xref: /openbmc/linux/fs/xfs/xfs_aops.c (revision f2ae6794)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_reflink.h"
35 #include <linux/gfp.h>
36 #include <linux/mpage.h>
37 #include <linux/pagevec.h>
38 #include <linux/writeback.h>
39 
40 /*
41  * structure owned by writepages passed to individual writepage calls
42  */
43 struct xfs_writepage_ctx {
44 	struct xfs_bmbt_irec    imap;
45 	bool			imap_valid;
46 	unsigned int		io_type;
47 	struct xfs_ioend	*ioend;
48 	sector_t		last_block;
49 };
50 
51 void
52 xfs_count_page_state(
53 	struct page		*page,
54 	int			*delalloc,
55 	int			*unwritten)
56 {
57 	struct buffer_head	*bh, *head;
58 
59 	*delalloc = *unwritten = 0;
60 
61 	bh = head = page_buffers(page);
62 	do {
63 		if (buffer_unwritten(bh))
64 			(*unwritten) = 1;
65 		else if (buffer_delay(bh))
66 			(*delalloc) = 1;
67 	} while ((bh = bh->b_this_page) != head);
68 }
69 
70 struct block_device *
71 xfs_find_bdev_for_inode(
72 	struct inode		*inode)
73 {
74 	struct xfs_inode	*ip = XFS_I(inode);
75 	struct xfs_mount	*mp = ip->i_mount;
76 
77 	if (XFS_IS_REALTIME_INODE(ip))
78 		return mp->m_rtdev_targp->bt_bdev;
79 	else
80 		return mp->m_ddev_targp->bt_bdev;
81 }
82 
83 struct dax_device *
84 xfs_find_daxdev_for_inode(
85 	struct inode		*inode)
86 {
87 	struct xfs_inode	*ip = XFS_I(inode);
88 	struct xfs_mount	*mp = ip->i_mount;
89 
90 	if (XFS_IS_REALTIME_INODE(ip))
91 		return mp->m_rtdev_targp->bt_daxdev;
92 	else
93 		return mp->m_ddev_targp->bt_daxdev;
94 }
95 
96 /*
97  * We're now finished for good with this page.  Update the page state via the
98  * associated buffer_heads, paying attention to the start and end offsets that
99  * we need to process on the page.
100  *
101  * Note that we open code the action in end_buffer_async_write here so that we
102  * only have to iterate over the buffers attached to the page once.  This is not
103  * only more efficient, but also ensures that we only calls end_page_writeback
104  * at the end of the iteration, and thus avoids the pitfall of having the page
105  * and buffers potentially freed after every call to end_buffer_async_write.
106  */
107 static void
108 xfs_finish_page_writeback(
109 	struct inode		*inode,
110 	struct bio_vec		*bvec,
111 	int			error)
112 {
113 	struct buffer_head	*head = page_buffers(bvec->bv_page), *bh = head;
114 	bool			busy = false;
115 	unsigned int		off = 0;
116 	unsigned long		flags;
117 
118 	ASSERT(bvec->bv_offset < PAGE_SIZE);
119 	ASSERT((bvec->bv_offset & (i_blocksize(inode) - 1)) == 0);
120 	ASSERT(bvec->bv_offset + bvec->bv_len <= PAGE_SIZE);
121 	ASSERT((bvec->bv_len & (i_blocksize(inode) - 1)) == 0);
122 
123 	local_irq_save(flags);
124 	bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
125 	do {
126 		if (off >= bvec->bv_offset &&
127 		    off < bvec->bv_offset + bvec->bv_len) {
128 			ASSERT(buffer_async_write(bh));
129 			ASSERT(bh->b_end_io == NULL);
130 
131 			if (error) {
132 				mark_buffer_write_io_error(bh);
133 				clear_buffer_uptodate(bh);
134 				SetPageError(bvec->bv_page);
135 			} else {
136 				set_buffer_uptodate(bh);
137 			}
138 			clear_buffer_async_write(bh);
139 			unlock_buffer(bh);
140 		} else if (buffer_async_write(bh)) {
141 			ASSERT(buffer_locked(bh));
142 			busy = true;
143 		}
144 		off += bh->b_size;
145 	} while ((bh = bh->b_this_page) != head);
146 	bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
147 	local_irq_restore(flags);
148 
149 	if (!busy)
150 		end_page_writeback(bvec->bv_page);
151 }
152 
153 /*
154  * We're now finished for good with this ioend structure.  Update the page
155  * state, release holds on bios, and finally free up memory.  Do not use the
156  * ioend after this.
157  */
158 STATIC void
159 xfs_destroy_ioend(
160 	struct xfs_ioend	*ioend,
161 	int			error)
162 {
163 	struct inode		*inode = ioend->io_inode;
164 	struct bio		*bio = &ioend->io_inline_bio;
165 	struct bio		*last = ioend->io_bio, *next;
166 	u64			start = bio->bi_iter.bi_sector;
167 	bool			quiet = bio_flagged(bio, BIO_QUIET);
168 
169 	for (bio = &ioend->io_inline_bio; bio; bio = next) {
170 		struct bio_vec	*bvec;
171 		int		i;
172 
173 		/*
174 		 * For the last bio, bi_private points to the ioend, so we
175 		 * need to explicitly end the iteration here.
176 		 */
177 		if (bio == last)
178 			next = NULL;
179 		else
180 			next = bio->bi_private;
181 
182 		/* walk each page on bio, ending page IO on them */
183 		bio_for_each_segment_all(bvec, bio, i)
184 			xfs_finish_page_writeback(inode, bvec, error);
185 
186 		bio_put(bio);
187 	}
188 
189 	if (unlikely(error && !quiet)) {
190 		xfs_err_ratelimited(XFS_I(inode)->i_mount,
191 			"writeback error on sector %llu", start);
192 	}
193 }
194 
195 /*
196  * Fast and loose check if this write could update the on-disk inode size.
197  */
198 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
199 {
200 	return ioend->io_offset + ioend->io_size >
201 		XFS_I(ioend->io_inode)->i_d.di_size;
202 }
203 
204 STATIC int
205 xfs_setfilesize_trans_alloc(
206 	struct xfs_ioend	*ioend)
207 {
208 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
209 	struct xfs_trans	*tp;
210 	int			error;
211 
212 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
213 				XFS_TRANS_NOFS, &tp);
214 	if (error)
215 		return error;
216 
217 	ioend->io_append_trans = tp;
218 
219 	/*
220 	 * We may pass freeze protection with a transaction.  So tell lockdep
221 	 * we released it.
