t block_end; 1501 loff_t from = pos & (PAGE_CACHE_SIZE - 1); 1502 loff_t to = from + len; 1503 struct buffer_head *bh, *head; 1504 1505 ASSERT(block_offset + from == pos); 1506 1507 head = page_buffers(page); 1508 block_start = 0; 1509 for (bh = head; bh != head || !block_start; 1510 bh = bh->b_this_page, block_start = block_end, 1511 block_offset += bh->b_size) { 1512 block_end = block_start + bh->b_size; 1513 1514 /* skip buffers before the write */ 1515 if (block_end <= from) 1516 continue; 1517 1518 /* if the buffer is after the write, we're done */ 1519 if (block_start >= to) 1520 break; 1521 1522 if (!buffer_delay(bh)) 1523 continue; 1524 1525 if (!buffer_new(bh) && block_offset < i_size_read(inode)) 1526 continue; 1527 1528 xfs_vm_kill_delalloc_range(inode, block_offset, 1529 block_offset + bh->b_size); 1530 } 1531 1532 } 1533 1534 /* 1535 * This used to call block_write_begin(), but it unlocks and releases the page 1536 * on error, and we need that page to be able to punch stale delalloc blocks out 1537 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at 1538 * the appropriate point. 1539 */ 1540 STATIC int 1541 xfs_vm_write_begin( 1542 struct file *file, 1543 struct address_space *mapping, 1544 loff_t pos, 1545 unsigned len, 1546 unsigned flags, 1547 struct page **pagep, 1548 void **fsdata) 1549 { 1550 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1551 struct page *page; 1552 int status; 1553 1554 ASSERT(len <= PAGE_CACHE_SIZE); 1555 1556 page = grab_cache_page_write_begin(mapping, index, 1557 flags | AOP_FLAG_NOFS); 1558 if (!page) 1559 return -ENOMEM; 1560 1561 status = __block_write_begin(page, pos, len, xfs_get_blocks); 1562 if (unlikely(status)) { 1563 struct inode *inode = mapping->host; 1564 1565 xfs_vm_write_failed(inode, page, pos, len); 1566 unlock_page(page); 1567 1568 if (pos + len > i_size_read(inode)) 1569 truncate_pagecache(inode, pos + len, i_size_read(inode)); 1570 1571 page_cache_release(page); 1572 page = NULL; 1573 } 1574 1575 *pagep = page; 1576 return status; 1577 } 1578 1579 /* 1580 * On failure, we only need to kill delalloc blocks beyond EOF because they 1581 * will never be written. For blocks within EOF, generic_write_end() zeros them 1582 * so they are safe to leave alone and be written with all the other valid data. 1583 */ 1584 STATIC int 1585 xfs_vm_write_end( 1586 struct file *file, 1587 struct address_space *mapping, 1588 loff_t pos, 1589 unsigned len, 1590 unsigned copied, 1591 struct page *page, 1592 void *fsdata) 1593 { 1594 int ret; 1595 1596 ASSERT(len <= PAGE_CACHE_SIZE); 1597 1598 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 1599 if (unlikely(ret < len)) { 1600 struct inode *inode = mapping->host; 1601 size_t isize = i_size_read(inode); 1602 loff_t to = pos + len; 1603 1604 if (to > isize) { 1605 truncate_pagecache(inode, to, isize); 1606 xfs_vm_kill_delalloc_range(inode, isize, to); 1607 } 1608 } 1609 return ret; 1610 } 1611 1612 STATIC sector_t 1613 xfs_vm_bmap( 1614 struct address_space *mapping, 1615 sector_t block) 1616 { 1617 struct inode *inode = (struct inode *)mapping->host; 1618 struct xfs_inode *ip = XFS_I(inode); 1619 1620 trace_xfs_vm_bmap(XFS_I(inode)); 1621 xfs_ilock(ip, XFS_IOLOCK_SHARED); 1622 filemap_write_and_wait(mapping); 1623 xfs_iunlock(ip, XFS_IOLOCK_SHARED); 1624 return generic_block_bmap(mapping, block, xfs_get_blocks); 1625 } 1626 1627 STATIC int 1628 xfs_vm_readpage( 1629 struct file *unused, 1630 struct page *page) 1631 { 1632 return mpage_readpage(page, xfs_get_blocks); 1633 } 1634 1635 STATIC int 1636 xfs_vm_readpages( 1637 struct file *unused, 1638 struct address_space *mapping, 1639 struct list_head *pages, 1640 unsigned nr_pages) 1641 { 1642 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); 1643 } 1644 1645 const struct address_space_operations xfs_address_space_operations = { 1646 .readpage = xfs_vm_readpage, 1647 .readpages = xfs_vm_readpages, 1648 .writepage = xfs_vm_writepage, 1649 .writepages = xfs_vm_writepages, 1650 .releasepage = xfs_vm_releasepage, 1651 .invalidatepage = xfs_vm_invalidatepage, 1652 .write_begin = xfs_vm_write_begin, 1653 .write_end = xfs_vm_write_end, 1654 .bmap = xfs_vm_bmap, 1655 .direct_IO = xfs_vm_direct_IO, 1656 .migratepage = buffer_migrate_page, 1657 .is_partially_uptodate = block_is_partially_uptodate, 1658 .error_remove_page = generic_error_remove_page, 1659 }; 1660