222 	 */
223 	__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
224 	/*
225 	 * We hand off the transaction to the completion thread now, so
226 	 * clear the flag here.
227 	 */
228 	current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
229 	return 0;
230 }
231 
232 /*
233  * Update on-disk file size now that data has been written to disk.
234  */
235 STATIC int
236 __xfs_setfilesize(
237 	struct xfs_inode	*ip,
238 	struct xfs_trans	*tp,
239 	xfs_off_t		offset,
240 	size_t			size)
241 {
242 	xfs_fsize_t		isize;
243 
244 	xfs_ilock(ip, XFS_ILOCK_EXCL);
245 	isize = xfs_new_eof(ip, offset + size);
246 	if (!isize) {
247 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
248 		xfs_trans_cancel(tp);
249 		return 0;
250 	}
251 
252 	trace_xfs_setfilesize(ip, offset, size);
253 
254 	ip->i_d.di_size = isize;
255 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
256 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
257 
258 	return xfs_trans_commit(tp);
259 }
260 
261 int
262 xfs_setfilesize(
263 	struct xfs_inode	*ip,
264 	xfs_off_t		offset,
265 	size_t			size)
266 {
267 	struct xfs_mount	*mp = ip->i_mount;
268 	struct xfs_trans	*tp;
269 	int			error;
270 
271 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
272 	if (error)
273 		return error;
274 
275 	return __xfs_setfilesize(ip, tp, offset, size);
276 }
277 
278 STATIC int
279 xfs_setfilesize_ioend(
280 	struct xfs_ioend	*ioend,
281 	int			error)
282 {
283 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
284 	struct xfs_trans	*tp = ioend->io_append_trans;
285 
286 	/*
287 	 * The transaction may have been allocated in the I/O submission thread,
288 	 * thus we need to mark ourselves as being in a transaction manually.
289 	 * Similarly for freeze protection.
290 	 */
291 	current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
292 	__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
293 
294 	/* we abort the update if there was an IO error */
295 	if (error) {
296 		xfs_trans_cancel(tp);
297 		return error;
298 	}
299 
300 	return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
301 }
302 
303 /*
304  * IO write completion.
305  */
306 STATIC void
307 xfs_end_io(
308 	struct work_struct *work)
309 {
310 	struct xfs_ioend	*ioend =
311 		container_of(work, struct xfs_ioend, io_work);
312 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
313 	xfs_off_t		offset = ioend->io_offset;
314 	size_t			size = ioend->io_size;
315 	int			error;
316 
317 	/*
318 	 * Just clean up the in-memory strutures if the fs has been shut down.
319 	 */
320 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
321 		error = -EIO;
322 		goto done;
323 	}
324 
325 	/*
326 	 * Clean up any COW blocks on an I/O error.
327 	 */
328 	error = blk_status_to_errno(ioend->io_bio->bi_status);
329 	if (unlikely(error)) {
330 		switch (ioend->io_type) {
331 		case XFS_IO_COW:
332 			xfs_reflink_cancel_cow_range(ip, offset, size, true);
333 			break;
334 		}
335 
336 		goto done;
337 	}
338 
339 	/*
340 	 * Success:  commit the COW or unwritten blocks if needed.
341 	 */
342 	switch (ioend->io_type) {
343 	case XFS_IO_COW:
344 		error = xfs_reflink_end_cow(ip, offset, size);
345 		break;
346 	case XFS_IO_UNWRITTEN:
347 		/* writeback should never update isize */
348 		error = xfs_iomap_write_unwritten(ip, offset, size, false);
349 		break;
350 	default:
351 		ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
352 		break;
353 	}
354 
355 done:
356 	if (ioend->io_append_trans)
357 		error = xfs_setfilesize_ioend(ioend, error);
358 	xfs_destroy_ioend(ioend, error);
359 }
360 
361 STATIC void
362 xfs_end_bio(
363 	struct bio		*bio)
364 {
365 	struct xfs_ioend	*ioend = bio->bi_private;
366 	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
367 
368 	if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
369 		queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
370 	else if (ioend->io_append_trans)
371 		queue_work(mp->m_data_workqueue, &ioend->io_work);
372 	else
373 		xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
374 }
375 
376 STATIC int
377 xfs_map_blocks(
378 	struct inode		*inode,
379 	loff_t			offset,
380 	struct xfs_bmbt_irec	*imap,
381 	int			type)
382 {
383 	struct xfs_inode	*ip = XFS_I(inode);
384 	struct xfs_mount	*mp = ip->i_mount;
385 	ssize_t			count = i_blocksize(inode);
386 	xfs_fileoff_t		offset_fsb, end_fsb;
387 	int			error = 0;
388 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
389 	int			nimaps = 1;
390 
391 	if (XFS_FORCED_SHUTDOWN(mp))
392 		return -EIO;
393 
394 	/*
395 	 * Truncate can race with writeback since writeback doesn't take the
396 	 * iolock and truncate decreases the file size before it starts
397 	 * truncating the pages between new_size and old_size.  Therefore, we
398 	 * can end up in the situation where writeback gets a CoW fork mapping
399 	 * but the truncate makes the mapping invalid and we end up in here
400 	 * trying to get a new mapping.  Bail out here so that we simply never
401 	 * get a valid mapping and so we drop the write altogether.  The page
402 	 * truncation will kill the contents anyway.
403 	 */
404 	if (type == XFS_IO_COW && offset > i_size_read(inode))
405 		return 0;
406 
407 	ASSERT(type != XFS_IO_COW);
408 	if (type == XFS_IO_UNWRITTEN)
409 		bmapi_flags |= XFS_BMAPI_IGSTATE;
410 
411 	xfs_ilock(ip, XFS_ILOCK_SHARED);
412 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
413 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
414 	ASSERT(offset <= mp->m_super->s_maxbytes);
415 
416 	if (offset > mp->m_super->s_maxbytes - count)
417 		count = mp->m_super->s_maxbytes - offset;
418 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
419 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
420 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
421 				imap, &nimaps, bmapi_flags);
422 	/*
423 	 * Truncate an overwrite extent if there's a pending CoW
424 	 * reservation before the end of this extent.  This forces us
425 	 * to come back to writepage to take care of the CoW.
426 	 */
427 	if (nimaps && type == XFS_IO_OVERWRITE)
428 		xfs_reflink_trim_irec_to_next_cow(ip, offset_fsb, imap);
429 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
430 
431 	if (error)
432 		return error;
433 
434 	if (type == XFS_IO_DELALLOC &&
435 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
436 		error = xfs_iomap_write_allocate(ip, XFS_DATA_FORK, offset,
437 				imap);
438 		if (!error)
439 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
440 		return error;
441 	}
442 
443 #ifdef DEBUG
444 	if (type == XFS_IO_UNWRITTEN) {
445 		ASSERT(nimaps);
446 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
447 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
448 	}
449 #endif
450 	if (nimaps)
451 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
452 	return 0;
453 }
454 
455 STATIC bool
456 xfs_imap_valid(
457 	struct inode		*inode,
458 	struct xfs_bmbt_irec	*imap,
459 	xfs_off_t		offset)
460 {
461 	offset >>= inode->i_blkbits;
462 
463 	/*
464 	 * We have to make sure the cached mapping is within EOF to protect
465 	 * against eofblocks trimming on file release leaving us with a stale
466 	 * mapping. Otherwise, a page for a subsequent file extending buffered
467 	 * write could get picked up by this writeback cycle and written to the
468 	 * wrong blocks.
469 	 *
470 	 * Note that what we really want here is a generic mapping invalidation
471 	 * mechanism to protect us from arbitrary extent modifying contexts, not
472 	 * just eofblocks.
473 	 */
474 	xfs_trim_extent_eof(imap, XFS_I(inode));
475 
476 	return offset >= imap->br_startoff &&
477 		offset < imap->br_startoff + imap->br_blockcount;
478 }
479 
480 STATIC void
481 xfs_start_buffer_writeback(
482 	struct buffer_head	*bh)
483 {
484 	ASSERT(buffer_mapped(bh));
485 	ASSERT(buffer_locked(bh));
486 	ASSERT(!buffer_delay(bh));
487 	ASSERT(!buffer_unwritten(bh));
488 
489 	bh->b_end_io = NULL;
490 	set_buffer_async_write(bh);
491 	set_buffer_uptodate(bh);
492 	clear_buffer_dirty(bh);
493 }
494 
495 STATIC void
496 xfs_start_page_writeback(
497 	struct page		*page,
498 	int			clear_dirty)
499 {
500 	ASSERT(PageLocked(page));
501 	ASSERT(!PageWriteback(page));
502 
503 	/*
504 	 * if the page was not fully cleaned, we need to ensure that the higher
505 	 * layers come back to it correctly. That means we need to keep the page
506 	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
507 	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
508 	 * write this page in this writeback sweep will be made.
509 	 */
510 	if (clear_dirty) {
511 		clear_page_dirty_for_io(page);
512 		set_page_writeback(page);
513 	} else
514 		set_page_writeback_keepwrite(page);
515 
516 	unlock_page(page);
517 }
518 
519 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
520 {
521 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
522 }
523 
524 /*
525  * Submit the bio for an ioend. We are passed an ioend with a bio attached to
526  * it, and we submit that bio. The ioend may be used for multiple bio
527  * submissions, so we only want to allocate an append transaction for the ioend
528  * once. In the case of multiple bio submission, each bio will take an IO
529  * reference to the ioend to ensure that the ioend completion is only done once
530  * all bios have been submitted and the ioend is really done.
531  *
532  * If @fail is non-zero, it means that we have a situation where some part of
533  * the submission process has failed after we have marked paged for writeback
534  * and unlocked them. In this situation, we need to fail the bio and ioend
535  * rather than submit it to IO. This typically only happens on a filesystem
536  * shutdown.
537  */
538 STATIC int
539 xfs_submit_ioend(
540 	struct writeback_control *wbc,
541 	struct xfs_ioend	*ioend,
542 	int			status)
543 {
544 	/* Convert CoW extents to regular */
545 	if (!status && ioend->io_type == XFS_IO_COW) {
546 		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
547 				ioend->io_offset, ioend->io_size);
548 	}
549 
550 	/* Reserve log space if we might write beyond the on-disk inode size. */
551 	if (!status &&
552 	    ioend->io_type != XFS_IO_UNWRITTEN &&
553 	    xfs_ioend_is_append(ioend) &&
554 	    !ioend->io_append_trans)
555 		status = xfs_setfilesize_trans_alloc(ioend);
556 
557 	ioend->io_bio->bi_private = ioend;
558 	ioend->io_bio->bi_end_io = xfs_end_bio;
559 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
560 
561 	/*
562 	 * If we are failing the IO now, just mark the ioend with an
563 	 * error and finish it. This will run IO completion immediately
564 	 * as there is only one reference to the ioend at this point in
565 	 * time.
566 	 */
567 	if (status) {
568 		ioend->io_bio->bi_status = errno_to_blk_status(status);
569 		bio_endio(ioend->io_bio);
570 		return status;
571 	}
572 
573 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
574 	submit_bio(ioend->io_bio);
575 	return 0;
576 }
577 
578 static void
579 xfs_init_bio_from_bh(
580 	struct bio		*bio,
581 	struct buffer_head	*bh)
582 {
583 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
584 	bio_set_dev(bio, bh->b_bdev);
585 }
586 
587 static struct xfs_ioend *
588 xfs_alloc_ioend(
589 	struct inode		*inode,
590 	unsigned int		type,
591 	xfs_off_t		offset,
592 	struct buffer_head	*bh)
593 {
594 	struct xfs_ioend	*ioend;
595 	struct bio		*bio;
596 
597 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
598 	xfs_init_bio_from_bh(bio, bh);
599 
600 	ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
601 	INIT_LIST_HEAD(&ioend->io_list);
602 	ioend->io_type = type;
603 	ioend->io_inode = inode;
604 	ioend->io_size = 0;
605 	ioend->io_offset = offset;
606 	INIT_WORK(&ioend->io_work, xfs_end_io);
607 	ioend->io_append_trans = NULL;
608 	ioend->io_bio = bio;
609 	return ioend;
610 }
611 
612 /*
613  * Allocate a new bio, and chain the old bio to the new one.
614  *
615  * Note that we have to do perform the chaining in this unintuitive order
616  * so that the bi_private linkage is set up in the right direction for the
617  * traversal in xfs_destroy_ioend().
618  */
619 static void
620 xfs_chain_bio(
621 	struct xfs_ioend	*ioend,
622 	struct writeback_control *wbc,
623 	struct buffer_head	*bh)
624 {
625 	struct bio *new;
626 
627 	new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
628 	xfs_init_bio_from_bh(new, bh);
629 
630 	bio_chain(ioend->io_bio, new);
631 	bio_get(ioend->io_bio);		/* for xfs_destroy_ioend */
632 	ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
633 	ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
634 	submit_bio(ioend->io_bio);
635 	ioend->io_bio = new;
636 }
637 
638 /*
639  * Test to see if we've been building up a completion structure for
640  * earlier buffers -- if so, we try to append to this ioend if we
641  * can, otherwise we finish off any current ioend and start another.
642  * Return the ioend we finished off so that the caller can submit it
643  * once it has finished processing the dirty page.
644  */
645 STATIC void
646 xfs_add_to_ioend(
647 	struct inode		*inode,
648 	struct buffer_head	*bh,
649 	xfs_off_t		offset,
650 	struct xfs_writepage_ctx *wpc,
651 	struct writeback_control *wbc,
652 	struct list_head	*iolist)
653 {
654 	if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
655 	    bh->b_blocknr != wpc->last_block + 1 ||
656 	    offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
657 		if (wpc->ioend)
658 			list_add(&wpc->ioend->io_list, iolist);
659 		wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
660 	}
661 
662 	/*
663 	 * If the buffer doesn't fit into the bio we need to allocate a new
664 	 * one.  This shouldn't happen more than once for a given buffer.
665 	 */
666 	while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
667 		xfs_chain_bio(wpc->ioend, wbc, bh);
668 
669 	wpc->ioend->io_size += bh->b_size;
670 	wpc->last_block = bh->b_blocknr;
671 	xfs_start_buffer_writeback(bh);
672 }
673 
674 STATIC void
675 xfs_map_buffer(
676 	struct inode		*inode,
677 	struct buffer_head	*bh,
678 	struct xfs_bmbt_irec	*imap,
679 	xfs_off_t		offset)
680 {
681 	sector_t		bn;
682 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
683 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
684 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
685 
686 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
687 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
688 
689 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
690 	      ((offset - iomap_offset) >> inode->i_blkbits);
691 
692 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
693 
694 	bh->b_blocknr = bn;
695 	set_buffer_mapped(bh);
696 }
697 
698 STATIC void
699 xfs_map_at_offset(
700 	struct inode		*inode,
701 	struct buffer_head	*bh,
702 	struct xfs_bmbt_irec	*imap,
703 	xfs_off_t		offset)
704 {
705 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
706 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
707 
708 	xfs_map_buffer(inode, bh, imap, offset);
709 	set_buffer_mapped(bh);
710 	clear_buffer_delay(bh);
711 	clear_buffer_unwritten(bh);
712 }
713 
714 /*
715  * Test if a given page contains at least one buffer of a given @type.
716  * If @check_all_buffers is true, then we walk all the buffers in the page to
717  * try to find one of the type passed in. If it is not set, then the caller only
718  * needs to check the first buffer on the page for a match.
719  */
720 STATIC bool
721 xfs_check_page_type(
722 	struct page		*page,
723 	unsigned int		type,
724 	bool			check_all_buffers)
725 {
726 	struct buffer_head	*bh;
727 	struct buffer_head	*head;
728 
729 	if (PageWriteback(page))
730 		return false;
731 	if (!page->mapping)
732 		return false;
733 	if (!page_has_buffers(page))
734 		return false;
735 
736 	bh = head = page_buffers(page);
737 	do {
738 		if (buffer_unwritten(bh)) {
739 			if (type == XFS_IO_UNWRITTEN)
740 				return true;
741 		} else if (buffer_delay(bh)) {
742 			if (type == XFS_IO_DELALLOC)
743 				return true;
744 		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
745 			if (type == XFS_IO_OVERWRITE)
746 				return true;
747 		}
748 
749 		/* If we are only checking the first buffer, we are done now. */
750 		if (!check_all_buffers)
751 			break;
752 	} while ((bh = bh->b_this_page) != head);
753 
754 	return false;
755 }
756 
757 STATIC void
758 xfs_vm_invalidatepage(
759 	struct page		*page,
760 	unsigned int		offset,
761 	unsigned int		length)
762 {
763 	trace_xfs_invalidatepage(page->mapping->host, page, offset,
764 				 length);
765 
766 	/*
767 	 * If we are invalidating the entire page, clear the dirty state from it
768 	 * so that we can check for attempts to release dirty cached pages in
769 	 * xfs_vm_releasepage().
770 	 */
771 	if (offset == 0 && length >= PAGE_SIZE)
772 		cancel_dirty_page(page);
773 	block_invalidatepage(page, offset, length);
774 }
775 
776 /*
777  * If the page has delalloc buffers on it, we need to punch them out before we
778  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
779  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
780  * is done on that same region - the delalloc extent is returned when none is
781  * supposed to be there.
782  *
783  * We prevent this by truncating away the delalloc regions on the page before
784  * invalidating it. Because they are delalloc, we can do this without needing a
785  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
786  * truncation without a transaction as there is no space left for block
787  * reservation (typically why we see a ENOSPC in writeback).
788  *
789  * This is not a performance critical path, so for now just do the punching a
790  * buffer head at a time.
791  */
792 STATIC void
793 xfs_aops_discard_page(
794 	struct page		*page)
795 {
796 	struct inode		*inode = page->mapping->host;
797 	struct xfs_inode	*ip = XFS_I(inode);
798 	struct buffer_head	*bh, *head;
799 	loff_t			offset = page_offset(page);
800 
801 	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
802 		goto out_invalidate;
803 
804 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
805 		goto out_invalidate;
806 
807 	xfs_alert(ip->i_mount,
808 		"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
809 			page, ip->i_ino, offset);
810 
811 	xfs_ilock(ip, XFS_ILOCK_EXCL);
812 	bh = head = page_buffers(page);
813 	do {
814 		int		error;
815 		xfs_fileoff_t	start_fsb;
816 
817 		if (!buffer_delay(bh))
818 			goto next_buffer;
819 
820 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
821 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
822 		if (error) {
823 			/* something screwed, just bail */
824 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
825 				xfs_alert(ip->i_mount,
826 			"page discard unable to remove delalloc mapping.");
827 			}
828 			break;
829 		}
830 next_buffer:
831 		offset += i_blocksize(inode);
832 
833 	} while ((bh = bh->b_this_page) != head);
834 
835 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
836 out_invalidate:
837 	xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
838 	return;
839 }
840 
841 static int
842 xfs_map_cow(
843 	struct xfs_writepage_ctx *wpc,
844 	struct inode		*inode,
845 	loff_t			offset,
846 	unsigned int		*new_type)
847 {
848 	struct xfs_inode	*ip = XFS_I(inode);
849 	struct xfs_bmbt_irec	imap;
850 	bool			is_cow = false;
851 	int			error;
852 
853 	/*
854 	 * If we already have a valid COW mapping keep using it.
855 	 */
856 	if (wpc->io_type == XFS_IO_COW) {
857 		wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap, offset);
858 		if (wpc->imap_valid) {
859 			*new_type = XFS_IO_COW;
860 			return 0;
861 		}
862 	}
863 
864 	/*
865 	 * Else we need to check if there is a COW mapping at this offset.
866 	 */
867 	xfs_ilock(ip, XFS_ILOCK_SHARED);
868 	is_cow = xfs_reflink_find_cow_mapping(ip, offset, &imap);
869 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
870 
871 	if (!is_cow)
872 		return 0;
873 
874 	/*
875 	 * And if the COW mapping has a delayed extent here we need to
876 	 * allocate real space for it now.
877 	 */
878 	if (isnullstartblock(imap.br_startblock)) {
879 		error = xfs_iomap_write_allocate(ip, XFS_COW_FORK, offset,
880 				&imap);
881 		if (error)
882 			return error;
883 	}
884 
885 	wpc->io_type = *new_type = XFS_IO_COW;
886 	wpc->imap_valid = true;
887 	wpc->imap = imap;
888 	return 0;
889 }
890 
891 /*
892  * We implement an immediate ioend submission policy here to avoid needing to
893  * chain multiple ioends and hence nest mempool allocations which can violate
894  * forward progress guarantees we need to provide. The current ioend we are
895  * adding buffers to is cached on the writepage context, and if the new buffer
896  * does not append to the cached ioend it will create a new ioend and cache that
897  * instead.
898  *
899  * If a new ioend is created and cached, the old ioend is returned and queued
900  * locally for submission once the entire page is processed or an error has been
901  * detected.  While ioends are submitted immediately after they are completed,
902  * batching optimisations are provided by higher level block plugging.
903  *
904  * At the end of a writeback pass, there will be a cached ioend remaining on the
905  * writepage context that the caller will need to submit.
906  */
907 static int
908 xfs_writepage_map(
909 	struct xfs_writepage_ctx *wpc,
910 	struct writeback_control *wbc,
911 	struct inode		*inode,
912 	struct page		*page,
913 	uint64_t		end_offset)
914 {
915 	LIST_HEAD(submit_list);
916 	struct xfs_ioend	*ioend, *next;
917 	struct buffer_head	*bh, *head;
918 	ssize_t			len = i_blocksize(inode);
919 	uint64_t		offset;
920 	int			error = 0;
921 	int			count = 0;
922 	int			uptodate = 1;
923 	unsigned int		new_type;
924 
925 	bh = head = page_buffers(page);
926 	offset = page_offset(page);
927 	do {
928 		if (offset >= end_offset)
929 			break;
930 		if (!buffer_uptodate(bh))
931 			uptodate = 0;
932 
933 		/*
934 		 * set_page_dirty dirties all buffers in a page, independent
935 		 * of their state.  The dirty state however is entirely
936 		 * meaningless for holes (!mapped && uptodate), so skip
937 		 * buffers covering holes here.
938 		 */
939 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
940 			wpc->imap_valid = false;
941 			continue;
942 		}
943 
944 		if (buffer_unwritten(bh))
945 			new_type = XFS_IO_UNWRITTEN;
946 		else if (buffer_delay(bh))
947 			new_type = XFS_IO_DELALLOC;
948 		else if (buffer_uptodate(bh))
949 			new_type = XFS_IO_OVERWRITE;
950 		else {
951 			if (PageUptodate(page))
952 				ASSERT(buffer_mapped(bh));
953 			/*
954 			 * This buffer is not uptodate and will not be
955 			 * written to disk.  Ensure that we will put any
956 			 * subsequent writeable buffers into a new
957 			 * ioend.
958 			 */
959 			wpc->imap_valid = false;
960 			continue;
961 		}
962 
963 		if (xfs_is_reflink_inode(XFS_I(inode))) {
964 			error = xfs_map_cow(wpc, inode, offset, &new_type);
965 			if (error)
966 				goto out;
967 		}
968 
969 		if (wpc->io_type != new_type) {
970 			wpc->io_type = new_type;
971 			wpc->imap_valid = false;
972 		}
973 
974 		if (wpc->imap_valid)
975 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
976 							 offset);
977 		if (!wpc->imap_valid) {
978 			error = xfs_map_blocks(inode, offset, &wpc->imap,
979 					     wpc->io_type);
980 			if (error)
981 				goto out;
982 			wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
983 							 offset);
984 		}
985 		if (wpc->imap_valid) {
986 			lock_buffer(bh);
987 			if (wpc->io_type != XFS_IO_OVERWRITE)
988 				xfs_map_at_offset(inode, bh, &wpc->imap, offset);
989 			xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
990 			count++;
991 		}
992 
993 	} while (offset += len, ((bh = bh->b_this_page) != head));
994 
995 	if (uptodate && bh == head)
996 		SetPageUptodate(page);
997 
998 	ASSERT(wpc->ioend || list_empty(&submit_list));
999 
1000 out:
1001 	/*
1002 	 * On error, we have to fail the ioend here because we have locked
1003 	 * buffers in the ioend. If we don't do this, we'll deadlock
1004 	 * invalidating the page as that tries to lock the buffers on the page.
1005 	 * Also, because we may have set pages under writeback, we have to make
1006 	 * sure we run IO completion to mark the error state of the IO
1007 	 * appropriately, so we can't cancel the ioend directly here. That means
1008 	 * we have to mark this page as under writeback if we included any
1009 	 * buffers from it in the ioend chain so that completion treats it
1010 	 * correctly.
1011 	 *
1012 	 * If we didn't include the page in the ioend, the on error we can
1013 	 * simply discard and unlock it as there are no other users of the page
1014 	 * or it's buffers right now. The caller will still need to trigger
1015 	 * submission of outstanding ioends on the writepage context so they are
1016 	 * treated correctly on error.
1017 	 */
1018 	if (count) {
1019 		xfs_start_page_writeback(page, !error);
1020 
1021 		/*
1022 		 * Preserve the original error if there was one, otherwise catch
1023 		 * submission errors here and propagate into subsequent ioend
1024 		 * submissions.
1025 		 */
1026 		list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1027 			int error2;
1028 
1029 			list_del_init(&ioend->io_list);
1030 			error2 = xfs_submit_ioend(wbc, ioend, error);
1031 			if (error2 && !error)
1032 				error = error2;
1033 		}
1034 	} else if (error) {
1035 		xfs_aops_discard_page(page);
1036 		ClearPageUptodate(page);
1037 		unlock_page(page);
1038 	} else {
1039 		/*
1040 		 * We can end up here with no error and nothing to write if we
1041 		 * race with a partial page truncate on a sub-page block sized
1042 		 * filesystem. In that case we need to mark the page clean.
1043 		 */
1044 		xfs_start_page_writeback(page, 1);
1045 		end_page_writeback(page);
1046 	}
1047 
1048 	mapping_set_error(page->mapping, error);
1049 	return error;
1050 }
1051 
1052 /*
1053  * Write out a dirty page.
1054  *
1055  * For delalloc space on the page we need to allocate space and flush it.
1056  * For unwritten space on the page we need to start the conversion to
1057  * regular allocated space.
1058  * For any other dirty buffer heads on the page we should flush them.
1059  */
1060 STATIC int
1061 xfs_do_writepage(
1062 	struct page		*page,
1063 	struct writeback_control *wbc,
1064 	void			*data)
1065 {
1066 	struct xfs_writepage_ctx *wpc = data;
1067 	struct inode		*inode = page->mapping->host;
1068 	loff_t			offset;
1069 	uint64_t              end_offset;
1070 	pgoff_t                 end_index;
1071 
1072 	trace_xfs_writepage(inode, page, 0, 0);
1073 
1074 	ASSERT(page_has_buffers(page));
1075 
1076 	/*
1077 	 * Refuse to write the page out if we are called from reclaim context.
1078 	 *
1079 	 * This avoids stack overflows when called from deeply used stacks in
1080 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
1081 	 * allow reclaim from kswapd as the stack usage there is relatively low.
1082 	 *
1083 	 * This should never happen except in the case of a VM regression so
1084 	 * warn about it.
1085 	 */
1086 	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1087 			PF_MEMALLOC))
1088 		goto redirty;
1089 
1090 	/*
1091 	 * Given that we do not allow direct reclaim to call us, we should
1092 	 * never be called while in a filesystem transaction.
1093 	 */
1094 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1095 		goto redirty;
1096 
1097 	/*
1098 	 * Is this page beyond the end of the file?
1099 	 *
1100 	 * The page index is less than the end_index, adjust the end_offset
1101 	 * to the highest offset that this page should represent.
1102 	 * -----------------------------------------------------
1103 	 * |			file mapping	       | <EOF> |
1104 	 * -----------------------------------------------------
1105 	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
1106 	 * ^--------------------------------^----------|--------
1107 	 * |     desired writeback range    |      see else    |
1108 	 * ---------------------------------^------------------|
1109 	 */
1110 	offset = i_size_read(inode);
1111 	end_index = offset >> PAGE_SHIFT;
1112 	if (page->index < end_index)
1113 		end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
1114 	else {
1115 		/*
1116 		 * Check whether the page to write out is beyond or straddles
1117 		 * i_size or not.
1118 		 * -------------------------------------------------------
1119 		 * |		file mapping		        | <EOF>  |
1120 		 * -------------------------------------------------------
1121 		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1122 		 * ^--------------------------------^-----------|---------
1123 		 * |				    |      Straddles     |
1124 		 * ---------------------------------^-----------|--------|
1125 		 */
1126 		unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1127 
1128 		/*
1129 		 * Skip the page if it is fully outside i_size, e.g. due to a
1130 		 * truncate operation that is in progress. We must redirty the
1131 		 * page so that reclaim stops reclaiming it. Otherwise
1132 		 * xfs_vm_releasepage() is called on it and gets confused.
1133 		 *
1134 		 * Note that the end_index is unsigned long, it would overflow
1135 		 * if the given offset is greater than 16TB on 32-bit system
1136 		 * and if we do check the page is fully outside i_size or not
1137 		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1138 		 * will be evaluated to 0.  Hence this page will be redirtied
1139 		 * and be written out repeatedly which would result in an
1140 		 * infinite loop, the user program that perform this operation
1141 		 * will hang.  Instead, we can verify this situation by checking
1142 		 * if the page to write is totally beyond the i_size or if it's
1143 		 * offset is just equal to the EOF.
1144 		 */
1145 		if (page->index > end_index ||
1146 		    (page->index == end_index && offset_into_page == 0))
1147 			goto redirty;
1148 
1149 		/*
1150 		 * The page straddles i_size.  It must be zeroed out on each
1151 		 * and every writepage invocation because it may be mmapped.
1152 		 * "A file is mapped in multiples of the page size.  For a file
1153 		 * that is not a multiple of the page size, the remaining
1154 		 * memory is zeroed when mapped, and writes to that region are
1155 		 * not written out to the file."
1156 		 */
1157 		zero_user_segment(page, offset_into_page, PAGE_SIZE);
1158 
1159 		/* Adjust the end_offset to the end of file */
1160 		end_offset = offset;
1161 	}
1162 
1163 	return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
1164 
1165 redirty:
1166 	redirty_page_for_writepage(wbc, page);
1167 	unlock_page(page);
1168 	return 0;
1169 }
1170 
1171 STATIC int
1172 xfs_vm_writepage(
1173 	struct page		*page,
1174 	struct writeback_control *wbc)
1175 {
1176 	struct xfs_writepage_ctx wpc = {
1177 		.io_type = XFS_IO_INVALID,
1178 	};
1179 	int			ret;
1180 
1181 	ret = xfs_do_writepage(page, wbc, &wpc);
1182 	if (wpc.ioend)
1183 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1184 	return ret;
1185 }
1186 
1187 STATIC int
1188 xfs_vm_writepages(
1189 	struct address_space	*mapping,
1190 	struct writeback_control *wbc)
1191 {
1192 	struct xfs_writepage_ctx wpc = {
1193 		.io_type = XFS_IO_INVALID,
1194 	};
1195 	int			ret;
1196 
1197 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1198 	ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1199 	if (wpc.ioend)
1200 		ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1201 	return ret;
1202 }
1203 
1204 STATIC int
1205 xfs_dax_writepages(
1206 	struct address_space	*mapping,
1207 	struct writeback_control *wbc)
1208 {
1209 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1210 	return dax_writeback_mapping_range(mapping,
1211 			xfs_find_bdev_for_inode(mapping->host), wbc);
1212 }
1213 
1214 /*
1215  * Called to move a page into cleanable state - and from there
1216  * to be released. The page should already be clean. We always
1217  * have buffer heads in this call.
1218  *
1219  * Returns 1 if the page is ok to release, 0 otherwise.
1220  */
1221 STATIC int
1222 xfs_vm_releasepage(
1223 	struct page		*page,
1224 	gfp_t			gfp_mask)
1225 {
1226 	int			delalloc, unwritten;
1227 
1228 	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1229 
1230 	/*
1231 	 * mm accommodates an old ext3 case where clean pages might not have had
1232 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
1233 	 * ->releasepage() via shrink_active_list(). Conversely,
1234 	 * block_invalidatepage() can send pages that are still marked dirty but
1235 	 * otherwise have invalidated buffers.
1236 	 *
1237 	 * We want to release the latter to avoid unnecessary buildup of the
1238 	 * LRU, so xfs_vm_invalidatepage() clears the page dirty flag on pages
1239 	 * that are entirely invalidated and need to be released.  Hence the
1240 	 * only time we should get dirty pages here is through
1241 	 * shrink_active_list() and so we can simply skip those now.
1242 	 *
1243 	 * warn if we've left any lingering delalloc/unwritten buffers on clean
1244 	 * or invalidated pages we are about to release.
1245 	 */
1246 	if (PageDirty(page))
1247 		return 0;
1248 
1249 	xfs_count_page_state(page, &delalloc, &unwritten);
1250 
1251 	if (WARN_ON_ONCE(delalloc))
1252 		return 0;
1253 	if (WARN_ON_ONCE(unwritten))
1254 		return 0;
1255 
1256 	return try_to_free_buffers(page);
1257 }
1258 
1259 /*
1260  * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1261  * is, so that we can avoid repeated get_blocks calls.
1262  *
1263  * If the mapping spans EOF, then we have to break the mapping up as the mapping
1264  * for blocks beyond EOF must be marked new so that sub block regions can be
1265  * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1266  * was just allocated or is unwritten, otherwise the callers would overwrite
1267  * existing data with zeros. Hence we have to split the mapping into a range up
1268  * to and including EOF, and a second mapping for beyond EOF.
1269  */
1270 static void
1271 xfs_map_trim_size(
1272 	struct inode		*inode,
1273 	sector_t		iblock,
1274 	struct buffer_head	*bh_result,
1275 	struct xfs_bmbt_irec	*imap,
1276 	xfs_off_t		offset,
1277 	ssize_t			size)
1278 {
1279 	xfs_off_t		mapping_size;
1280 
1281 	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1282 	mapping_size <<= inode->i_blkbits;
1283 
1284 	ASSERT(mapping_size > 0);
1285 	if (mapping_size > size)
1286 		mapping_size = size;
1287 	if (offset < i_size_read(inode) &&
1288 	    (xfs_ufsize_t)offset + mapping_size >= i_size_read(inode)) {
1289 		/* limit mapping to block that spans EOF */
1290 		mapping_size = roundup_64(i_size_read(inode) - offset,
1291 					  i_blocksize(inode));
1292 	}
1293 	if (mapping_size > LONG_MAX)
1294 		mapping_size = LONG_MAX;
1295 
1296 	bh_result->b_size = mapping_size;
1297 }
1298 
1299 static int
1300 xfs_get_blocks(
1301 	struct inode		*inode,
1302 	sector_t		iblock,
1303 	struct buffer_head	*bh_result,
1304 	int			create)
1305 {
1306 	struct xfs_inode	*ip = XFS_I(inode);
1307 	struct xfs_mount	*mp = ip->i_mount;
1308 	xfs_fileoff_t		offset_fsb, end_fsb;
1309 	int			error = 0;
1310 	int			lockmode = 0;
1311 	struct xfs_bmbt_irec	imap;
1312 	int			nimaps = 1;
1313 	xfs_off_t		offset;
1314 	ssize_t			size;
1315 
1316 	BUG_ON(create);
1317 
1318 	if (XFS_FORCED_SHUTDOWN(mp))
1319 		return -EIO;
1320 
1321 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1322 	ASSERT(bh_result->b_size >= i_blocksize(inode));
1323 	size = bh_result->b_size;
1324 
1325 	if (offset >= i_size_read(inode))
1326 		return 0;
1327 
1328 	/*
1329 	 * Direct I/O is usually done on preallocated files, so try getting
1330 	 * a block mapping without an exclusive lock first.
1331 	 */
1332 	lockmode = xfs_ilock_data_map_shared(ip);
1333 
1334 	ASSERT(offset <= mp->m_super->s_maxbytes);
1335 	if (offset > mp->m_super->s_maxbytes - size)
1336 		size = mp->m_super->s_maxbytes - offset;
1337 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1338 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1339 
1340 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1341 			&nimaps, 0);
1342 	if (error)
1343 		goto out_unlock;
1344 	if (!nimaps) {
1345 		trace_xfs_get_blocks_notfound(ip, offset, size);
1346 		goto out_unlock;
1347 	}
1348 
1349 	trace_xfs_get_blocks_found(ip, offset, size,
1350 		imap.br_state == XFS_EXT_UNWRITTEN ?
1351 			XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, &imap);
1352 	xfs_iunlock(ip, lockmode);
1353 
1354 	/* trim mapping down to size requested */
1355 	xfs_map_trim_size(inode, iblock, bh_result, &imap, offset, size);
1356 
1357 	/*
1358 	 * For unwritten extents do not report a disk address in the buffered
1359 	 * read case (treat as if we're reading into a hole).
1360 	 */
1361 	if (xfs_bmap_is_real_extent(&imap))
1362 		xfs_map_buffer(inode, bh_result, &imap, offset);
1363 
1364 	/*
1365 	 * If this is a realtime file, data may be on a different device.
1366 	 * to that pointed to from the buffer_head b_bdev currently.
1367 	 */
1368 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1369 	return 0;
1370 
1371 out_unlock:
1372 	xfs_iunlock(ip, lockmode);
1373 	return error;
1374 }
1375 
1376 STATIC sector_t
1377 xfs_vm_bmap(
1378 	struct address_space	*mapping,
1379 	sector_t		block)
1380 {
1381 	struct xfs_inode	*ip = XFS_I(mapping->host);
1382 
1383 	trace_xfs_vm_bmap(ip);
1384 
1385 	/*
1386 	 * The swap code (ab-)uses ->bmap to get a block mapping and then
1387 	 * bypasses the file system for actual I/O.  We really can't allow
1388 	 * that on reflinks inodes, so we have to skip out here.  And yes,
1389 	 * 0 is the magic code for a bmap error.
1390 	 *
1391 	 * Since we don't pass back blockdev info, we can't return bmap
1392 	 * information for rt files either.
1393 	 */
1394 	if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
1395 		return 0;
1396 	return iomap_bmap(mapping, block, &xfs_iomap_ops);
1397 }
1398 
1399 STATIC int
1400 xfs_vm_readpage(
1401 	struct file		*unused,
1402 	struct page		*page)
1403 {
1404 	trace_xfs_vm_readpage(page->mapping->host, 1);
1405 	return mpage_readpage(page, xfs_get_blocks);
1406 }
1407 
1408 STATIC int
1409 xfs_vm_readpages(
1410 	struct file		*unused,
1411 	struct address_space	*mapping,
1412 	struct list_head	*pages,
1413 	unsigned		nr_pages)
1414 {
1415 	trace_xfs_vm_readpages(mapping->host, nr_pages);
1416 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1417 }
1418 
1419 /*
1420  * This is basically a copy of __set_page_dirty_buffers() with one
1421  * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1422  * dirty, we'll never be able to clean them because we don't write buffers
1423  * beyond EOF, and that means we can't invalidate pages that span EOF
1424  * that have been marked dirty. Further, the dirty state can leak into
1425  * the file interior if the file is extended, resulting in all sorts of
1426  * bad things happening as the state does not match the underlying data.
1427  *
1428  * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1429  * this only exist because of bufferheads and how the generic code manages them.
1430  */
1431 STATIC int
1432 xfs_vm_set_page_dirty(
1433 	struct page		*page)
1434 {
1435 	struct address_space	*mapping = page->mapping;
1436 	struct inode		*inode = mapping->host;
1437 	loff_t			end_offset;
1438 	loff_t			offset;
1439 	int			newly_dirty;
1440 
1441 	if (unlikely(!mapping))
1442 		return !TestSetPageDirty(page);
1443 
1444 	end_offset = i_size_read(inode);
1445 	offset = page_offset(page);
1446 
1447 	spin_lock(&mapping->private_lock);
1448 	if (page_has_buffers(page)) {
1449 		struct buffer_head *head = page_buffers(page);
1450 		struct buffer_head *bh = head;
1451 
1452 		do {
1453 			if (offset < end_offset)
1454 				set_buffer_dirty(bh);
1455 			bh = bh->b_this_page;
1456 			offset += i_blocksize(inode);
1457 		} while (bh != head);
1458 	}
1459 	/*
1460 	 * Lock out page->mem_cgroup migration to keep PageDirty
1461 	 * synchronized with per-memcg dirty page counters.
1462 	 */
1463 	lock_page_memcg(page);
1464 	newly_dirty = !TestSetPageDirty(page);
1465 	spin_unlock(&mapping->private_lock);
1466 
1467 	if (newly_dirty)
1468 		__set_page_dirty(page, mapping, 1);
1469 	unlock_page_memcg(page);
1470 	if (newly_dirty)
1471 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1472 	return newly_dirty;
1473 }
1474 
1475 static int
1476 xfs_iomap_swapfile_activate(
1477 	struct swap_info_struct		*sis,
1478 	struct file			*swap_file,
1479 	sector_t			*span)
1480 {
1481 	sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1482 	return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
1483 }
1484 
1485 const struct address_space_operations xfs_address_space_operations = {
1486 	.readpage		= xfs_vm_readpage,
1487 	.readpages		= xfs_vm_readpages,
1488 	.writepage		= xfs_vm_writepage,
1489 	.writepages		= xfs_vm_writepages,
1490 	.set_page_dirty		= xfs_vm_set_page_dirty,
1491 	.releasepage		= xfs_vm_releasepage,
1492 	.invalidatepage		= xfs_vm_invalidatepage,
1493 	.bmap			= xfs_vm_bmap,
1494 	.direct_IO		= noop_direct_IO,
1495 	.migratepage		= buffer_migrate_page,
1496 	.is_partially_uptodate  = block_is_partially_uptodate,
1497 	.error_remove_page	= generic_error_remove_page,
1498 	.swap_activate		= xfs_iomap_swapfile_activate,
1499 };
1500 
1501 const struct address_space_operations xfs_dax_aops = {
1502 	.writepages		= xfs_dax_writepages,
1503 	.direct_IO		= noop_direct_IO,
1504 	.set_page_dirty		= noop_set_page_dirty,
1505 	.invalidatepage		= noop_invalidatepage,
1506 	.swap_activate		= xfs_iomap_swapfile_activate,
1507 };
1508